
Type Inference with Inequalities

Michael I. Schwartzbach
mis@daimi.aau.dk

Computer Science Department

Aarhus University

Ny Munkegade

DK-8000 Århus C, Denmark

Abstract

Type inference can be phrased as constraint-solving over types. We con-
sider an implicitly typed language equipped with recursive types, multiple
inheritance, 1st order parametric polymorphism, and assignments. Type
correctness is expressed as satisfiability of a possibly infinite collection of
(monotonic) inequalities on the types of variables and expressions. A gen-
eral result about systems of inequalities over semilattices yields a solvable
form. We distinguish between deciding typability (the existence of solu-
tions) and type inference (the computation of a minimal solution). In our
case, both can be solved by means of nondeterministic finite automata;
unusually, the two problems have different complexities: polynomial vs.
exponential time.

1 Introduction

In programming languages one distinguishes between explicit and implicit typ-
ings. For the λ-calculus, the explicit case looks like

λx : τ.e

where τ is the type of the parameter. The implicit case looks like

λx.e

where the type of the parameter must be inferred from e. The philosophical
and proof theoretical differences between the two approaches have been studied

1

in great depth [1,7]. Implicit typings form the basis for languages like ML and
Miranda, whereas more complicated λ-systems, and all Pascal-like languages,
use explicit typings.

The legality of calls are determined by the formal and actual parameter types. In
the implicit case, the formal parameter types are inferred from the body. Thus, a
change in the body may invalidate existing calls. In the explicit case, the formal
parameters are independent of the body, which ensures a certain modularity in
the program. However, there are also advantages to implicit typings. Programs
become more succinct, and no calls will needlessly be deemed illegal when the
explicit formal parameter types are unnecessarily specific.

The traditional view of type inference is to consider a typed language and a
function erase that removes type annotation in a program. One then seeks a
function infer that reconstructs the type annotation, if possible; when several
typings are available, infer should produce an optimal one.

In this paper we consider the untyped language first. Given a program P we define
a collection of constraints correct(P) on the (unknown) types of variables and
expressions occurring syntactically in P . We then consider the program to be
type correct if these constraints are solvable over the types. When we have a
solution, we may then choose to annotate various parts of the program.

The definition of correct(P) must be sound with respect to the dynamic seman-
tics of the language. This means that for type correct programs certain invariants
must be guaranteed to hold during their execution. These invariants are crucial
for reasoning about program correctness, and are also very useful for developing
efficient implementations and performing compile-time optimizations. Typical
invariants are: operations are only performed on arguments of the proper types,
e.g. the successor function in only allowed on integers, the length function is only
allowed for lists, and a product is never confronted with requests for components
whose names are not mentioned in its type.

Type checking is now the problem of, given a typing T , to decide if

T |= correct(P)

whereas type inference is the problem of deciding

∃T : T |= correct(P)

In fact, we shall distinguish between typability, which is the above decision prob-
lem, and type inference, which is the computation of an optimal solution. Since
the typing T may be partially known, we have a continuous spectrum between
type checking and type inference.

Note that also the usual ML-style type inference may be viewed in this manner.
The constraints are equalities of type variables ranging over type schemes; they
are solved using unification to yield a principal typing.

2

In this paper we consider a language with recursive types, multiple inheritance,
1st order parametric polymorphism, and assignments. In [10] this is analyzed
with explicit typings, and a polymorphic mechanism is proved sound and optimal.
This time we analyze implicit typings. The constraints are inequalities over types;
they are solved using finite state automata to yield a minimal typing. This is
a novel kind of language to subject to type inference, and the applied technique
may be interesting in its own right.

2 The Types

Types are defined by means of a set of type equations

Type Ni = τi

where the Ni’s are type variables and the τi’s are type expressions, which are
defined as follows

τ ::= Int | Bool | simple types
Ni | type variables
∗τ | lists
(n1 : τ1, . . . , nk : τk) partial products, k ≥ 0, ni 6= nj

Here the ni’s are names. Note that type definitions may involve arbitrary recur-
sion.

The ∗-operator corresponds to ordinary finite lists. The partial product is a
generalization of sums and products; its values are partial functions from the tag
names to values of the corresponding types, in much the same way that values of
ordinary products may be regarded as total functions.

The values of types may be taken to be the ⊆-least solutions to the corresponding
induced equations on sets. Other interpretations of types are investigated in [9].

Several type expressions may be taken to denote the same type. These can be
identified by an congruence relation ≈, which is defined as the identity of normal

forms, using the techniques of [3]. To each type expression we associate a unique
normal form, which is a labeled tree. Informally, the tree is obtained by repeatedly
unfolding the type expression. Formally, we use the fact that the set of labeled
trees form a complete partial order under the partial ordering where t1 ⊑ t2,
iff t1 can be obtained from t2 by replacing any number of subtrees with the
singleton tree Ω. In this setting, normal forms can be defined as limits of chains
of approximations. The singleton tree Ω is smaller than all other trees and
corresponds to the normal form of the type defined by

3

Type N = N

We shall write Ω to denote any such type expression.

The type ordering is a refinement of ⊑. We want to include relations between
partial product types, such that

(ni : Ti) �0 (mj : Sj) iff {ni} ⊆ {mj} ∧ (∀i, j : ni =mj ⇒ Ti �0 Sj)

This possibility must extend to infinite types as well; if �0 is the above inductive
refinement of ⊑, then the full ordering is defined as

S � T ⇔ ∀S ′ ⊑ S, |S ′| < ∞ : S ′ �0 T

Thus, products with fewer components are smaller than products with more
components. As noted in [8], trees under this ordering no longer form a cpo.
However, all the chains definable by type equations still have limits.

Proposition 2.1:

1) Ω is the smallest type.

2) The type constructors are monotonic and continuous.

3) If T = F (T) is a type equation, then T =
⊔

F i(Ω).

4) If T1 � T2, then all values of type T1 are also values of type T2.

5) All non-empty subsets of types have greatest lower bounds.

6) Only some subsets of types have least upper bounds.

7) All of ≈, �, ⊓, and ⊔ are computable.

Proof: 1) holds since every tree in its entirety can be replaced by Ω. 2) follows
since the type constructors are syntactic combinations of trees. 3) follows directly
from the interpretation of type equations. 4) is proved in [8]. 6) is true since
e.g. Int and Bool does not have an upper bound. 7) is the subject of [11]. To
prove 5), we start out with a set of types {Ti}. We shall describe a chain of types
whose limit is ⊓{Ti}. First of all, the 0’th approximant equals Ω. To define the
j’th approximant, we look at the roots of all Ti’s. We have a few cases

• all Ti’s equal Int; then the j’th approximant is Int.

• all Ti’s equal Bool; then the j’th approximant is Bool.

• all Ti’s are of the form ∗Si; then the j’th approximant is ∗A, where A is
the (j−1)’th approximant of ⊓{Si}.

4

• all Ti’s are partial products; then the j’th approximant is the partial product
whose component names are the intersection of the component names of the
Ti’s (a finite set), in which a component with name n has type the (j−1)’th
approximant of ⊓{Ti.n}.

• in all other cases, the j’th approximant is Ω.

These approximants form a chain whose limit is the greatest lower bound of {Ti}.
It is a lower bound since every approximant is �0 each Ti; it is the greatest such
since any finite type ⊑ all Ti’s is �0 some sufficiently large approximant. Note
that we have not assumed {Ti} to be countable. 2

The inclusion ordering on partial products provides the multiple inheritance,
whereas parametric polymorphism is obtained through the existence of the min-
imal type Ω.

3 The Language

We use the example language from [10]. It is a standard imperative language that
employs the above type system. However, to obtain implicit typings we remove
all type annotations from the program text.

3.1 Syntax

The syntactic categories are: statements (S), (program) variables (σ), expressions
(φ), declarations (D), and programs (P). In the following grammar the symbols
P, ni, x range over arbitrary names, and k is any non-negative number.

S ::= σ:=φ |
σ:-ni |
σ:+(ni:φ) |
P(φ1,. . .,φk) |
if φ then S end |
while φ do S end |
S1 ; S2

σ ::= x | σ.ni | σ[φ]

P ::= D1 D2 . . . Dk S

φ ::= 0 | φ+1 | φ-1 |
σ |
φ1 = φ2 |
[φ1,. . .,φk] |
|φ| |
(n1:φ1,. . .,nk:φk) |
has(φ,ni)

D ::= Proc P(ρ x1,. . .,ρ xk)

S
end P |
Var x

ρ ::= var | val

5

3.2 Informal Semantics

Most of the language is quite standard: simple expressions, variables, assign-
ments, comparisons, control structures and procedures with variable- or value
parameters. There are static scope rules, but global variables may not be ac-
cessed from within procedures.

The partial product acts as a partial function where σ:-ni removes ni from
the domain of σ, σ:+(ni:φ) updates σ with the value φ on ni, and has(φ,ni)

decides whether ni is in the domain of φ. Arbitrary partial product constants can
be denoted by (n1:φ1,. . .,nk:φk); notice that only the defined components are
written. A subvariable of a partial product may be selected by σ.ni (provided
it is in the domain of σ). A list constant is denoted by [φ1,. . .,φk], and the
subvariable with index φ is selected by σ[φ] (provided σ has length greater than
φ). The expression |φ| denotes the length of the list φ.

4 Defining Correctness

In this section we define a collection of inequalities correct(P) for each program
P . The definition will be in two parts. First we define the local constraints for
statement sequences, and then we define the global constraints for a complete
program.

4.1 Local Constraints

Ignoring for the moment procedure calls, we can state correctness as satisfiability
of constraints on the types of all syntactic occurrences of variables and expres-
sions. For every such occurrence φ we introduce a distinct type variable [[φ]]. We
shall, however, identify the type variables corresponding to different occurrences
of the same program variable, since a consistent typing must exist. In contrast,
two occurrences of e.g. the empty list can clearly have different types.

For a statement S the local constraints are generated as follows from all the
phrases in the derivation of S. The right-hand sides of constraints are type ex-

pressions.

6

Phrase: Constraint:
1) x [[x]] = [[x]]
2) σ.ni [[σ]] � (ni : [[σ.ni]])
3) σ[φ] [[σ]] � ∗[[σ[φ]]] ∧ [[φ]] = Int
4) σ:=φ [[σ]] � [[φ]]
5) σ:-ni [[σ]] � (ni : Ω)
6) σ:+(ni:φ) [[σ]] � (ni : [[φ]])
7) 0, φ+1, φ-1 [[0]] = [[φ+1]] = [[φ-1]] = [[φ]] = Int
8) φ1 = φ2 [[φ1]] = [[φ2]] ∧ [[φ1 = φ2]] = Bool
9) [] [[[]]] � ∗Ω

10) [φ1,. . .,φk] ∀i : [[[φ1,. . .,φk]]] � ∗[[φi]]
11) |φ| [[|φ|]] = Int ∧ [[φ]] � ∗Ω
12) (n1:φ1,. . .,nk:φk) [[(n1:φ1,. . .,nk:φk)]] � (n1:[[φ1]],. . .,nk:[[φk]])
13) has(φ,ni) [[has(φ,ni)]] = Bool ∧ [[φ]] � (ni : Ω)
14) if φ then S end [[φ]] = Bool
15) while φ do S end [[φ]] = Bool

The above definition is very easy to motivate, since in each case the constraint
precisely guarantees the correctness of the corresponding phrase. For example, a
constraint

[[φ]] � ∗Ω

simply states that φ must be a list. The case 1) is only introduced to ensure that
every variable name occurs in at least one constraint.

As an example, consider the following statement

x.a:= [];
y[0]:=x

The imposed constraints are

[[x]] = [[x]]
[[y]] = [[y]]
[[x]] � (a : [[x.a]])

[[x.a]] � [[[]]]
[[[]]] � ∗Ω

[[y[0]]] � [[x]]
[[0]] = Int
[[y]] � ∗[[y[0]]]

or, reducing by hand, equivalently

[[x]] � (a : ∗Ω)
[[y]] � ∗[[x]]

which clearly are satisfiable. In contrast, the statement

7

z:=[];
z.a:=[]

imposes the constraints
[[z]] � [[[]]]1
[[z]] � (a : [[[]]]2)

[[[]]]1 � ∗Ω
[[[]]]2 � ∗Ω

which cannot be satisfied, as lists and products do not have common upper
bounds. Notice that the two occurrences of [] yield distinct type variables.

We can give a more uniform presentation of these constraints. They can all be
expressed as inequalities of the form

α � H

where α is a type variable and H is a type expressions involving other type
variables. Only two kinds of constraints are not already in this form. The cases
1) and 8) express an equality between two type variables; this we can write as two
symmetric inequalities. Several cases involve equalities between a type variable
and a simple type; this we can write as the corresponding inequality, since simple
types are maximal in the type ordering.

4.2 Global Constraints

The local constraints determine the correctness of simple code in procedure bod-
ies. To obtain the global constraints for the entire program, we must combine
local constraints as indicated by procedure calls.

Intuitively, we expect the actual parameters to simply inherit the constraints of
the formal parameters. Consider the program

Proc P(var x, var y)
x.a:= [];
y[0]:=x

end P

P(r,s)

One idea is to express correctness by equating the type variables for the formal
and actual parameters, e.g. the constraints would essentially be

[[x]] � (a : ∗Ω)
[[y]] � ∗[[x]]
[[r]] = [[x]]
[[s]] = [[y]]

8

While this definition is sound, it is, however, too restrictive. If we consider
another call P(t,u) and the analogous constraints

[[t]] = [[x]]
[[u]] = [[y]]

then it follows that [[r]] = [[t]] and [[s]] = [[u]]. Thus, the procedure P is monomor-

phic, i.e. only one set of actual parameter types is allowed.

Another idea is to simply require that the actual types be larger the the formal
types. This definition allows polymorphism but is unsound, as illustrated by the
following example. The program

Proc Q(var x, var y)
x:= y

end Q

var a,b
a:= 7;
b:= true;
Q(a,b);
a:= a+1

will clearly cause a run-time error, since the addition involves a Bool-value. With
the above idea, however, the global constraints would essentially be

[[x]] � [[y]]
[[a]] = Int
[[b]] = Bool
[[a]] � [[x]]
[[b]] � [[y]]

which are satisfiable, since we can choose [[x]] = [[y]] = Ω.

To obtain sound, polymorphic procedures we must substitute actual for formal
type variables in the constraints of the procedure body. Thus, the constraints for
the above two calls of the procedure P should essentially be

[[r]] � (a : ∗Ω) [[t]] � (a : ∗Ω)
[[s]] � ∗[[r]] [[u]] � ∗[[t]]

which allow different sets of actual parameter types.

We can give a fairly simple definition that implements these substitutions by
means of renamings. For a program P we first construct a tree call(P), which
contains the pattern of procedure calls. The root is labeled with the set of local

9

constraints from the main statement in P , and for each procedure call we have a
subtree which is the call-tree rooted by the corresponding procedure body. The
edge to each subtree is labeled with the type variables for the actual parameters.
Because of recursion call(P) may be infinite; however, since programs are finite
it will only have finitely many different subtrees, i.e. call(P) is regular [4].

The set correct(P) of global correctness constraints is obtained from call(P)
as follows. Firstly, for every node we rename its associated type variables by
indexing them with its unique tree address. This ensures that no two nodes
contain a common type variable. Secondly, for each procedure call we equate
formal and actual type variables. Finally, we obtain correct(P) as the union
of all constraints in the tree.

Through recursive procedure calls, correct(P) may contain infinitely many
constraints. For example, given the program

Proc R(var x)
S(x.a)

end R

Proc S(var y)
R(y[0])

end S

var z
R(z)

we find that the call-tree and its renamed version are the infinite trees

10

[[y]] � ∗[[y[0]]]

[[x]] � (a:[[x.a)]]

[[y[0]]]

[[x.a]]

[[x]] � (a:[[x.a]])

[[z]]

[[y]]2 � ∗[[y[0]]]2

[[x]]3 � (a:[[x.a)]]3

[[y[0]]]2

[[x.a]]1

[[x]]1 � (a:[[x.a]]1)

[[z]]

Now, the global constraints become

[[z]] = [[x]]1
[[x]]1 � (a : [[a.x]]1)

[[a.x]]1 = [[y]]2
[[y]]2 � ∗[[y[0]]]2

[[y[0]]]2 = [[x]]3
...

We cannot hope to obtain a truly optimal definition of type correctness, since the
occurrence of a run-time error is undecidable. However, the present definition is
clearly sound and very liberal.

We are left with developing a type inference algorithm.

5 Solving Inequalities

The required analysis of inequalities can take place in a more general setting.

Definition 5.1: Let (D, �) be a poset where every non-empty subset has a

11

greatest lower bound. An inequality system on (D, �) consists of a possibly
infinite set of inequalities of the form

α0 � f(α1, α2, . . . , αk)

where the αi’s are variables and f : Dk → D is a monotonic function. A solution

L assigns to each variable α some value L(α) ∈ D such that all the inequalities
hold. The system is satisfiable when a solution exists. 2

Lemma 5.2: If an inequality system has solutions, then it has a unique smallest
solution.
Proof: Let {Li} be all solutions. Then L(α) = ⊓iLi(α) is also a solution, since

L(α0)
= ⊓iLi(α0) by definition
� ⊓if(Li(α1), . . . , Li(αk)) since Li is a solution
� f(⊓iLi(α1), . . . , ⊓iLi(αk)) since f is monotonic
= f(L(α1), . . . , L(αk)) by definition

Clearly now, L is the unique smallest solution. 2

In general, we cannot hope to solve infinite systems. However, if their structure
is sufficiently regular, then we can transform infinite systems into finite ones.

Definition 5.3: The equivalence relation S1 ≡ S2 states that the inequality
systems S1 and S2 are identical up to renaming of variables. 2

Definition 5.4: If S is an inequality system in which α is a variable, then S ↓α
is the smallest subset of inequalities such that

• if q ∈ S is an inequality that has α on the left-hand side, then q ∈ S ↓α.

• if q ∈ S has a variable on the left-hand side that occurs on the right-hand
side of p ∈ S ↓α, then q ∈ S ↓α.

We call S ↓α the closure of α in S. Intuitively, it contains the relevant constraints
on α in S. 2

12

For example, in the system X :

α1 � f(α2)
α1 � g(α3)
α2 � h(α3)
α3 � f(α4)
α3 � g(α5)
α4 � h(α5)
α5 � f(α6)
α5 � g(α7)
α6 � h(α7)

...

all closures are co-finite segments like the following

αi � f(αi+1) αj � h(αj+1)
αi � g(αi+2) αj+1 � f(αj+2)

αi+1 � h(αi+2) αj+1 � g(αj+3)
...

...

for odd i and even j.

Definition 5.5: If S is an inequality system, then S/ ≡ is a new inequality
system with a variable [S ↓α]≡ for every equivalence class of closures of variables
in S. For each S-inequality of the form

α0 � f(α1, α2, . . . , αk)

there is an S/≡-inequality of the form

[S ↓α0]≡ � f([S ↓α1]≡, [S↓α2]≡, . . . , [S ↓αk]≡)

i.e. the same inequality on equivalence classes. 2

For illustration, we observe that X/≡ equals

odd � f(even)
odd � g(odd)

even � h(odd)

where odd and even are the two equivalence classes corresponding to variables
with odd and even indices.

Definition 5.6: Let S be an inequality system. A solution L is simple when for

13

all variables α, β we have

S ↓α ≡ S ↓β ⇒ L(α)=L(β)

i.e. variables with equivalent closures are assigned the same values. 2

Theorem 5.7: If S has a minimal solution, then it is simple and can be obtained
from the minimal solution of S/≡.
Proof: Suppose that S has a minimal solution M . Clearly, the appropriate
restriction of M is a solution for any S ↓α. If S ↓α had a smaller solution, then
M could be modified to yield a smaller solution, since the variables in S ↓α only
appear on monotonic right-hand sides outside of S ↓ α. Thus, M restricted to
S ↓α gives its minimal solution. Since this by lemma 5.2 is unique, we know that
M will give the same result on all equivalent closures; hence, M is simple. Any
simple solution L of S gives a solution L′ of S/≡ by

L′([S ↓α]≡) = L(α)

Conversely, any solution Q of S/≡ gives a simple solution Q′ of S by

Q′(α) = Q([S ↓α]≡)

Since both translations are monotonic, the minimal solution of S/ ≡ yields the
minimal simple solution of S, which is just the minimal solution of S. 2

The solutions of S that are not simple take advantage of the freedom to choose
different solutions of equal subsystems. By lemma 5.2, this freedom is not allowed
for the minimal solution.

Definition 5.8: An inequality system S is regular when S/≡ is finite. 2

We finally show that a finite set of inequalities can be transformed into a finite
set of equalities.

Definition 5.9: Let S be a finite inequality system. We define lub(S) to be the
set of equalities, where for each S-variable α we include

α = H1 ⊔ H2 ⊔ . . . ⊔ Hn

14

when the Hi’s are all the right-hands sides of inequalities in S with α on the
left-hand side. 2

Continuing the example, we have that lub(X/≡) equals

odd = f(even) ⊔ g(odd)
even = h(odd)

which is a system of recursive ⊔-equations.

Lemma 5.10: If two elements in (D, �) have an upper bound, then they have
a least upper bound.
Proof: Let {ui} be all the upper bounds of d1, d2 ∈ D. Define u = ⊓ui. Clearly,
u � ui for all i. Since u is the greatest lower bound, it must be larger than both
d1 and d2, each of which is a lower bound. Hence, u = d1 ⊔ d2. 2

Theorem 5.11: Let S be a finite inequality system. Then S has a minimal
solution iff lub(S) has a minimal solution; furthermore, the two solutions are
equal.
Proof: Any solution of lub(S) is clearly a solution of S. When S has a solution,
then for any α the corresponding Hi’s have an upper bound; thus, from lemma
5.10 they have a least upper bound. Suppose for some solution L of S that
L(α) ≻ ⊔iL(Hi). Then

L′(β) =

{

L(β) if α 6= β
⊔iL(Hi) if α = β

is a smaller solution, since L′(α) = ⊔iL(Hi) � ⊔iL′(Hi), and the right-hand
sides are monotonic. Thus, for the unique minimal solution M we must have
M(α) = ⊔iM(Hi), from which the result follows. 2

6 Algorithms on Types

The results in the previous section allow us to develop the necessary algorithms
on types.

Proposition 6.1: For any P , correct(P) is a regular inequality system on
types.
Proof: From proposition 2.1 we know that non-empty subsets of types have

15

greatest lower bounds, and that (composite) type constructors are monotonic.
Hence, we have an inequality system. Regularity follows from programs being
finite. The closure of a variable is completely determined by the subtree of
call(P) in whose root the variable is introduced. Since we have only finitely
many different subtrees, and correct(P) is obtained from call(P) by renam-
ings, it follows that we only have finitely many different equivalence classes of
closures. 2

Proposition 6.2: Given P we can compute lub(correct(P)/ ≡) in polyno-
mial time.
Proof: The key observation is that correct(P)/≡ can be constructed directly
from call(P), since the closures correspond to the finitely many different sub-
trees. This leaves only the simple task of collecting the related right-hand sides.
2

Theorem 6.3: There is an exponential time algorithm that finds the minimal
solution to a finite set of ⊔-equalities on types, or decides that no solution exists.
Proof: This is proved in [11]. 2

The main idea behind this algorithm is easily explained. There is an isomor-
phism between type equations and a special kind of finite automata; they must
be deterministic, partial automata in which also states are labeled by elements
of the following partial order of coarse types

�
�

�
�

��

Q
Q

Q
Q

QQ

�
�
�
�

A
A

A
A

Ω

π∗BoolInt

Here, ∗ indicates any list type and π any partial product type. The alphabet
symbols are the component names of partial products and the special symbol []
that indicates components of lists.

Type equations with ⊔’s will now correspond to nondeterministic automata. The
algorithm first constructs the deterministic version of the underlying automaton;
this may take exponential time. In a second stage the algorithm computes the
new labels of the deterministic states. Each such state corresponds to a finite
set of nondeterministic states. The new label is the least upper bound of their
individual labels, which may or may not exist. If no such label exists, then the

16

equations have no solution; otherwise, the minimal solution is represented by the
deterministic automaton.

As an example, consider the type A defined by the ⊔-equations

Type A = (x : B) ⊔ (x : C, y : Int)
Type B = ∗A
Type C = ∗(x : C)

They give rise to the following automaton

���� ���������������� ��������
6

-

?

-

?

?

π

Int
x

[]

x

[]

∗

π∗

π

x

y

ε

ε
⊔

Its deterministic version is

���� ��������?

?

- -

[]

x
y

Int

π ∗

from which we obtain the solution

Type A = (x : ∗A, y : Int)

17

Since any automaton may be represented as a set of type equations (using only
partial products), it follows that we have a tight exponential bound on the worst-
case time of this algorithm for constructing the minimal types.

Type equations with both ⊔’s and ⊓’s are similarly solved using alternating finite
automata [11].

If we only want to decide the existence of such types, then we can obtain a more
efficient algorithm.

Theorem 6.4: There is a polynomial time algorithm that decides the existence
of a solution to a finite set of ⊔-equalities on types.
Proof: Since the partial order of coarse types is a tree, the solution does not exist
iff some new state contains a pair of old states, whose labels are incomparable.
Now, we can compute the set of all pairs of old states that end up in the same
new state, essentially by a transitive closure. As we have only quadratically many
such pairs to check, we obtain a polynomial time decision algorithm. 2

There is no need to be discouraged by the exponential time complexity of the
inference algorithm. Typability and type inference in ordinary λ-systems has
recently been shown to have similar complexities [5], but in practice the running
times are quite acceptable.

7 Conclusion

We have demonstrated that type inference can be viewed as constraint-solving.
This allowed us to do type inference for an interesting imperative language. The
use of inequality systems and finite automata produced the required algorithms-

The following table succinctly compares ML-style type inference with this present
approach.

18

ML This

Unknowns are var. types var. and exp. types

Constraints are equalities inequalities

Resolution is unification determinization of NFSA

Typing is principal minimal

Deciding typability is exponential time polynomial time

Type inference is exponential time exponential time

In some respects the present type system is simpler than the ML-system, since
it does not have function types. In some respects it is more complicated, since
it has assignments and subtypes; also, in ML the types of variables completely
determine the types of all expressions. It is not obvious how to extend the
present system with function types, since their contravariance would prevent the
inequalities from being purely monotonic. But, on the other hand, it is not
obvious how to extend ML with assignments, reference parameters, and subtypes
[2].

As a further point of comparison, we consider the possibilities for including partial
type information in programs. In ML-style languages an exact typing of selected
parameters may be specified at will; this can make programs more legible and
resolve detrimental ambiguities. In our approach, the inequalities we employ only
allow for specifications of lower bounds of typings.

Future Work

It would, of course, be desirable to extend the present approach to more general
constraints and more general type systems. One could possibly achieve inequal-
ities with type expressions on both sides, rather than merely variables on the
left-hand side.

Recent work shows that an extension with conditional inequalities is appropriate
for type inference in object-oriented languages with late bindings.

It would be worth pursuing the observation that ML-style type inference also
can be viewed as inequality solving over type schemes ordered by the existence
of substitutions; function types are, of course, monotonic under this ordering. A
general framework encompassing several such situations may be lurking in the
background.

19

References

[1] Barendregt, H. “Types in Lambda Calculi and Programming Languages”
in Proceedings of ESOP’90, LNCS Vol 432, Springer-Verlag, 1990.

[2] Cardelli, L. & Mitchell, J. “Operations on Records” in Proceedings of

MFPS’90, LNCS Vol 442, Springer-Verlag, 1990.

[3] Courcelle, B. “Infinite Trees in Normal Form and Recursive Equations
Having a Unique Solution” in Mathematical Systems Theory 13, 131-180.
Springer-Verlag 1979.

[4] Courcelle, B. “Fundamental Properties of Infinite Trees” in Theoretical

Computer Science Vol 25 No 1, North-Holland 1983.

[5] Mairson, H.G. “Decidability of ML Typing is Complete for Deterministic
Exponential Time” in Proceedings of POPL’90, ACM 1990.

[6] Milner, R. “A Theory of Type Polymorphism in Programming Languages”
in Journal of Computer and Systems Sciences 17, 1978.

[7] Reynolds, J.C. “Three approaches to type structure” in Mathematical

Foundations of Software Development, LNCS Vol 185, Springer-Verlag,
1985.

[8] Schmidt, E.M. & Schwartzbach, M.I. “An Imperative Type Hierar-
chy with Partial Products” in Proceedings of MFCS’89, LNCS Vol 379,
Springer-Verlag, 1989.

[9] Schwartzbach, M.I. “Infinite Values in Hierarchical Imperative Types”
in Proceedings of CAAP’90, LNCS Vol 431, Springer-Verlag, 1990.

[10] Schwartzbach, M.I. “Static Correctness of Hierarchical Procedures” in
Proc. of ICALP’90, LNCS Vol 443, Springer-Verlag, 1990.

[11] Schwartzbach, M.I. & Schmidt, E.M. “Types and Automata”. PB-

316, Department of Computer Science, Aarhus University, 1990.

20

