
The CIP Method: Component- and Model-Based
Construction of Embedded Systems

Hugo Fierz

Computer Engineering and Networks Laboratory TIK
Swiss Federal Institute of Technology ETH

CH-8092 Zurich, Switzerland
fierz@tik.ee.ethz.ch

Abstract. CIP is a model-based software development method for
embedded systems. The problem of constructing an embedded system is
decomposed into a functional and a connection problem. The functional
problem is solved by constructing a formal reactive behavioural model. A
CIP model consists of concurrent clusters of synchronously cooperating
extended state machines. The state machines of a cluster interact
synchronously by multi-cast events. State machines of different clusters can
communicate through asynchronous channels. The construction of CIP
models is supported by the CIP Tool, a graphical modelling framework with
code generators that transform CIP models into concurrently executable CIP
components. The connection problem consists of connecting generated CIP
components to the real environment. This problem is solved by means of
techniques and tools adapted to the technology of the interface devices.
Construction of a CIP model starts from the behaviour of the processes of
the real environment, leading in constructive steps to an operational
specification of the system behaviour. This approach allows stable
interfaces of CIP components to be specified at an early stage, thus
supporting concurrent development of their connection to the environment.

1. Introduction

The CIP method (Communicating Interacting Processes) presented in this paper is a
formal software development method for embedded systems. By ‘embedded system’ we
mean any computer system used to control a technical environment. Examples include
highly automated devices, industrial robots and computer controlled production
processes.

CIP specifications are constructed with the CIP Tool1 [1], a powerful modelling
framework with verification functions and code generators that transform CIP models

 1 CIP Tool® is a registered trademark. All graphic figures of model parts presented in this
paper have been generated from models created with CIP Tool®. Associated textual
descriptions such as condition definitions or condition allocations correspond to model
reports produced automatically.

CIP Method - Submission 2

into executable software components. The method and its tool has been used in many
real projects. The benefit of a rigorous problem-oriented approach is an important
improvement of software quality, reflected by understandable system models, robust
and reliable software products and a considerable reduction of maintenance costs.

The starting point in the design of CIP was the JSD method (Jackson System
Development) [2], adopting the real world oriented modelling paradigm of this
approach. JSD treats dynamic information problems by means of concurrent
sequential processes, simulating a part of the real world and producing requested
information about it. CIP differs from JSD mainly in its modelling framework which
is based on synchronously cooperating extended state machines rather than on
concurrent processes described by structograms.

The CIP method is based on the following development concepts:

Problem Decomposition. The usual purpose of behavioural models in embedded
system development is to specify the functional system behaviour in subject-matter
terms. Such models, independent of technical interface concerns, are often called
essential models [3]. The connection of an implemented essential model to the real
environment represents a problem in its own right, demanding tools and techniques
adapted to the technology of the interface devices.

Model-Based Operational Specification. The functional behaviour of a CIP system is
specified by an operational model of cooperating extended state machines.
‘Operational’ means that the model is formally executable [4]. CIP combines
synchronous and asynchronous cooperation of system parts within the same model.
Synchronous cooperation, well known from real-time description techniques like
Statecharts [5], ESTEREL [6] or Lustre [7], is needed to model synchronous
propagation of internal interactions. Asynchronous cooperation on the other hand,
supported by parallel modelling languages like SDL [8], JSD [2] or ROOM [9], is
necessary to express concurrency.

Component-Based Construction by White Box Composition. CIP models are
developed with the CIP Tool [1], a framework of graphic and text editors supporting
full coherence among various architectural and behavioural views. Models are
constructed by creating, composing and linking model components such as processes,
channels, messages, states and operations. Modelling by compositional construction
perfectly supports the problem-oriented construction process of the method, providing
more flexibility and intuition than language-based specification techniques.

Component-Based Implementation by Black Box Composition. CIP models are
transformed automatically into executable software components which are integrated
on one hand with components connecting to the environment, on the other hand with
system parts like technical data processing units or extensive algorithmic functions.
The main goal of software component technology is usually to construct systems by
means of reusable building blocks. Although reuse of embedded components is often
not possible because of the specific behaviour of the particular environment,
component composition is still of great value. Concurrent development and flexible
system integration is easier when system parts are constructed as software components
with stable interfaces.

CIP Method - Submission 3

Environment-Oriented Development. The development of a functional behavioural
model must start with a rigorous definition of the model boundary. The widely used
context schema of SDRS [3] for example models the boundary by means of event and
data flows to and from the system. Although such boundary models allow the
development of the behavioural model to be based on a well defined set of external
interaction points, they fail to express any behavioural relationships with the
environment. CIP starts the development by defining the set of valid interaction
sequences by means of a behavioural context model. This approach supports the
construction of robust and dependable systems because it incorporates a formal model
of the environment behaviour.

The main part of the paper starts in section 2 by describing how CIP tackles the
embedded system problem. Section 3 explains the architectural and behavioural
constructs used to build CIP models. Section 4 presents the environment-oriented
development process of the CIP method, illustrated by a simple but complete example
of a CIP model construction. Section 5 finally describes how generated software
components are connected to the environment.

2 . CIP Application Area: Control Problems

An embedded system is a computer system which controls and monitors a number of
external processes. The behaviour of the individual processes is partly autonomous
and partly reactive. In the case of physical processes the behaviour can be deduced
from physical properties. More complex processes are often already controlled by local
microprocessors. An operator driven man-machine interface is another source of
asynchronous influences on the system.

Two main problem are encountered when an embedded system is developed. The
first problem concerns the functionality of the system: to bring about the required
behaviour the embedded system to be constructed must react in a specific way to
subject-matter phenomena of the environment. The second problem concerns the
connection of environment and embedded system: the subject-matter phenomena
related in the functional problem solution must be detected and produced by
monitoring and controlling specific interface devices like sensors and actuators.

As a simple example we take an opening door where the door motor has to be
turned off when the door is fully open. The function of the system is simply to
produce the MotorOff action when the Opened event occurs. However, neither the
event Opened nor the action MotorOff are directly shared with the embedded system.
Instead the event Opened must be detected by means of a position sensor which is
connected to the embedded system by a shared binary variable; and the action
MotorOff must be produced by setting a binary variable of the motor actuator
appropriately.

The CIP method is based on a complete separation of the functional and the
connection problem. The functional problem is solved independently of the interface
devices by constructing a rigorous behavioural model. The CIP model is constructed
graphically with the CIP Tool and transformed automatically into concurrently
executable CIP components.

CIP Method - Submission 4

The construction of a CIP model is based on a virtual connection between external
processes and CIP components. The virtual interface of the environment consists of
collections of events and actions designating instantaneous subject-matter phenomena
occurring in the environment. Events are phenomena initiated by the environment.
Process events, often called discrete events, are caused by the autonomous dynamics of
external processes. Continuous behaviour of external processes is captured by periodic
temporal events with associated state values (sampling). Actions are environment
phenomena caused by reactions of the embedded system. The virtual connection
transmits a corresponding message whenever an event has occurred or an action must
be produced.

CIP
components

embedded
connectors

embedded systemenvironment

sensors
actuators

external
processes

events

actions

physical
connection

virtual
connection

physical interaction

Fig. 1. Conceptual embedded system architecture

The working connection between external processes and CIP components consists
of sensors and actuators connected to system modules called embedded connectors.
Embedded connectors detect events by monitoring sensor phenomena, and transmit
corresponding event messages to the CIP components. They receive action messages
from CIP components, and initiate appropriate actuator phenomena to produce the
corresponding actions in the environment.

In the door example, the reaction "Opened causes MotorOff" would be produced by
a CIP component while the monitoring and setting of the interface variables is done
by a separately constructed embedded connector.

The complete separation of the functional and the connection problem considerably
benefits the development process since the two problems can be solved independently.
This is not just a question of reducing a large problem to two smaller ones, but of
disentangling two problem complexes belonging to different abstraction levels.

An important benefit of this problem separation appears for example when control
functions have to be validated. Because the developed software can rarely be tested
directly on the target system, it is necessary to use simulation models and specific test
beds. The CIP approach allows a functional solution to be partitioned in various ways
and corresponding software components to be generated that can be easily embedded
within various test environments.

The proposed problem decomposition has been elaborated by means of the notion
of problem frames recently introduced by Jackson [10]. The approach allowed us to
understand more deeply the generic structure of the embedded system problem and its
relation to the development process. Explicit discussion of the use of problem frames
for embedded systems is beyond the scope of this paper and will be presented in
another publication.

CIP Method - Submission 5

3 . CIP Models

The CIP meta-model has been defined on the basis of a compositional mathematical
formalism [11] developed for this purpose. The modelling tool has been designed as a
component framework based on an object model implementing the CIP meta-model.
The benefit is simple compositional models which can be transformed easily into
executable code. Current research and development extends the modelling framework
by tools allowing CIP models to be checked against independently defined behavioural
properties.

CIP models are constructed graphically by means of architectural composition, well
known as a basic paradigm of architecture description languages [12]: communication
and interaction among state machines is specified by interconnecting these
components by first-class connectors. A drawback of many synchronous real-time
languages is that interconnections are described only implicitly, thus proliferating
complex interaction dependencies. In addition to the architectural configuration, CIP
requires the control flow among synchronous components to be explicitly modelled,
thus preventing cyclic and conflicting chain reactions. Furthermore, behavioural
structuring is supported by the novel model of master-slave hierarchies [13].

Clusters and Processes. A CIP model is composed of a set of asynchronously
cooperating clusters, each consisting of a number of synchronously cooperating state
machines termed processes. Formally a cluster represents a state machine with a
multi-dimensional state space: the state of a cluster is defined by the tuple of its
process states. Although clusters as well as processes represent parallel behavioural
entities, their composition semantics is essentially different: clusters model concurrent
blocks of a system, while processes represent orthogonal components of a cluster.
Hierarchical composition structures based on a simple "part of" hierarchy relation can
of course be introduced at both levels, resulting in structures of nested subsystems and
nested subclusters.

Communication Ð Asynchronous Transmission of Messages. Processes
of different clusters communicate asynchronously with each other and with the
environment by means of channels. Communication is specified by a graphical net
model (Fig. 2) in which channels are attached to process ports. Source and sink
channels model the virtual connection to the environment while internal channels are
part of the CIP model.

Operation aProcess

Manager

Assistant

aSink

aSource

Pump

PumpEvents

PumpActionsVesselActions

VesselEvents

Vessel

Controller

Commands

aChannel
aClusterFlowControl

Fig. 2. Communication net of a CIP model

Channels model an active communication medium which retains the sequential order
of transmitted messages. Asynchronous communication in a CIP model means that

CIP Method - Submission 6

the write and the read action of a message transmission takes place in different cluster
transitions. Processes represent receptive behavioural entities which must accept
delivered messages at any time. The necessary buffer size of a channel is determined
by the performance of the implemented system and is not specified within the CIP
model.

Interaction Ð Synchronous Pulse Transmission. The processes of a cluster
interact synchronously by means of multi-cast pulses. Pulses represent internally
transmitted events. The directed connectors of the interaction net (Fig. 3) define the
pulse flow structure of a cluster. Every connector has an associated partial function
termed pulse translation which relates outpulses of the sender to inpulses of the
receiver process.
A cluster is always activated by a channel message which leads to a state transition of
the receiving process. By emitting a pulse, the receiving process can activate further
processes of the cluster, which can in turn activate other processes by pulses. The
chain reaction resulting from pulse transmission is not interruptible and defines a
single state transition of the entire cluster. Activated processes can also write
messages to their output channels.

Controller

Vessel

Operation

Pump

Fig. 3. Interaction net

Vessel

Controller

Pump

Operation

Controller

PumpVessel

Pump

Vessel

 Fig. 4. Cascades of a cluster

The structure of the interaction net does not sufficiently restrict the potential pulse
transmission chains, as conflicting process activations and cyclic transmission paths
are in general possible. To ensure deterministic and bounded propagation of
interaction, for each process with channel input the possible control flow of chain
reactions is defined by means of a cascade (Fig. 4). A cascade is a sequential activation
tree compatible with the interaction net structure of the cluster. The pulse interaction
defined in the processes can be checked automatically against the specified cascades. A
cascade is activated by a channel input for its topmost process. The execution order of
a cascade is defined as tree traversal from left to right. To support control flow
structuring cascade branches can be refined into alternative branches depending on the
pulses transmitted.

State Inspection - Static Context Dependency within a Cluster. The
conditions of a state transition structure of a process are allowed to depend on the
states and variables of other processes of the same cluster. Read access to the data of a
process is called state inspection and takes place as in object oriented models via
access functions termed inquiries. By contrast to pulse transmission, where both
transmitter and receiver are activated, in the case of state inspection, only the
inspecting process is active. State inspection gives rise to additional dependencies
between processes which are declared graphically as rhombic connectors in the
interaction net (Fig. 3). The arrows denote the data flow direction.

CIP Method - Submission 7

Processes Ð Extended Finite State Machines. Processes are modelled as
extended finite state machines. By means of state transition structures and operations
executed within transitions, functionality can be specified on two different levels of
abstraction.

The communication interface of a process is defined by one or more inports and
outports. A port is specified by the set of messages to be received or sent. Each inport
and outport is connected in the communication net to an incoming or outgoing
channel respectively. Interaction inputs and outputs on the other hand are defined by
two distinct sets of inpulses and outpulses.

PROCESS Door

INPORT DoorEvents
MESSAGES Closed, Opened

OUTPORT DoorActions
MESSAGES MotClose, MotOpen,
MotOff

INPULSES close, open

OUTPULSES clsAck, opnAck

closing

opening

5
open

MotOpen

3
close

MotClose

2

opnAck
Opened

MotOff

4

clsAck
Closed

MotOff

1
open

MotOpen

closed opened

1
InputMsg

OutputMsg

2

outpulse
inpulse

state

 Legend

Fig. 5. Pure finite state machine

The transition structure depicted in figure 5 specifies the behaviour of the process
Door. Process states are represented by circles, transitions by labelled transition
boxes. The input messages Opened and Closed or the inpulses open and close of the
process can activate a state transition. An input message for which the current state
has no outgoing transition causes a context error. An inpulse for which there is no
transition, on the other hand, is ignored. In each transition an outpulse and a message
to each outport can be emitted.

To support data processing and algorithmic concerns CIP processes are specified as
extended state machines. The extension consists of static process variables, data types
for messages and pulses, operations and conditions.

PROCESS Cashier

VARIABLES amount: int, price: int

INPORT EventPort
MESSAGES Coin; int, Abort

OUTPORT ActionPort
MESSAGES Eject: int, OpenSlot

INPULSES getMoney: int

OUTPULSES aborted, paid: int

OPERATIONS
init {SELF.amount = 0; SELF.price = IN;}
incr {SELF.amount = SELF.amount + IN;}
...

CONDITIONS
notEnough (SELF.amount < SELF.price)

idle

4

aborted

O
Abort

Eject

1 O
getMoney

OpenSlot

3

paid

O
Coin

Eject

cashing

2 O
Coin

CONDITION ALLOCATION
2 notEnough, 3 ELSE_

OPERATION ALLOCATION
1 init, 2 incr, 3 change, report, 4 ...

Fig. 6. Extended finite state machine

CIP Method - Submission 8

The Coin message of the process Cashier (Fig. 6) for instance carries an integer value
representing the value of the inserted coin. Operations allocated to transitions are used
to update the inserted amount and to calculate the change. When the process is in the
cashing state - shown in grey - there are two potential transitions for the input
message Coin. Associated conditions render the process behaviour deterministic. Such
conditions can depend on the input data and the values of the local process variables,
but also, by state inspection, on the states and variables of other processes of the
same cluster.

Variables, data types, operations and conditions are formulated in the programming
language of the generated code. From the high level modelling point of view these
constructs represent primitives which add computational power to the pure models.
The specified code constructs are incorporated inline in the generated code. From a
theoretical point of view it would be more elegant to use a functional specification
language, but in practice the value of this pragmatic approach based on the
implementation language has been clearly confirmed: it permits easy use of functions,
data types and object classes from existing libraries.

The Door and Cashier processes presented react to event messages indicating
discrete state changes of an external process. Control of continuous processes on the
other hand is based on periodic sampling of the continuous process states. Figure 7
shows the transition structure of a process regulating the temperature of a liquid by
means of a heater with continuously variable heating power. The process reacts to the
periodically occurring Sample message giving the sampled liquid temperature. Control
algorithms are allocated to transitions. Feedback control is performed by means of the
data carried by the Heat output message.

heatingUp

holding_TW 5 O
Sample

SetHeater

3 O
Sample

SetHeater

4 O
Sample

SetHeater

2 O
start

SetHeater

6 O
stop

SetHeater

idle

1 O
Sample

SetHeater

Fig. 7. Time driven state machine

Master-Slave Hierarchies Ð Behavioural Structuring. The state transition
structure of a CIP process specifies how the process must react to inputs by state
changes and generated outputs. Often such a behaviour becomes quite complex due to
inputs which must influence the full future behaviour of the process. An alarm
message, for instance, must lead to behaviour different from the normal case until the
alarm is reset. The resulting transition structure will then represent a kind of
superposition of the structures for the normal and the alarm case.

To disentangle such implicit superpositions the full behaviour of a process is
modelled by a number of alternative modes. Each mode is specified graphically by a
state transition diagram, based on the common sets of states, ports and pulses of the
process.

CIP Method - Submission 9

MODE normal MODE shutting

closing

opening

5
open

MotOpen

3
close

MotClose

2

opnAck
Opened

MotOff

4

clsAck
Closed

MotOff

1
open

MotOpen

closed opened

`

closing

opening

3
shutUp

MotClose

4

clsAck
Closed

MotOff

5
shutUp

MotClose openedclosed

Fig. 8. Two modes of the Door process

Figure 8 shows an elaboration of the Door process (Fig 5) by an additional shutting
mode. This mode describes an alternative behaviour of the process, usable when an
alarm or error condition occurs.

The mode changes of a process can be induced by one or more processes designated
as master. The behavioural semantics of a master-slave relationship is defined as
follows:

The active mode of the slave is determined by the current states of the masters.

Thus a mode change of a slave can occur whenever one of its masters changes its
state. Even when the Door process of figure 8 is in the closed state in the normal
mode, a master can induce a switch to the shutting mode. The effect is simply that the
door will remain closed when an open pulse is sent to the process. If for functional
reasons a mode change should be prevented in certain states, it must be prevented by
means of explicitly modelled interaction between slave and master.

A slave can itself initiate a mode change by sending a pulse to one of its masters.
This pattern is used typically when an error is recognised by a slave and its master
must then be triggered to induce a change to an error mode.

It is important to understand that a change of mode does not affect the current state
of a slave, which can change only when a transition in the active mode is triggered by
an input. The rule reflects the fact that a mode change does not alter the history of
basic interactions. A striking example is the interface process Conveyor of the case
study (section 4) whose states mirror the states of the real conveyor.

AlarmErrorHandleraMaster

Controller Boiler

Blower IgnitionPump

aSlave

OilFlow

Fig. 9. Master-slave hierarchy graph

The master-slave hierarchy relation of a cluster is specified by a master-slave graph
(Fig. 9). Master-slave connections are represented by triangles which are connected at
the bottom angle to a slave and at the top side to one or more masters. The graph is

CIP Method - Submission 10

restricted to be acyclic in order to define a hierarchical structure. The levels indicated in
the graph of figure 9 have no formal meaning. Levelling is merely used informally to
group processes interacting on a common level of abstraction. Usually not all
processes of a cluster are involved in the hierarchical structure.

The associations of master states and slave modes are specified by corresponding
mode setting tables. They define a total function from the Cartesian product of master
states to the modes of the slave.

Process Arrays Ð Static Replication of Processes. Replicated processes are
modelled as multidimensional process arrays. The multiplicities of the singular array
dimensions are defined by abstract index types. Using common index types for
different process arrays allows modelling of finite relations among process arrays,
usually expressed by means of entity-relationship diagrams.

4 . Domain-oriented Development

An operational behavioural model provides a well defined level of abstraction. In
addition to these "guard rails", the CIP method adopts the concept of environment-
oriented behavioural modelling from the JSD method. This concept bases the
development of control systems on a realised model of the environment inside the
system in order to capture the essential behaviour of the processes to be controlled.
CIP models are therefore constructed in a sequence of three steps:

1. Specification of the virtual real world interface
2. Establishing a behavioural context model
3. Construction of control functions

3. Complete Model2. Context Model

CIP ModelEnvironment CIP ModelEnvironmentEnvironment

1. Events & Actions

Fig. 10. Results of the three development steps

The virtual real word interface is specified by collections of events and actions used to
bring about the required functional behaviour. The context model is the first part of
the CIP model to be constructed. It consists of source and sink channels attached to
CIP processes that consume event messages and produce action messages. The
transition structures of these processes represent protocols of the virtual
communication with the environment. In the third step the CIP model is completed
by creating function processes which interact and communicate with the processes of
the established context model.

The three developent steps are explained in this section by means of a simple case
study. Following the case study, the essential step of defining events and actions is
then treated in more detail at the end of the section.

CIP Method - Submission 11

4 . 1 Problem Statement of the TCS Case Study

The TCS (TransportControlSystem) example illustrates how a CIP model is
developed and how a simple master-slave hierarchy works. The resulting cluster
represents an executable solution of the stated problem. The algorithmic requirements
are trivial, so the model consists of pure state machines only.

Plant description. The plant to be
controlled comprises a conveyor moving
objects in one direction, a scanner ser-
ving to identify loaded objects and a
switch allowing the operator to enable
and disable object scanning. A digital
loading sensor at the front end of the
conveyor detects loaded objects.

Conveyor

Scanner

Loading Sensor

Switch

Fig. 11. TCS Plant

Requirements. The systems starts its function when the first object is loaded.
When the conveyor is not loaded for 30 seconds, its motor is to be turned off. Two
modes of operation are required. If the switch is set off, the conveyor moves
continuously and the scanner is not activated. If the switch is set on, the conveyor
must stop when an object is loaded, the scanner is activated, and the conveyor starts
moving again when the scanner indicates that scanning is complete.

4 . 2 Virtual Real World Interface: Events and Actions

In the first step a virtual interface to the environment is specified by identifying
events to be detected and actions to be produced by the embedded system. Events and
actions designate instantaneously occurring subject-matter phenomena of the
environment.

TCS Ð Virtual Real World Interface

Event List
On / Off the switch is set on / off
Load / Free an object is loaded / is moved away from the loading place
Scanned scanning is completed

Action List
MotOn / MotOff turning the conveyor motor on / off
Scan activating the scanner

Fig. 12. Event and action lists

4 . 3 Behavioural Context Model: Channels and Interface Processes

The purpose of the context model is to establish the interface processes of the CIP
model and to connect them virtually to the environment. The interface processes are
deduced from descriptions and process models of the environment. They receive event

CIP Method - Submission 12

messages and produce action messages through appropriately specified source and sink
channels. The state transition structures of the interface processes describe the valid
sequences of received event and produced action messages. Thus the context model
formally describes the behaviour of the individual external processes, seen from the
CIP model.

The channels of the context model represent a virtual connection to the
environment. The event and action messages of these channels must correspond to the
events and actions of the virtual real world interface. These channels are also used as
the interface model for the CIP components to be generated later on as described in
section 5.

TCS Ð Context Model

COMMUNICATION NET InterfaceChannels

Scanner

ScanAct

Switch

SwitchEvt

Conveyor

ScanEvt

ConvActConvEvt

TransportCluster CHANNEL SwitchEvt MESSAGES Off, On

CHANNEL ScanEvt MESSAGES Scanned

CHANNEL ScanAct MESSAGES Scan

CHANNEL ConvEvt MESSAGES Free, Load

CHANNEL ConvAct MESSAGES MotOff, MotOn

PROCESS Switch PROCESS Scanner

1
On

2
Off

off

on scanning

ready

2
Scanned

1

Scan

PROCESS Conveyor
MODE ongoing MODE stepped

4
Free

5
Load

loadedMoving

3
Load

MotOn

loadedStopped

idle moving

7

MotOff

2

MotOn

6
Load

MotOff

7

MotOff

loadedStopped

1
Load

idle

loadedMoving

4
Free

moving

Fig. 13. Context model specification

CIP Method - Submission 13

The incomplete transition structures of the preliminary independent interface processes
must be completed in the control function step. Modelling interface processes means
understanding the behaviour of the external processes; but it also means anticipating
the way they will be controlled when the system is completed. The interface
behaviour of the Conveyor process, for example, has already been defined by the two
modes ongoing and stepped, corresponding to the modes of operation of the required
system function.

4 . 4 Construction of Control Functions

The interface processes are grouped into asynchronous clusters. The partition into
clusters determines how the system can be implemented later on by concurrently
running CIP components. A possible reason to refine the initial clustering is
modularisation: because of their asynchronous behaviour, clusters represent very
weakly coupled functional blocks, well suited to development and validation by
different members of the development team.

To bring about the required behaviour of the environment, function processes are
created and connected appropriately with the established interface processes. The
primary functionality of the system is first developed, based on the normal behaviour
defined by the model processes. To permit reaction to unexpected events, the interface
processes concerned must usually be extended by error modes; also, additional
supervisor and error handling processes must be introduced.

TCS - Complete Model

The CIP model of the simple case study consists of one cluster only. The function
process Controller controls the cooperation of the Conveyor and the Scanner
processes. The required modes of operation are modelled by corresponding modes of
the Controller. The current state of the Switch master process determines the active
mode of the Controller and the Conveyor process. The ongoing mode of the Conveyor
interface process has been extended by transition 2; the transition is necessary because
the switch can be set off even when the conveyor is stopped for scanning. The
Controller process uses a timer supported by the CIP Tool; provision of such timers
is a form of ‘modelling sugar’. Because the TIMEUP_ trigger represents an external
cluster input, a Controller cascade is also needed.

Remark. The corner marks of a process box indicate external input or output respectively: top right:
channel input, top left: timer input, bottom right: channel output.

CLUSTER TransportControl

INTERACTION NET PULSE TRANSLATIONS

ScannerConveyor

Controller Switch
Controller.move -> Conveyor.move
Controller.stop -> Conveyor.stop
Controller.scan -> Scanner.scan
Conveyor.loaded -> Controller.loaded
Scanner.scanned -> Controller.scanned

CIP Method - Submission 14

CASCADES MASTER-SLAVE GRAPH

Conveyor

Controller

Scanner

Scanner

Controller

Conveyor

Controller

Conveyor

Switch

Controller Conveyor Scanner

Switch

PROCESS Switch PROCESS Scanner

1
On

2
Off

off

on

ready

scanning

1
scan

Scan

2

scanned
Scanned

PROCESS Conveyor
 MODE SETTING Switch .off -> ongoing, Switch .on -> stepped

MODE ongoing

3

loaded
Load

MotOn

2
move

MotOn

7
stop

MotOff

4
Free

5

loaded
Load

loadedMoving

moving

loadedStopped

idle

MODE stepped

6

loaded
Load

MotOff

1

loaded
Load

4
Free

2
move

MotOn

loadedStopped loadedMoving

7
stop

MotOff
idle moving

PROCESS Controller
 MODE SETTING Switch .off -> freeLoading, Switch .on -> scannedLoading

MODE freeLoading
scanning

idle

moving

3 T
loaded

4

stop
TIMEUP_

2

move

T
scanned

1 T
loaded

MODE scannedLoading
scanning

idle

moving

1

scan
loaded

4

stop
TIMEUP_

2

move

T
scanned

3

scan

S
loaded

Legend:

1 T

timer
s set

2 S

timer
stopped

Fig. 14. Complete model specification

CIP Method - Submission 15

The model can be animated by "entering" event messages or the TIMEUP_ trigger. The
following trace describes five cluster transitions of a particular animation:

PROCESS MODE PRESTATE INPUT POSTSTATE OUTPUT

Conveyor ongoing idle Load loadedMoving loaded, MotOn

Controller freeLoading idle loaded moving T

Switch - off On on

Conveyor

Controller

ongoing

freeLoading

POSTMODE stepped

POSTMODE scannedLoading

Conveyor stepped loadedMoving Free moving

Conveyor stepped moving Load loadedStopped loaded, MotOff

Controller scannedLoading moving loaded scanning scan, S

Scanner - ready scan scanning Scan

Scanner - scanning Scanned ready scanned

Controller scannedLoading scanning scanned moving move, T

Conveyor stepped loadedStopped move loadedMoving MotOn

Fig. 15. Animation trace

5 . 5 More about Events and Actions

The elaboration of event and action collections represents a crucial development step
because it determines the level of abstraction used to solve the functional problem. On
the one hand, the collected events and actions must suffice to bring about the required
behaviour of the environment. On the other hand the feasibility of the connection
must be ensured by verifying that all events can be recognised and all actions can be
produced by means of the available interface devices.

Events and actions can have attributes which are transmitted as data of the
corresponding channel messages. An event attribute describes a circumstance of an
occurring event: for example, the bar code read by a scanner or the parameters of an
operator command. An action attribute describes a circumstance to be brought about
when the action is performed, such as the required liquid flow of an opened valve.

Events are classified into process events and temporal events. Process events are
caused by the autonomous dynamics of external processes, while temporal events
occur at prescribed points in time. In general, a process event is related to a discrete
change of the process. Discrete states often denote a whole range of external process
states, thus representing abstractions essential for the functional behaviour required.
Examples are the level ranges of a liquid in a vessel, or the various ready states of a
complex device. Continuous states must be monitored by sampling events that
capture the behaviour of continuous processes. Sampling events are periodically
occurring temporal events whose attributes are the sampled process states. Similarly,
the embedded system influences continuous processes by repeated production of
attributed actions.

CIP Method - Submission 16

5 . Component-Based Implementation of CIP Models

For implementation of a CIP model the set of clusters is partitioned into units. Each
CIP unit can be transformed automatically into a CIP component, executable in a
concurrent thread of the implemented system. The code generated from a CIP unit
consists of a CIPÊshell and a CIPÊmachine, and is produced in two individual gene–
ration steps.

input

external
processes

process and communication interface

embedded
connector

CIP shell

CIP
machine

call
backs

event
extractor

user written
code

low level
drivers

generated
code

generated
code

internal
communication environment

output

Fig. 16. Implementation of a CIP unit

The CIPÊshell represents the interface of the component: it consists of two linear
structures of function pointers, one for the incoming and one for the outgoing
channels. The CIP shell code is generated from the channel specifications only, and so
is independent of the modelled clusters.

The CIPÊmachine implements the reactive behaviour of the CIP unit; it is acti-
vated by channel function calls through the input shell. Every call triggers a cluster
transition from which channel functions are called through the output shell.

Partitioning the model creates additional connection problems due to the channels
interconnecting the CIP units. Thus the task of implementing a CIP unit is twofold.
On one hand, a part of the controlled processes must be connected to the CIP
machine: these connections correspond to the source and sink channels of the CIP
unit. The implementation of this part of the connection demands tools and techniques
suited to the technology of the interface devices. Communication between CIP units,
on the other hand, can usually be implemented by means of standard transmission
techniques based on field bus systems or serial connections.

Because of the cooperation of parallel entities modelled within CIP models, there is
no need to implement conceptual parallelism by means of multi-tasking. Only one or
very few CIP units are usually implemented on the same processor. Task scheduling
and interrupt handling are thus reduced to hardware interface functions and background
services [14].

CIP Method - Submission 17

The environment-oriented development process of the CIP method allows the
various CIP shells to be modelled at an early stage. The tool supports locking of
these interface specifications for extended periods. The generated shell code serves as
semi-rigid joints among CIP machines and embedded connectors. Thus once a CIP
shell is defined the associated CIP machine model and its embedded connector can be
developed concurrently. The concept has been proven in a number of industrial and
academic projects, where different partitions of the same CIP model had to be
connected to simulation models, to test beds for specific system parts, and to the real
environment of the final target system. In the development of a hybrid car, even the
code for the connector has been generated from formal connector descriptions [15].

6 . Summary

The CIP method is tailored to control problems typically encountered in the
development of embedded systems. Identifying the characteristic difficulties of this
problem class, the method offers suitable development concepts and modelling
techniques to promote system development based on engineering activities.

A central difficulty in the development of embedded systems results from the need
to monitor and control real world phenomena by means of specific interface devices.
The general embedded system problem is therefore decomposed into a functional
problem to be solved by means of formal behavioural models, and a connection
problem demanding development techniques adapted to the technology of the interface
devices. By stabilising dependencies at an early stage, the resulting development
process allows the two problems to be solved independently of each other.

Most reactive behavioural models support either synchronous or asynchronous
cooperation of behavioural entities. In order to support internal synchronous
interaction propagation as well as flexible distributed implementation of system parts,
the CIP method combines both cooperation paradigms within the same model. CIP
models consist of asynchronous clusters of processes that are synchronously
cooperating extended state machines.

In order to make interaction dependencies among processes explicit CIP models are
constructed by means of architectural composition. However, the problem of
conflicting and unbounded internal interaction can be solved only by restricting the set
of possible interaction paths. CIP therefore requires the control flow of interaction to
be specified by process cascades, resulting in deterministic behavioural models with
bounded response times.

The difficult task of structuring behavioural models is supported by a novel
hierarchical structure: the master-slave hierarchy. The hierarchical structure is based on
master processes which induce high level behaviour changes in designated slave
processes. The problem-oriented hierarchy relation is well suited to express powerful
behavioural abstractions. This concept has proved much more flexible than rigid
nesting of transition structures.

Control functions of embedded systems must maintain an ongoing behavioural
relationship with the controlled external processes. The model construction process
therefore starts by developing a behavioural context model that defines the legal

CIP Method - Submission 18

histories of external interactions. The full functional solution is constructed in further
development steps where function processes are added and connected to the context
model.

The integration of the CIP code is based on component technology. Various
configurations of generated software components can be connected to interface
modules and components supporting other concerns such as validation and simulation.
The resulting flexibility in building executable system parts becomes crucial when
developed systems have to be validated in various test environments.

References

1 . CIP Tool® - User Manual (1998). CIP System AG. Solothurn, Switzerland. Internet:
http://www.ciptool.ch

2 . Cameron J.R.(ed.): JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press (1989)

3 . Ward. P. T., Mellor. J. M.: Structured Development for Real-Time Systems. Yourdon
Press, Prentice-Hall, Englewood Cliffs, New Jersey (1985)

4 . Zave P.: The Operational Approach versus the Conventional Approach to Software
Development. Comm. ACM Vol. 27 No. 2, (1984) 104-118

5 . Harel D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming Vol 8, (1987) 231-274

6 . Berry G, Gontier G.: The ESTEREL Synchronous Programming Language:
Design,Semantics, Implementation. Science of Computer Programming, Vol. 19
(1992) 87-152

7 . Caspi P, Pilaud D, Halbwachs N, Plaice J.A. LUSTRE: A declarative language for
programming synchronous systems. In: Fourteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, Munich (1987) 178-188

8. Faergemand O. (ed): SDL '93: Using Objects. Proceedings of the 6th SDL Forum.
North-Holland (1993)

9 . Selic B., Gullekson G., Ward P.T.: Real-Time Object-Oriented Modeling. John Wiley
& Sons (1994)

10. Jackson M.A.: Problem Analysis Using Small Problem Frames. To appear in South
African Computer Journal special issue for WOFACS'98. (1999)

11. Fierz H.: SCSM - Synchronous Composition of Sequential Machines. Internal Report
No. 14. Computer Engineering and Networks Laboratory, ETH Zürich (1994)

12. Medvidovic N., Taylor R.N.: A Framework for Classifying and Comparing
Architecture Description Languages. In: Proc. ESEC/FSE '97, Lecture Notes in
Computer Science, Vol.1301, Springer-Verlag Berlin (1997) 60-76.

13. Fierz H., Müller. H.: Behaviour Control in Reactive Systems: Constructing Master-
Slave Hierarchies in CIP Models. Submitted to 11th Euromicro Conference on Real-
Time Systems. York, England (June 1999)

14. Trutman HO.: Well-Behaved Applications Allow for More Efficient Scheduling.
Submitted to 24th IFAC/IFIP Workshop on Real-Time Programming and the Third Int.
Workshop on Active and Real-Time Database Systems. Schloss Dagstuhl, Saarland
Nay (1999)

15. Trutmann HO.: Generation of Embedded Control Systems. 23rd IFAC/IFIP Workshop
on Real Time Programming, WRTP 98, Shantou, P.R. China (1998) 99-104

