
SGRT Core #1

External DRAM

T&I Unit

Intersection
Unit

Cache(L1)

Traversal
Unit

Cache(L1)

Traversal
Unit

Cache(L1)

Traversal
Unit

Cache(L1)

Traversal
Unit

Cache(L1)

Cache(L2)

SRP

VLIW Engine

Internal SRAM

Coarse Grained
Reconfigurable

Array

I-Cache

C-Mem

Texture
Unit

Cache(L1)

Multi-core ARM

Core #1 Core #2

Core #3 Core #4

Host DRAM

Host System BUS

Refitting
Unit

AXI System BUS

Fig. 1. Our system architecture including the SGRT cores and host processor

Abstract-- Recently, with the increasing demand for photoreal-

istic graphics and the rapid advances in desktop CPUs/GPUs,
real-time ray tracing has attracted considerable attention. Unfor-
tunately, ray tracing in the current mobile environment is diffi-
cult because of inadequate computing power, memory bandwidth,
and flexibility in mobile GPUs. In this paper, we present a novel
mobile GPU architecture called the SGRT (Samsung reconfigu-
rable GPU based on Ray Tracing) with the following features: 1)
a fast compact hardware engine that accelerates a traversal and
intersection operation, 2) a flexible reconfigurable processor that
supports software ray generation and shading, and 3) a parallel-
ization framework that achieves scalable performance. Experi-
mental results show that the SGRT can be a versatile graphics
solution, as it supports compatible performance compared to
desktop GPU ray tracers.

I. INTRODUCTION

Ray tracing is a physically correct rendering algorithm effi-
ciently modeling the interaction between objects and lights,
which produces highly realistic graphics images. Due to the
requirements of massive computing power and memory
bandwidth, ray tracing has been mainly used in off-line ren-
dering field. However, recent rapid advances in desktop
CPUs/GPUs and a variety of researches have made real-time
ray tracing possible [1]. As a result, the ray tracing is expected
to be a new graphics paradigm to create a new market in near
future [2].

Mobile graphics has been another trend introducing a new
user experiences. Mobile devices are widely used all over the
world, and these platforms provide an opportunity creating the
new graphics applications. Increased interest in mobile
graphics can be seen in the activities of industry standard like
OpenGL|ES. In order to maximize user experience, ray tracing
is expected to be demonstrated on the mobile devices in near
future.

Though mobile graphics capabilities and performance have
advanced considerably in recent years, real-time ray tracing in
current mobile GPU is very difficult due to the following rea-
sons. First, computational power is inadequate. Ray tracing of
a real-world application at HD resolution requires the perfor-
mance of 300Mray/sec (about 1~2TFLOPS) is needed [3], but
the peak performance of current flagship mobile GPU is no
more than 256GFLOPS (ARM Mali T658 [4]). Second, mo-
bile GPU lacks efficient branching supports. Ray tracing is a
control-flow-intensive algorithm, but mobile GPU cannot ful-
ly support branches with limited stack memory. Third, execu-
tion model of the mobile GPU is multithreaded SIMD which
is not suited for ray tracing, because it causes a divergent

branching and memory access in secondary rays. These inco-
herent rays can lead to a poor SIMD efficiency.

In this paper, we propose a new mobile GPU architecture,
called SGRT (Samsung reconfigurable GPU based on Ray
Tracing), which can solve the problems previously mentioned.
The SGRT has three key features. First, it has a fast compact
hardware engine that accelerates a traversal and intersection
(T&I) which are computationally dominant operations in ray
tracing. Second, it employs a flexible reconfigurable processor
that supports software ray generation and shading (RGS).
Third, it exploits a parallelization framework with real-time
operation system (RTOS) that achieves scalable performance.

In addition, our system architecture is designed for recent
application processor (AP) that integrates CPUs, GPUs, and
DSPs into a single chip with SoC technology. We assign the
major modules of the ray tracing into the appropriate compu-
ting resources of AP, which is a combination of the tree-
rebuild module to reconstruct whole acceleration data struc-
tures (on multi-core CPUs), the tree-refit module to update
only the changed nodes in the tree (on dedicated H/Ws) and
the rendering (on the SGRT). Experimental results show that
our GPU can be a versatile graphics solution for future appli-
cation processor by exposing equivalent performance of re-
cent desktop GPU ray tracers.

II. SGRT CORE ARCHITECTURE

Figure 1 shows the overall system architecture including the
SGRT cores and host CPUs. This section describes our archi-
tecture in detail.

A. Dedicated Hardware for Traversal and Intersection

The lack of computational power and memory bandwidth of
current mobile GPUs motivated us to design a dedicated
hardware. Our H/W, called T&I engine, consists of multiple
traversal and intersection units with multi-level caches for
efficient memory usage, which is similar with previous ray
tracing architecture [5][6]. But, unlikely the previous works,
our H/W is optimized for mobile environment with the fol-
lowing features. First, it has a smaller area (3.89 mm2 per core,

A Novel Mobile GPU Architecture based on Ray Tracing

Won-Jong Lee1, Youngsam Shin1, Jaedon Lee1, Jin-Woo Kim2, Jae-Ho Nah2,
Hyun-Sang Park3, Seokyoon Jung1, and Shihwa Lee1

SAIT Samsung Electronics1, Yonsei University2, Kongju National University3, Korea

978-1-4673-1363-6/13/$31.00 ©2013 IEEE

2013 IEEE International Conference on Consumer Electronics (ICCE)

21

Fig. 2. Rendered images by the SGRT simulator: Ferrari (left, 210K trian-
gles) and Fairy (right, 170K triangles).

65nm). For processing dynamic scenes, our H/W uses bound-
ing volume hierarchies (BVH) that is an object hierarchy,
which negates the need for LIST units to manage primitives.
In addition, the traversal unit performs both BVH traversal
and an intersection test between the ray and the primitive’s
axis-aligned bounding box (primAABB), which can signifi-
cantly save the area. Second, we minimize the SRAM usage
by employing short-stack based traversal algorithm [7]. Third,
we combine a primAABB and pre-computed triangle data
(triAccel) into a 32-byte aligned compact data, which increase
the cache efficiency.

High performance features of our previous work [6] like the
MIMD architecture for incoherent rays and a ray accumula-
tion unit for latency hiding are directly reused in our H/W.
Moreover, we can selectively utilize a specific BVH between
the variants (e.g. Full SAH, Binned, SBVH, and LBVH) that
are supported by the T&I engine.

B. Reconfigurable Processor for Shading

We utilize a proprietary low-power DSP core developed in
our previous work [8][9]; it is called the SRP (Samsung Re-
configurable Processor). The SRP is very flexible for support-
ing full programmability; thus, various shaders (e.g. material
and illumination) can be easily implemented. Unlike the con-
ventional mobile GPU, the VLIW engine of the SRP can fully
support control-flow such as recursion and branch, which
make recursive ray tracing possible. In addition, the SRP is
capable of highly parallel data processing. The coarse-grained
reconfigurable array (CGRA) of the SRP makes full use of the
software pipeline technique to allow loop acceleration. There-
fore, the ray packet stream processing can be done in ray gen-
eration and shading kernels, which maximizes the utilization
of the functional units.

C. Parallelization Framework

For scalable performance, we built a parallelization frame-
work based on the Samsung Multi-platform Kernel (SMK)
[10], a real-time operating system for embedded system. The
SMK supports multi-tasking by systematic scheduling in the
task queues, and it allows developers to create and use tasks
easily. We define an individual task for each SGRT core that
is responsible for different pixels (or pixel tiles), then the
scheduler can distribute the next tasks to the idle SGRT core
first, which results in dynamic load balancing. According to
preliminary experiments, we could determine the performance
scalability; 3.8x speedup on 4 SGRT cores compared to a sin-
gle core.

III. EXPERIMENTAL RESULTS

The validity of the SGRT is verified and its performance is
evaluated during cycle accurate simulation. The Ferrari and
Fairy has been thoroughly tested (Figure 2). Table 1 lists the
performance results of ray tracing performed by the SGRT (4
cores), including shadow, reflection and refraction with
WVGA (800x480) resolution at 1GHz clock speed. We
achieve around 170M RPS (T&I engine), 255M RPS (SRP)
and 87.82 fps (Fairy), which may be equivalent to the perfor-
mance of recent desktop GPU ray tracers (~300M RPS).

IV. CONCLUSION

In this paper, we propose a novel mobile GPU based on ray
tracing. This is a first approach to realize a real-time ray trac-
ing in mobile environment, which has been impossible in
state-of-the-art OpenGL-based mobile GPU due to the inade-
quate computational power and memory bandwidth. Further-
more, our system architecture is carefully designed to suit for
mobile SoC platform. Simulation results show that our GPU
can be a versatile graphics solution by presenting equivalent
performance of recent desktop GPU ray tracers. We are now
implementing the T&I engine at the RTL level, and we will
release the complete GPU product targeted for future consum-
er electronics such as smart phone, tablet PC, and smart TV.

REFERENCES
[1] I. Wald, W. Mark, J. Gunther, S. Boulos, and T. Ize, “State of the art in

ray tracing animated scenes,” Computer Graphics Forum, vol. 28, no. 6,
pp. 1691-1722, 2009.

[2] H. Jim, “Ray tracing goes main stream,” Intel Technology Journal, vol. 9,
no. 2, pp. 99-108, 2005.

[3] P. Slusallek, “Hardware architectures for ray tracing,” ACM SIGGRAPH,
Course Notes, 2006.

[4] ARM Mali-T658 http://www.arm.com/products/multimedia/mali-
graphics-hardware/mali-t658.php, 2012.

[5] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable ray
processing unit for real-time ray tracing,” ACM Transactions on
Graphics (SIGGRAPH), vol. 24, no. 3, pp. 434-444, 2005.

[6] J.-H. Nah, J.-S. Park, C.-M. Park, J.-W. Kim, Y.-H. Jung, W.-C. Park,
T.- D. Han, “T&I engine: traversal and intersection engine for hardware
accelerated ray tracing,” ACM Transactions on Graphics (SIGGRAPH
ASIA), vol. 3, no. 6, article 160, pp. 1-10, 2011.

[7] S. Laine, “Restart trail for stackless BVH traversal,” ACM Conference
on High Performance Graphics, pp. 107-111, 2010.

[8] W.-J. Lee, S.-O. Woo, K.-T. Kwon, S.-J. Son, K.-J. Min, C.-H. Lee, K.-J.
Jang, C.-M. Park, S.-Y. Jung, and S.-H. Lee, “A scalable GPU architec-
ture based on dynamically embedded reconfigurable processor,” ACM
Conference on High Performance Graphics, poster, 2011.

[9] W.-J. Lee, S.-Y. Jung, and S.-H. Lee, “An effective task scheduling
scheme for multicore tile based rendering GPU,” ACM Conference on
High Performance Graphics, poster, 2012.

[10] Y. Shin, S.-W. Lee, M.-Y. Son, and S.-H. Lee, “Predictable multithread
scheduling with cycle-accurate thread progress monitor,” ACM Sympo-
sium on Applied Computing (SAC ’11), pp. 627-628, 2011.

TABLE I
PERFORMANCE RESULTS OF THE SGRT ARCHITECTURE

Scene

of
tri.

of
ray

T&I engine SRP

FPS Pipeline
utilization

TRV $
hit ratio

IST $
hit ratio

MRPS* MRPS*

Fairy 170K 1.7M 87.27 93.83 96.53 171.32 255.72 87.82

Ferrari 210K 1.5M 79.75 92.56 92.92 122.48 319.56 67.83

 *MRPS (Mega Rays Per Second)

22

