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Fig. 1. Our system architecture including the SGRT cores and host processor

 
Abstract-- Recently, with the increasing demand for photoreal-

istic graphics and the rapid advances in desktop CPUs/GPUs, 
real-time ray tracing has attracted considerable attention. Unfor-
tunately, ray tracing in the current mobile environment is diffi-
cult because of inadequate computing power, memory bandwidth, 
and flexibility in mobile GPUs. In this paper, we present a novel 
mobile GPU architecture called the SGRT (Samsung reconfigu-
rable GPU based on Ray Tracing) with the following features: 1) 
a fast compact hardware engine that accelerates a traversal and 
intersection operation, 2) a flexible reconfigurable processor that 
supports software ray generation and shading, and 3) a parallel-
ization framework that achieves scalable performance. Experi-
mental results show that the SGRT can be a versatile graphics 
solution, as it supports compatible performance compared to 
desktop GPU ray tracers.  

I. INTRODUCTION 

Ray tracing is a physically correct rendering algorithm effi-
ciently modeling the interaction between objects and lights, 
which produces highly realistic graphics images. Due to the 
requirements of massive computing power and memory 
bandwidth, ray tracing has been mainly used in off-line ren-
dering field. However, recent rapid advances in desktop 
CPUs/GPUs and a variety of researches have made real-time 
ray tracing possible [1]. As a result, the ray tracing is expected 
to be a new graphics paradigm to create a new market in near 
future [2].  

Mobile graphics has been another trend introducing a new 
user experiences. Mobile devices are widely used all over the 
world, and these platforms provide an opportunity creating the 
new graphics applications. Increased interest in mobile 
graphics can be seen in the activities of industry standard like 
OpenGL|ES. In order to maximize user experience, ray tracing 
is expected to be demonstrated on the mobile devices in near 
future.  

Though mobile graphics capabilities and performance have 
advanced considerably in recent years, real-time ray tracing in 
current mobile GPU is very difficult due to the following rea-
sons. First, computational power is inadequate. Ray tracing of 
a real-world application at HD resolution requires the perfor-
mance of 300Mray/sec (about 1~2TFLOPS) is needed [3], but 
the peak performance of current flagship mobile GPU is no 
more than 256GFLOPS (ARM Mali T658 [4]). Second, mo-
bile GPU lacks efficient branching supports. Ray tracing is a 
control-flow-intensive algorithm, but mobile GPU cannot ful-
ly support branches with limited stack memory. Third, execu-
tion model of the mobile GPU is multithreaded SIMD which 
is not suited for ray tracing, because it causes a divergent 

 
 

branching and memory access in secondary rays. These inco-
herent rays can lead to a poor SIMD efficiency. 

In this paper, we propose a new mobile GPU architecture, 
called SGRT (Samsung reconfigurable GPU based on Ray 
Tracing), which can solve the problems previously mentioned. 
The SGRT has three key features. First, it has a fast compact 
hardware engine that accelerates a traversal and intersection 
(T&I) which are computationally dominant operations in ray 
tracing. Second, it employs a flexible reconfigurable processor 
that supports software ray generation and shading (RGS). 
Third, it exploits a parallelization framework with real-time 
operation system (RTOS) that achieves scalable performance.  

In addition, our system architecture is designed for recent 
application processor (AP) that integrates CPUs, GPUs, and 
DSPs into a single chip with SoC technology. We assign the 
major modules of the ray tracing into the appropriate compu-
ting resources of AP, which is a combination of the tree-
rebuild module to reconstruct whole acceleration data struc-
tures (on multi-core CPUs), the tree-refit module to update 
only the changed nodes in the tree (on dedicated H/Ws) and 
the rendering (on the SGRT). Experimental results show that 
our GPU can be a versatile graphics solution for future appli-
cation processor by exposing equivalent performance of re-
cent desktop GPU ray tracers. 

II. SGRT CORE ARCHITECTURE 

Figure 1 shows the overall system architecture including the 
SGRT cores and host CPUs. This section describes our archi-
tecture in detail. 

A. Dedicated Hardware for Traversal and Intersection 

The lack of computational power and memory bandwidth of 
current mobile GPUs motivated us to design a dedicated 
hardware. Our H/W, called T&I engine, consists of multiple 
traversal and intersection units with multi-level caches for 
efficient memory usage, which is similar with previous ray 
tracing architecture [5][6]. But, unlikely the previous works, 
our H/W is optimized for mobile environment with the fol-
lowing features. First, it has a smaller area (3.89 mm2 per core, 
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Fig. 2. Rendered images by the SGRT simulator: Ferrari (left, 210K trian-
gles) and Fairy (right, 170K triangles).  

65nm). For processing dynamic scenes, our H/W uses bound-
ing volume hierarchies (BVH) that is an object hierarchy, 
which negates the need for LIST units to manage primitives. 
In addition, the traversal unit performs both BVH traversal 
and an intersection test between the ray and the primitive’s 
axis-aligned bounding box (primAABB), which can signifi-
cantly save the area. Second, we minimize the SRAM usage 
by employing short-stack based traversal algorithm [7]. Third, 
we combine a primAABB and pre-computed triangle data 
(triAccel) into a 32-byte aligned compact data, which increase 
the cache efficiency. 

High performance features of our previous work [6] like the 
MIMD architecture for incoherent rays and a ray accumula-
tion unit for latency hiding are directly reused in our H/W. 
Moreover, we can selectively utilize a specific BVH between 
the variants (e.g. Full SAH, Binned, SBVH, and LBVH) that 
are supported by the T&I engine. 

B. Reconfigurable Processor for Shading 

We utilize a proprietary low-power DSP core developed in 
our previous work [8][9]; it is called the SRP (Samsung Re-
configurable Processor). The SRP is very flexible for support-
ing full programmability; thus, various shaders (e.g. material 
and illumination) can be easily implemented. Unlike the con-
ventional mobile GPU, the VLIW engine of the SRP can fully 
support control-flow such as recursion and branch, which 
make recursive ray tracing possible. In addition, the SRP is 
capable of highly parallel data processing. The coarse-grained 
reconfigurable array (CGRA) of the SRP makes full use of the 
software pipeline technique to allow loop acceleration. There-
fore, the ray packet stream processing can be done in ray gen-
eration and shading kernels, which maximizes the utilization 
of the functional units. 

C. Parallelization Framework 

For scalable performance, we built a parallelization frame-
work based on the Samsung Multi-platform Kernel (SMK) 
[10], a real-time operating system for embedded system. The 
SMK supports multi-tasking by systematic scheduling in the 
task queues, and it allows developers to create and use tasks 
easily. We define an individual task for each SGRT core that 
is responsible for different pixels (or pixel tiles), then the 
scheduler can distribute the next tasks to the idle SGRT core 
first, which results in dynamic load balancing. According to 
preliminary experiments, we could determine the performance 
scalability; 3.8x speedup on 4 SGRT cores compared to a sin-
gle core. 

III. EXPERIMENTAL RESULTS 

The validity of the SGRT is verified and its performance is 
evaluated during cycle accurate simulation. The Ferrari and 
Fairy has been thoroughly tested (Figure 2). Table 1 lists the 
performance results of ray tracing performed by the SGRT (4 
cores), including shadow, reflection and refraction with 
WVGA (800x480) resolution at 1GHz clock speed. We 
achieve around 170M RPS (T&I engine), 255M RPS (SRP) 
and 87.82 fps (Fairy), which may be equivalent to the perfor-
mance of recent desktop GPU ray tracers (~300M RPS).  

IV. CONCLUSION 

In this paper, we propose a novel mobile GPU based on ray 
tracing. This is a first approach to realize a real-time ray trac-
ing in mobile environment, which has been impossible in 
state-of-the-art OpenGL-based mobile GPU due to the inade-
quate computational power and memory bandwidth. Further-
more, our system architecture is carefully designed to suit for 
mobile SoC platform. Simulation results show that our GPU 
can be a versatile graphics solution by presenting equivalent 
performance of recent desktop GPU ray tracers. We are now 
implementing the T&I engine at the RTL level, and we will 
release the complete GPU product targeted for future consum-
er electronics such as smart phone, tablet PC, and smart TV.  
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TABLE I 
PERFORMANCE RESULTS OF THE SGRT ARCHITECTURE 

 
Scene

# of 
tri.

# of
ray

T&I engine SRP
 

FPS Pipeline 
utilization

TRV $ 
hit ratio 

IST $ 
hit ratio 

MRPS* MRPS*

Fairy 170K 1.7M 87.27 93.83 96.53 171.32 255.72 87.82

Ferrari 210K 1.5M 79.75 92.56 92.92 122.48 319.56 67.83

 *MRPS (Mega Rays Per Second)
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