
Microkernels: 
Mach and L4 

Presented by Jason Wu 
With content borrowed from Dan Williams 

(2009) and Hakim Weatherspoon (2008) 



Outline 

•  Introduction to Kernels 
•  1st Generation Microkernels 

– Mach 

•  2nd Generation Microkernels 
– L4 

•  Conclusions 



Introduction to Kernels 

•  Different Types of Kernel Designs 
– Monolithic kernel 
– Microkernel 
– Hybrid Kernel 
– Exokernel 
– Virtual Machines? 



Monolithic Kernels 

•  All OS services operate in kernel space 
•  Good performance 
•  Disadvantages 

– Dependencies between system component 
– Complex & huge (millions(!) of lines of code) 
– Larger size makes it hard to maintain 

•  E.g. Multics, Unix, BSD, Linux 



Microkernels 

•  Minimalist approach 
–  IPC, virtual memory, thread scheduling 

•  Put the rest into user space 
–  Device drivers, networking, file system, user interface 

•  More stable with less services in kernel space 
•  Disadvantages 

–  Lots of system calls and context switches 
•  E.g. Mach, L4, AmigaOS, Minix, K42 



Monolithic Kernels VS 
Microkernels 



Hybrid Kernels 

•  Combine the best of both worlds 
– Speed and simple design of a monolithic kernel 
– Modularity and stability of a microkernel 

•  Still similar to a monolithic kernel 
– Disadvantages still apply here 

•  E.g. Windows NT, NetWare, BeOS 



Exokernels 

•  Follows end-to-end principle 
– Extremely minimal 
– Fewest hardware abstractions as possible 
–  Just allocates physical resources to apps 

•  Disadvantages 
– More work for application developers 

•  E.g. Nemesis, ExOS 
•  Next Thursday! 



The Microkernel Debate 

•  How big should it be? 

•  Big debate during the 1980’s 



Summary: Kernels 
•  Monolithic kernels 

–  Advantages: performance 
–  Disadvantages: difficult to debug and maintain 

•  Microkernels 
–  Advantages: more reliable and secure 
–  Disadvantages: more overhead 

•  Hybrid Kernels 
–  Advantages: benefits of monolithic and microkernels 
–  Disadvantages: same as monolithic kernels 

•  Exokernels 
–  Advantages: minimal and simple 
–  Disadvantages: more work for application developers 



1st Generation Microkernels 



The Duality of Memory and 
Communication in the Implementation of 

a Multiprocessor Operating System 
•  SOSP 1987 
•  Young et al 

•  Richard Rashid 
–  Lead developer of Mach 
–  Microsoft Research 

•  William Bolosky 
–  Microsoft Research 



Mach 

•  1st generation microkernel 
•  Based on Accent 
•  Memory object 

– Mange system services like network paging and 
file system 

•  Memory via communication 



Mach Abstractions 
•  Task 

–  Basic unit of resource allocation 
–  Virtual address space, communication capabilities 

•  Thread 
–  Basic unit of computation 

•  Port 
–  Communication channel for IPC 

•  Message 
–  May contain port capabilities, pointers 

•  Memory Object 



External Memory Management 

•  No kernel-based file system 
– Kernel is just a cache manager 

•  Memory object 
– AKA “paging object” 

•  Page 
– Task that implements memory object 



Lots of Flexibility 

•  E.g. consistent network shared memory 
– Each client maps X with shared pager 
– Use primitives to tell kernel cache what to do 

•  Locking 
•  Flushing 



Problems of External Memory 
Management 

•  External data manager failure looks like 
communication failure 
– E.g. need timeouts 

•  Opportunities for data manager to deadlock 
on itself 



Performance 

•  Does not prohibit caching 
•  Reduce number of copies of data occupying 

memory 
–  Copy-to-use, copy-to-kernel 
–  More memory for caching 

•  “compiling a small program cached in memory…
is twice as fast” 

•  I/O operations reduced by a factor of 10 
•  Context switch overhead? 



2nd Generation Microkernels 



The Performance of Micro-Kernel-
Based Systems 

•  SOSP 1997 
•  Hartig et al 

•  Jochen Liedtke 
– Worked on Eumel, L3 



The Performance of Micro-Kernel-
Based Systems 

•  Evaluates the L4 microkernel 
•  Ports Linux to run on top of L4 
•  Suggests improvements 



L4 

•  2nd generation microkernel 
•  Similar to Mach 

– Started from scratch, rather than monolithic 
– Even more minimal 

•  Uses user-level pages 
•  Tasks, threads, IPC 



L4Linux 

•  Linux source has two cleanly separated 
parts 
– Architecture dependent 
– Architecture independent 

•  In L4Linux 
– Architecture dependent code is modified for L4 
– Architecture independent part is unchanged 
– L4 not specifically modified to support Linux 



L4Linux 

•  Linux kernel as L4 user service 
–  Runs as an L4 thread in a single L4 address space 
–  Creates L4 threads for its user processes 
–  Maps parts of its address space to user process threads 

(using L4 primitives) 
–  Acts as pager thread for its user threads 
–  Has its own logical page table 
–  Multiplexes its own single thread (to avoid having to 

change Linux source code) 



L4Linux – System Calls 

•  The statically linked and shared C libraries are 
modified 
–  Systems calls in the lib call the Linux kernel using IPC 

•  For unmodified native Linux applications, there is 
a “trampoline” 
–  The application traps 
–  Control bounces to a user-level exception handler 
–  The handler calls the modified shared library 
–  Binary compatible 



A Note on TLBs 

•  A Translation Look-aside Buffer (TLB) 
caches page table lookups 

•  On context switch, TLB needs to be flushed 
•  A tagged TLB tags each entry with an 

address space label, avoiding flushes 
•  A Pentium CPU can emulate a tagged TLB 

for small address spaces 



Performance - Benchmarks 

•  Compared the following systems 
– Native Linux 
– L4Linux 
– MkLinux (in-kernel) 

•  Linux ported to run inside the Mach microkernel 

– MkLinux (user) 
•  Linux ported to run as a user process on top of the 

Mach microkernel 



Performance - Microbenchmarks 



Performance - Macrobenchmarks 



Performance - Analysis 

•  L4Linux is 5% - 10% slower than native 
Linux for macrobenchmarks 

•  User mode MkLinux is 49% slower 
(averaged over all loads) 

•  In-kernel MkLinux is 29% slower (averaged 
over all loads) 

•  Co-location of kernel is not enough for 
good performance 



L4 is Proof of Concept 

•  Pipes can be made faster using L4 
primitives 

•  Linux kernel was essentially unmodified 
– Could be optimized for microkernel 

•  More options for extensibility 



Conclusions 

•  Microkernels have attractive properties 
– Extensibility benefits 
– Minimal/simple 

•  Microkernels have comparable performance 


