Microkernels:
Mach and L4

Presented by Jason Wu

With content borrowed from Dan Williams
(2009) and Hakim Weatherspoon (2008)



Outline

Introduction to Kernels

st Generation Microkernels
— Mach

2nd Generation Microkernels
14

Conclusions



Introduction to Kernels

* Different Types of Kernel Designs
— Monolithic kernel
— Microkernel
— Hybrid Kernel
— Exokernel
— Virtual Machines?



Monolithic Kernels

All OS services operate 1n kernel space
Good performance
Disadvantages

— Dependencies between system component
— Complex & huge (millions(!) of lines of code)

— Larger size makes 1t hard to maintain

E.g. Multics, Unix, BSD, Linux



Microkernels

Minimalist approach
— [PC, virtual memory, thread scheduling

Put the rest into user space

— Device drivers, networking, file system, user interface
More stable with less services 1n kernel space
Disadvantages

— Lots of system calls and context switches

E.g. Mach, L4, AmigaOS, Minix, K42



Monolithic Kernels VS
Microkernels

Monolithic Kernel Microkernel
based Operating System based Operating System
Applisaon System Call

Application

IPC

lernel
mode

Hardware




Hybrid Kernels

* Combine the best of both worlds
— Speed and simple design of a monolithic kernel

— Modularity and stability of a microkernel

 Still similar to a monolithic kernel
— Disadvantages still apply here

* E.g. Windows NT, NetWare, BeOS



Exokernels

Follows end-to-end principle

— Extremely minimal

— Fewest hardware abstractions as possible
— Just allocates physical resources to apps

Disadvantages
— More work for application developers

E.g. Nemesis, ExOS
Next Thursday!



The Microkernel Debate

 How big should 1t be?

* Big debate during the 1980°s



Summary: Kernels

Monolithic kernels

— Advantages: performance

— Disadvantages: difficult to debug and maintain
Microkernels

— Advantages: more reliable and secure

— Disadvantages: more overhead

Hybrid Kernels

— Advantages: benefits of monolithic and microkernels
— Disadvantages: same as monolithic kernels

Exokernels
— Advantages: minimal and simple
— Disadvantages: more work for application developers



15t Generation Microkernels



The Duality of Memory and
Communication in the Implementation of

a Multiprocessor Operating System
SOSP 1987

* Young et al

 Richard Rashid

— Lead developer of Mach
— Microsoft Research

* William Bolosky

— Microsoft Research



Mach

15t generation microkernel
Based on Accent
Memory object

— Mange system services like network paging and
file system

Memory via communication



Mach Abstractions

Task

— Basic unit of resource allocation
— Virtual address space, communication capabilities

Thread

— Basic unit of computation

Port
— Communication channel for IPC

Message
— May contain port capabilities, pointers

Memory Object



External Memory Management

* No kernel-based file system
— Kernel 1s just a cache manager
* Memory object
— AKA “paging object”
* Page

— Task that implements memory object



Lots of Flexibility

» E.g. consistent network shared memory
— Each client maps X with shared pager

— Use primitives to tell kernel cache what to do
* Locking
* Flushing



Problems of External Memory
Management

» External data manager failure looks like
communication failure

— E.g. need timeouts

* Opportunities for data manager to deadlock
on 1tself



Performance

Does not prohibit caching

Reduce number of copies of data occupying
memory

— Copy-to-use, copy-to-kernel
— More memory for caching

“compiling a small program cached in memory...
1s twice as fast”

I/O operations reduced by a factor of 10
Context switch overhead?



2nd Generation Microkernels



The Performance of Micro-Kernel-
Based Systems

 SOSP 1997
» Hartig et al

e Jochen Liedtke
— Worked on Eumel, L3



The Performance of Micro-Kernel-
Based Systems

e Evaluates the L4 microkernel
* Ports Linux to run on top of L4

* Suggests improvements



L4

21d generation microkernel
Similar to Mach

— Started from scratch, rather than monolithic

— Even more minimal
Uses user-level pages
Tasks, threads, IPC



[.4].1nux

* Linux source has two cleanly separated
parts

— Architecture dependent

— Architecture independent

* In L4Linux

— Architecture dependent code 1s modified for L4

— Architecture independent part 1s unchanged
— L4 not specifically modified to support Linux



[.4].1nux

* Linux kernel as L4 user service
— Runs as an L4 thread 1n a single L4 address space
— Creates L4 threads for 1its user processes

— Maps parts of its address space to user process threads
(using L4 primitives)

— Acts as pager thread for its user threads

— Has 1ts own logical page table

— Multiplexes its own single thread (to avoid having to
change Linux source code)



L4Linux — System Calls

* The statically linked and shared C libraries are
modified

— Systems calls in the lib call the Linux kernel using IPC

* For unmodified native Linux applications, there 1s
a “trampoline”
— The application traps
— Control bounces to a user-level exception handler
— The handler calls the modified shared library
— Binary compatible



A Note on TLBs

A Translation Look-aside Buffer (TLB)
caches page table lookups

On context switch, TLB needs to be flushed

A tagged TLB tags each entry with an
address space label, avoiding flushes

A Pentium CPU can emulate a tagged TLB
for small address spaces



Performance - Benchmarks

* Compared the following systems
— Native Linux
— L4L1inux
— MkLinux (in-kernel)
 Linux ported to run inside the Mach microkernel

— MkLinux (user)

 Linux ported to run as a user process on top of the
Mach microkernel



Performance - Microbenchmarks

write {devinull [fat) ‘ e e : pinnnnnnrennunn ] e 64,5
null process [lar) R '

simple process [lar

foin/sh process [lar

mmap [/a/] ,

2.proc context switch [lar]

8-proc context switch [faf]
pipe [fat] "
UDP [lar}

RPC/UDP [lar]

TCP [far)

RPC/TCP [fai]

pipe [bw™']

TCP [bw"]

file reread [bw™']

mmap peread [bw™!]

] —t 258

Linux

1ALinux

g3 MkLinux (in-kernel)
o]  MkLinux (user)

Figure 6: Imbench results, normalized to native Linux, These are presented as slowdowns: a shorter bar is a better result. [ar] is a latency measurement,
(Bw™"] the inverse of a bandwidth one. Hardware is a 133 MHz Pentium.



Performance - Macrobenchmarks

AIM Suito-7 Bonchmark - Jobe por dtmte

140 1 | ! L) ' L
- * /
L F . 3 R e I _f/ - - — ,,--'"“" devea ALY e, .
.l/','u."“*
1w - - -v-vﬁ-;;—- - - - . -'l- * - { —
........... T..__“._,..-'“" ' e bl L LT T, '
g 80 s — CECE s I -
: ¢ l t i '
i ! i } H
i w «—o:- - - --..f -
i :
‘o : owv m-...-:-—- - - , ooy '. p
; | 4 |
| | . 1
alf b Lot
’ i LAlUmux = eessean
. = ! l Malinux rq:";' ........
0 ] ] 1 ’m b 3
0 20 40 60 &0 100 120 140
A simylated loxd

Figure 9: AIM Multiuser Benchmark Suite VII, Jobs completed per
minute depending on AIM load units. (133 MHz Pentium)



Performance - Analysis

e L4L1nux 1s 5% - 10% slower than native
Linux for macrobenchmarks

» User mode MkLinux 1s 49% slower
(averaged over all loads)

* In-kernel MkLinux 1s 29% slower (averaged
over all loads)

* Co-location of kernel 1s not enough for
good performance



L4 1s Proof of Concept

* Pipes can be made faster using L4
primitives
* Linux kernel was essentially unmodified

— Could be optimized for microkernel

* More options for extensibility



Conclusions

* Microkernels have attractive properties
— Extensibility benefits
— Minimal/simple

* Microkernels have comparable performance



