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The growing evidence that cancer originates from stem cells (SC) holds a great promise to
eliminate this disease by designing specific drug therapies for removing cancer SC. Trans-
lation of this knowledge into predictive tests for the clinic is hampered due to the lack
of methods to discriminate cancer SC from non-cancer SC. Here, we address this issue
by describing a conceptual strategy for identifying the genetic origins of cancer SC. The
strategy incorporates a high-dimensional group of differential equations that characterizes
the proliferation, differentiation, and reprogramming of cancer SC in a dynamic cellular
and molecular system. The deployment of robust mathematical models will help uncover
and explain many still unknown aspects of cell behavior, tissue function, and network
organization related to the formation and division of cancer SC.The statistical method devel-
oped allows biologically meaningful hypotheses about the genetic control mechanisms of
carcinogenesis and metastasis to be tested in a quantitative manner.
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INTRODUCTION
Human cancers grow from stem cells (SC) in the way that healthy
organs do (Dick, 2003; Dontu et al., 2003; Alison, 2005; Brown
et al., 2007; Lobo et al., 2007; Baumann et al., 2008; Visvader and
Lindeman, 2008). This discovery, or hypothesis, has refreshed our
hope to eliminate these fatal diseases. A stem cell is one that, when
it divides, produces two unequal daughters. While one remains a
stem cell, the other differentiates into a diverse range of special-
ized cell types. There is emerging evidence that cancer formation
may follow a similar mechanism of cell division (Lapidot et al.,
1994; Al-Hajj et al., 2003; Singh et al., 2004). In breast and brain
tumors, for example, a minority population of cancer SC has the
ability to self-renew, whereas the majority of cancer cells have
limited or no ability to proliferate. Because cancer SC may drive
the growth and spread of the tumor, the prevention of a malig-
nant tumor can be made possible by designing specific drugs that
destroy those mother cells (Clarke and Fuller, 2006). However,
current cancer-killing therapies are not able to distinguish cancer
SC from malignant cells. If only the descendants of the non-stem-
cell daughters are removed or destroyed, the tumor will continue
to return. For this reason, the primary step toward the effective
control and prevention (and even eradication) of cancers is the
prospective identification and characterization of cancer SC, fol-
lowed by the removal of targeted cancer SC by developing specified
drug therapies.

The distinction between stem cancer cells and non-stem can-
cer cells has been a highly challenging issue, but can be made
possible through a profound understanding of the differences in
their origin, property, and function (Lobo et al., 2007). Modern
life sciences, such as molecular biology, genomics, biomedicine,

or oncology, are powerful for understanding the genetic and
molecular mechanisms of carcinogenesis and the complexity of
its progress and dynamics based on experimental and clinical
observations. The past decade has witnessed a vital development
in high-dimensional genetic, genomic, and proteomic technolo-
gies that have led to the availability of an enormous amount of
data (Clarke et al., 2008). For example, high-throughput single
nucleotide polymorphism (SNP) analysis can yield hundreds of
thousands of polymorphic markers for a single specimen. Gene
microarray techniques, such as Affymetrix, allow concurrent mea-
surements on numerous mRNA transcripts. Dimensionality can
be even larger in proteomic studies using the ProteinChip Sys-
tem. These data provide invaluable resources to detect and define
expression patterns for the phenotypes of complex traits or dis-
eases (Khan et al., 2001; Bhanot et al., 2005) and predict a potential
clinical outcome of patients after a particular drug therapy (Ayers
et al., 2004; Lopez-Rios et al., 2006; Ganly et al., 2007).

In another different world, tremendous progress has been made
in mathematical modeling of complex biological processes and
cell differentiating mechanisms (Anderson and Quaranta, 2008;
Piotrowska et al., 2008). Mathematical models and numerical sim-
ulations can uncover and explain many still unknown aspects of
cell behavior, tissue function, and network organization. Models
based on fundamental biological and developmental mechanisms
can gain comprehensive insights and formulate predictions that
cannot be derived from experiments or statistical data alone. Over
the past decade, countless mathematical models have been devel-
oped to describe tumor growth, ranging from simple temporal
population dynamic models to fully three-dimensional spatiotem-
proal models (Araujo and McElwain, 2006). The application of
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differential equations to the specification of the proliferation and
differentiation of normal SC and cancer SC has now attracted
considerable attention of mathematicians and computer scientists
(Adimy et al., 2008; Piotrowska et al., 2008).

However, there is currently a serious lack in the intrinsic inte-
gration of genetic, genomic and proteomic data with sophisticated
mathematical models built on biological principles. Although
simple statistical analysis of these data is helpful for studying
the structure and function of selected signaling pathways, pro-
teins, and drugs, it does not reveal a general dynamics and com-
plexity of the problem and the “engine” that drives the whole
biochemical machinery even in case of single cell (Piotrowska
et al., 2008). An increasing recognition has been articulated
about the incorporation of interdisciplinary dialogs to under-
stand complicated cell mechanisms, network regulation, and tissue
physiology. The central theme of such so-called systems biology
approaches (Khalil and Hill, 2005) is to identify genes, proteins,
and signaling pathways that have a functional role in the for-
mation and expression of cancer SC by combining quantitative
experimental data with mathematical modeling and computer
simulation.

The objective of this article is to present a conceptual strategy
for identifying genes and proteins or their expression patterns that
are linked with the formation, proliferation, and programming of
cancer SC. A quantitative framework will be formulated to charac-
terize the differences in the genetic origin and biological properties
between normal SC and cancerous SC, providing applied geneti-
cists, clinical doctors, and health professionals with experimental
designs and analytical tools to extract predictive information from
their seemingly “chaotic” data.

DEFINING THE GENETIC ARCHITECTURE OF CANCER
Recent advances in technology, which lead to genomic, pro-
teomic and metabomic data collection on the human genome,
now provide a powerful means of defining the genetic archi-
tecture of cancer cells. The development of any methodologies
for mapping cancer genes should be based on the philosophical
link of these omic data with the proliferation and differentiation
of cancer SC through mathematical, statistical and engineering
approaches. Below, we review several aspects that comprise the
genetic architecture of cancer pathways.

FROM GENETIC MAPPING TO GENETIC HAPLOTYPING
For complex traits like cancer, genetic mapping is a powerful
approach for illustrating their genetic architecture (Lander and
Botstein, 1989; Anholt and Mackay, 2004; Li and Wu, 2010). This
approach dissects complex traits into individual quantitative trait
loci (QTLs) and maps them on the gnome. However, a QTL
detected by traditional markers may contain multiple genes that
operate in a collective way, thus it is not possible to study the DNA
structure, organization, and function of a QTL. A more accurate
and useful approach to characterizing the underlying genetic vari-
ants is to directly analyze DNA sequences, known as quantitative
trait nucleotides (QTNs), using SNPs. If a string of DNA sequence,
or haplotype, for a QTN is known to increase disease risk, this risk
can be intervened by inhibiting the expression of this haplotype
with specialized drugs. The control of this disease can be made

more efficient if all such DNA sequences are identified throughout
the entire genome. This possibility has increased dramatically with
the construction of the haplotype map, or“HapMap”by SNPs (The
International HapMap Constortium, 2007).

Statistical models for detecting the haplotype effects of a QTN
have been derived for continuous (Liu et al., 2004; Lin and Huang,
2007) and binary traits (Cui et al., 2007). The main idea of haplo-
typing models is to discern the difference between unobservable
diplotypes (i.e., a pair of haplotypes) from an observable unphased
SNP genotype. For example, a double heterozygous genotype,
AaBb, can be formed by either diplotype AB|ab or Ab|aB where
| is used to separate the paternally or maternally derived haplo-
type. These two diplotypes, although genetically identical, can be
differently responsive to cancer risk. Haplotype models allow the
separation of diplotypes in the genetic control of cancer (see Liu
et al., 2004).

FROM GENETIC ACTIONS TO GENETIC INTERACTIONS
Most current approaches for cancer gene identification allow the
characterization of small numbers of genes or proteins involved
in cancer susceptibility. These approaches are often insufficient
to study the molecular mechanisms of neoplastic processes. Can-
cer is a complex trait involving a network of genes that interact
in a coordinated manner. These so-called genetic interactions or
epistasis occur when the action of one gene measured through
a molecular, cellular, or organism phenotype is modified by one
or more other genes. To date, genetic interactions remain largely
unknown on a large-scale in human systems. Previous reviews
and assays gave excellent descriptions of the role of genetic inter-
actions in understanding phenotypic variability (Hartman et al.,
2001; Lehner et al., 2006; Boone et al., 2007). The study of genetic
interactions will not only help better understand cancer suscep-
tibility and progression, but also, and most importantly, develop
novel anticancer treatments.

FROM MENDELIAN INHERITANCE TO GENETIC IMPRINTING
Each copy of a gene, called an allele, instructs a particular task to
be conducted in the cells of the body. These instructions expressed
through a genetic code, i.e., a sequence of nucleotide in the DNA,
guide the cells to yield a protein. In each cell of the body, there are
two copies for each gene carried on a pair of maternal and paternal
chromosomes, respectively. According to Mendelian inheritance,
the information contained in the maternal and paternal copies of
the gene is equally utilized by the cells to produce proteins. How-
ever, for certain genes, their alleles are expressed only when they
transmits to a progeny through the sperm or egg. This phenom-
enon is called “genetic imprinting” that describes the expression
of a gene relying on the paternal or maternal origin of an allele
(Wilkins and Haig, 2003; Reik and Lewis, 2005; Jirtle and Skinner,
2007). Epigenetic marks that influence the expression of genes
by switching the genetic information on and off may be one of
the important mechanisms for genetic imprinting (Feinberg and
Tycko, 2004; Sha, 2008). The imprinting modification process may
be reversible in the next generation. Increasing recognition has
been made that genetic imprinting plays a pivotal role in the initi-
ation of cancer through various molecular mechanisms (Feinberg
and Tycko, 2004; Secko, 2005; Sasaki and Matsui, 2008).
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FROM GENE MUTATION TO ANEUPLOIDY
Human cancer cells frequently possess large-scale chromosomal
rearrangements due to chromosomal instability (CIN) or gene
mutation. CIN makes whole chromosomes or large fractions of
chromosomes gained or lost during cell division, resulting in an
imbalance in the number of chromosomes per cell (aneuploidy),
and an enhanced rate of loss of heterozygosity. Thus, the “ane-
uploidy hypothesis of cancer” (Stock and Bialy, 2002) proposes
that the main differences between normal and abnormal (cancer)
cells result from the number of genes rather than the types of
genes differentially expressed, as opposed to the “gene-mutation
hypothesis” (Jallepalli and Lengauer, 2001; Greenman et al., 2007;
Li et al., 2010b).

Gene mutation has been a dominant hypothesis for explaining
the genetics of cancer (Greenman et al., 2007), although aneu-
ploidy was proposed to cause cancer over 100 years ago. However,
growing evidence supports a role for aneuploidy in the genetic
underpinning of cancer (Stock and Bialy, 2002). According to
extensive work by Duesberg and his group, aneuploidy offers a
simple, coherent explanation of all cancer-specific phenotypes
(Duesberg, 2007; Duesberg et al., 2007). It is concluded that when
aneuploidy exceeds a certain threshold it is sufficient to cause
all cancer-specific phenotypes. This aneuploidy mechanism of
phenotype alteration is independent of gene mutation. With a con-
tinuous confirmation of the aneuploidy hypothesis, it is crucial to
quantify the genetic effects of aneuploidy loci on cancer suscep-
tibility with the genetic data collected from the cancer genome
project (Li et al., 2010a).

FROM GENOMICS TO PROTEOMICS
With the advent of large-scale functional proteomic data (Clarke
et al., 2008), additional mechanistic insights into neoplasia can be
gleaned. Whole-genome association studies for cancer risk vari-
ants and somatic mutation screening projects will only provide
a “part lists” of cancer genes. Transcript analyses have identi-
fied expression profiles that provide accurate prognoses for can-
cer patients (Fan et al., 2006). Currently, systematic mapping of
protein–protein interactions leads to the birth of the so-called
“interactome” mapping projects. This will elucidate the wiring
diagram of protein associations in cells (Rual et al., 2005; Stelzl
et al., 2005; Cohen et al., 2008). These types of genes and/or protein
(gene/protein) functional relationships can be modeled together to
provide better understanding and predict molecular mechanisms
of neoplasia (Barabasi and Oltvai, 2004; Rhodes and Chinnaiyan,
2005; Pujana et al., 2007).

FROM STUDYING HIGH-ORDER PHENOTYPES TO MODELING
MECHANISTIC PATHWAYS
The final phenotypes of cancer size and shape are formed through
a series of biological pathways. The existing strategies for genetic
mapping, including functional mapping, aimed to map a biologi-
cal process (Wu and Lin,2006; Das and Wu,2008; Li and Wu,2010),
are based directly on these high-order phenotypes, neglecting the
biological, biochemical, and metabolic pathways that underlies
the phenotypes. By regarding cancer formation and growth as a
dynamic system, biochemical networks in the system consist of
chemical reactions, such as association, dissociation, degradation,

and synthesis (Clayton et al., 2006; Hopkins, 2008). The dynamics
of biochemical networks follow the rules of mechanics as well as
rules governed by their own ability to organize movement and
biological functions. Because a biological system is far more com-
plex than a physical system of inert matter, we need a higher
level of analysis to tackle such complexity. Mathematical mod-
els using kinetic theory may represent a way to deal with such
complexity, allowing an understanding of phenomena of non-
equilibrium statistical mechanics (Goldbeter, 2002). The mod-
els for system dynamics are related to the generalized Boltz-
mann equation, describing the population dynamics of several
interacting elements (kinetic population models).

A set of non-linear ordinary or time delay differential equa-
tions have been derived to model the biological pathways and
interactions between cells and between cell and surrounding envi-
ronment. Biological and mechanistic behaviors of the biochemical
network can be described by solving the non-linear parameters
that define the differential equations. Thus, the incorporation of
differential equations into genetic mapping can provide a coherent
framework with which to characterize genes and the patterns of
gene expression involved in mechanistic pathways.

FROM MATHEMATIC MODELING TO STATISTICAL SOLUTION
Numerical approaches have been derived to estimate parame-
ters for non-linear differential equations (Feng and Navaratna,
2007). Theoretical investigations of parameter estimation have
been available in the applied mathematical literature (Beretta and
Kuang, 2002). Increased interest has been received in the integra-
tion of statistical modeling and simulation with differential equa-
tions to study dynamic systems. In statistics, differential equations
can be estimated by non-linear least squares approaches. More
recently, with the availability of observational data for dynamic
processes, there is a pressing need on developing more powerful
statistical methods for estimating the parameter defining differ-
ential equations with noisy measurements. Ramsay et al. (2007)
provided such a statistical method by combining a modified data
smoothing method and the generalization of profiled estimation.
The accuracy and coverage properties of parameter estimates from
the new method were examined by simulation studies.

FROM GENE–GENE INTERACTIONS TO GENOME–GENOME
INTERACTIONS
Cancer arises from sporadic gene mutations, but its growth and
spread will be affected by both genes from the normal and can-
cer genomes (Araujo and McElwain, 2006; de Araujo et al., 2008).
These two different systems of genes operate interactively or epista-
tically to alter the course of cancer growth (de Araujo et al., 2008).
Shortly after the completion of the human genome sequencing, the
cancer genome is being sequenced (Kaiser, 2005). The data from
these two types of genomes will provide tremendous resources for
characterizing the patterns and organization of genome–genome
interactions in cancer susceptibility. More recently, an interac-
tive model has been developed to study genetic interactions of
DNA sequences (or haplotypes) between host and cancer genes
responsible for cancer risk using quantitative genetic principles
(Li and Wu, 2009). The model is founded on a commonly used
genetic association design in which a sample of related or unrelated
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patients is randomly drawn from a natural human population.
Each patient is typed for SNPs on normal and cancer cells and
measured for cancer susceptibility. The model provides a general
procedure for testing the distribution of haplotypes constructed
by SNPs from host and cancer genes and the linkage disequilibria
of different orders among the SNPs. The model also formulates a
series of testable hypotheses about the effects of host genes, cancer
genes, and their interactions on cancer susceptibility.

Li and Wu’s (2009) model can be extended to detect imprinted
loci based on a random set of three-generation families from a
natural population by using genotyped SNPs. This design pro-
vides a pathway for characterizing the effects of imprinted genes
on a complex disease at different generations and testing transgen-
erational changes of imprinted effects (Youngson and Whitelaw,
2008; Li et al., 2011b). The design is integrated with population
and cytogenetic principles of gene segregation and transmission
from the previous generation to the next.

Currently used genome-wide association studies (GWAS) allow
the scan of functional or causal polymorphisms from 300,000 to
1 million SNPs (Pearson and Manolio, 2008). Genetic mapping
has developed to a point at which a comprehensive analysis of
all the markers that cover the genetic map of the genome can
be performed to search for the chromosomal distribution of all
possible QTLs or QTNs. Some basic work in GWAS of QTLs has
been initiated in recent years, although it is still full of challenges.
Several statistical models for analyzing all SNPs through lasso and
other variable selection approaches have been developed (Li et al.,
2011a). These models shrink the effects of most SNPs toward zero
to provide sparse estimates of whole-genome associations.

MODELING DYNAMIC GENETIC CONTROL
Mathematical models have been increasingly used to describe the
population dynamics of cancer SC and their differentiation into
cancer cells (Solyani et al., 1995; Ganguly and Puri, 2006; Ender-
ling et al., 2007; Adimy et al., 2008; Michor, 2008; Piotrowska et al.,
2008). There is strong evidence that genes due to mutations in nor-
mal SC are involved in the regulation of the self-renewal of cancer
SC for cancers (Al-Hajj and Clarke, 2004; Clarke, 2004). Statistical
models are needed to map those genes from mathematical aspects
of cancer SC.

ORDINARY DIFFERENTIAL EQUATIONS (ODE)
A large system of non-linear ordinary differential equations (ODE)
has been derived to the self-renewing capacity of cancer SC (Gan-
guly and Puri, 2006; Piotrowska et al., 2008). These equations
were founded on the principle according to which cancers result
from mutations in normal SC, early progenitor (EP) cells and even
mature cells (MC). The model for brain cancer cells by Ganguly
and Puri (2006) defines seven main types of cells – SC, EP cells, late
progenitor (LP) cells, MC, abnormal stem cells (SCA), abnormal
early progenitor cells (EPA), and abnormal progeny (AP; tumor)
cells. Each cell type is considered as a separate model compart-
ment, whose cell population growth is modeled by considering
individual rate expressions (Figure 1). SCs can self-renew with
a probability PSC, in which both daughter cells retain stem cell
features, or differentiate and transfer to the EP compartment.
Stem cell DNA may mutate during the replication with probability
M SC by which the daughter cell inheriting the mutated gene is

transferred into the SCA population. EP cells, as well as EPA cells,
experience only a limited number (K ) of self-renewal steps. Thus,
cells with identical self-renewal capacity are grouped into K sub-
compartments, although cells belonging to the kth (k = 1, . . ., K )
compartment cannot self-renew any more. If EPk cells undergo
cell division, they self-renew into a subgroup EPk + 1 with a given
probability PEP, which is assumed to be equal for all subpopula-
tions. The same is true for EPAk which self-renews into EPAk + 1

with a probability PEP,A. Dividing cells that do not supply the
EPi + 1 or EPAi + 1 compartment differentiate into LP or AP (in
case of abnormal cells) cells, respectively. Furthermore, at each
division EPi cells are subject to mutations as defined by mutation
probability M EP, which is assumed to be identical for each EPi

compartment. Naturally, the AP compartment is supplied by EPA

cells. Finally, cells that reach the MC or AP compartment die due
to apoptosis (Piotrowska et al., 2008).

Ganguly and Puri (2006) described the rates of joint changes
of different types of cell populations by a system of differential
equations expressed as

Stem cell compartment

ṄSC = ωSC (2PSC − 1) NSC − ωSCMSCNSC

Early progenitor cell compartment⎧⎪⎨
⎪⎩

ṄEP1 = 2ωSC (1 − PSC) NSC − ωEPNEP1

ṄEPk = 2ωEP (2PEP − MEP) NEP(k−1) − ωEPNEPk ,

for k = 2, ..., K

Late progenitor cell compartment

ṄLP = Z in
[∑K−1

k=1
2ωEP (1 − PEP) NEPk + 2ωEPNEPK

]

− ωLPNLP

Mature cell compartment

ṄMC = Z out
LP − ω0,MCNMC

Abnormal stem cell compartment

ṄSC,A = ωSC (2PSC − 1) NSC,A + ωSCMSCNSC

Abn. early progenitor cell compart.⎧⎪⎨
⎪⎩

ṄEP,A1 = 2ωSC(1 − PSC)NSC,A − ωEPNEP,A1

ṄEP,Ak = 2ωEPPEPNEP,Ak−1 − ωEPNEP,Ak + ωEPNEP(k−1)MEP,

for k = 2, ..., K

Abnormal progeny compartment

ṄAP = Z out
EP,A − ω0,APNAP (1)

where N. is the number of cells; ωSC, ωEP, and ωLP are the cell
division rates with SC, EP, and LP compartments, respectively;
PSC = PSC(N SC, N EP, N LP, N MC) ∈ [Pmin,SC, Pmax,SC] is the self-
renewal probability; Z in is the factor by which the efflux from
the EP compartment is amplified as soon as the cells enter the
LP compartment; Z Out

LP = ZoutωLPNLP is the efflux from the LP
compartment, i.e., the generation rate of MC, where Z out is the
factor by which the cells are further amplified immediately before
leaving the LP compartment; ω0,MC is the cell death or apop-
totic rate; Z Out

EP,A = ∑K−1
k=1 2ωEP (1 − PEP) NEP,Ak + 2ωEPNEPK is

the outflux of abnormal EP cells; and ω0,AP is the AP cell death or
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FIGURE 1 | A diagram for multi-compartment blocks shown to derive a

system of ordinary differential Eq.(1; Ganguly and Puri, 2006; Piotrowska

et al., 2008). The EP cells and EPA cells are each split into K
sub-compartments that contain an identical type of cells, which differ only in

the number of times they have undergone self-renewal. The direct transition
from one compartment to another one and feedback interaction loops are
indicated by the solid and dash lines, respectively. Adapted from Piotrowska
et al. (2008).

apoptotic rate. Cell populations in the EP and EPA compartments
are determined by the output equations NEP = ∑K

k=1 NEPk and

NEP,A = ∑K
k=1 NEP,Ak , respectively.

Cell division rates ωSC = (αSC/τSC)ln2, ωEP = (αEP/τEP)ln2,
and ωLP = (αLP/τLP)ln2 depend on the mitotic fraction (α) and
the cell cycle time (τ), i.e., the time required to complete a
full cycle of cell division. The total time τLP spent by a cell
in the LP compartment is the sum of the cell generation time
(τg = τLP/αLPln2) and the cell maturation time τm. The two fac-
tors Z in and Z out are selected such that Z in × Z out = 2n, where
Z in = (2n – 1)τg/τLP + 2nτm/τLP and n is the number of stages of
cell division of the LP compartment before transforming into MC.
All in all, the dynamic system of cancer formation from cancer SC
can be quantified by the group of ODEs (1) with a set of parame-
ters, cell cycle times (τSC, τEP, τLP), cell maturation time for LP
compartment τm, self-renewal probabilities (PSC, PEP), mitotic
fractions (αSC, αEP, αLP), number of EP cell self-renewals K, the
number of mitotic cycles n, and death rates (ω0,MC,ω0,AP), and the
probabilities of occurrence of oncogenic mutations during DNA
transcription (M SC, M EP).

The solution of these differential equations is not known in
closed, analytic form, and hence must be computed approximately
by means of algorithms and software from numerical mathematics
and scientific computing. Savcenco (2009) proposed a multirate
time stepping technique for a system of ODEs. This method uses
large time steps for slowly varying components, and small steps for
rapidly varying ones. Numerical experiments confirm that the effi-
ciency of time integration methods can be significantly improved
by using multirate methods.

Given the fact that there is a substantial variability in cancer for-
mation from cancer SC, we integrate the differential Eq. (1) into
a genetic mapping framework (Fu et al., 2010; Luo et al., 2010).
By estimating ODE parameters for individual genotypes at a (or a
set of) SNP, we can test whether there exist significant loci associ-
ated with the capacity of cancer SC to develop into malignant
cancers and how these significant loci affect various prolifera-
tion and apoptotic processes within different cell compartments.
Consider a QTL with three genotypes AA, Aa, and aa bearing ODE

parameters (τSC, τEP, τLP; τm; PSC, PEP; αSC, αEP, αLP; K ; n; ω0,MC,
ω0,AP; M SC, M EP) = (8 h, 8 h, 8 h; 40 h; 0.5, 0.5; 0.4, 0.4; 0.35, 5; 6;
0.01, 0.01; 0.6, 0.6), (9 h, 9 h, 9 h; 45 h; 0.45, 0.45; 0.5, 0.45, 0.45; 6;
7; 0.02, 0.02; 0.5, 0.5), and (7 h, 8 h, 9 h; 40 h; 0.45, 0.3; 0.4, 0.45,
0.5; 7; 7; 0.03, 0.03; 0.65, 0.65), respectively. Figure 2 provides the
dynamic behavior of each cell type separately for different QTL
genotypes. The integrated mapping models allow the formulation
of numerous biologically meaningful hypothesis tests about the
genetic control of each pathway in the system.

DELAY DIFFERENTIAL EQUATIONS (DDE)
All blood cells arise from a common origin in the bone mar-
row, the hematopoietic SC. These SC can differentiate into one
of three major cell lines: the leukocytes, the platelets, and the ery-
throcytes. Because of genetic mutations, the hematopoietic SC
become leukemia SC, endowed with the capacity to self-renew and
to generate many leukaemic blasts (Viale et al., 2009). Mackey and
colleagues (Colijn and Mackey, 2005a,b; Piotrowska et al., 2008)
published a series of quantitative models that specify four distinct
compartments representing the hematopoietic SC and the circu-
lating leukocytes, platelets, and erythrocytes. Typically all of the
three differentiated cell types have the same oscillation period, but
the relation of the oscillation mean and amplitude to the normal
levels is variable. Due to chronic features of these cells, a system
of delay differential equations (DDEs) has been derived to specify
the dynamics of the system. A number of mathematicians stud-
ied the stability properties of these delay non-linear differential
equations and identified the supercritical Hopf bifurcation and a
saddle–node bifurcation of limit circles (Bernard et al., 2003; Kirk
et al., 2008). It is concluded that the major cause of the oscillation
in cyclic neutropenia is an increase rate of apoptosis of neutrophil
precursors leading to a destabilization of hematopoietic stem cell
compartments (Crauste, 2006; Feng and Navaratna, 2007; Verdugo
and Rand, 2008).

We studied the influences of different DDE parameters on the
period and amplitude of oscillations if a specific set of DDEs is
given (Fu et al., 2011), which helps to obtain a solution of the
DDEs. In Fu et al. (2011), we have developed a framework for
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AA

Aa
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FIGURE 2 | Genetic differences in the dynamic behavior of a cancer stem cell-initiating system composed of seven biological aspects (SC, EP, LP, MC,

SCA, EPA, and AP) of cell proliferation characterized by ODEs (1) at a gene having genotypes AA, Aa, and aa.

incorporating DDEs into the functional mapping of a periodic
system (Liu et al., 2007). This framework can be readily extended
to study the genetic mapping of chronic myelogenous leukemia by
incorporating Colijn and Mackey’s (2005a,b) DDEs. As shown in
Wu et al. (2004), the genetic control mechanisms for the biochemi-
cal connections between differentiated cells and SC will formulated
in a quantitative and testable ways.

SYSTEMS MAPPING
Systems mapping is a computational model that views a complex
phenotype as a dynamic system, dissects it into its underlying com-
ponents, coordinates different components in terms of biological
laws through mathematical equations,and maps specific genes that
mediate each component and its connection with other compo-
nents (Wu et al., 2011). As a bottom–top model, systems approach
can identify specific QTLs that govern the developmental inter-
actions of various components giving rise to the function and
behavior of the system. By estimating and testing mathematical
parameters that specify the system, systems mapping enables the
prediction or alteration of the physiological status of a phenotype
based on the underlying genetic control mechanisms.

Mixture model
Systems mapping embeds a system of differential equations, like
(1), into a genetic mapping setting constructed by a segregating
population. Genetic mapping uses a mixture model-based like-
lihood to estimate genotype-specific parameters by assuming J
QTL genotypes. For the mapping population of n members with

marker information (M) and phenotypic data for different types
of cancer SC (Y), we formulate the likelihood as

L (M,Y) =
n∏

i=1

J∑
j=1

ωj|i fj
(
Yi ; Θj , Ψ

)
(2)

where Yi = (Y1i ,. . ., Y7i) is the phenotypic vector for individual i
containing seven types of cancer SC, SC (Y1), EP (Y2), LP (Y3), MC
(Y4), SC (Y5), EPA (Y6),AP (Y7) [see (1)], whose kth type is a time-
dependent vector measured at T time points, i.e., Yk = (Yk(1), . . .,
Yk(T )) (k = 1, . . ., 7); ωj|i is the mixture proportion representing
the conditional probability of QTL genotype j given the marker
genotype of individual j ; and fj(Yi;Θj,Ψ) is a multivariate nor-
mal distribution with expected mean vector for individual i that
belongs to QTL genotype j,

μj/i = (
μj/i (1) ; . . . ; μj/i (T ) ≡ (

μ1j/i (1) , . . . , μ7j/i (1) ;

. . . ; μ1j/i (T ) , . . . , μ7j/i (T )
)

(3)

and covariance matrix

Σ =
⎛
⎜⎝

Σ1 . . . Σ17
...

. . .
...

Σ71 · · · Σ7

⎞
⎟⎠ (4)

with Σk being a (T × T ) covariance matrix for cell type k and
Σkk

′ = ΣT
k ′k being a (T × T ) covariance matrix between cell types

k and k ′.
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Table 1 |The estimation of parameters by a dynamic model for mapping cancer stem cell proliferation from a simulated mapping population of

500 individuals by assuming heritability H2= 0.1

AA Aa aa

True Est (SE) True Est (SE) True Est (SE)

τSC 9 9.354 (2.175) 7 8.014 (1.983) 8 9.855 (5.871)

τEP 9 8.181 (2.351) 8 7.716 (1.397) 8 7.961 (3.180)

τLP 9 9.568 (2.142) 9 9.533 (3.099) 8 8.664 (14.374)

τm 45 45.169 (1.219) 40 39.834 (1.116) 40 39.482 (3.349)

PSC 0.45 0.450 (0.007) 0.45 0.441 (0.020) 0.5 0.475 (0.081)

PEP 0.45 0.451 (0.030) 0.3 0.292 (0.189) 0.5 0.465 (0.618)

αSC 0.5 0.517 (0.142) 0.4 0.433 (0.133) 0.4 0.471 (0.264)

αEP 0.45 0.422 (0.113) 0.45 0.470 (0.158) 0.4 0.560 (0.881)

αLP 0.45 0.469 (0.069) 0.5 0.506 (0.082) 0.35 0.349 (1.070)

ω0,SC 0.02 0.023 (0.017) 0.03 0.030 (0.017) 0.01 0.219 (1.135)

ω0,AP 0.02 0.025 (0.013) 0.03 0.033 (0.011) 0.01 0.061 (0.227)

MSC 0.5 0.507 (0.061) 0.65 0.728 (0.237) 0.6 1.028 (2.157)

MEP 0.5 0.494 (0.037) 0.65 0.635 (0.112) 0.6 0.560 (0.805)

K 6.000 6.000 (4.0*10−9) 7.000 7.000 (5.5*10−09) 5.000 5.000 (2.7*10−9)

n 7.000 7.000 (1.2*10−8) 7.000 7.000 (9.2*10−10) 6.000 6.000 (1.2*10−8)

AR (1)

σ1 0.182 0.181 (0.005)

σ2 0.812 0.810 (0.018)

σ3 2.781 2.767 (0.056)

σ4 0.350 0.350 (0.005)

σ5 0.122 0.122 (0.003)

σ6 0.354 0.355 (0.007)

σ7 0.138 0.130 (0.045)

ρ1 0.8 0.797 (0.011)

ρ2 0.75 0.745 (0.014)

ρ3 0.65 0.646 (0.016)

ρ4 0.55 0.551 (0.013)

ρ5 0.75 0.747 (0.011)

ρ6 0.65 0.650 (0.015)

ρ7 0.55 0.543 (0.017)

ALLELE FREQUENCIES AND LINKAGE DISEQUILIBRIUM (LD)

p(Marker) 0.6 0.598 (0.017)

Q (QTL) 0.7 0.679 (0.054)

D (LD) 0.05 0.053 (0.016)

The means and standard errors of parameter estimates are calculated from 100 simulation replicates.

Table 2 |The estimation of parameters by a dynamic model for mapping cancer stem cell proliferation from a simulated mapping population of

500 individuals by assuming heritability H2= 0.4

AA Aa aa

True Est (SE) True Est (SE) True Est (SE)

τSC 9 9.672 (2.230) 7 7.827 (1.831) 8 8.542 (2.329)

τEP 9 9.069 (2.688) 8 8.334 (2.082) 8 7.681 (2.143)

τLP 9 9.032 (0.741) 9 9.137 (0.799) 8 8.647 (3.708)

τm 45 45.304 (1.594) 40 40.340 (1.660) 40 40.110 (1.536)

PSC 0.45 0.450 (0.003) 0.45 0.450 (0.004) 0.5 0.500 (0.004)

PEP 0.45 0.451 (0.011) 0.3 0.296 (0.033) 0.5 0.502 (0.033)

(Continued)
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Table 2 | Continued

AA Aa aa

True Est (SE) True Est (SE) True Est (SE)

αSC 0.5 0.534 (0.122) 0.4 0.450 (0.115) 0.4 0.417 (0.101)

αEP 0.45 0.455 (0.132) 0.45 0.468 (0.115) 0.4 0.399 (0.142)

αLP 0.45 0.453 (0.028) 0.5 0.506 (0.031) 0.35 0.368 (0.103)

ω0,SC 0.02 0.020 (0.006) 0.03 0.030 (0.006) 0.01 0.013 (0.035)

ω0,AP 0.02 0.020 (0.004) 0.03 0.030 (0.003) 0.01 0.013 (0.013)

MSC 0.5 0.504 (0.022) 0.65 0.648 (0.043) 0.6 0.614 (0.079)

MEP 0.5 0.501 (0.013) 0.65 0.650 (0.034) 0.6 0.601 (0.036)

K 6 6.000 (1.1*10−09) 7 7.000 (3.8*10−10) 5 5.000 (7.9*10−10)

n 7 7.000 (5.8*10−10) 7 7.000 (1.3*10−09) 6 6.000 (9.8*10−10)

AR (1)

σ1 0.074 0.013 (0.073)

σ2 0.331 0.330 (0.008)

σ3 1.135 1.135 (0.021)

σ4 0.143 0.143 (0.003)

σ5 0.049 0.049 (0.001)

σ6 0.145 0.145 (0.003)

σ7 0.057 0.051 (0.025)

ρ1 0.8 0.801 (0.011)

ρ2 0.75 0.747 (0.014)

ρ3 0.65 0.650 (0.014)

ρ4 0.55 0.547 (0.019)

ρ5 0.75 0.750 (0.012)

ρ6 0.65 0.650 (0.015)

ρ7 0.55 0.549 (0.019)

ALLELE FREQUENCIES AND LINKAGE DISEQUILIBRIUM (LD)

p(Marker) 0.6 0.601 (0.015)

Q (QTL) 0.7 0.701 (0.014)

D (LD) 0.05 0.052 (0.010)

The means and standard errors of parameter estimates are calculated from 100 simulation replicates.

Traditional approaches estimate every element in (3) and (4),
but systems mapping specifies and models vector μj|i by ODE
parameters Θj and covariance matrix Σ by Ψ. Next, we show how
to model and estimate ωj|i, Θj, and Ψ.

Architectural and dynamic modeling
Mixture proportion ωj|i relates to the pattern of QTL segrega-
tion whose optimal description relies on the genetic architecture
of phenotypic traits. In the preceding section, we review several
key aspects of the genetic architecture of cancer SC, which can
embedded into systems mapping (2). ωj|i can be expressed at the
individual locus level or haplotype level (Liu et al., 2004), and can
be used to model genetic main effects or epistatic interactions that
occur within and between genomes (Li and Wu, 2009). ωj|i can also
consider genetic imprinting and epigenetic effects by incorporat-
ing the parental information of mapping individuals. In particular,
genetic causes of cancer, like gene mutation or aneuploidy, can be
tested through ωj|i, providing a way to test the hypothesis of cancer
formation.

The dynamic behavior of cancer phenotypes can be described
by various differential equations. We have incorporated com-
monly used mathematical tools, like the Runge–Kutta fourth order

algorithm, to provide the estimates of mathematical parameters
for individual QTL genotypes contained within a mixture-model
framework (Fu et al., 2010). Mathematical solution for delay dif-
ferential equations has been discussed and used to map clock
genes for a biological system (Fu et al., 2011). For longitudinal
data, we can use structural approaches to model the covariance
matrix for longitudinal traits (Zimmerman and Nunez-Anton,
2001; Zhao et al., 2005; Yap et al., 2009). These approaches
include (1) parametric stationary, (2) parametric non-stationary,
(3) non-parametric, and (4) semiparametric models. Each of
these approaches has advantages and disadvantages in computing
efficiency, flexibility, and power.

Numerical simulation
We performed a simple simulation studies to test the statisti-
cal behavior of systems mapping for cancer SC. Fu et al. (2010)
provided much more detailed information about the test and val-
idation of systems mapping. The simulation assumes a mapping
population of different heritabilities at a middle stage of cancer
stem cell growth. Consider a SNP marker which is associated with a
putative QTL (with three genotypes AA, Aa, and aa) through link-
age disequilibrium (LD). Given allele frequencies of the marker
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and QTL and their LD, joint marker and phenotypic data were
simulated. The genotypic mean vectors were modeled by ODE (1)
using parameters Θj = (τSCj , τEPj , τLPj ; τmj; PSCj , PEPj ; αSCj , αEPj ,
αLPj ; Kj; nj; ω0,MCj , ω0,APj ; M SCj , M EPj ), whereas the covariance
matrix was structured by the first-order autoregressive [AR(1)]
model with correlation and variance parameters for cell type k,
Ψk = (ρ, σ2). We assume no residual correlation between different
cell types.

Tables 1 and 2 provide the results about the estimates of
ODE parameters for individual QTL genotypes and covariance-
structural parameters, along with marker and QTL segregation
parameters. The parameters for marker and QTL allele frequencies
and LD can well be estimated, although missing QTL information
is inferred using the mixture model. The AR(1) parameters can
also well be estimated, partly because of their simple structure for
covariance modeling. The precision of ODE parameter estimation
heavily rely on heritability and sample size. For a modest heritabil-
ity (say 0.1), some ODE parameters, like τLP, in a small group of
QTL genotype (aa) were not precisely estimated (Table 1). Given
its allele frequency 0.3, the number of genotype aa is less than 50.
However, when heritability increases to 0.4, all ODE parameters
including ones in small-sized genotype aa can be reasonably esti-
mated (Table 2). The results from the simulation study suggest
that the increase of trait heritability through reducing phenotyp-
ing errors is an important measure for improving the precision of
parameter estimation.

DISCUSSION
Tremendous investments have been made on cancer genome
projects in order to make a complete landscape of mutations in
tumors accessible. Although the importance of cataloging genome
variations is well recognized, there are obvious difficulties in bridg-
ing the gaps between high-throughput sequencing information
and molecular mechanisms of cancer evolution. In this article,

we argue that the integration of functional and systems map-
ping (Wu and Lin, 2006; Li and Wu, 2010; Wu et al., 2011)
with mathematical models for describing the origin and prolif-
eration of cancer SC (Colijn and Mackey, 2005a,b; Ganguly and
Puri, 2006; Enderling et al., 2007; Adimy et al., 2008; Michor,
2008; Piotrowska et al., 2008) may shed light on a better under-
standing of cancer genetics. We particularly emphasize the impor-
tance of integrating the latest discoveries of cancer genetics in a
diversity of areas from haplotype effects to gene mutation or ane-
uploidy to genetic imprinting into statistical functional mapping
models.

We have constructed a general framework for modeling the
genetic control of the dynamics of cancer stem cell populations
based on the general characterization of a tumor. The model
uses specific differential equation parameters to describe different
stages of tumor progression and test the magnitude and patterns
of genetic effects on the proliferation of cancer SC. The model
should be extended to model differences in proliferation dynam-
ics of normal SC and cancer SC, which facilitates the diagnosis
of cancer initiation and malignant progression from individuals’
genetic information.

The model allows the target of cancer SC based on genetic data.
By coupling with “omics” data, the model may offer additional
therapeutic window for success in disease elimination. Also, math-
ematical modeling of gene regulatory networks in cancer SC may
provide insight into the underlying mechanism for disease preven-
tion and for the provision of novel insight into new therapeutic
formulations. A more sophisticated model that takes into account
multi-step processes with several feedback functions and thera-
peutic responses of cancer interventions would be very beneficial
in future studies.
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