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Towards Building Forensics Enabled Cloud
Through Secure Logging-as-a-Service
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Abstract—Collection and analysis of various logs (e.g., process logs, network logs) are fundamental activities in computer forensics.
Ensuring the security of the activity logs is therefore crucial to ensure reliable forensics investigations. However, because of the black-box
nature of clouds and the volatility and co-mingling of cloud data, providing the cloud logs to investigators while preserving users’ privacy
and the integrity of logs is challenging. The current secure logging schemes, which consider the logger as trusted cannot be applied in
clouds since there is a chance that cloud providers (logger) collude with malicious users or investigators to alter the logs.
In this paper, we analyze the threats on cloud users’ activity logs considering the collusion between cloud users, providers, and
investigators. Based on the threat model, we propose Secure-Logging-as-a-Service (SecLaaS), which preserves various logs generated
for the activity of virtual machines running in clouds and ensures the confidentiality and integrity of such logs. Investigators or the court
authority can only access these logs by the RESTful APIs provided by SecLaaS, which ensures confidentiality of logs. The integrity of
the logs is ensured by hash-chain scheme and proofs of past logs published periodically by the cloud providers. In prior research, we
used two accumulator schemes Bloom filter and RSA accumulator to build the proofs of past logs. In this paper, we propose a new
accumulator scheme – Bloom-Tree, which performs better than the other two accumulators in terms of time and space requirement.

Index Terms—Information Security, Computer Crime, Data Security, Forensics
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1 INTRODUCTION

C LOUD computing has opened a new horizon of computing
for business and IT organizations by offering unlimited

infrastructure resources, very convenient pay-as-you-go service,
and low cost computing. The rapid adoption of cloud computing
has effectively increased the market value of clouds which
crossed the $100 billion milestone in 2013 [1] and it will
continue to grow in the future [2], [3], [4]. While cloud
computing is attractive as a cost-efficient and high-performing
model, today’s cloud infrastructures often suffer from security
issues [5], [6], [7], especially with regards to computer forensics
[8], [9], [10], [11], [12]. However, the availability of massive
computation power and storage facilities at very low costs can
also motivate a malicious individual to launch attacks from
machines inside a cloud [13], or use clouds to store contra-
band documents [14], [15]. It was reported that to launch a
Distributed Denial of Service (DDoS) attack, attackers are now
placing a new Linux DDoS Trojan – Backdoor.Linux.Mayday.g
in compromised Amazon EC2 virtual machines (VMs) and
launching attacks from those VMs [16]. For these types of
attacks, we need to execute digital forensics procedures in the
cloud to determine the facts about an incident. Unfortunately,
many of the implicit assumptions made in regular forensics
analysis (e.g., physical access to hardware) are not valid for
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cloud computing. Hence, for cloud infrastructures, a special
branch of digital forensics has been proposed by researchers –
Cloud Forensics.

Activity logs of cloud users can reveal the actions taken by
a user using cloud infrastructures. Hence, logs are crucial
evidence to prosecute a suspect. However, collecting logs
from the cloud infrastructure is extremely difficult because
cloud users or investigators have very little control over the
infrastructure. Currently, there is no way for investigators to
collect logs from a terminated VM; they need to depend on
the Cloud Service Providers (CSP) to collect logs from the
cloud. However, investigators need to believe the CSPs blindly,
as they cannot verify whether the CSPs are providing valid
logs or not. Very often, the experienced attackers first attack
the logging system [17], [18]. While the necessity of logs is
indisputable in forensic investigations, the trustworthiness of
this evidence will remain questionable if we do not take proper
measures to secure them. An adversary can try to host a botnet
server, spam email server, or phishing websites in cloud VMs
and he can remove all the traces of these malicious activities
later by tampering with the logs. Conversely, investigators can
also be malicious and they can alter the logs before presenting
to the court. The following hypothetical scenario can illustrate
the specific problem that we intend to solve:

Bob is a successful businessman who runs a very popular
shopping website. Mallory, a competitor of Bob, rented some
VMs hosted in a cloud and launched a Distributed Denial of
Service (DDoS) attack on Bob’s shopping website from those
rented VMs. As a result of the DDoS attack, Bob’s website was
down for an hour, which had quite a negative impact on Bob’s
business in terms of profit and goodwill. Consequently, Bob
asked a forensic investigator to investigate the case. Analyzing
the logs of Bob’s web server, the investigator found that the
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website was flooded by some IP addresses that are owned by
a cloud service provider. Eventually, the investigator issued
a subpoena to the cloud provider to provide him the network
logs for those particular IP addresses.
The possible outcomes in this scenario are:
• Case 1: Mallory colluded with the Cloud provider to alter
logs. Since the investigator had no way to verify the correctness
of the logs, Mallory would remain undetected.
• Case 2: Mallory terminated her rented machines and left no
traces of the attack. Hence, the cloud provider would fail to
provide any useful logs to the investigator.
• Case 3: Mallory could claim that investigator colluded with
the cloud provider and altered the logs to frame her.

To mitigate the challenges discussed in the above scenario,
we propose the notion of Secure-Logging-as-a-Service (Se-
cLaaS). Since data residing in the VM are volatile (cannot be
sustained without power), SecLaaS collects logs from the VMs
and stores them in a persistent storage to resolve the issue of
volatility of logs. While preserving, it encrypts confidential
data and maintains a hash-chain of the logs to protect the
original sequence of logs. After a certain epoch (which can
be configured according to the required security level and be
specified in the service level agreement), SeclaaS generates
the proofs of past logs (PPL) and makes the proofs publicly
available. A CSP can only alter the logs of an active epoch for
which the PPL has not been published yet. However, once
the PPL for an epoch is made publicly available, CSP, users,
or investigators cannot modify/add/remove/reorder the logs of
that epoch and of any prior epochs. Hence, with the help of
hash-chain and PPL, SecLaaS provides forward security of
the logs of all past epochs. Finally, SecLaaS exposes RESTful
APIs to ease the process of log collection by investigators or
the court authority.

Implementing SecLaaS in clouds will enable investigators to
collect trustworthy logs of cloud-based malicious activities and
present those to the court authority. The security properties
ensured by SecLaaS can help CSPs to establish trust with
the cloud users. By preserving activity logs securely, SecLaaS
can also make clouds more auditable, which is an essential
requirement for various regulatory acts, e.g., Sarbanes-Oxley
(SOX) [19] or The Health Insurance Portability and Account-
ability Act (HIPAA) [20]. Therefore, a CSP can attract more
customers by establishing trust and regulatory compliance using
SecLaaS. The additional cost for integrating SecLaaS can thus
be compensated by increasing the customer base. Additionally,
a secure logging service enabled for all users, can prevent a
malicious user from launching malicious activities from clouds.

Researchers proposed read-only APIs and web-based man-
agement consoles to ease the log acquisition process for better
forensics support [8], [21]. However, these works do not
preserve the confidentiality and integrity of logs when a CSP
is dishonest. Previous schemes that can preserve the privacy
and integrity of logs from external attackers are not designed
to protect the integrity when the logger (in this case the cloud)
itself is malicious [17], [18], [22], [23], [24], [25]. The existing
forward secure logging mechanism relies on an initial secret,
which an external attacker cannot access. However, in our threat

model, the cloud provider is malicious and knows the initial
secret; hence, the provider can always tamper with the logs
starting from the very first log entry. Moreover, to verify the
existing forward secure chain, the investigator needs to collect
all the logs of a suspect starting from the very beginning of
the chain, even though the investigator may need logs of only
few hours or days. The existing secure logging schemes can
only protect logs from being altered by an investigator, since
the investigator cannot access the initial secret. However, if
the investigator colludes with the CSP, the existing schemes
fail to detect alteration by the investigator. For a successful
forensic scheme based on logs, we resolve these issues in a
secure and trustworthy manner.
Contributions: The contributions of this paper are as follows:
• We propose a scheme of revealing cloud users’ logs for
forensics investigation while preserving the confidentiality of
users’ logs from malicious cloud employees or external entities.
• We introduce Proof of Past Log (PPL) – a tamper evident
scheme to prevent CSPs or investigators from manipulating
the logs after-the-fact.
• We present a variation of the Bloom filter scheme – Bloom-
Tree, which provides better security and performance compared
to the traditional Bloom filter approach.
• Our evaluation of the proposed scheme in a test-bed, which
is built on top of an open source cloud computing platform
– OpenStack suggests that it can be feasible to implement
SecLaaS in real clouds.

This article is an extended version of our previous work
[26]. In this extended version, we propose a new accumulator
scheme – Bloom-Tree. We present the performance analysis of
the new scheme and our experimental results suggest that the
Bloom-Tree outperforms the regular Bloom filter approach in
terms of security, storage requirement, and execution time. We
also present the design and implementation of the RESTful
API for accessing logs, an example of an API request and
response, and how we ensure the security of the APIs.
Organization: The rest of this paper is organized as follows.
Section 2 provides the background and the challenges of cloud
forensics in terms of logging. In Section 3, we present the
related research work. Section 4 describes the adversary’s capa-
bilities and possible attacks on logging-as-a-service. Section 5
presents our proposed SecLaaS scheme, and Section 6 provides
the security analysis of the scheme. Section 7 presents the
implementation and performance evaluation of our scheme on
OpenStack. Section 8 discusses the usability of our proposed
schemes and finally, we conclude in Section 9.

2 BACKGROUND AND CHALLENGES

In this section, we present an overview of digital forensics
and cloud forensics and discuss the challenges of logging-as-
a-service for cloud forensics.

2.1 Digital Forensics
Digital forensics is the process of preserving, collecting, con-
firming, identifying, analyzing, recording, and presenting crime
scene information. Figure 1 illustrates the process flow of digital
forensics. According to the definition by the National Institute
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Fig. 1: Process Flow of Digital Forensics [11]

for Standards and Technology (NIST), digital forensics is an
applied science to identify an incident, collection, examination,
and analysis of evidence data [27]. While executing the above
processes, maintaining the integrity of the information and
strict chain of custody for the data is mandatory. Wolfe et al.
defines digital forensics as a methodical series of techniques
and procedures for gathering evidence, from computing and
storage devices that can be presented in a court of law in a
coherent and meaningful format [28].

2.2 Cloud Forensics
NIST defines cloud forensics as “the application of scientific
principles, technological practices and derived and proven
methods to reconstruct past cloud computing events through
identification, collection, preservation, examination, interpreta-
tion and reporting of digital evidence” [29].

As cloud computing is based on extensive network access,
and as network forensics handles forensic investigation in
private and public network, Ruan et al. defined cloud forensics
as a subset of network forensics [30]. Different steps of digital
forensics, as shown in Figure 1 vary according to the service
and deployment model of cloud computing. For example, the
evidence collection procedures in Software-as-a-Service (SaaS)
and Infrastructure-as-a-Service (IaaS) are different. For SaaS,
we solely depend on CSPs to get application logs, while in IaaS,
we can acquire the virtual machine image from customers, and
can enter into examination and analysis phase. In the private
cloud deployment model, we have physical access to the digital
evidence. Unfortunately, we rarely can get physical access to
the evidence in the public cloud deployment model.

2.3 Challenges
Reduced Level of Control in Clouds: In traditional computer
forensics, investigators have full control over evidences (e.g.,
router logs, process logs, hard disk). Unfortunately, we exten-
sively depend on CSPs to acquire logs from clouds. Availability
of the logs varies depending on the service models. Table 1
shows the control of customers in different layers for the three
different service models – IaaS, PaaS, and SaaS. Cloud users
have highest control in IaaS and least control in SaaS. This
physical inaccessibility of the evidence and lack of control
over the system make evidence acquisition challenging in cloud
forensics. In SaaS, customers do not get any log of their system,
unless the CSP provides the logs. In PaaS, it is only possible
to get the application logs from customers. To get the network
log, database log, or operating system log, we need to depend
on cloud providers.

In IaaS, customers do not have access to network or process
logs. Several other problems come along with the control issue.
For example, dependency on CSPs brings the honesty issue of
CSPs’ employees, who are not certified forensic investigators.
CSPs can always tamper with the logs as they have the full
control over the generated logs. Additionally, CSPs are not

always obligated to provide all the necessary logs, when it
conflicts with their data protection policies.

Layers SaaS PaaS IaaS
Network 5 5 5

Servers 5 5 5

OS 5 5 3

Data 5 5 3

Application 5 3 3

Access Control 3 3 3

TABLE 1: Customers’ control over different layers in different
service model
Volatility of Logs: Volatile data cannot be sustained without
power. Volatile data of a VM includes all the logs stored in that
VM, e.g., SysLog, registry logs, and network logs. Without
preserving the snapshots of the VM, it is not possible to retrieve
these logs from a terminated VM. However, it is assumed that
an attacker would not choose to preserve snapshots to remain
clean. Hence, if a malicious user turns off a VM instance after
launching an attack, then these logs will be unavailable.

Multi-tenancy: In cloud infrastructures, multiple VMs can
share the same physical infrastructure, i.e., logs for multiple
customers may be co-located, which is different from the
traditional single owner computing system. Hence, depending
on the acquisition mechanism, multiple users data can be
mingled logically and physically. An alleged user can claim
that the logs contain information of other users. The investigator
then needs to prove it to the court that the provided logs indeed
belong to the malicious user. Moreover, we need to preserve
the privacy of other tenants.

Accessibility of Logs: Logs generated in different layers of
cloud infrastructures are required to be accessible to different
stakeholders of the system. For example, system administrators
need relevant logs to troubleshoot the system; developers need
their required logs to fix the bugs of an application; forensic
investigators need logs, which can help in their investigation.
Hence, there should be some access control mechanism, so
that everybody gets what they need exactly – nothing more,
nothing less and obviously, in a secure way. We should not
expect that a malicious cloud employee, who can violate the
privacy of users, can get access to users’ log information.

Decentralization: In cloud infrastructures, log information
is not located at any single centralized log server; rather
logs are decentralized among several servers. Multiple users’
log information may be co-located, or spread across multiple
servers. Moreover, there are several layers and tiers in the cloud
architecture, where logs are generated in each tier. For example,
application, network, operating system, and database – all of
these layers produce valuable logs for forensic investigation.
Collecting logs from these multiple servers and layers, and
providing them to the investigators in a secure way is extremely
challenging. The decentralized nature of clouds also brings the
challenge of clock synchronization. According to Zimmerman
et al., if the client-side log files do not match the time stamps
on provider-side log files, it will be difficult to defend such
evidence in the court [31].



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2482484, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XX/XXXX 4

Absence of a Standard Format of Logs: To analyze logs most
effectively, it will be necessary to have a standard format of the
logs. Unfortunately, till now, there is no standard format of logs
for cloud infrastructures. Logs are available in heterogeneous
formats – from different layers of a cloud to different service
providers. Moreover, not all the logs provide crucial information
for forensic purpose, e.g., by whom, when, where, and why
some incidents occurred. This is an important bottleneck to
provide a generic solution for all the cloud service providers
and for all types of logs.

3 RELATED WORK
Because of the necessity of trustworthy logs in forensics inves-
tigation, several researchers have explored this problem across
multiple dimensions. As a solution for forensic investigation
in clouds, Zafarullah et al. proposed logging provided by the
OS and the security logs [32]. They set up a cloud computing
environment using Eucalyptus an using Snort, Syslog, and Log
Analyzer (e.g., Sawmill), they were able to monitor the behavior
of Eucalyptus and to log all internal and external interaction of
Eucalyptus components. For their experiment, they launched
a DDoS attack from two virtual machines and from the logs
on the Cloud Controller (CC) machine, they were able to
identify the attacking machine IP, browser type, and content
requested. From these logs, it is also possible to determine
the total number of VMs controlled by a single Eucalyptus
user and the VMs communication patterns. To provide logs
for cloud forensics, Patrascu et al. proposed a cloud forensics
module in the management layer of cloud infrastructures. This
module communicates with different stacks of the kernel, such
as virtual file system, network stack, system call interface, etc.
to acquire logs [33]. However, the security and the availability
of the logs to forensics investigators have not been ensured by
these works.

To make the network, process, and access logs available to
customers, Bark et al. proposed to expose read-only APIs by
CSPs [8]. In the same context, Dykstra et al. implemented
FROST, a tool for OpenStack to collect virtual disks, API
logs, and guest firewall logs [21]. These works mainly focus
on making the logs easily available; it has not been shown
how to protect users’ privacy and integrity of logs from a
malicious CSP and investigators. In [34], Marty provided a
guideline, which tells us to focus on when to log, what to log,
and how to log. The answer of when to log depends on the
use-cases, such that business relevant logging, operations based
logging, security (forensics) related logging, and regulatory
and standards mandates. At minimum, he suggested to log
the time-stamps record, application, user, session ID, severity,
reason, and categorization, so that we can get the answer of
what, when, who, and why (4 W).

Secure logging has been discussed in several research works
[22], [23], [24], [25], [35]. In the threat model of these works,
researchers considered attacks on privacy and integrity from
external entity on a logging server. However, none of these
works focused on secure logging in the cloud environment,
especially where the logger itself (cloud provider) is dishonest
and also did not consider the collusion between different entities.
To detect temporal inconsistencies in a VM’s timeline, Thorpe

et al. developed a log auditor by using the ‘happened-before’
relation [36] in the cloud environment [37]. However, not all
of the events occurred inside clouds have the happened-before
relation between them. For example, browsing two independent
webpages cannot be bound with this relation. Moreover, the
proposed systems do not consider the threat where a CSP is
dishonest.

Organizations, who find the cost of developing and main-
taining a secure logging infrastructure unbearable, can delegate
the task of log management to clouds to reduce the cost. Ray
et al. proposed a framework to serve this purpose [38]. They
proposed a cryptographic protocol to address integrity and
confidentiality issues with storing, maintaining, and querying
log records in a server operating in the cloud. Transmission
of log records between log generators, such as computers and
cloud servers is made secure through the use of an anonymizing
network.

Researchers have also proposed several variations of regular
accumulator schemes. The space-code Bloom filter is one of
such variations [39], which traces the number of occurrences of
an element as well as membership checking. Papamanthou et al.
proposed a tree-based construction for membership verification
based on the RSA accumulator, which was the building block
of developing authenticated hash-table [40]. Koloniari et al.
proposed two variations of Bloom filter: breadth Bloom filters
and depth Bloom filters [41]. These schemes are useful to
represent hierarchical data like xml and support path expression
queries, which is used in resource discovery of peer-to-peer
networks. Our proposed Bloom-Tree is a variation of the
Hierarchical Bloom Filter (HBF) introduced in [42], which is
used as a compact hash-based, payload digesting data structure
and to find source and destination from a given excerpt of a
networks packet’s payload. In HBF, the payload of a packet is
divided into blocks and inserted into the hierarchy of Bloom
filters from bottom-up. However, the way we build the Bloom-
Tree and apply it to ensure the integrity of logs is novel.

The solution proposed by Marty provided a guideline for
logging standard. Zafarullah et al. showed that it is possible to
collect necessary logs from the cloud infrastructure, while Bark
et al. and Dykstra et al. proposed public APIs or management
console to mitigate the challenges of log acquisition. However,
none of them proposed any scheme for storing the logs in a
cloud and making it available publicly in a secure way. Dyskstra
et al. mentioned that the management console requires an extra
level of trust and the same should hold for APIs. In this paper,
we take the first step towards providing a solution to mitigate
these challenges. Combining all the previous solutions and our
scheme will help to make clouds more forensics-friendly.

4 THREAT MODEL

In this section, we first define the important terms of our
proposed system. Then, we describe the attacker’s capability,
possible attacks on logs, and the security properties that a
secure cloud log service should provide.

4.1 Definition of terms
• Log: A log can be the network log, process log, operating
system log, or any other log generated in the cloud for a VM.
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• Proof of Past Logs (PPL): The PPL contains the proof of
logs to ensure the integrity of logs.
• Log Chain (LC): The LC maintains the chronological ordering
of logs to protect the logs from reordering.
• CSP: A Cloud Service Provider (CSP) is the owner of a
public cloud infrastructure, who generates the PPL, makes it
publicly available, and exposes APIs to collect logs.
• User: A user is a customer of the CSP, who rents VMs
provided by the CSP. A user can be malicious or honest.
• Investigator: An investigator is a professional forensic expert,
who needs to collect necessary logs from cloud infrastructures
in case of any malicious incident.
• Auditor: Usually, an auditor will be the court authority that
will verify the correctness of the logs using PPL and LC.
• Intruder: An intruder can be any malicious person including
insiders from CSP, who wants to reveal user’s activity from
the PPL or from the stored logs.

4.2 Attacker’s Capability
In our threat model, users, investigators, and CSPs can collude
with each other to provide fake logs to the auditor. We assume
that a CSP is honest at the time of publishing the PPL, but
during an investigation, they can collude with a user or an
investigator and provide tampered logs, for which the PPL
has already been published. A user cannot modify the logs by
himself, but he can collude with a CSP to alter the logs. An
investigator can also be dishonest and collude with users or a
CSP to frame an honest user, or to save a malicious user from
an accusation. A malicious investigator can collude with a CSP
to alter the logs or can tamper with the logs after collecting
the logs from the CSP.

4.3 Possible Attacks
Log modification: A dishonest CSP, while colluding with a
user or an investigator can modify the logs, either to save a
malicious user or to frame an honest user. If an investigator
is not trustworthy, he can also tamper with the logs before
presenting the logs to the court. There can be three types of
contamination of logs: 1) removal of crucial logs, 2) plantation
of false logs, and 3) modification of the order of the logs.
Privacy violation: As the PPLs are publicly available on the
web, any malicious person can acquire the published PPL and
try to learn about the logs from the proof. A malicious cloud
employee, who has access to the log storage, can identify the
activity of the user from the stored logs.
Repudiation by user: As data are co-mingled in the cloud, a
malicious user can claim that the logs contain another cloud
user’s data.
Repudiation by CSP: A malicious CSP can deny a published
PPL after-the-fact.

4.4 System Property
While designing SecLaaS, we focus on ensuring secure
preservation of cloud users’ logs in a persistent storage, and
to prevent any malicious entity from producing fake proof of
past logs. A false PPL attests the presence of a log record for

a user, which the user does not actually own. Once the proof
has been published, the CSP can neither modify the proof nor
repudiate any published proof. Additionally, we must prevent
false implications by malicious forensic investigators. Hence,
a secure log service for clouds should possess the following
integrity (I) and confidentiality (C) properties:

I1: A CSP cannot remove a log entry from the storage after
publishing the PPL.

I2: A CSP cannot change the order of a log from its actual
order of generation.

I3: A CSP cannot plant false log after-the-fact.

I4: An investigator cannot hide or remove a log entry at the
time of presenting logs to court.

I5: An investigator cannot change the actual order of a log
entry at the time of presenting evidences to court.

I6: An Investigator cannot present fraudulent logs to the court.

I7: CSPs cannot repudiate previously published proofs of logs.

C1: An adversary cannot recover logs from the published
proofs of logs.

C2: A malicious cloud employee will not be able to recover
confidential information from the log storage.

5 THE SECLAAS SCHEME

In this section, we discuss how SecLaaS stores logs securely,
provides APIs to forensics investigators, and verifies the in-
tegrity of logs. First, we present an overview of the mechanism.
Then, we discuss the protocol specific description of the system.

5.1 Overview

A malicious cloud user can attack other VMs running inside the
cloud or can attack an external computer outside the cloud. An
attacker can also attack the Node Controller (NC), which hosts
the virtual machine instances and manages the virtual network
endpoints to launch some side channel attacks [43]. Some of
the side channel attacks are: measuring cache usage to identify
cryptographic keys, identifying passwords by observing the
keystroke timings, and launching denial of service attacks on
the shared resources. Figure 2 presents an overview of storing
the logs in a secured way and making the logs available to
forensic investigators in case of such attacks.

As VMs are running inside the NC, we can trace malicious
activities of VMs from various logs generated in the NC. For
each running VM, SecLaaS first extracts various kinds of logs
from the NC and stores them in a persistent log database. Hence,
terminating the VM will not prevent our system to provide
useful logs during investigation. While saving logs in the log
database, SecLaaS ensures the integrity and confidentiality of
the logs. After storing a log entry in the log database, SecLaaS
additionally preserves the proof of that log entry in the proof
database. An investigator can acquire the necessary logs of a
particular IP by calling APIs provided by SecLaaS. In order
to prove the logs as admissible evidence, investigators can
provide the proofs of past logs along with the logs.
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Fig. 2: Overview of SecLaaS

5.2 System Details

Notation and Assumptions: H(M) is a collision-resistant
one-way hash function, which produces a hash of a message
M . The EPK (M) function encrypts a message M using the
public key PK . The SigSK (M) function generates signature of
a message M using the secret key SK . We assume that the
law enforcement agencies (LEA) and the CSP have setup their
secret keys and public keys and distribute the public keys. The
secret key and public key of the CSP are SKC and PKC , and
for the LEA these are SKA and PKA.

5.2.1 Log and Proof Insertion
In Figure 3, we illustrate the detail flow of log retrieval, secured
log insertion, and PPL generation. We use the network log as
an example to describe the entire system. However, after step
(b), the system will be identical for any type of logs. Below
are the details of the system:

Snort Parser Web 

(a) 

(b) 

(c) 

(f) 
(g) 

Logger 
Log 

Storage 

(h) 

(j) 

(d) 

(e) 

Proof  

Accumulator 

(l) 
(k) 

(i) 

Fig. 3: Process Flow of Retrieving Log and Storing the PPL

(a) The parser module first communicates with the log
sources to collect different types of logs. For example,
the parser can listen to Snort 1, a free lightweight network
intrusion detection system to store network logs.

(b) After acquiring logs from different sources, the parser
then parses the collected logs and generates a Log Entry
LE. For example, a Log Entry LE for a network log
could be defined as follows:

LE =< FromIP, ToIP, T L, Port, UserId >, (1)

where TL is the time of the network operation in UTC.
(c) The parser module then sends the Log Entry LE to the

logger module to further process the LE.
(d) To ensure the privacy of users, the logger module can

encrypt some confidential information of the LE using
the public key of LEA PKA and generates the Encrypted
Log Entry ELE as follows:

ELE =< EPKA
(ToIP, Port, UserId), F romIP, T L > (2)

As searching on encrypted data is costly, some of
the fields of LE that often appear in search can be
unencrypted. For network logs, some crucial information
that we can encrypt includes: destination IP (ToIP), and
user information (UserId).

(e) After generating ELE, the logger module then creates
the Log Chain LC to preserve the correct order of the
log entries. The LC is generated as follows:

LC =< H(ELE,LCPrev) >, (3)

where LCPrev is the Log Chain of the log entry that
appears before the current log entry.

(f) The logger module now prepares an entry for the
persistent log database, which we denote as DBLE. The
DBLE is constituted of ELE and LC

DBLE =< ELE,LC > (4)

(g) After creating the DBLE, the logger module commu-
nicates with the proof storage to retrieve the latest
accumulator entry.

(h) In this step, the logger generates the proof of DBLE, i.e.,
the logger creates the membership information of the
DBLE for the accumulator. The membership information
for DBLE depends on the chosen accumulator scheme
(e.g., bit array for the Bloom filter), which we describe
in Section 5.3. The logger then updates the last retrieved
accumulator entry with this membership information.

(i) The logger module sends the updated accumulator entry
to the accumulator storage to store the proof.

(j) At the end of each day, the logger retrieves the last
accumulator entry of each static IP, denoted as AED.

(k) Using the AED, the logger now generates the Proof of
Past Log PPL as follows:

PPL =< AED, TP , SigSKC
(AED, TP ) >, (5)

where TP represents the proof generation time, and
SigSKC (AED, TP ) is the signature over (AED, TP ) using
the secret key of the CSP, SKC .

1. http://www.snort.org
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(l) After computing the PPL, the logger module will publish
the PPL on the web. The PPL can be available by RSS
feed to protect it from manipulation by the CSP after
publishing. We can also build a trust model by engaging
other CSPs in the proof publication process. Whenever
one CSP publishes a PPL, that PPL will also be shared
among other CSPs. Therefore, we can get a valid proof
as long as one CSP is honest.

5.2.2 Verification
An investigator first gathers the required logs from the CSP
and presents the logs along with the PPL to the court. The
verification process, which will be executed by the auditor
constitutes of three steps: 1) authenticity verification of the
published PPL, 2) integrity verification of individual log
entries, and 3) verification of the chronological order of the
logs. Among these three steps, only the detail of the second
step (integrity verification process) depends on the chosen
accumulator scheme.
1) PPL Verification: The verification process, presented in
Figure 4 starts from checking the validity of the published Proof
of Past Log PPL. The auditor extracts the published AED and
TP from the PPL. Then using the signature SigSKC (AED, TP )

and public key of the CSP PKC , the auditor verifies the integrity
of the AED and TP . A PPL is valid if the digital signature is
valid. The verification process then proceeds to the next step.

Published Proof (PPL) 

Result from API Call 

DBLE- 0 

Exists? 
No 

Sequence verification 

Yes 

Reject 

DBLE- 1 

Valid? 
No 

Reject AED 

AE 

Yes 

Fig. 4: Log Verification Process Flow

2) Integrity Verification of Log: To verify the integrity of
a log entry DBLE, the auditor generates the membership
information for the DBLE, AE and checks whether the DBLE

exists in the AED using the AE. If exists, then the auditor
proceeds towards the log order verification process, otherwise
the log entry DBLE is rejected. If the DBLE is the last log
entry of an epoch, the AE of the DBLE needs to be equal to
the AED, otherwise it is rejected.
3) Sequence Verification: Figure 5 illustrates the log order
verification process of two consecutive log entries – DBLE0

and DBLE1, where DBLE0 appears immediately before
DBLE1 in the original sequence of log generation. In Figure
5, ELE0 denotes the Encrypted Log Entry of the first log and
ELE1 represents the same for the second log entry. To verify
the correct order, the auditor calculates the Log Chain LCa

from the first Log Chain LC0 and the second Encrypted Log
Entry ELE1 according to the following equation.

LCa =< H(ELE1, LC0) > (6)

If LCa matches with the 2nd Log Chain LC1, the auditor
accepts the logs, otherwise he rejects it. The auditor executes
this process for all {DBLEi, DBLEj}, where i ε {0, n− 1},
j = i+1, and n is the number of logs provided for verification.

LCa Equal? 
No 

ELE0 LC0 

Reject 

Accept 
Yes 

ELE1 LC1 

Fig. 5: Log Order Verification Process Flow

5.3 Accumulator Design
We used three accumulator schemes – Bloom filter [44], One-
Way Accumulator [45], and our variation of the Bloom filter
based accumulator Bloom-Tree. The steps from (g) to (k) of
log and proof insertion (Figure 3), and the integrity verification
of logs work differently for the different accumulator schemes.

5.3.1 Bloom filter:
A Bloom filter is used to check whether an element is a member
of a set or not [44]. It stores the membership information in a
bit array. Bloom filters decrease the element insertion time and
membership checking time. However, it is a probabilistic data
structure and suffers from false positives. We can decrease the
false positive rate by increasing the size of the bit array.

Proof Creation: To use the Bloom filter as a proof, we use
one Bloom filter for one static IP for each day. That means,
one Bloom filter stores the proof of all the logs of one static IP
for a particular day. In step (g) of Figure 3, the logger module
retrieves the latest Bloom filter AE from the proof storage,
which holds the bit positions for the previously inserted logs
of the day. In step (h), the logger generates k bit positions
for the database entry DBLE by hashing the log entry with k
different hash functions. The logger then sets the calculated k
bit positions of the AE and sends the updated AE to the proof
storage. At the end of each day, the CSP retrieves the Bloom
filter entry of each static IP AED and creates the proof of past
log PPL for that day using equation 5.

Integrity Verification of Log: To verify the integrity of a log
entry DBLE using the Bloom filter accumulator, the auditor
first calculates the k bit positions of the Bloom filter by hashing
the DBLE with the k different hash functions. These bit
positions will be then compared with the published AED. If all
the calculated bit positions are set in the published Bloom filter
AED, then the DBLE is valid. One single false bit position
means the log entry is not valid.

5.3.2 One-Way Accumulator:
One-Way accumulator is a cryptographic accumulator, which
is based on RSA assumption and provides the functionality
of checking the membership of an element in a set [45].
This scheme works with zero false negative and false positive
probability. Initially, we need to create the public and private
values for the accumulator. The private values are two large
prime numbers P, and Q. The public values are N and X ,
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where N = P ∗Q and X is the initial seed, which is a large
prime number.

Proof Creation: In step (g) of Figure 3, the logger retrieves
the latest accumulator entry AE. If the AE is empty, i.e., no
DBLE has been inserted yet on that day, then the AE is
generated using the following equation:

AE = XHn(DBLE) mod N, (7)

where Hn(DBLE) is a numeric hash value of DBLE. If
the retrieved AE is not empty, the new AE will be generated
using the following equation:

AE = AEHn(DBLE) mod N (8)

The logger module then sends the calculated AE to the proof
storage. At the end of the day, the logger retrieves the last
accumulator entry AED and creates the proof of past log PPL

for the day using Equation 5. Additionally, the logger needs
to generate an identity for each DBLE and tag it with the
DBLE. For m number of DBLEs on a day, the identity AIDi

of the ith DBLE is calculated using the following equation:

AIDi = XHn(DBLE1)..Hn(DBLEi−1)Hn(DBLEi+1)..Hn(DBLEm)

mod N
(9)

Integrity Verification of Log: Along with the DBLEs, the
auditor will be provided with the AID of the DBLE. While
verifying the validity of the DBLEi, the auditor first computes
(AID

Hn(DBLEi)
i mod N) and compares it with AED. If AED =

(AID
Hn(DBLEi)
i mod N), the log entry is valid otherwise not.

5.3.3 Bloom-Tree
As a probabilistic data structure, the Bloom filter suffers from
false positive (FP) rate. The only way to decrease the percentage
of FP is to increase the size of bit array. However, a bit array
with larger size introduces space overhead and performance
degradation for log insertion and verification. Inspired by [42],
we design a data structure – Bloom-Tree, which requires a
significantly smaller amount of space while ensuring a very
low percentage of FP compared to the regular Bloom filter. An
example of a Bloom-Tree is presented in Figure 6.

Proof Creation: To build a Bloom-Tree, we create a new
Bloom filter after every m number of logs. Hence, for n number
of logs in a day, there will be NB = d(n/m)e number of
Bloom filters. To insert the proof of the ith log entry DBLEi,
in step (g) of Figure 3, the logger module first checks whether
i mod m = 0. If i mod m = 0, a new Bloom filter AE will
be created, otherwise the logger retrieves the latest bloom filter
AE from the proof storage. Later, using the same approach as
described previously for the regular Bloom filter, the logger
updates the k bit positions of the AE and sends the updated
AE to the proof storage.

To generate the PPL, the logger retrieves the NB Bloom
filters for a static IP at the end of each day. At the time of PPL
generation, these Bloom filters will then be cumulatively added
to a higher order Bloom filter. The accumulators that hold the
membership information of the logs, will be purged from the
proof storage after the PPL is generated (nodes inside the dotted
red region in Figure 6). An intermediate node (nodes inside

…

Log 0

…
…

…

AE 1

AE 2

AE 3

AE 4

AE 5

AE 6

AED (Root)

Log 1

Log m-1

Log m
Log m+1

Log 2m-1

Log 2m
Log 2m+1

Log 3m-1

Log 3m
Log 3m+1

Log <4m Purged after 
PPL Generation Stored in Proof DB

Fig. 6: An example of a Bloom-Tree where the total number
of logs is at most 4 ∗m.

the solid green region) holds the membership information of
its child Bloom filter and is stored in the proof database. The
branching factor b of the accumulator can vary according to
the volume of logs. The root of this tree will be considered as
the AED and the logger creates the PPL using this AED. To
maintain this data structure and use it for integrity verification,
each Bloom filter will have its parent’s identity and a boolean
attribute to denote whether a node is a leaf node.
Integrity Verification of Log: An example of the verification
process using the Bloom-Tree is illustrated in Figure 7. Besides
the AED, the auditor needs to be provided with the nodes of
the Bloom-Tree. To verify the integrity of logs, the logs need
to be provided with sets of m logs. Hence, in this approach,
the auditor needs to collect some extra logs, though he does
not need those. If the auditor actually needs logs in the range
of [s, e], he needs to collect logs from bs/mc ∗m to (be/mc+
1) ∗m − 1. For example, to verify the integrity of 114th to
126th logs, the auditor needs to collect logs from 110th to
129th for m = 10. Accordingly, the auditor needs to collect
2(m− 1) extra log entries in the worst case.

The collected logs will then be grouped according to their
order of generation, where each group contains m logs. For
the m number of logs of the ith set, a new Bloom filter AEGi

is created and all the logs of the ith set are inserted to the
AEGi . Now, the verifier finds the leaf node of the Bloom-Tree
that contains the AEGi .

If all of the m logs are valid, we will find a node AEL that
contains the AEGi . In Figure 7, node AE11 (marked as green)
is one such leaf node. Consequently, the parent of the AEL is
identified and the auditor verifies whether AEL exists in its
parent accumulator. The process continues until it reaches the
AED. A positive result while checking with AED, confirms
that all of the logs of the ith set are valid. The same procedure
will be applied to other sets of logs.

5.4 API Design
We designed and exposed the API using RESTful (Represen-
tational State Transfer) web services [46]. REST-style web
services are stateless, which enables multiple servers to handle
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Fig. 7: Integrity Verification using the Bloom-Tree

multiple requests to improve the scalability of servers. By using
REST, we can design web services that focus on a system’s
resources. For logging as a service, the resource is log and
proofs of logs. RESTful web services are implemented by using
HTTP standard methods (e.g. GET, PUT, POST, DELETE).
According to the REST principle, to retrieve a resource, GET
operation is used on that resource. Caller of a REST service
can pass different parameter to retrieve his or her desired result.
We utilize the same approach in SecLaaS. For example, in the
network log scenario, a sample GET request for our scheme
can be,

GET / l o g ? fromIP =10 .13 .155 .4& d a t e =2015−03−04
&s t a r t =10:45:00& end =12:45:00& t z =UTC

This GET operation requests the logs where “ from ip” is
10.13.155.4 and the time is between 10:45:00 to 12:45:00 UTC
on March 4th, 2015. From this GET request, SecLaaS first finds
the logs that match the search criteria. For the Bloom-Tree, we
also need to provide all the nodes of the tree that match the
search criteria.

An example of a response message while using the Bloom-
Tree is presented in Figure 8. The response message produces
the ELE and LC of each log entry separately, which are
encapsulated in DBLELIST . The PROOF tag represents one
node of the Bloom-Tree, which contains the bit array, identity of
the parent node, and a boolean value to indicate whether a node
is a leaf or not. For the Bloom filter and the RSA accumulator,
the PROOFLIST will be empty. After receiving the above
response from SecLaaS API, the caller will acquire the Proof
of Past Logs (PPL) of that day, which was made publicly
available by the CSP earlier. Any client-side application should
be able to parse this response message and run the verification
processes discussed earlier.

Security of REST web services is mostly ensured by using
HTTPS protocol (HTTP over transmission security protocol
SSL / TLS). All REST API calls must take place over HTTPS
with a certificate signed by a trusted CA. The client application
first verifies the certificate of CSPs to ensure that it is indeed
communicating with a valid CSP. To authenticate a valid caller,
we use an API key. API callers (law enforcement agencies and
CSPs) share a secret value and the signature of the API caller on
that secret value is treated as the API key. This signing should
occur before encoding the URL query string. To authenticate

an API caller, CSPs verify the signature on the shared secret.
It provides a two-way authentication: compromising only the
secret value or only the private key of the LEA cannot break
this security. To spoof a valid caller, an attacker needs to
compromise both.

<? xml version =“1. 0”  encoding=“UTF-8” ?> 

<SECLAASRESPONSE> 

<DBLELIST> 

<DBLE> 

<ELE>Log entry 1</ ELE> 

<LC>Log chain of 1st entry </ LC> 

</DBLE> 

. . . 

<DBLE> 

<ELE>Log entry N</ ELE> 

<LC>Log chain of Nth entry </ LC> 

</DBLE> 

</ DBLELIST> 

<PROOFLIST> 

<PROOF> 

<BITS>Bit array</ BITS> 

<PARENT>Parent Node ID</ PARENT> 

<ISLEAF>1/ 0</ ISLEAF> 

</ PROOF> 

. . . 

<PROOF> 

<BITS>Bit array </ BITS> 

<PARENT>Parent Node ID</ PARENT> 

<ISLEAF>1/ 0</ ISLEAF> 

</ PROOF> 

</ PROOFLIST> 

</ SECLAASRESPONSE> 

 

Fig. 8: Response Message of SecLaaS

6 SECURITY ANALYSIS

In our collusion model, there are three entities involved – CSP,
user, and investigator. All of them can be malicious individually
or can collude with each other. CSPs have full control over
the stored logs and the proofs of logs. Hence, they can always
tamper with the logs. After acquiring logs through API, an
investigator can also alter the logs before presenting it to the
court. Therefore, we propose a tamper evident scheme in this
paper. Any violation of the integrity properties, as mentioned in
Section 4, can be detected during the verification process. By
using our proposed scheme, we can also preserve the privacy
of cloud users from external or insider attackers. In this section,
we discuss how our proposed system can ensure all the security
properties that are required to protect collusion between CSP,
user, and investigator.

Table 2 presents all the possible combinations of the
collusion, possible attacks for each collusion, and required
security properties to defend against that collusion. We denote
an honest CSP as C, a dishonest CSP as C̄, an honest user as
U, a dishonest user as Ū , an honest investigator as I, and a
dishonest investigator as Ī .

I1, I2, I4, I5. The integrity properties I1, I2, I4, and I5 prevent
removal and reordering of log entries by a dishonest CSP and
investigator. At the verification stage, our system can detect
any such removal and reordering of log entries.

Let us assume that there are three log entries DBLE0,
DBLE1, and DBLE2 and their proof has already been published.
Now, if the CSP removes DBLE1 and provides only DBLE0
and DBLE2 to the investigator, then this removal can be easily
detected at the sequence verification stage. In this case, the
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Is Honest? Notation Attack Required Security
Properties

CSP User Investigator
3 3 3 C U I No attack None
5 3 3 C̄ U I Reveal user activity from logs C2
3 5 3 C Ū I Recover cloud users’ log from published proof C1
3 3 5 C U Ī Remove, reorder, and plant fake logs I4, I5, I6
3 5 5 C Ū Ī Remove, reorder, plant fake logs, and recover other cloud users’ log I4, I5, I6, C1
5 3 5 C̄ U Ī Remove, reorder, plant fake logs, repudiate published PPL, and reveal

user activity
I1, I2, I3, I4, I5, I6, I7,
C2

5 5 3 C̄Ū I Remove, reorder, plant fake logs, repudiate published PPL, recover
cloud users’ logs and activity

I1, I2, I3, I7, C1, C2

5 5 5 C̄Ū Ī Remove, reorder, plant fake logs, repudiate published PPL, recover
cloud users’ logs and activity

I1, I2, I3, I4, I5, I6, I7,
C1, C2

TABLE 2: Collusion model, possible attacks and required security properties

hash of LC0 and ELE2 will not match with LC2, because the
original LC2 was calculated by hashing LC1 and ELE2.

Since the published PPL is generated using the accumulator
entry of the last log of an epoch AED, removal of the last log
DBLE2 can also be detected. After removing DBLE2, DBLE1
will be the current last log. However, the AE1 of DBLE1 will
not match with the AED of PPL, which was actually AE2
of DBLE2.

An auditor can detect the re-ordering of logs using the
verification procedure. For example, while providing the logs to
an auditor, if the CSP or investigator provides logs in the order
of DBLE0, DBLE2, DBLE1, then using the same technique, the
auditor can identify that DBLE1 does not come after DBLE2
in actual generation order.

The CSP can further try to change the DBLE2 by replacing
the original LC2 with a new Log Chain value. Hence, reordering
or removing of logs will not be detected in the sequence
verification process. However, an attempt of changing the
DBLE2 will be detected during the individual log entry
verification phase which is ensured by I3 and I6 properties.

A malicious investigator can also claim the unavailability
of logs for a certain period of time. However, the existence
of a published PPL for that particular epoch indicates the
presence of logs, which can prevent an investigator to establish
the claim of unavailability of logs.

I3, I6. The integrity properties I3 and I6 prevent producing
fake logs by CSPs and investigators. A colluding CSP can plant
false log information while providing the logs to investigators.
A dishonest investigator can also try to frame an honest user
by presenting fake logs to the court. However, if the CSP or
investigator provides fake logs after publishing the proof, our
system can detect these fake logs. If DBLEf is a fake log
entry, then using any type accumulator scheme we can detect
that the fake log does not exist in the published AED of the
Proof of Past Log PPL, and the auditor can reject that incorrect
log. However, the Bloom filter is a probabilistic data structure
and suffers from false positive (FP) rate. Hence, there are still
some chances of planting false log information by CSPs or
investigators if the FP is not small enough to be negligible.

I7. This integrity property ensures non repudiation of Proof
of Past Log by CSPs. After publishing the PPL, CSPs cannot
repudiate the published proof, as the Accumulator Entry AED

is signed by their private key. Nobody other than a CSP can
use the private key to sign the AED. Hence if a PPL passed
the signature verification step using the public key of the CSP
PKC , the CSP cannot deny the published value.
C1, C2. The confidentiality properties C1 and C2 ensure cloud
users’ privacy from an external attacker or a malicious cloud
employee. In all of the accumulator schemes, an accumulator
entry for a log entry is generated by hashing the log. As the hash
function provides the one-way property, the proposed scheme
ensures the C1 property, i.e., from the proof of logs, adversaries
cannot recover any log. While storing the log data in persistent
storage, we propose to encrypt some crucial information e.g.,
user id, destination IP, etc. by using a common public key
of the law enforcement agencies. Hence, a malicious cloud
employee cannot retrieve crucial confidential information of
users from logs stored in persistent storage. For example, a
malicious cloud employee cannot identify the visiting IPs of
a particular user. In this way, our scheme can ensure the C2
property.

7 IMPLEMENTATION AND EVALUATION
In this section, we present the implementation of SecLaaS
on OpenStack and performance analysis of the scheme using
different types of accumulators.

7.1 Implementation
System Setup: To build a private cloud, we used Openstack1

– an open source cloud computing software. We built our
prototype for network logs and used Snort as a source
of network logs. We created the virtual environments with
VirtualBox3 (a free virtualization software) running on a single
Ubuntu machine. Figure 9 illustrates the system setup and
below is the description of the system:
• Host machine’s hardware configuration: Intel Core I7 quad
core CPU, 16 GB ram, and 750 GB hard drive. Ubuntu 12.04
LTS 64-bit is used as Host Operating System.
• VirtualBox 4.1.22 r80657 for Ubuntu 12.04 LTS.
• Openstack (Essex) installation in VirtualBox; for simplicity,
the system had one node controller. Configuration of the virtual

1. http://www.openstack.org
3. https://www.virtualbox.org
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Fig. 9: Prototype Environment Configuration [47]

node controller: Intel 2.5Ghz Dual Core cpu, 8 GB ram, and 20
GB hard drive. Ubuntu 12.04 64-bit Server edition is used as the
Operating system for Openstack setup. We hosted maximum ten
m1.tiny VMs on the node controller for performance evaluation.
• In the virtualized environment, the Cloud Controller required
following network adapter configuration in VirtualBox to work
properly:

• Adapter 1: Attached to NAT- eth0 of the Cloud Controller
is connected here.

• Adapter 2: Host-only network for Public interface- con-
nected with eth1 (IP was set to 172.16.0.254, mask 255.
255.0.0, DHCP disabled)

• Adapter 3: Host-only network for Private (VLAN) inter-
face connected with eth2 (IP to 11.0.0.1, mask 255. 0.0.0,
DHCP disabled)

• We used RSA (2048 bit) for signature generation, and SHA-
2(SHA-256) hash function for hashing.
• Snort was set up in the node controller to track the network
activity of the virtual machines. Here is a sample Snort log:

‘‘11/19-13:43:43.222391 11.1.0.5:51215 −>fg
74.125.130.106:80 TCP TTL:64 TOS:0x0 ID:22101

IpLen:20 DgmLen:40 DF ***A***F Seq: 0x3EA405D9 Ack:
0x89DE7D Win: 0x7210 TcpLen: 20’’

This log tells that the virtual machine with private IP 11.1.0.5
performed a http request to machine 74.125.130.160. Logs
generated by Snort were first streamed to the Parser module,
which creates a Log Entry (LE) and sends to a message
queue (MQ). The Logger module always listens to this MQ
and whenever there is a new LE in the MQ, the logger
starts executing steps (d) to (i) of Figure 3. To publish PPL
periodically, steps (j) to (l) are encapsulated as a Cron job.
Specific time and frequency of publishing PPL can be controlled
by the Cron job parameters.

By reverse engineering Openstack’s “Nova” mysql database,
it is also possible to find out the static private IP and user
information from a public IP. We used the references among
FloatingIps, FixedIps, and Instances tables to resolve the user id
for a particular log entry. Figure 10 shows the relation between
these three tables.
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 Instances	
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fixed_ip	

 instance_id	

 user_id	


…..	



…..	



fixed_ip	

 instance_id	



…..	

 …..	



Fig. 10: Resolving User ID from Public IP
Exposing APIs: To implement the RESTful APIs, we used

Glassfish as the web server and used JAX-RS for creating the
REST APIs. Figure 11 shows the process flow of handling an
API call. The web server listens on port 8443 and whenever
it receives a request from an API caller, it invokes a java
servlet. The servlet then communicates with the verification
and authentication module. The verification and authentication
module is responsible for checking the validity of the API
request and the authentication information provided by the
caller. If the call is valid and the caller is authenticated, then the
servlet communicate with the persistent storage to retrieve the
requested data. Finally, the servlet prepares an XML response
and returns to the calling entity. The response can be JSON or
XML, but we used XML as it is a well known format and any
client application should be able to handle it.
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Fig. 11: Process Flow for Handling API Calls

7.2 Comparison Among Different Accumulators
In [26], we have shown that the Bloom filter outperforms the
RSA accumulator in terms of log insertion, PPL generation,
integrity verification, and space requirement. In this section,
we compare the performance between the Bloom filter and the
Bloom-Tree for false positive probability of 0.0001%, 0.001%,
0.01%, 0.1%, and 1%. We used m = 1000 and b = 10 for
the Bloom-Tree. For each of the experiments of Figure 12, we
stored maximum 1 million logs generated by Snort.
Log Insertion: Figure 12a shows the performance analysis of
log insertion, which includes the time required to complete
the steps from (d) to (i) of Figure 3. The graph indicates that
for both of the accumulators, the log insertion time increases
when we reduce the percentage of FP and increase the total
number of logs in a day. However, the log insertion time for
the Bloom-Tree is nearly constant with the increase in number
of logs. The reason is for the Bloom-Tree, we are always
using a bit array that can hold membership information of m
items. We notice that the Bloom-Tree provides significantly
better performance than the Bloom filter and the difference is
greater for lower percentage of FP. The reason is that for the
Bloom filter, the size of bit array and number of hash functions
increase significantly when lowering the percentage of FP for
a large number of items. As m is very small compared to
total number of logs, the increment in the size of bit array and
number of hash function is reduced using the Bloom-Tree.

PPL Generation: Figure 12b illustrates the performance
analysis of generating the Proof of Past Log of a day for
different configurations of the Bloom filter and the Bloom-
Tree. We notice that for both of the accumulator schemes,
the PPL generation time increases while increasing the total
number of logs and decreasing the FP probability. Figure 12b
illustrates that the Bloom filter outperforms the Bloom-Tree
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(a) Log Insertion
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(c) Best Case Integrity Verification
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Fig. 12: Comparison between the Bloom filter and the Bloom-Tree

when using same configuration. The cost of building the Bloom-
Tree is the reason behind its lower performance, since this is
an additional work and is not required for the Bloom filter.

Since the number of nodes and depth of the Bloom-Tree
increases with the total number of logs, the cost of building
the root (AED) increases and so does the PPL generation for
greater number of logs. The size of the bit array increases while
increasing the number of logs and decreasing the percentage
of FP. Since the cost of hashing increases with the size of
message, the PPL generation time for the Bloom filter also
increases with the size of the bit array.
Integrity Verification: For the Bloom-Tree, the auditor may
need to collect some extra logs. Hence, to compare the
performance for integrity verification, we considered two cases:
best case and worst case.

In the best case scenario of the Bloom-Tree, the auditor
collects the m number of logs, where the start index is SI and
SI mod m = 0. We compare the performance of verifying the
integrity of such m number of logs using the Bloom-Tree and
the Bloom filter for different FP probability and total number
of logs. Figure 12c depicts that the performance of the Bloom-
Tree is significantly better than the Bloom filter in the best
case scenario.

In the worst case scenario of the Bloom-Tree, the auditor
collects 2 ∗ (m − 1) additional logs and needs to verify the
integrity of those logs in order to verify the integrity of only
2 log entries. To compare the performance in this situation,
we measure the integrity verification time for 2m logs using
the Bloom-Tree and integrity verification time for 2 logs using
the Bloom-filter. From Figure 12d, we notice that even in the
worst case scenario, the Bloom-Tree performs better when the
percentage of FP is very low and number of total logs is high.

The reason for a better performance of the Bloom-Tree is
that the size of bit array is very small compared to the Bloom
filter and the cost of checking the bits increases linearly with
the size of the bit array. Moreover, we need to generate a
smaller number of bit positions for the Bloom-Tree, which
requires less number of hashing.
Storage Overhead: The storage overhead for Bloom filter
only depends on the storage requirement of the proofs. In the
Bloom filter, the size of the bit array depends on the expected
number of elements and FP probability. To ensure very low
FP probability for high number of expected elements, the size

of bit array needs to very high. For example, to ensure 1% FP
for 100,000 elements, the size of bit array needs to be 958,506
and to ensure 0.0001% FP for the same number of elements,
the size of bit array should be 2,875,518.
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Fig. 13: Analysis of Space Requirement
For the Bloom-Tree, we store the intermediate nodes of

the tree, which hold the membership information of a child
accumulator. The size of the bit array for the intermediate nodes
depends on the branching factor b. If b = 10, the intermediate
nodes only need to ensure the desired FP probability for 10
elements. For m = 1000 and b = 10, the Bloom-Tree scheme
needs to store only 11 nodes for 100,000 elements and the size
of these nodes depends on the FP probability. To ensure 1% FP
for 100,000 elements using the Bloom-Tree, we require 3960
bits including 32 bytes for storing parent identity and 1 byte
for a boolean attribute. This is 119.31 KBytes less compared
to the regular Bloom filter scheme. Figure 13a presents an
analysis of storage savings by the Bloom-Tree compared to
the Bloom filter for different configurations of FP and total
number of logs. Figure 13a depicts that storage savings by
the Bloom-Tree increases with the increase in number of logs
and decrease in percentage of FP. We notice that if the total
number of logs for a user in a day is 10,000,000 and we want
to ensure 0.0001% FP, the Bloom-Tree can save approximately
35 MBytes of storage. Considering SecLaaS is a continuous
process, the storage saving can reach several terabytes over
the years.

Performance Overhead. To identify the performance degra-
dation of NC for running SecLaaS, we measured the system
overhead from the CPU performance information of SysBench
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[48]. We first measured the CPU performance of NC while
it hosted different numbers of VMs and each VM was
executing the ping command to an external machine. Later,
we kept running Snort, Parser and Logger module on NC and
measured the CPU performance to identify the system overhead.
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Fig. 14: Performance Over-
head for different accumulator
schemes

Figure 14 represents the
overhead for different ac-
cumulator schemes. The
lowest and highest over-
head found was 1.67% and
3.28% and there was no
single accumulator scheme
which was best or worst in
terms of performance over-
head. Moreover, the over-
head did not increase with
the number of VMs; rather
we noticed a downward
trend of overhead with the
increase in number of VMs.
The reason behind this behavior is that the overhead of running
VMs is higher than the overhead of running SecLaaS. Therefore,
when the number of VMs increases, the overall overhead for
running SecLaaS decreases.

8 DISCUSSION

8.1 Selection of the Accumulator

Our previous work [26] reveals that the Bloom filter outper-
forms the RSA accumulator in all aspects, excepts the false
positive (FP) rate. In this paper, we propose the Bloom-Tree that
can ensure negligible FP while providing better performance
than the regular Bloom filter approach in terms of log insertion,
integrity verification, and space requirement. The Bloom-Tree
performs worse than the Bloom filter in PPL generation and
in the worst case scenario of integrity verification when the
FP is high. However, the PPL will be generated after a certain
epoch and that can be done by a background process without
affecting the regular log insertion process. Moreover, as our
goal is to provide better security by ensuring low FP rate, the
worst case scenario for high FP rate should not be considered
while selecting a better accumulator.

We considered to build a tree structure for the RSA
accumulator similar to the Bloom filter but our theoretical
analysis suggest that it will not be better than the regular RSA
accumulator. One of the reasons is that the performance (time
and space) of the RSA accumulator does not vary with the
total amount of expected log entries. It only varies with size
of the security parameters P, Q, and X. Figure 13b, shows
the overhead of storage requirement if we use tree-based
structure similar to the Bloom-Tree for the RSA accumulator.
In a tree-based accumulator, number of intermediate nodes
increases with the number of logs. For the RSA accumulator,
each intermediate node requires the space of the regular RSA
accumulator including the identity. Therefore, the storage
requirement increases with the number of logs. Introducing
the tree-based approach for the RSA accumulator will also
introduce higher time for PPL generation and log verification

because of the additional intermediate nodes. Considering all
of the criteria, we posit that the Bloom-Tree can be the best
choice to securely store large amount of logs.

8.2 Regulatory Compliant Cloud

Auditability is a vital issue to make the cloud compliant
with the regulatory acts, e.g., SOX [19] or HIPAA [20].
The SOX act mandates that the financial information must
reside in an auditable storage, which the CSPs cannot provide
currently. Business organizations cannot move their financial
information to the cloud infrastructure, as it does not comply
with the act. As clouds do not comply with HIPAA’s forensic
investigation requirements yet, hospitals cannot move their
patients’ medical information to a cloud storage. Preserving
the logs and the proofs of the logs securely will definitely
increase the auditability of the cloud environment. Using
our scheme, it is possible to store and provide any types
of logs from which we can get all the activities of cloud
users. Business and healthcare organizations are the two most
data consuming sectors; cloud computing cannot achieve the
ultimate success without including these two sectors. These
sectors are spending extensively to make their own regulatory-
compliant infrastructure. A regulatory-compliant cloud can
save this huge investment. Hence, we need to solve the audit
compliance issue to bring more customers in the cloud world.
Implementing SecLaaS can help to make the cloud more
compliant with such regulations, leading to widespread adoption
of clouds by major businesses and healthcare organizations.

9 CONCLUSION

To execute a successful forensics investigation in clouds,
the necessity of logs from different sources, e.g., network,
process, databases, is undeniable. Since today’s clouds offer
very little control compared to traditional computing systems,
investigators need to depend on CSPs to collect logs from
different sources. Unfortunately, there is no way to verify
whether the CSP is providing correct logs to the investigators,
or the investigators are presenting valid logs to the court.
Moreover, while providing the logs to the investigators, CSPs
need to preserve the privacy of the cloud users. Besides
protecting the cloud, we should also focus on these issues.
Unfortunately, there has been no solution that can make the logs
available to investigators, and at the same time, can preserve
the confidentiality and integrity of the logs. In this paper, we
addressed this problem, which can have significant real-life
implications in law enforcement investigating cyber-crime and
terrorism. We proposed SecLaaS, which can be a solution to
store and provide logs for forensics purpose securely. This
scheme will allow CSPs to store logs while preserving the
confidentiality of cloud users. Additionally, an auditor can
check the integrity of the logs using the Proof of Past Log
PPL and the Log Chain LC. We ran our proposed solution on
OpenStack and found it practically feasible to integrate with
the cloud infrastructure. In future, we will implement SecLaaS
as a module of OpenStack.
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