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Abstract: This paper deals with the state and parameter estimation problem for nonlinear
networked control systems. In contrast to the general assumption of synchronized clocks, the
different timescale of each sensor node is explicitly considered in the proposed method. This
renders conventional synchronization algorithms redundant and thus frees up the network
resources involved in the synchronization. To this end, the sensor measurements are transmitted
together with the corresponding time stamps as packets to the estimator via a communication
network. These packets are subject to random, variable and unbounded time delays which leads
to packet reordering as well as to packet drop. The presented method is capable of dealing
with the aforementioned circumstances by formulating the estimation problem as a suitable
optimization problem within a moving horizon framework. The resulting nonlinear program is
efficiently solved by an adapted sequential quadratic programming approach which exploits the
inherent structure in the problem formulation. Simulation results confirm the performance of
the proposed method.

Keywords: State estimation; Parameter estimation; Communication network; Time
synchronization; Nonlinear systems; Optimization problem; Nonlinear programming.

1. INTRODUCTION

Networked control systems (NCS) have received consider-
able attention in recent years and are now an active area of
research, see e. g. the overview papers of Hespanha et al.
(2007); Zampieri (2008); Yang (2006) and the references
therein. The growing interest for NCS is motivated by
many benefits they offer, such as their reduced installation
and maintenance costs coupled with their high flexibility
which offers new control oriented possibilities. However,
still many problems have to be resolved before all ad-
vantages of wired and wireless NCS can be harvested.
There is a need for methods that can deal with network
induced imperfections and constraints, like e. g. variable
sampling/transmission intervals, variable communication
delays, packet reorderings, packet drops, quantization ef-
fects and unsynchronized timescales. Therefore, it is advis-
able to incorporate these phenomena in the design process.

Some significant progress has been reported in the area of
linear estimation, analyzing the effect of packet loss, see
Nahi (1969); Sinopoli et al. (2004); Jin et al. (2006); Smith
and Seiler (2003), or the effect of variable random delay,
see Alexander (1991); Nilsson et al. (1998); Montestruque
and Antsaklis (2004). Both effects simultaneously has been
addressed in Yu et al. (2004); Schenato (2008); Shi et al.
(2008). However, state estimation for nonlinear NCS has
not been widely investigated yet. In Jin et al. (2007), two
approaches were discussed in the presence of a packet-
dropping network, namely the extended Kalman filter
(EKF) and the moving horizon estimation (MHE). A

moving horizon observer has been designed in Philipp and
Lohmann (2009), capable of dealing with variable time
delays and packet drops.

In all these works, the availability of perfectly synchronized
timescales is assumed, i. e. the clocks of all elements in
the network are exactly synchronized. However, this task
is anything but trivial and requires dedicated methods,
like e. g. the famous Network Time Protocol (NTP), see
Mills (1991). The higher the requirements on the synchro-
nization precision are, the more and the more frequently
packets have to be transmitted over the network solely for
synchronization. This reduces both the available capacity
of the network for the actual control or estimation task and
the limited energy supplies of the sensor nodes. The energy
cost of transmitting a packet of size 1 kB a distance of 100
m is approximately the same as that for executing 3 million
instructions by a 100 million instructions per second/W
processor. This justifies the need for NCS methods which
do not rely on synchronized clocks and thus circumvent
the aforementioned shortcomings.

In this article, an estimator is proposed for state and
parameter estimation in nonlinear NCS where each sensor
node possesses an unsynchronized timescale. Furthermore,
the transmitted packets are subject to random, variable
and unbounded time delays leading to packet reordering
and packet drop. The contribution of this paper is twofold:
first, it is shown how the estimation task which tackles the
problem above, can be formulated as a nonlinear program
(NLP) by adapting the classical MHE framework; second,
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it is shown how the resulting NLP can be efficiently solved
by extending a previous result on structure exploiting
derivative computation for MHE, see Philipp (2011b).

The remainder of this paper is organized as follows: In
Section 2, the state and parameter estimation problem
for nonlinear NCS is formulated. Based on the MHE
framework presented in Section 3, the key goal of this
paper, namely the estimator approach for nonlinear NCS is
derived in Section 4. Subsequently, in Section 5, a numer-
ical example is given to demonstrate the efficiency of the
proposed method in general and especially in contrast to
a conventional implemented continuous-discrete extended
Kalman filter (CDEKF) before the paper is concluded in
Section 6.

2. PROBLEM FORMULATION

Consider the structure of the NCS in Fig. 1. The plant
consists of the nonlinear continuous-time system

ẋ(t) = f(x(t), a, u(t)) + w(t), (1a)

where x ∈ Rn is the state vector with the initial value x0,
a ∈ Rq the parameter vector and u ∈ Rm the control
vector. The vector w ∈ R

n is an additive disturbance
affecting the system dynamics. The state vector is observed
through the measurement equation

y(t) = h(x(t)) + v(t), (1b)

where y ∈ R
p is the observation vector and v ∈ R

p

is a measurement noise vector. The functions f : Rn ×
R

q × Rm 7→ R
n and h : Rn 7→ R

p are assumed twice
differentiable. The statistics of w(t) and v(t) are unknown
and are considered as deterministic variables of unknown
character.

plant sensor

network τj

estimatorcontroller

t t

t t̄u(t)

{yi, t̄i, tj}j

{yi, t̄i}i
t̄i

â
x̂(t)

Fig. 1. Structure of the Networked Control System.

The communication network is located between the sen-
sor and the estimator. It is assumed that this network
transmits sufficiently large packets so that quantization
effects can be ignored. For instance, this is appropriate for
ethernet packets where the minimum size is 72 bytes while
a typical data point may only consume 2 bytes. Moreover,
each packet receives a random, variable and unbounded
time delay τi, i. e. the arbitrary and possibly time-varying
delay distribution is supported on the semi-infinite interval
[0,∞). This can introduce packet reordering, i. e. the order
of the packets are inverted in the network due to e. g.
multi-path routing or parallelism at the routers and causes
possible packet drops if the time delays tend to infinity.

The plant, the controller and the estimator are time syn-
chronized and share the global timescale t, however, the
sensor uses its own unsynchronized timescale t̄. The sensor
samples the output y(t) non-uniformly using an event-
based strategy, e. g. when some thresholds are exceeded.
Subsequently, the sampled measurement yi is transmitted

through the communication network together with its rela-
tive time stamp t̄i indicating when the sampling occurred
as a packet of the form {yi, t̄i}. If the packet arrives at
the estimator, the packet is augmented by the arrival time
stamp tj to yield the packet {yi, t̄i, tj}.

The natural arising question is how to design an estimator
capable of dealing with the described scenario. More
precisely, the objective is to estimate, from the sequence
of 3-tuples {yi, t̄i, tj} in combination with the input u(t),
the current state vector x(t) and the unknown parameter
vector a.

Remark 1. For simplicity of presentation, only one sensor
is considered. It is straightforward to extend the concept
to the general case of several different sensors, each with
different timescales t̄.

3. MOVING HORIZON ESTIMATION

In this section, state estimation is addressed within a
MHE framework for the “classical” case, i. e. without
the network, without parameter estimation and with one
global timescale t. For further details see e. g. Rao et al.
(2003) and the references therein.

The sampled-data representation, obtained by measuring
the observation vector at times tk for k = 0, 1, . . ., is
derived by integrating (1) over the interval [tk, tk+1]

xk+1 = xk +

∫ tk+1

tk

f(x(t), u(t)) dt+ wk (2a)

yk = h(xk) + vk. (2b)

The objective in the MHE framework is to derive for any
k = N,N + 1, . . . estimates 1 of the stacked state vector
x̂k = [x̂T

k−N , . . . , x̂T
k ]

T ∈ R(N+1)n and the stacked state

disturbance vector ŵk = [ŵT
k−N , . . . , ŵT

k−1]
T ∈ RNn on

the basis of the information vector

ηk = [ [yTk−N , . . . , yTk ]
︸ ︷︷ ︸

, u(t)T
︸ ︷︷ ︸

]T , t ∈ [tk−N , tk]

= [ yT
k , uT

k ]T ∈ R(N+1)p+m, (3)

where N + 1 measurements and the input vector are col-
lected within a “moving horizon” (MH) interval [k−N, k].
Note that this general formulation allows several cases for
the control vector u(t), like e. g. zero-order hold discretiza-
tion or even a completely continuous signal, even though
the control information in the interval t ∈ [tk−N , tk] is
denoted with uk. More specifically, the estimator addresses
for any k = N,N +1, . . . the minimization of the following
cost function

Jk(ηk) = Γ(x̂k−N ) +

k∑

i=k−N

Υi(v̂i) +

k−1∑

i=k−N

Ψi(ŵi), (4)

where the first term, known as the arrival cost, penalizes
the distance from the estimate x̂k−N of the state at the
beginning of the moving horizon to some prediction x̄k−N .
This prediction x̄k−N of the initial state is obtained by
incorporating past information y0, . . . , yk−N−1 and u(t)
in the interval t ∈ [t0, tk−N [, which is not explicitly
accounted for in the objective function. The second term
is a penalization of the measurement noise, whereas the
third term is a penalization of the state disturbance. The
1 Estimated values are denoted with a “ˆ” to distinguish them from

the true values.
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functions Γ(·), Υ(·) and Ψ(·) are often chosen to be squared
weighted L2-norms ‖·‖2M , where M is a symmetric positive
definite matrix.

Consequently, the NLP problem of the MHE can be
derived by eliminating v̂i in (4) using the measurement
equation (2b)

min
x̂k,ŵk

Γ(x̂k−N ) +
k∑

i=k−N

Υi(yi, x̂i) +
k−1∑

i=k−N

Ψi(ŵi) (5a)

s. t. x̂i+1−x̂i−

∫ ti+1

ti

f(x̂(t), u(t)) dt−ŵi = 0, ∀i ∈ K (5b)

ci(x̂i, ŵi) ≥ 0, ∀i ∈ K (5c)

ck(x̂k) ≥ 0, (5d)

where K = {k − N, . . . , k − 1} is the set of indices
corresponding to the current moving horizon and ci are
the inequality constraints where ≥ denotes componentwise
inequality. The functions ci : R

n ×Rn 7→ R
n, ∀i ∈ K and

ck : Rn 7→ R
n are assumed to be twice differentiable.

They allow to model bounded disturbances and physical
constraints which are not implicitly enforced by the system
equations due to model inaccuracies. From the solution
x̂k, ŵk of this problem, the current state x̂k can be
extracted.

4. ESTIMATION STRATEGY

Before applying the described MHE framework in a suit-
able manner to the problem formulated in Section 2, the
properties of the sensor clock have to be investigated first.

4.1 Clock Modeling

As sensor nodes are likely to be powered up at random,
their clocks will have different values if queried at any
given time. This difference is also known as clock phase
error. At heart of most clocks on computing equipment
is a quartz crystal oscillator. While these are more stable
than most other forms of oscillators, they do vary with
temperature, pressure and other subtle influences. The
cheaper the crystal oscillators are, the more questionable is
their precision. These facts lead to slightly different crystal
oscillation causing the phase error of each individual
clock to drift over time. This behavior is known as clock
frequency error.

Low-cost sensor hardware does not typically contain such
dedicated oscillators. Such devices are often only able
to make use of internal processor counter to provide a
software clock started at power up which has a much lower
precision. To incorporate both phenomena, the following
clock model is proposed

t = s t̄+ to, (6)

where to and s accommodate for the clock phase error and
the clock frequency error, respectively. It is reasonable to
assume that s and to are constant for sufficiently small
time intervals.

4.2 Time Delay Representation

With the assistance of this clock model, the different
timescales and the impact of network effects on the trans-
mitted packets can be illustrated in Fig. 2. A cross on

y1

y2

y3

y4

t̄1

t̄2

t̄3

t̄4

st̄1 + to st̄2 + to st̄3 + to st̄4 + to
t1 − τ1 t3 − τ3 t2 − τ2

to

γ = arctan(s)

γ

0

0

t̄

t

t

conversion line: t = s t̄+ to

t1 t2 t3τ1 τ3 τ2

Fig. 2. Illustration of the different timescales and the
impact of network effects on the transmitted packets.

the vertical upper left sensor timescale t̄ represents the
sampled measurements yi at the time t̄i. This situation
can be transformed in the global timescale t by applying
(6) and is shown on the horizontal middle timescale t.
The parameters s and to determine the slope and the axis
intercept of the conversion line, respectively. At the time
s t̄i+ to, the corresponding packet will be sent through the
network and arrives after an unknown time delay τj at
time tj at the estimator, provided no packet drop occurs.
This τj represents an overall time delay caused by e. g.
sensor processing and transmission through the network.
The resulting situation can be visualized on the horizontal
lower timescale t. Note that packet reordering has taken
place, whenever two arrows intersected.

Based on these considerations, all time delays can be
expressed as

τj = tj − s t̄i − to (7)

and depend due to the time stamps and the clock model
only on the unknown parameters s and to.

4.3 Buffer Design

The estimator has the ability to store a fixed number
of packets in a buffer which forms the information basis
for the estimator. The decision logic that decides which
packets to store and which to discard can be seen in
Algorithm 1.

Algorithm 1 Estimator Buffer

Require: number of measurements in the moving horizon
N + 1

1: initialize clock variable ϕ = 0
2: initialize packet counter l = 0
3: while ϕ > 0 do
4: if ϕ = tj then
5: 1) Add packet j to the buffer & set l← l + 1
6: 2) Sort the packets in the buffer by the relative

time stamps in ascending order
7: if l > N + 1 then
8: Discard first packet from buffer & set l← l− 1

This buffer design has two main advantages. First, it
is optimal in the sense that the latest measurements
according to the actual sampling order are stored subject
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to the condition of limited memory buffer capacity. Second,
the impact of packet reordering is countered successfully,
as long as the time stamp of the latest arrived packet is
not the first packet after sorting. In this case, the packet is
immediately dropped and the information cannot be used
by the estimator. To reduce the occurrence of this effect,
the moving horizon length N can be increased.

4.4 Formulation of the MHE Optimization Problem

Based on the previous considerations, the MHE framework
presented in Section 3 can now be applied in a suitable
manner. The sampled-data representation of the N + 1
measurements in the buffer can be derived by integrating
(1) over the intervals [tj − τj , tj+1 − τj+1] or equivalently
[s t̄i + to, s t̄i+1 + to]

xi+1 = xi +

∫ s t̄i+1+to

s t̄i+to

f(x(t), a, u(t)) dt+ wi (8a)

yi = h(xi) + vi (8b)

for i = k − N, . . . , k, where k denotes the last packet in
the sorted buffer. Regarding the NLP (5), the equality
constraint (5b) describing the system dynamics is replaced
by (8a). Consequently, the optimization variables, the
arrival cost function and the inequality constraints are
extended by ŝ, t̂o and â. These modifications yield

min
ŝ,t̂o,x̂k

â,ŵk

Γ(ŝ, t̂o, x̂k−N , â) +
k∑

i=k−N

Υi(yi, x̂i) +
k−1∑

i=k−N

Ψi(ŵi)(9a)

subject to

x̂i+1−x̂i−

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

f(x̂(t), â, u(t)) dt− ŵi = 0, ∀i ∈ K (9b)

ci(x̂i, ŵi) ≥ 0, ∀i ∈ K (9c)

ck(x̂k) ≥ 0 (9d)

d(ŝ, t̂o, â) ≥ 0, (9e)

where the inequality d : R×R×Rq 7→ R
q+2 is assumed to

be twice differentiable and allows to incorporate additional
information about ŝ, t̂o and â in the form of constraints.

4.5 Newton Type Optimization

In order to shorten the notation involved for solving
the NLP (9), an overall optimization variable p ∈
R

(N+1)n+q+2

p = [ŝ, t̂o, x̂
T
k−N , âT , ŵT

k−N , . . . , ŵT
k−1]

T (10)

and an overall inequality function c : R(N+1)n+q+2 7→
R

(N+1)n+q+2

c = [ck−N (x̂k−N , ŵk−N )T , . . . , ck−1(x̂k−1, ŵk−1)
T ,

ck(x̂k)
T , d(ŝ, t̂o, â)

T ]T (11)

are defined. The equality constraint (9b) uniquely deter-
mines all the states x̂i in the current moving horizon if
the vectors p and uk are fixed. Thus, an implicit function
x̃i(p,uk) that satisfies (9b) for all p and uk by a system
simulation can be defined. Consequently, the constraint
(9b) can be replaced in the optimization problem by sub-
stituting the function x̃i(p,uk) with x̂i. Hence, the NLP
can be reduced to

min
p

Γ(ŝ, t̂o, x̂k−N , â) +

k∑

i=k−N

Υi(yi, x̃i(p,uk)) +

k−1∑

i=k−N

Ψi(ŵi)

(12a)

subject to: ci(x̃i(p,uk), ŵi) ≥ 0, ∀i ∈ K (12b)

ck(x̃k(p,uk)) ≥ 0 (12c)

d(ŝ, t̂o, â) ≥ 0. (12d)

The advantage of this approach is the strongly reduced
variable space compared to the original problem. However,
the computation of the involved derivatives is more costly,
but there is a certain structure in the problem which will
be exploited in Section 4.7.

To simplify the analysis, the arguments of all functions
are in the following suppressed from the notation when
the meaning is otherwise clear. The NLP (12) can be
iteratively solved by applying the sequential quadratic
programming (SQP) method. The basic idea of the SQP
approach is to linearize in every iteration step the Karush-
Kuhn-Tucker (KKT) conditions. It turns out that the
resulting linear complementary system can be interpreted
as the KKT conditions of the following quadratic program
(QP)

min
∆p

∂L

∂p

T

∆p+
1

2
∆pT ∂2L

∂p2
∆p (13a)

subject to: c+
∂c

∂p
∆p ≥ 0. (13b)

Thereby, L is the Lagrange function

L(p,λ) = Γ +

k∑

i=k−N

Υi +

k−1∑

i=k−N

Ψi − λT c, (13c)

where λ = [λT
k−N , . . . , λT

k , µ
T ]T ∈ R

(N+1)n+q+2 is a
vector of Lagrange multipliers. The accuracy as well as the
solution time of the SQP method mainly depend on two
circumstances: a proper initial condition of p and λ, and
an accurate and fast computation of the first and second-
order derivative of the Lagrange function (13c).

4.6 Choice of the Initial Conditions

In general, the initial conditions for p and λ are taken
from the solution of the previous NLP for a warm start
of the optimization. For the first optimization, however,
some proper initial guesses have to be provided. This is
especially difficult for the clock parameters ŝ and t̂o. For-
tunately, these two values are, unlike all other parameters
in p, not required for the prediction of the current state
right from the start. This property is used in Algorithm 2
to form a proper guess of s and to.

As soon as the N+1-th packet arrives at the estimator, the
main part of the algorithm is executed. The time stamps
in each packet of the buffer are used in association with (7)
and some provided guesses of the lower and upper bound
of the time delay, to form for each packet the inequality
τmin ≤ tj− ŝ t̄i− t̂o ≤ τmax. Note that the bounds τmin and
τmax do not have to be tight or even true in order to yield
some proper initial guesses for the optimization. Combing
all inequalities yields the polytope P, see Fig. 3 (left).

A reasonable choice for the initial conditions of ŝ and
t̂o would be the center of P. However, its determination
involves costly numerical calculations, like e. g. finding the
inequalities in P which are actually necessary for describ-
ing the domain of P and the subsequent computation of its
vertexes. An alternative choice is the center Ω of an easy
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Algorithm 2 Initial Conditions for ŝ and t̂o
Require: guesses of lower and upper bound τmin, τmax

Require: directions of over-approximation m1, . . . ,mz

1: initialize clock variable ϕ = 0
2: while ϕ > 0 do
3: if ϕ = tN+1 then
4: 1) Form polytope P

P =

{[
ŝ
t̂o

]

∈ R2

∣
∣
∣
∣

[
t̄i 1
−t̄i −1

] [
ŝ
t̂o

]

≤

[
−τmin + tj
τmax − tj

]

,

j = 1 . . . , N + 1}

5: 2) Determine bounds bi in the directions of mi

bi = max
[ŝ t̂o]T∈P

mT
i

[
ŝ
t̂o

]

, i = 1, . . . , z

6: 3) Calculate center Ω of over-approximation A

A =







[
ŝ
t̂o

]

∈ R2

∣
∣
∣
∣
∣
∣
∣






mT
1
...

mT
z






[
ŝ
t̂o

]

≤






b1
...
bz












Output: Center Ω as initial conditions

upper bounds

lower bounds

polytope P

bi in direction of mi

over-approximation A

center Ω of A

m1

m2

m3

m4

t̂ o

ŝŝ

Fig. 3. Illustration of the intersections of the half-
spaces defining the polytope P (left) and the over-
approximation A with its center Ω (right).

to compute over-approximation of P, see Fig. 3 (right). To
this end, some directions of the over-approximations mi

have to be provided, e. g. the unit vectors ±e1 and ±e2.
The over-approximation can be formulated as the polytope
A (see line 6 of Alg. 2) with the elements bi resulting from
the solution of the linear programs defined in line 5.

4.7 Derivative Computation

The second part that significantly contributes to the effi-
cient solution of the NLP (9) is the derivative computation
of the Lagrange function (13c). A common method to
compute the gradient of L is by finite differences. For
instance, the elements of ∂L/∂p can be approximated by
the central-difference formula ∂L/∂pi ≈ (L(p + ǫ ei) −
L(p − ǫ ei))/(2ǫ) for i = 1, . . . , (N + 1)n + q + 2, where
ǫ is a small positive scalar and ei is the i-th unit vector.
However, it is strongly advised not to use this method
here due to the high numerical complexity and the poor
achieved accuracy. The evaluation is as costly as solving
2n[(N + 1)n + q + 2] ODEs over the complete moving
horizon interval [ŝ t̄k−N + t̂o, ŝ t̄k + t̂o].

Alternatively, the exact derivatives of (13c) can be calcu-
lated by applying the chain rule whereby the dependence
of x̃i on p has to be considered. This leads to the exact
gradient

∂L

∂p
=

∂Γ

∂p
+

k∑

i=k−N

∂x̃i

∂p

T∂Υi

∂x̃i

+
k−1∑

i=k−N

∂Ψi

∂p
−

k∑

i=k−N

∂x̃i

∂p

T ∂ci
∂x̃i

T

λi−
∂d

∂p

T

µ
(14)

where

∂x̃i

∂p
=

[
∂x̃i

∂ŝ
,
∂x̃i

∂t̂o
,

∂x̃i

∂x̂k−N

,
∂x̃i

∂â
,

∂x̃i

∂ŵk−N

, . . . ,
∂x̃i

∂ŵk−1

]

(15)

are for i = k − N, . . . , k the first-order sensitivities of x̃i

with respect to p evaluated at the corresponding sampling
times on the moving horizon interval.

In the following, the approach developed in Philipp
(2011b) for computing these sensitivities is extended. It is
assumed that w(t) is discretized using zero-order hold lead-
ing to a piecewise constant estimation ŵ(t) = ŵj/(ŝ Tj),

ŝ t̄j + t̂o < t ≤ ŝ t̄j+1 + t̂o, where Tj = t̄j+1 − t̄j . Note that
this assumption is not necessary but it does simplify the
description to follow.

Notation 1. The abbreviation Xα
β , Y α

β and j
Z

α
β denotes

the solution of the corresponding first-order sensitivity

ODE Ẋ =
∂f

∂x̂
X, Ẏ =

∂f

∂x̂
Y +

∂f

∂â
and

j
Ż =

∂f

∂x̂
j
Z +

1

ŝ Tj

I

at the time ŝ tβ + t̂o with the initial value I, 0 and 0 at the

initial time ŝ tα + t̂o, respectively.

Theorem 1. The first-order sensitivities defined in (15) are
for i = k −N + 1, . . . , k

∂x̃i

∂ŝ
= t̄ifi − t̄k−NXi−1

i Xi−2
i−1 . . . X

k−N
k−N+1fk−N

+
i−1∑

j=k−N

Xi−1
i Xi−2

i−1 . . . X
j+1
j+2

(

t̄j+1I − t̄jX
j
j+1

) ŵj

ŝ Tj

−
1

ŝ

i−1∑

j=k−N

Xi−1
i Xi−2

i−1 . . . X
j+1
j+2

j
Z

j
j+1 ŵj (16a)

∂x̃i

∂t̂o
= fi −Xi−1

i Xi−2
i−1 . . . X

k−N
k−N+1fk−N

+
i−1∑

j=k−N

Xi−1
i Xi−2

i−1 . . . X
j+1
j+2

(

I −Xj
j+1

) ŵj

ŝ Tj

(16b)

∂x̃i

∂x̂k−N

= Xi−1
i Xi−2

i−1 . . . X
k−N+1
k−N+2X

k−N
k−N+1 (16c)

∂x̃i

∂â
= Y k−N

i (16d)

∂x̃i

∂ŵl

=

{
0, i < l + 1

Xi−1
i Xi−2

i−1 . . . X
l+1
l+2

l
Z

l
j+1, i ≥ l + 1

,

l = k −N, . . . , k − 1 (16e)

and for i = k−N all identical to 0, except ∂x̃k−N/∂x̂k−N

which is identity I.

Proof. For the proof of (16a)-(16b) see Philipp (2011a).
The proof of (16c)-(16e) results from Philipp (2011b) and
is omitted here due to space limitations. �

The advantage of this theorem over the finite difference
method is two-fold. First, the number of ODEs that have
to be solved over the complete interval [ŝ t̄k−N + t̂o, ŝ t̄k +
t̂o] is independent of the horizon length N and thus
independent of the number of unknowns, namely n(2n +
1+ q). Second, these ODEs are independent of each other
and can thus be solved in parallel.
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The finite differences method can once again be applied to
approximate the Hessian of L. However, the computational
complexity is even higher than in the former case. An alter-
native and more commonly used method is to estimate the
Hessian by applying a quasi-Newton approximation which
measures only the changes in the gradients, see Nocedal
and Wright (2000). The drawback of this approximation
method is that it does not explicitly consider the true
structure of the Hessian which may result in significant
deviations from the real one. As a consequence, the quality
of the iterations can be poor, and many costly steps are re-
quired to converge to a local optimum. For this reason, the
following approach is proposed to improve the convergence
speed by exploiting the structure of the Hessian.

The exact Hessian of L is derived from (14) by applying
the chain rule and partitioned into two parts ∂2L/∂p2 =
H1 + H2. All terms that do not involve the second-order
sensitivities are collected in H1:

H1 =
∂2Γ

∂p2
+

k∑

i=k−N

∂x̃i

∂p

T ∂2Υi

∂x̃2
i

∂x̃i

∂p
+

k−1∑

i=k−N

∂2Ψi

∂p2

−
k∑

i=k−N

n∑

j=1

λi,j

∂x̃i

∂p

T ∂2ci,j
∂x̃2

i

∂x̃i

∂p
−

q+2
∑

j=1

µj

∂2dj
∂p2

, (17a)

where µj , dj , ci,j and λi,j denote the j-th element of µ, d, ci
and λi, respectively. Consequently, H2 contains only the
terms involving the second-order sensitivities ∂2x̃i,j/∂p

2

of the j-th element of x̃i:

H2 =

k∑

i=k−N

n∑

j=1

(
∂Υi

∂x̃i,j

−

(

λT
i

∂ci
∂x̃i,j

))
∂2x̃i,j

∂p2
. (17b)

H1 can be easily calculated due to the already available
first-order sensitivities that were necessary for the compu-
tation of ∂L/∂p. Depending on the nonlinearities of the
system, H2 can be either neglected or approximated by
a BFGS update strategy. For further details see Philipp
(2011b).

4.8 NCS Moving Horizon Estimator Algorithm

The main parts of the overall NCS moving horizon estima-
tor (NCS-MHE) are summarized in Algorithm 3 (details
are omitted). After the SQP algorithm which is initialized
in line 14 is terminated, the estimated states are updated
in line 19 leading to a possible jump in the states. The
prediction in line 20 is performed by solving the system
equations forward in time.

5. NUMERICAL CASE STUDY

In this section, the NCS-MHE and a conventional CDEKF,
see appendix A, are applied to a nonlinear continuously
stirred tank reactor (CSTR), see Hicks and Ray (1971);
Uppal et al. (1974), described by

ẋ1(t) = p1(xa − x1(t))− p2x1(t) exp

(

−
EA

Rx2(t)

)

+ w1(t)

ẋ2(t) = p1(xb − x2(t)) + p2p3x1(t) exp

(

−
EA

Rx2(t)

)

+ p4(u(t)− x2(t)) + w2(t)

The system involves two states x = [x1, x2]
T , correspond-

ing to the concentration and the temperature, respectively,

Algorithm 3 NCS Moving Horizon Estimator

Require: number of measurements in the moving horizon
N + 1

Require: guesses of lower and upper bound τmin, τmax

Require: directions of over-approximation m1, . . . ,mz

1: initialize clock variable ϕ = 0
2: initialize packet counter l = 0
3: while ϕ > 0 do
4: if ϕ = tj then
5: 1) Add packet j to the buffer & set l← l + 1
6: 2) Sort the packets in the buffer by the relative

time stamps in ascending order
7: if l > N + 1 then
8: Discard first packet from buffer & set l← l− 1
9: if ϕ = tN+1 then

10: 1) Form polytope P
11: 2) Determine bounds bi in the directions of mi

12: 3) Calculate center Ω of over-approximation A
13: if l > N & packet j ∈ buffer then
14: while termination conditions = false do
15: 1) Calculate x̂i for the last N + 1 packets in

the buffer
16: 2) Calculate L, ∂L/∂p, ∂2L/∂p2

17: 3) Solve quadratic program
18: 4) Update p, λ
19: Update x̂(ϕ), â, ŝ and t̂o
20: Predict x̂(ϕ)

one control u corresponding to the cooling water temper-
ature and two process noise sequences w = [w1, w2]

T .
The initial condition is x0 = [0.5, 19.6]T and the model
parameters are EA = 10, R = 1, xa = 2, xb = 1, p1 = 1,
p2 = 5, p3 = 1 and p4 = 1. The sensor node which
measures the temperature shall be able to move freely in
the surrounding reaction mixture. This node possesses an
unsynchronized clock in compliance with the clock model
(6) where the parameters are set to s = 1.1 and to = 15s. A
packet is transmitted, consisting of a measurement and the
corresponding relative time stamp, if one of the following
conditions are true based on the information in latest
transmitted packet: the measured temperature changes
about 0.5 or 0.9s are elapsed according to the clock of
the sensor node. The measurements are generated from
a simulated closed-loop feedback control scenario with
Gaussian process noise sequences with standard deviations
σw1

= 0.2828 and σw2
= 2. Afterwards, the resulting tem-

peratures are corrupted with different levels of Gaussian
noise with standard deviation σy = 1 to simulate measure-
ment noise. The objective is to estimate the current states
of the CSTR.

To this end, the NCS-MHE uses the following cost function

Jk = ‖̺− ¯̺‖2P +

k∑

i=k−N

‖yi − ŷi‖
2
R +

k−1∑

i=k−N

‖ŵi‖
2
Q

where ̺ = [ŝ, t̂o, x̂
T
k−N ]T collects some optimization vari-

ables and ¯̺= [s̄, t̄o, x̄
T
k−N ]T are the corresponding predic-

tions resulting from the optimal solution of the preceding
horizon. The weighting matrices are P = diag(10, 10, 1),
R = 1/σ2

y and Q = diag(1/σ2
w1

, 1/σ2
w2

) and the number of
measurements in the horizon is N + 1 = 8. The optimiza-
tion variable p is initialized with [∗, ∗, 1.5, 5, 0, . . . , 0]T .
Thereby, the two stars indicate the application of Al-
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gorithm 2 leading to the automatically generated initial
conditions ŝ = 1.104 and t̂o = 13.695 where τmin = 0 and
τmax = 5 where used. Note that precisely this scenario can
be seen in Fig. 3.

The weighting matrices and the initial condition of the
CDEKF are identical to the NCS-MHE. The CDEKF
checks whenever a new packet arrives if its relative time
stamp is newer than the one used for the last update
step. If this is true, an update step (A.3) is performed
where the arrival time is used as the time where the
corresponding sampling occurred, i. e. the time delays are
neglected. Otherwise the packet will be dropped and the
prediction according to (A.2) proceeds.

In Fig. 4, the performance of the NCS-MHE and the
CDEKF is presented. Both methods perform identical
until the first packet arrives. In contrast to the NCS-MHE
which has to wait until the 8th packet arrives, the CDEKF
already performs at this point its first update step. The
corresponding updates result for both methods in a jump
in the estimated states. The estimation quality of the NCS-
MHE is quite satisfying in general and especially good
compared to the CDEKF. It only performs reasonable in
regions where y(ti) = y(ti − τi), i. e. when the system
dynamics are slow compared to the time delays, like e. g.
in the interval t ∈ [7s, 10s]. Otherwise, the time shift
of the estimated states caused by the time delays can
be seen whenever an update step occurs. The numerical
complexity for the NCS-MHE and the CDEKF consists in
solving ten (per iteration) and six ODEs, respectively. The
NCS-MHE requires three iterations in the first and only
one in the later moving horizons.

true state

CDEKF

NCS-MHE

t[s]

x
1

x
2

0
0

0
0

5

5

10

10

10

15

15
20

1

2

Fig. 4. Comparison between the true and estimated states
of the CDEKF and NCS-MHE.

In the upper plot of Fig. 5, the above detailed sampling
strategy for the measured temperature can be seen in the
interval [0.5s, 4s]. A cross or a circle represents a sampling
instance whereas the former indicates a successful trans-
mission of the corresponding packet and the latter implies
a packet drop. The sampling times of these measurements
can also be seen in the lower plot of Fig. 5 which are
equivalent to the sending time points. They are located
on the vertical axis with value 1 and are connected by a
solid line to the arrival time points at the estimator which
are on the vertical axis with value 0. Packet reordering has
taken place whenever two lines intersected. Note that the
aforementioned jumping behavior of the estimated states
can be observed more clearly in the upper plot of Fig. 5.

In the upper plot of Fig. 6, the time delay distribution
is specified. The packet drop rate is 14.14%. The perfor-

packet received

packet lost

buffer filled

1. packet
arrived

t[s]

y

0

0

1

1

1

2

2

3

3

4

4

10

20

Fig. 5. Top: Sampling instances of the measured tem-
perature. Bottom: Run of the packets through the
network.

mance of the NCS-MHE regarding the estimation of the
time delays is presented in the lower plot of Fig. 6. The
relative errors of the estimated parameters ŝ and t̂o are
below 2% leading to a good estimation quality of the time
delays.

estimated τ

true τ

τ [s]

packet number

τ
[s
]

0

0
0 0.5

1

1 1.5
2

2 2.5

5

10

20 25 30 35

Fig. 6. Top: Illustration of the time delay distribution.
Bottom: Comparison of the true and estimated time
delays.

6. CONCLUSION AND FUTURE WORK

In this paper, the state and parameter estimation prob-
lem for nonlinear networked control systems is consid-
ered. Based on a suitable buffer design, a moving horizon
estimator is presented which is capable of dealing with
the network induced imperfections such as unsynchronized
clocks and unbounded variable time delays of the transmit-
ted packets. The resulting nonlinear program is efficiently
solved by a sequential quadratic programming approach
which exploits the structure in the problem formulation
as wells as in the derivatives.

Future work is directed on the one hand towards deriv-
ing stability and observability properties of the proposed
estimator and on the other hand to conduct experiments
using a test-rig to demonstrate the results of this paper.
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Appendix A. CONTINUOUS-DISCRETE EXTENDED
KALMAN FILTER

Consider the continuous nonlinear system

ẋ(t) = f(x(t), u(t)) + w(t) (A.1a)

where x ∈ Rn is the state vector, u ∈ Rm is the control
vector and w ∈ Rn is the normally distributed process
noise vector, i. e. w(t) ∼ N (0, Q(t)). The state vector is
observed through the discrete measurement equation

yk = h(x(tk)) + vk, k = 1, 2, . . . (A.1b)

where yk ∈ R
p is the observation vector and vk ∈ R

p is
the normally distributed measurement noise vector, i. e.
vk ∼ N (0, Rk).

The mean and the covariance of the initial state are
assumed to be x̂0 and P0, respectively, i. e. x(t0) ∼
N (x̂0, P0). Then the continuous-discrete extended Kalman
filter (CDEKF) for prediction and updating may be stated
as follows, see Gelb (1974), where the upper indices − and
+ denotes the times immediately before and immediately
after a discrete measurement.

Prediction:

The one-step ahead predictions for the state x̂−

k = x̂(tk)

and its covariance P̂−

k = P̂ (tk) are computed as the
solution to the system of differential equations

˙̂x(t) = f(x̂(t), u(t)) (A.2a)

Ṗ (t) = F (t)P (t) + P (t)F (t)T +Q(t), (A.2b)

in which

F (t) =
∂f

∂x

∣
∣
∣
∣
x(t)=x̂(t)

(A.2c)

with the initial conditions x̂(tk−1) = x̂−

k−1 and P̂ (tk−1) =

P̂−

k−1.

Updating:

Utilizing the gain matrix

Kk = P−

k HT
k

(
HkP

−

k HT
k +Rk

)−1
, (A.3a)

the filtered state x̂+
k and its covariance P+

k are calculated
by

x̂+
k = x̂−

k +Kk

(
yk − h(x̂−

k )
)

(A.3b)

P+
k = (I −KkHk)P

−

k (A.3c)

where

Hk =
∂h

∂x

∣
∣
∣
∣
x(tk)=x̂

−

k

. (A.3d)
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