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Abstract

Accurate prediction of forthcoming faults in modern industrial machines plays a key role

in reducing production arrest, increasing the safety of plant operations, and optimizing

manufacturing costs. The most effective condition monitoring techniques are based on

the analysis of historical process data. In this paper we show how Least Squares Sup-

port Vector Machines (LS-SVMs) can be used effectively for early fault detection in an

online fashion. Although LS-SVMs are existing artificial intelligence methods, in this

paper the novelty is represented by their successful application to a complex industrial

use case, where other approaches are commonly used in practice. In particular, in the first

part we present an unsupervised approach that uses Kernel Spectral Clustering (KSC) on

the sensor data coming from a vertical form seal and fill (VFFS) machine, in order to

distinguish between normal operating condition and abnormal situations. Basically, we

describe how KSC is able to detect in advance the need of maintenance actions in the anal-

ysed machine, due the degradation of the sealing jaws. In the second part we illustrate a

nonlinear auto-regressive model (NAR), thus a supervised learning technique, in the LS-

SVM framework. We show that we succeed in modelling appropriately the degradation

process affecting the machine, and we are capable to accurately predict the evolution of

Preprint submitted to Engineering Applications of Artificial Intelligence September 17, 2014



dirt accumulation in the sealing jaws.

Keywords: kernel spectral clustering; LS-SVMs; NAR; time-series prediction;

condition monitoring; maintenance; fault detection, machine degradation, artificial

intelligence.

1. Introduction1

In industrial processes, the detection and analysis of faults ensure product2

quality and operational safety [26]. Traditionally, three ways to deal with sensory3

faults have been used [30],[31],[32]: corrective maintenance, preventive main-4

tenance and predictive maintenance. Corrective maintenance is performed only5

when the machine fails, it is expensive and safety and environmental issues arise.6

Preventive maintenance [16] is based on periodic replacement of components,7

which are then utilized in a non-optimal way. Predictive maintenance [5] can8

be performed in a manual or automatic fashion. In the first case machines are9

manually checked with expensive monitoring techniques and the components are10

replaced according to their real status. In the second case a machine’s status is11

automatically inspected and maintenance is planned accordingly. The continuous12

monitoring of machine parts leads to reliable and accurate lifetime predictions,13

and maintenance operations can be fully automated and implemented in a cost14

effective way.15

Nowadays, in many industries several process variables like temperature, pres-16

sure etc. can be measured. These measurements give an information on the current17

status of a machine and can be used to predict the faults due to deterioration of18

key components [23, 10]. As a consequence, an optimal maintenance strategy can19

be planned.20

Condition monitoring using sensor data has been performed for long time by21

means of basic methods like exponentially weighted moving average, cumulative22

sum, principal component analysis (PCA) [9], [6]. Only in the past few years23

engineers in companies started to get convinced to use more advanced techniques24

for fault detection, like for instance SVMs approaches in semiconductor manu-25

facturing [25, 15]. In this realm, with the aim of contributing to bridge the gap26

between academia and industry, we propose to use LS-SVMs for predictive main-27

tenance. LS-SVMs [28, 27] are an artificial intelligence technique characterized28

by an high quality generalization capability [29], the flexibility in the model de-29

sign and a clear procedure for model selection. Basically, for a given machine30

we can construct a reliable model of the degradation process to be able to opti-31
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mize the time of maintenance. For this purpose here we propose two alternative32

approaches with different associated costs, applied to predictive maintenance in a33

vertical form seal and fill (VFFS) machine:34

• clustering of vibration signals collected by accelerometers. This technique35

is cheap because of the relatively low cost of the accelerometers. On the36

other hand, the clustering model does not directly predict machine’s deteri-37

oration, but it infers the degradation based on vibration data.38

• regression applied to thermal camera data. The number of hot area pixels39

present in the images acquired by the camera represent a direct measure of40

degradation. A nonlinear autoregressive model is then used to forecast the41

future trend of machine’s deterioration. This procedure is more reliable than42

the clustering-based methodology because in this case a direct prediction of43

the degradation is achieved. On the other hand, it is more expensive because44

of the higher cost of the thermal camera w.r.t. the accelerometers.45

In the first part of this work we describe the use of kernel spectral clustering46

(KSC, [2]) for identifying in advance when the (VFFS) machine enters critical47

conditions. A similar analysis has been carried out in [12], where only two exper-48

iments instead of three were considered and no comparisons with other techniques49

were performed. In contrast to [11] and [13] where an initial clustering model is50

updated over time, in this framework we assume stationarity. Thus the algorithm51

is built off-line and then used online (by means of the out-of-sample extension52

property) in order to distinguish between normal operating condition and abnor-53

mal situations. Then we use the model in an online fashion via the out-of-sample54

extension property of KSC to recognize these two regimes. In particular, KSC55

correctly infers the degradation process from the vibration signals registered by56

the accelerometers placed on the sealing jaws.57

In the second part of the paper we utilize a nonlinear auto-regressive model58

(NAR [17]) to catch the deterioration phenomenon acting on the machine. Like59

KSC, the model is cast in the LS-SVM framework and, once properly trained,60

it can be used in an online manner thanks to the out-of-sample extension ability.61

In this experiment, the machine is equipped with a thermal camera that directly62

measures the degradation in terms of number of hot area pixels in the acquired63

images. Then the NAR model is used to predict the evolution of the number of64

hot area pixels over time.65

The remainder of this paper is structured as follows: Section 2 summarizes66

the KSC model and the related model selection scheme, i.e. BLF (Balanced Line67
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Fit). Section 3 explains the basics of the LS-SVM regression method and how it68

can be used to formulate a NAR model. Section 4 describes the data-sets used69

in the experiments. In Section 5 the simulation results are presented. Regarding70

KSC, a comparison with k-means and self organizing maps is also depicted. For71

what concerns the LS-SVM NAR model, we show that it outperforms a linear72

auto-regressive model (AR) and gives very good predictions up to 10 steps ahead.73

Section 6 presents a general discussion. Finally, Section 7 concludes the paper.74

2. Kernel Spectral Clustering75

2.1. Model76

Spectral clustering methods use the eigenvectors of the Laplacian to properly77

group the data-points [7, 33, 21]. KSC is a spectral clustering formulation cast78

in the LS-SVM primal-dual setting, being the primal problem a constrained op-79

timization problem with a quadratic loss function and equality constraints. As80

mentioned in the introduction, the KSC method has two main advantages, a sys-81

tematic model selection scheme for the correct tuning of the parameters and the82

extension of the clustering model to out-of-sample points. In KSC, a clustering83

model can be trained on a subset of the data and then applied to the rest of the84

data in a learning framework. The out-of-sample extension allows then to predict85

the memberships of a new point thanks to the model learned during the training86

phase. In this way, once a model of the operation of a machine has been con-87

structed, we can use it in an online fashion to discover when the machine enters88

critical conditions.89

Given a training data set D = {xi}
N
i=1, xi ∈ R

d, the multi-cluster KSC model

[2] is formulated as a weighted kernel PCA problem [19] decomposed in l = k−1
binary problems, where k is the number of clusters to find:

min
w(l),e(l),bl

1

2

k−1
∑

l=1

w(l)T

w(l) −
1

2N

k−1
∑

l=1

γle
(l)T

D−1e(l) (1)

such that e(l) = Φw(l) + bl1N (2)

The e(l) = [e
(l)
1 , . . . , e

(l)
N ]T are the projections of the data points {xi}

N
i=1 mapped90

in the feature space along the direction w(l), also called score variables. The opti-91

mization problem (1) can then be interpreted as the maximization of the weighted92

variances Cl = e(l)T

D−1e(l) and the contextual minimization of the squared norm93

of the vector w(l), ∀l. Through the regularization constants γl ∈ R
+ we trade-94

off the model complexity expressed by w(l) with the correct representation of the95
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training data. The symbol 1N represents a column vector with the N components96

equal to 1, D−1 ∈ R
N×N is the inverse of the degree matrixD,Φ is theN×dh fea-97

ture matrix Φ = [ϕ(x1)
T ; . . . ; ϕ(xN)T ] and γl ∈ R

+ are regularization constants.98

The clustering model is formulated as:99

e
(l)
i = w(l)T

ϕ(xi) + bl, i = 1, . . . , N (3)

where ϕ : R
d → R

dh is the mapping to a high-dimensional feature space, bl are100

bias terms, with l = 1, . . . , k−1. The projections e
(l)
i represent the latent variables101

of a set of k − 1 binary clustering indicators given by sign(e
(l)
i ). The set of binary102

indicators form a code-book CB = {cp}
k
p=1, where each code-word is a binary103

word of length k−1 representing a cluster. After constructing the Lagrangian and104

solving the Karush-Kuhn-Tucker (KKT) conditions for optimality the following105

dual problem is obtained:106

D−1MDΩα(l) = λlα
(l) (4)

where Ω is the kernel matrix with ij-th entry Ωij = K(xi, xj) = ϕ(xi)
T ϕ(xj), D107

is the graph degree matrix which is diagonal with positive elementsDii =
∑

j Ωij ,108

MD is a centering matrix defined as MD = IN − 1
1T

N
D−11N

1N1T
ND−1, the α(l) are109

dual variables, λl = N
γl

. K : R
d × R

d → R is the kernel function and captures110

the similarity between the data-points. In all the experiments we use the RBF111

kernel function defined by K(xi, xj) = exp(−||xi − xj ||
2
2/σ

2), with σ meaning112

the bandwidth parameter. The out-of-sample extension to new nodes is done by113

an Error Correcting Output Codes (ECOC) decoding procedure. In the decoding114

process the cluster indicators obtained in the validation/test stage are compared115

with the code-book and the nearest code-word in terms of Hamming distance is116

selected. The cluster indicators can be obtained by binarizing the score variables117

for test points in the following way:118

sign(e
(l)
test) = sign(Ωtestα

(l) + bl1Ntest) (5)

with l = 1, . . . , k − 1. Ωtest is the Ntest × N kernel matrix evaluated using the test119

nodes with entries Ωtest,ri = K(xtest
r , xi), r = 1, . . . , Ntest, i = 1, . . . , N .120

2.2. Tuning scheme121

The number of clusters in which to group the data and the parameters of the122

kernel function (if any) have to be selected properly to ensure good performances.123
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The model selection scheme used in the experiments is Balanced Line Fit (BLF).124

The BLF criterion reaches its maximum value 1 when the clusters are well sepa-125

rated, and in this ideal situation they are represented as lines in the space of the126

projections e(l). The analytical formula of BLF is [2]:127

BLF(DV , k) = ηlinefit(DV , k) + (1 − η)balance(DV , k) (6)

where DV indicates the validation set and k the number of clusters. The linefit128

index equals 0 when the score variables are distributed spherically and equals 1129

when the score variables related to points in the same cluster are collinear. The130

balance index equals 1 when the clusters have the same size and tends to 0 in131

extremely unbalanced cases. The parameter η controls the importance given to the132

linefit with respect to the balance index and takes a value in the range [0, 1]. The133

BLF can be used to select the number of clusters and the kernel tuning parameters134

in the following way:135

1. Define a grid of values for the parameters to select136

2. Train the related KSC model137

3. Compute the memberships of the validation points by means of the out-of-138

sample extension139

4. For every partition of the validation set calculate the related score in terms140

of BLF141

5. Choose the model with the highest score1.142

An example of the model selection procedure on a synthetic toy data-set is de-143

picted in Figure 1. It can be noticed that the maximum value of the BLF criterion144

is reached when the points in the projections space have a strong line structure,145

corresponding to optimal parameters. Although in a real-life problem the cluster146

structure can be less clear than in this toy example, BLF has shown to be a useful147

model selection criterion in several applications.148

3. LS-SVMs for regression149

3.1. Primal-Dual Formulation150

As already pointed out previously, LS-SVMs are a kind of SVM where a151

quadratic loss function is used in the primal objective and equality instead of152

1Instead of considering only the highest value of BLF, also additional local maxima may be

taken into account.
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inequality constraints are present. This typically leads to a linear system or an153

eigenvalue problem at the dual level for classification and regression or (weighted)154

kernel PCA respectively. The main advantage of LS-SVMs with respect to other155

artificial intelligence methods like artificial neural networks is that a global opti-156

mum can be obtained, since the problem formulation is usually convex [28].157

Given training data {xi, yi}
N
i=1, with xi ∈ R

dx and yi ∈ R, the regression

problem in the primal space can be expressed as follows:

min
w,e,b

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (7)

such that yi = wT ϕ(xi) + b + ei, i = 1, . . . , N. (8)

The expression ŷ = wTϕ(x) + b indicates the model in the primal space, and the158

objective function (7) is in fact a ridge regression cost function. With γ we indi-159

cate the regularization parameter which controls the trade-off between the model160

complexity and the minimization of the training error.161

[

0 1T
N

1T
N Ω + I/γ

] [

b
α

]

=

[

0
y

]

(9)

162

where, as before for KSC, ϕ : R
d → R

dh represents the mapping to a high-163

dimensional feature space, and y = [y1; . . . ; yN ], 1N is a column vector of ones,164

α = [α1; . . . ; αN ]. The term Ω means the kernel matrix with entries Ωij =165

ϕ(xi)
T ϕ(xj) = K(xi, xj), and with K : R

dx × R
dx → R we denote the kernel166

function. By using a radial basis function (RBF) kernel, expressed by K(xi, xj) =167

exp(−||xi − xj ||
2
2/σ

2), one is able to construct a model of arbitrary complexity.168

Finally, after solving the previous linear system, the LS-SVM model for function169

estimation in the dual form becomes:170

ŷ =

N
∑

i=1

αiK(x, xi) + b. (10)

3.2. NAR model171

A nonlinear auto-regressive model (NAR) describes time-varying phenomena

specifying that the output variable depends non-linearly on its own previous values

[17]:

ŷk+1 = f([yk; . . . ; yk−p]) (11)
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where ŷk+1 is the predicted future value based on the previous p values, f : R
p →

R is the nonlinear mapping. The parameter p is also called order of the NAR

model and has to be properly tuned. In the LS-SVM framework the NAR model

can be described by:

ŷk+1 = wT ϕ([yk; . . . ; yk−p]) + b (12)

For multi-step ahead prediction a recursive approach can be used:172

173

ŷk+1 = f([yk; . . . ; yk−p])174

ŷk+2 = f([ŷk+1; . . . ; yk−p+1])175

. . .176

ŷk+m = f([ŷk+m−1; . . . ; ŷk−p+m])177

178

where m is the number of steps ahead.179

3.3. Model selection180

In order to build-up a valid LS-SVM NAR model for time-series prediction,181

we have to choose very carefully the parameters γ, σ and p. The parameters γ and182

σ are selected using 10-fold cross-validation. The Coupled Simulated Annealing183

(CSA) is used to minimize the mean square error (MSE) in the cross-validation184

process. Also the simplex algorithm [20] is used afterwards to further improve the185

search of the optimum. CSA leads to an improved optimization efficiency because186

it reduces the sensitivity of the algorithm to the initialization parameters [34]. The187

optimal order p of the NAR model is found using a grid search approach.188

4. Data-sets189

The data are collected from a Vertical Form Fill and Seal (VFFS) machine used190

to fill and seal packages in different industries, but mainly in the food industry.191

The VFFS machine, illustrated in Figure 2, supplies film from a roll which is192

formed into a bag over the vertical cylinder. Sealing jaws close the bag at the193

bottom before it is filled. At the end of the cycle, the bag is sealed and cut off with194

a knife. From previous experimental studies the dirt accumulation on the sealing195

jaws was observed to strongly affect the process quality. For this reason, in the196

experiments described here the jaws were monitored to predict in advance the197

maintenance actions. Maintenance consists of stopping the machine and cleaning198

the sealing jaws. A total of three experiments have been performed. In the first199
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two experiments only accelerometers mounted on the jaws are used in order to200

indirectly detect the dirt accumulation. In the third experiment the machine is also201

equipped with a thermal camera, which directly measures the dirt accumulation202

in terms of number of hot area pixels in the acquired images (with hot we mean203

that the temperature of the sealing jaws is above a user-defined threshold). This204

has resulted in three data-sets:205

• DS I: this data-set consists of 771 events and 3 external maintenance ac-206

tions. An event is related to a particular processed bag and takes place207

every two seconds (i.e. the sampling frequency is 0.5Hz). Each event is208

associated with a 150-dimensional accelerometer signal, that is each signal209

is a vector of length 150 (see top of Figure 3).210

• DS II: it contains a total of 11 632 processed bags and 15 maintenance ac-211

tions. Here the vibration signals used to monitor the dirt accumulation in212

the jaws are 190-dimensional time-series (as shown in the bottom part of213

Figure 3). This is due to a different setting of the data acquisition system214

for this experiment.215

• DS III: there are 3 519 processed bags, each one associated with a 150-216

dimensional vibration signal, and 11 maintenance actions. For this data-set217

we are given, beyond the the accelerometer signals, also the thermal camera218

measurements, as depicted in Figure 4.219

The accelerometer signals registered just before the maintenance events are de-220

picted in red in Figures 3 and 4 (top). They usually correspond to signals with221

high amplitude, which is related to the increased amount of dirt accumulated in222

the sealing jaws.223

5. Experimental results224

Here we present the analysis of the data described in the previous Section.225

The experiments have been conducted in Matlab R2013a, on a CORE i7 desktop226

PC with 16 GB of RAM memory. We used KSClab and LS-SVMlab available at227

http://www.esat.kuleuven.be/stadius/ADB/software.php228

In the first part (unsupervised learning) we illustrate the performance of KSC229

and we compare it with k-means [18] and self organizing maps (SOMs [8]). K-230

means is considered among the most popular data clustering methods for indus-231

trial applications [4] and will be briefly described later in Section 5.1.4. SOMs232
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are an artificial neural network model able to recognize groups of similar input233

vectors in an unsupervised fashion, thanks to a competitive learning strategy al-234

lowing to perform vector quantization. The performance of KSC, k-means and235

SOMs are evaluated according to a standard internal cluster quality measure, that236

is the mean silhouette index, and the results are reported in table 1. The mean sil-237

houette criterion represents how well each object lies within its cluster, averaged238

over every cluster [24].239

In the second part (supervised learning) we explain the time-series prediction240

on the thermal camera data by means of an LS-SVM NAR model. The compar-241

ison with a linear model and a zero and first order extrapolation methods is also242

discussed.243

5.1. Unsupervised learning244

In this Section it is shown how KSC can be used to perform just-in-time main-245

tenance, not too early to take full advantage of component lifetime but also not246

too late to avoid catastrophic failures and unplanned downtime. In particular, 2247

regimes were identified, where one of them can be interpreted as normal behaviour248

(low degradation) and the other as critical conditions (high degradation inducing249

the need of maintenance). Moreover, a probabilistic interpretation of the results is250

also provided, which better describes the degradation process experienced by the251

sealing jaws of the packing machine.252

We perform clustering on the raw accelerometer signals. However, since the253

KSC technique is formulated as a weighted kernel PCA model (see Section 2.1), it254

automatically extracts features from the vibration signals when performing clus-255

tering. Another procedure could be related to exploiting the frequency content of256

the signals by using for instance a wavelet kernel [35], but this approach has not257

been considered in this work.258

5.1.1. Model selection259

In order to catch the ongoing deterioration process of the jaws we need to use260

historical values of sealing quality in our analysis. For this purpose we apply a261

windowing operation on the data (Figure 5). If we do not apply this preprocessing262

step, we would perform clustering of only one signal at each time. In this way, the263

algorithm would detect if the single bag has been sealed correctly or not. On the264

other hand, when concatenating a certain number of signals, the clustering method265

is able to distinguish between good working conditions (many good bags in the266

current window) and faulty state (many bad bags in the current window).267
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We have a total of 3 parameters to determine: the window size (i.e. the number268

of signals to concatenate), the number of clusters k and the RBF kernel parameter269

σ. According to the BLF criterion the optimal window size is 40 and the optimal270

number of clusters is k = 2 for the three data-sets, while σ is data-set dependent.271

Regarding data-set DS I we have used 140 data points for training and the272

remaining 631 as test set. In the other experiments, we directly applied the model273

trained on the dataset DS I on datasets DS II and DS III. Here, we exploited the274

generalization capability of the KSC algorithm and the fact that the experiments275

are similar to each other.276

5.1.2. Hard clustering277

In Figure 6 the KSC prediction for the data-set DS I is shown. We can inter-278

pret one of the clusters as normal behaviour or low degradation and the other as279

maintenance cluster or high degradation2. Notice that the KSC model is able to280

predict some minutes in advance the maintenance actions before they are actually281

performed by the operator. Concerning the data-set DS II we can draw the same282

comments: KSC is very accurate in predicting the worsening of the packing pro-283

cess around the actual maintenance events (see top of Figure 7). Finally, Figure284

8 illustrates the results on data-set DS III. In this case KSC predicts the need of285

maintenance also in zones where maintenance has not been really performed. As286

we will see later, surprisingly it would have been more logical to perform mainte-287

nance as suggested by KSC and not as actually done by the operator3.288

5.1.3. Soft clustering289

In the previous Section we demonstrated the effectiveness of KSC in predict-290

ing in advance the maintenance events. Nevertheless the predicted output is binary291

(it goes suddenly from normal operation to maintenance). On the other hand a soft292

clustering output is in general preferable, since it can provide more interpretable293

results [14]. Furthermore, in our case study the discrete output does not give us294

a continuous indicator of the incoming maintenance actions. To solve this is-295

sue we can use the latent variable e(x) instead of the binarized clustering output296

2Also for k = 3 the clustering results are meaningful: the BLF reaches the second highest

value and three distinct regimes interpretable as normal behaviour, warning state and maintenance

state have been observed. However, in this paper we only consider two clusters, corresponding to

the maximum of the BLF model selection criterion.
3This conclusion can be corroborated by observing that some signals in proximity of mainte-

nance events (depicted in red in at the top of Figure 4) have rather low amplitude.
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sign(e(x)) (see Section 2.1).297

Furthermore, we can rescale it between 0 and 1 to improve the interpretability.298

This transformation is based on the structure of the latent variable space. As al-299

ready mentioned in 2.2, in this space every cluster is ideally represented as a line.300

The tips of the lines can be considered prototypes of their cluster, since they have301

more certainty to belong to it because they are further from the decision bound-302

aries [1]. Thus, the Euclidean distance from every point to the cluster prototype303

can be seen as a confidence measure of the cluster membership. The transformed304

latent variable is depicted at the bottom of Figure 6 (data-set DS I), Figure 7 (data-305

set DS II) and Figure 8 (data-set DS III). The value can be considered as a soft306

membership or ”probability” to maintenance. As explained in [3], this soft mem-307

bership is given as a subjective probability and it indicates the strength of belief in308

the clustering assignment. In other words, it is not a probability based on statistic309

analysis of a large number of samples. Also, it is worth mentioning that since310

the KSC algorithm does not naturally provide a soft output, we had to come up311

with this post-processing step. However, other clustering methods like Hidden312

Markov Models (HMMs, [22]) are designed in a probabilistic setting and can au-313

tomatically supply moderated outputs (in case of HMMs also the probabilities of314

transition between the different regimes are given).315

By looking at the bottom of Figures 6, 7 and 8 we can see how the probability316

increases as the number of faulty bags in the window increases. The value can317

decrease since the window can move onto zones with good seals after a period318

of bad seals. This is probably due to a self-cleaning mechanism. Maintenance is319

predicted when the probability reaches the value 1.320

For data-sets DS I and DS II it can be noticed how KSC is able to discover321

from the vibration signals registered by the accelerometers the dirt accumulation322

in the jaws that leads to the maintenance actions. Since clustering is an unsu-323

pervised technique, this is achieved by not making use of any information on the324

location of the maintenance actions (like it occurs for classification). For what325

concerns data-set DS III, also regions where no maintenance actions have been326

really performed appear associated with high probability to maintenance.327

To understand these unexpected outcome, we can rescale the probability to328

maintenance in the same range of the the number of hot area pixels in the im-329

ages captured by the thermal camera. This is illustrated in Figure 9, where we330

depict in red the number of hot area pixels (measured degradation) and in blue331

the rescaled soft memberships (modelled degradation). We can recognize similar332

patterns, meaning that KSC was able to catch the degradation process also in this333

last experiment. This last observation is quite surprising, since the clustering al-334
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gorithm is only supposed to divide the data into two main groups, as observed at335

the top side of Figures 6, 7, 8. The fact that the latent variable e(l) of the clustering336

model trained on the vibration signals follows the trend of the hot area pixels data337

(Figure 9) is somehow unexpected. To summarize, in the third experiment proba-338

bly the operator should have performed the maintenance operations in a different339

way, being coherent with his behaviour in the first two experiments.340

5.1.4. k-means clustering341

K-means clustering is among the most popular methods for finding clusters in342

a set of data points. After choosing the desired number of cluster centers, the k-343

means procedure iteratively moves the centers to minimize the total within cluster344

variance. k-means has several drawbacks:345

• the results are strongly influenced by the initialization346

• the number of clusters should be provided by the user. This can be done347

by using a trial and error approach: the method is applied with different348

number of clusters and the partition corresponding to the highest value of349

some quality criterion is chosen.350

• it can discover only spherical boundaries.351

Despite these disadvantages, together with subtractive and hierarchical clustering,352

it is still widely used since it works effectively in many scientific and industrial353

applications. For this reason, here we present the results of k-means applied on the354

three data-sets described in Section 4. Before discussing the results, it is worth to355

mention that, thanks to the model selection scheme of KSC described in Section356

2.2, we give optimal parameters to k-means (number of clusters = 2 and window357

size of concatenated accelerometer signals = 40). Figure 10 visualizes the out-358

comes of the hard and soft clustering. Similarly to KSC, the soft clustering results359

are based on the distance between the final centroids and the data-points in the in-360

put space (see [3]). Concerning data-sets DS I and DS III the results of KSC and361

k-means are very similar, while in the data-set DS II analysis k-means performs362

worse than KSC, indicating the need of maintenance where it was not really per-363

formed. In this case k-means would suggest too many maintenance actions, which364

is not cost-effective.365

5.2. Supervised learning366

In this paragraph we present the results of applying the NAR model explained367

in Section 3.2 for predicting the evolution of the hot area pixels in data-set DS III.368

13



We have used the RBF kernel function K(u, v) = exp(−||u − v||22/σ
2) to build369

the nonlinear model. The optimal parameters obtained using the 10 fold cross-370

validation procedure summarized in Section 3.3 are: γ = 1356.7, σ2 = 301.6.371

Moreover, the optimal model order, tuned using a grid search approach, is p = 5,372

as depicted in Figure 11. After selecting the optimal parameters, we performed373

multi-step ahead recursive prediction. As can be noticed in Figure 12, the NAR374

model performed very well up to 10 steps ahead prediction, i.e. about 25 seconds375

since a bag is processed every 2 − 3 seconds. Afterwards, the mean absolute376

error between outputs and actual values starts increasing progressively, even if377

the predictions remains good up to 1 minute ahead prediction. In Figure 13 we378

visualize the results related to 10 steps ahead prediction. We can notice how379

the modelled degradation follows quite well the trend of the true degradation,380

in contrast with what was observed in Figure 9. This is not surprising because in381

this case we explicitly constructed a regression model to explain the deterioration,382

while the latent variable e(l) of the clusteringmodel trained on the vibration signals383

in principle is not supposed to follow the trend of the hot area pixels data. The384

performance statistics are summarized in Table 2, where a comparison with two385

baseline techniques4 and a linear autoregressive model (AR) is shown.386

6. Discussion387

In the first part of this work we explained the use of KSC for predictive main-388

tenance. KSC has been chosen instead of classification because of the high un-389

balance of the data (few maintenance events compared to normal operating con-390

dition). After applying a windowing operation on the data in order to catch the391

deterioration process affecting the sealing jaws, we showed how KSC is able to392

recognize the presence of at least two working regimes of the VFFS machine,393

identifiable respectively as normal and critical operating condition. Moreover, we394

proposed also a soft clustering output that can be interpreted as ”probability” to395

maintenance, and it is more directly related to the degradation phenomenon affect-396

ing the jaws (see for example Figure 9). In addition, as mentioned in Section 5.1.3,397

this probability is not defined in a statistical sense, but it is rather constructed to re-398

flect the reliability level of the mechanical equipment at current time. KSC is also399

compared with k-means and self organizing maps. While in data-sets DS I and400

DS III all methods give quite similar results, in case of data-set DS II k-means401

4The two baseline models correspond to zero order and first order extrapolation methods.
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performs worse than KSC and SOMs, since it predicts maintenance in regions402

where it was not actually performed by the operator.403

In the second part a LS-SVM NAR model for predicting the evolution of the404

dirt accumulation in the jaws has been constructed. The dirt accumulation is di-405

rectly measured by means of the number of hot area pixels present in the images406

obtained by the thermal camera. First we selected the parameters of the model407

using 10-fold cross-validation with coupled simulated annealing for γ and σ2 and408

a grid search approach for the optimal model order. Then we trained the NAR409

model and we tested its ability in predicting the evolution of the number of hot410

area pixels. The performance is very good up to 10 steps ahead prediction (around411

25 seconds), even if the forecast remains good up to 1 minute ahead. Moreover,412

the NAR outperforms the linear auto-regressive model (AR) and a zero and first413

order extrapolation methods.414

To summarize, both the LS-SVM NAR model and KSC, thanks to their fore-415

casting capabilities, could help to optimize the timing of maintenance actions for416

the machine under study. In particular, a company who would like to use the LS-417

SVM techniques described in this work to maximize production capacity has two418

choices:419

• option 1 (the cheapest): install on every packing machine only accelerom-420

eters and use the proposed unsupervised learning method, that is KSC, to421

predict in advance, in an online fashion, when the machine starts entering422

critical conditions. In this way the operator can perform maintenance at the423

right time and avoid long stops of the production.424

• option 2: install the thermal camera and use the LS-SVM NAR model to425

predict up to 1 minute ahead the dirt accumulation on the jaws. Since the426

thermal camera costs more than the accelerometers, this option is more ex-427

pensive. Nevertheless it is more reliable because it is a direct prediction428

of the deterioration while KSC, as surprisingly effective as it is completely429

unsupervised, infers the degradation indirectly from the vibration signals.430

7. Conclusions431

Predictive maintenance of industrial machines is receiving increasing attention432

in the last years due to its many advantages, like cost efficiency, reduced ecolog-433

ical impact etc. It is based on constant monitoring the health of machines joined434

with advanced signal processing and prognostics techniques for optimal main-435

tenance management. In this paper we proposed a least squares support vector436
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machine (LS-SVM) framework for maintenance strategy optimization based on437

real-time condition monitoring of a packing machine. We presented an unsuper-438

vised approach through kernel spectral clustering (KSC), and a supervised learn-439

ing method, namely nonlinear auto-regression (NAR). In the first case we used the440

data collected by accelerometers positioned on the jaws of a Vertical Form Fill and441

Seal (VFFS) machine, from which the degradation process of the machine con-442

ditions has been inferred. For the time-series analysis with the NAR model data443

acquired by a thermal camera, which directly measures the dirt accumulation in444

the jaws, are processed. We showed that LS-SVM can successfully assess and pre-445

dict mechanical conditions based on sensor data, thanks to their ability to model446

the degradation process. Moreover LS-SVM achieved higher performance than447

basic methods, which are commonly used in practice to predict the forthcoming448

faults. Finally, we proposed two options to use LS-SVM to schedule maintenance449

on the packing machine with different associated costs.450
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DS I DS II DS III

KSC 0.29 0.25 0.27
k-means 0.28 0.12 0.27
SOMs 0.29 0.21 0.28

Table 1: Cluster quality evaluation. Mean Silhouette index (see end of section 5.1.4), with best

performance in bold. In the case of data-set DS II the low value of Silhouette indicates that k-

means does not succeed in correctly separating the normal behaviour and the maintenance cluster.

LS-SVM NAR AR Baseline 1 Baseline 2

MAE 227.03 247.25 371.99 251.34
Percentage error 1.42% 4.11% 6.17% 4.18%

R2
0.93 0.92 0.77 0.92

Table 2: Summary NAR performance on test data. Best performance in bold. By baseline 1

we mean a zero order extrapolation model and baseline 2 is related to a first order extrapolation

method.
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Figure 1: Model selection illustrative example on synthetic toy data: for well-chosen kernel

parameters, the clusters for out-of-sample data are collinear in the projection space. Top left:

Correct clustering of 4 Gaussian clouds. Top right: Projection space corresponding to an optimal

σ value, for which the BLF is maximal. Bottom left: Wrong clustering results. Bottom right:

Projection space for a wrong σ value.
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Figure 2: VFFS machine. Seal quality monitoring in a packing machine.
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Figure 3: Data-sets DS I-DS II. Top: Accelerometer signals for the data-set DS I. Bottom:

Accelerometer signals for the entire data-set DS II. The signals corresponding to maintenance

actions are depicted in red (best visible in colors).
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Figure 4: Data-set DS III. Top: Accelerometer signals (signals corresponding to maintenance

actions are pictured in red). Bottom: thermal camera data (the vertical black lines indicates true

maintenance actions).
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Figure 5: Concatenation of accelerometer signals. After the windowing operation, each data-point

is now a time-series of dimension d = 40× 150 for the first and third data-sets and d = 40 × 190

for data-set DS II.
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Figure 6: KSC results data-set DS I. Top: Hard clustering results for the whole data-set. Cluster

2 represents predicted maintenance events. The vertical black lines show the true maintenance.

Bottom: Soft clustering results in terms of probability to maintenance.
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Figure 7: KSC results data-set DS II. Top: Hard clustering, cluster 2 represents predicted

maintenance events. Bottom: Soft clustering in terms of probability to maintenance.
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Figure 8: KSC results data-set DS III. Top: Hard clustering, cluster 2 represents predicted

maintenance events. Bottom: Soft clustering in terms of probability to maintenance.
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Figure 9: Degradation dataset DS III. Degradation inferred by KSC using as input data the

vibration signals (blue) and measured degradation in terms of hot area pixels in the thermal camera

images (red).
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Figure 10: k-means results. Cluster 1 symbolizes the normal operating condition, cluster 2 rep-

resents predicted maintenance events. The vertical black lines show the true maintenance. Top:

data-set DS I. The results are similar to KSC outcomes, even if slightly worse since in the end

there is a kind of false alarm (a single prediction of maintenance followed by normal behaviour,

before the final maintenance cluster). Center: data-set DS II. In this case k-means performs

much worse than KSC, suggesting maintenance in regions not corresponding to actual mainte-

nance events. Bottom: data-set DS III. The results of KSC and k-means are very similar.
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Figure 11: Tuning order NAR. Mean absolute error (MAE) between one step ahead prediction

and true values with respect to the order of the NAR model. A clear minimum is present at p = 5,

suggesting to consider this value as the optimal parameter to construct the final NAR model.
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Figure 12: NAR forecasts versus lookahead. Prediction performances at the change of the num-

ber of steps ahead prediction.
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Figure 13: Prediction NAR. The NAR model is able to predict very well even 10 steps ahead the

future behavior of the thermal camera data based on a window of the 5 past values.
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