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Abstract—Clone detectors find similar code fragments and 

report large numbers of them for large systems. Textually similar 

clones may perform different computations, depending on the 

program context in which clones occur. Understanding these 

contextual differences is essential to distill useful clones for a 

specific maintenance task, such as refactoring. Manual analysis 

of contextual differences is time consuming and error-prone. To 

mitigate this problem, we present an automated approach to 

helping developers find and analyze contextual differences of 

clones. Our approach represents context of clones as program 

dependence graphs, and applies a graph differencing technique to 

identify required contextual differences of clones. We 

implemented a tool called CloneDifferentiator that identifies 

contextual differences of clones and allows developers to 

formulate queries to distill candidate clones that are useful for a 

given refactoring task. Two empirical studies show that 

CloneDifferentiator can reduce the efforts of post-detection 

analysis of clones for refactorings. 

Index Terms—Clone analysis, program dependence graph, 

graph matching. 

I. INTRODUCTION 

Similar code fragments are called code clones, and 

techniques [3][4][9][16][21][22] have been proposed to detect 

code clones. Many refactorings [8] are concerned with code 

clones, so clone detectors are often used for such refactorings.  

Fig. 1 shows a method hasArray() that is cloned in seven 

subclasses of the Buffer class. Looking at the cloned methods 

themselves it seems that they could be removed by pulling up 

hasArray() to the superclass Buffer. However, having examined 

the context of the method hasArray(), we see that field hb 

referred in the method is declared differently for each subclass. 

Thus, even if hasArray() is textually identical in seven sub-

classes, pulling it up to superclass Buffer would lead to an error. 

Clone detection techniques report large numbers of clones 

for industrial systems, only some of which can be refactored. 

How can developers tell useful clones for a given refactoring 

task from irrelevant ones? Clone detectors provide little or no 

additional information to aid developers in distilling useful 

clones from the rest. To ease post-detection analysis of clones, 

researchers have investigated using textual differencing 

[15][18], code metrics [1][2], visualization [26], and query-

based filtering techniques [31]. However, these methods ignore 

the program context in which clones occur and cannot identify 

differences in the context of clones such as in our buffer 

example. As a result, cloned hasArray() would be reported as 

type-1 clone [5], i.e. they are considered identical and can be 

refactored. However, hasArray() is not a valid candidate for 

pull-up method refactoring. On the other hand, cloned methods 

in Fig. 2 would be reported as type-2 clone [5], because they 

have identifier differences (b versus v). But the current clone 

detectors or analyzers cannot conduct analysis on clone context, 

i.e. the two methods in fact are identical and can be refactored. 

class CharBuffer { 

char[ ] hb;
public final boolean hasArray () {
return (hb != null)  && !isReadOnly; } }

Buffer

CharBuffer

ByteBuffer

IntBuffer

DoubleBuffer

FloatBuffer

LongBuffer

ShortBuffer

class LongBuffer { 

long[ ] hb;
public final boolean hasArray () {
return (hb != null)  && !isReadOnly; } }

 
Fig. 1. Can we pull-up these cloned methods? 

ObjectOutputStream$BlockDataOutputStream (Java IO 1.5) 
1767. public void write(int b) throws IOException { 
1768.     if(this.pos >= MAX_BLOCK_SIZE) 
1769.         this.drain(); 
1770.     this.buf[pos++]= (byte)b ; } 
ObjectOutputStream$BlockDataOutputStream (Java IO 1.5) 
1874. public void writeByte(int v) throws IOException { 
1875.     if(this.pos >= MAX_BLOCK_SIZE) 
1876.         this.drain(); 
1877.     this.buf[pos++]= (byte)v ; } 

Fig. 2. Cloned methods that have no contextual diffs 

To distill useful clones for a given refactoring, we must 

raise clone analysis to a higher level of abstraction, and must 

examine the program context in which clones occur. The 

program context that affects computation of clones includes 

program elements referenced in cloned methods (e.g. fields 

being accessed, methods being invoked), associated properties 

of these program elements (e.g. data type of the field, return 

type of the method), and control and data flow surrounding 

cloned code fragments. Contextual differences must be 

identified and understood to correctly do refactorings on clones.  

In this paper, we propose an approach and implement it as a 

tool called CloneDifferentiator [27] to help developers identify 

and analyze contextual differences of clones. It captures 

context of clones using a Program Dependence Graph (PDG) 

[6]. It compares PDGs of clones using a graph differencing 

algorithm to automatically identify contextual differences of 

clones. Furthermore, it offers querying and filtering support to 

enable developers distill useful clones of interest, and a GUI to 

visually inspect clones and their contextual differences. 

We evaluated the effectiveness of our approach and the 

CloneDifferentiator tool in two empirical studies aiming at 

refactoring JavaIO library and Eclipse JDT-model unit-test 
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suites. Our studies show that our approach is able to distill a 

small number of useful clones for various refactoring tasks, and 

thus reduces the efforts of post-detection analysis of clones for 

refactorings. We make the following contributions in this paper: 

1. We identify contextual differences of clones that must be 
identified and understood to correctly refactor clones. 

2. We present an automated approach to help developers 
distill useful clones for a given refactoring task by 
identifying and analyzing contextual differences of clones. 

3. We report two empirical studies and demonstrate the 
performance, accuracy and effectiveness of our approach 
for post-detection analysis of clones for refactorings. 

The rest of this paper is structured as follows. Section II 

discusses contextual analysis of clones for refactoring. Section 

III describes our CloneDifferentiator approach. Section IV 

reports our empirical studies. Section V discusses related work. 

Section VI discusses threats to validity of our approach. Finally, 

we conclude with ideas for future work. 

II. CONTEXTUAL ANALYSIS OF CLONES 

Suppose John ponders if it might be possible to refactor 

Java NewIO library to remove code duplication reported in 

[12]. One of the specific refactorings that he is interested in is 

to pull up cloned methods from subclasses into superclass. For 

the candidate clones that he is looking for are cloned methods 

that occur in sibling classes and appear to perform the same 

computation. 

John uses CloneMiner [3] for clone detection; CloneMiner 

reports 98 clone sets in NewIO library for Java 5; each clone 

set consists of 2 – 50 cloned methods. He then uses 

CloneAnalyzer [31] to inspect the detected clones. As 

CloneAnalyzer offers little help in identifying candidate clones 

for his pull-up method refactoring, John has to manually 

inspect all detected clones one by one; he resorts to Java 

Source Compare of Eclipse IDE to determine the differences 

between cloned methods. 

PipedOutputStream (Java IO 1.5) 
36.        private PipedInputStream sink; 
101.        public void write(int b) throws IOException { 
102.            if(this.sink == null) 
103.                throw new IOExcetion(“…”); 
104.            this.sink.receive(b); } 
PipedWriter (Java IO 1.5) 
25.        private PipedReader sink; 
103.        public void write(int c) throws IOException { 
104.            if(this.sink == null) 
105.                throw new IOException(“…”); 
106.            this.sink.receive(c); } 

Fig. 3. Differential statements 

ObjectInputStream.read(byte[] buf, int off, int len) (JavaIO 1.5) 

806.     if(buf==null) { 
807.         throw new NullPointerException(“…”);} 
809.     int endoff=off+len; 
810.     if(off<0||len<0||endoff>buf.length || endoff<0) { 
811.         throw new IndexOutOfBoundsException();}     
ObjectInputStream.readFully(byte[] buf, int off, int len) (JavaIO 1.5) 

976.     int endoff=off+len; 
977.     if(off<0||len<0||endoff>buf.length || endoff<0) { 
978.         throw new IndexOutOfBoundsException();} 

Fig. 4. Missing branch and statements 

After inspecting 69 clone sets, John identifies a candidate 

clone set of seven cloned methods (see Fig. 1). Thus, John tries 

to remove these cloned methods using Eclipse’s refactoring 

support. However, Eclipse reports an error that field hb referred 

in the cloned methods has a different data type in different 

subclasses. For example, the data type of CharBuffer.hb is 

char[], while the type of LongBuffer.hb is long[]. The type 

difference of hb prevents the cloned methods hasArray() from 

being pulled up into the superclass Buffer. So pulling up hb into 

Buffer would lead to errors in other parts of buffer subclasses. 

Note that in the source code of the subclasses of Buffer, the 

declaration of field hb is far away from (about 660 lines of 

codes in between) the declaration of method hasArray(). 

Furthermore, the textually identical appearance of the cloned 

methods makes John easily ignore the type differences of field 

hb in subclasses of Buffer, until his refactoring attempt failed.  

The type difference of field hb of different buffer 

subclasses is a simple example of what we call differential 

statements, i.e. statements that appear in similar control and 

data flow contexts, but perform different computations. Fig. 3 

presents another example of differential statements from Java 

IO library. The control and data flow of the cloned methods are 

identical, but the two methods perform different computations.  

The field sink refers to the different fields 

PipedOutputStream.sink and PipedWriter.sink, respectively. 

The types of the two fields are also different, PipedInputStream 

versus PipedReader. Thus, sink.receive() is different in these 

two methods. In fact, many clones in Java IO have such 

differential field-access and method-invocation statements, 

which result from parallel inheritance hierarchies for 

processing byte data and char data respectively.  

Two other important types of contextual differences of 

clones are missing statements (i.e. statements that appear in 

some cloned methods but not others) and missing/partially-

matched branches (i.e. missing or inconsistent branches among 

cloned methods). Fig. 4 shows an example. The method read() 

checks if buf is null, and creates and throws a 

NullPointerException if buf is null. readFully() does not have 

such explicit checking. This example shows a common 

inconsistent program style in Java IO for validating input 

parameters and handling exceptions. 

Once contextual differences of clones are identified, they 

can help distill useful clones for a given refactoring task. For 

example, developers who are interested in pulling-up cloned 

methods can formulate a query searching for cloned methods 

that are in sibling classes and have no contextual differences. 

The cloned methods in Fig. 1 and Fig. 3 will not be returned by 

the query due to the existing differential statements, even if 

they look identical. But they are returned by the query 

searching for clones that can be replaced by generic method. 

Here is another example: after removing the differences due to 

inconsistent program styles in Fig. 4, programmers can extract 

parameter-validity-checking logic into a utility method. 

Clearly, given large numbers of clones, manual contextual 

analysis of clones is impractical. The question then becomes: 

how can we precisely capture context of clones and 

automatically identify contextual differences of clones? 
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III. THE APPROACH 

We propose an automatic approach and tool called 

CloneDifferentiator that help developers identify and analyze 

contextual differences of clones.  

A. Overview 

CloneDifferentiator analyzes cloned methods detected by 

one of the existing code clone detectors, such as CloneMiner 

[3]. Clone detectors usually group cloned methods to form 

clone sets. The cloned methods called clone instances in each 

clone set are pair-wise similar to each other, according to 

similarity metrics used by the clone detector. 

CloneDifferentiator raises the level of clone analysis to 

Program Dependency Graph (PDG) [6]. It represents context of 

clones using PDG. PDG allows to precisely capture not only 

program elements being referenced in cloned methods and 

associated properties of these program elements, but also data 

and control flow information in cloned methods. Given PDGs 

of cloned methods in a clone set, our tool uses graph 

differencing algorithm to compare PDGs of clones. It 

automatically detects contextual differences of clones, in terms 

of PDG-based differential statements or blocks, missing 

statements or blocks, and missing or partially-matched 

branches. Because these contextual differences are identified at 

PDG level, they contain fine-grained static semantic 

information about the differences, including type of statement, 

program elements being referenced and its associated 

properties, and data/control flow discrepancies.  

Our CloneDifferentiator tool [27] stores its contextual 

analysis results of clones in a relational database. Stored 

information includes PDGs of cloned methods and the 

instances of different types of contextual differences of these 

clones. Clone-Differentiator is equipped with a set of simple 

filters for filtering clones based on the types and number of 

their contextual differences. Furthermore, it allows developers 

to formulate task-specific queries in terms of which clones and 

what types of contextual differences he would like to inspect. 

B. Representing Context of Clones as PDG 

Let us first discuss why we adopt PDG to represent the 

context of clones. We then describe the PDG representation 

that our current CloneDifferentiator tool adopts for contextual 

analysis of clones.  

1) Why PDG: A Program Dependence Graph (PDG) [6] is 

a static representation of the control and data flow through a 

program. CloneDifferentiator adopts PDG as the internal 

representation of context of clones and computes contextual 

differences of clones at PDG level. 

Fig. 5 presents the contextual differences of a pair of cloned 

methods listFiles(FilenameFilter) and listFiles(FileFilter) in a 

CloneDiff Compare Editor (see [27] for more details on the 

introduction of the CloneDiff Compare Editor of our tool). 

CloneDifferentiator reports that the cloned code fragments 

(inside light-grey box) of the two methods have a pair of 

differential parameters (highlighted in light blue background), 

because the two parameters declare different data types 

(interface FilenameFilter versus interface FileFilter). Our tool 

also reports that the two cloned methods have a pair of 

differential method invocations (FilenameFilter.accept() versus 

FileFilter accept(), highlighted in red background). 

Furthermore, the method listFiles(Filenamefilter) has an 

additional array-access statement (ss[i], highlighted in yellow 

double underline and italic font), i.e. a missing array-access 

statement that listFiles(FileFilter) does not have.  

CloneDifferentiator also detects the differences in the 

control flow of the two methods: the program control flows 

from the matched branch statement (i<ss.length) directly to the 

unmatched branch (filter==null) in listFiles(FilenameFilter), 

while in listFile(FileFilter) the control flows first to the 

instantiation of a File object and then to the unmatched branch 

(filter==null). CloneDifferentiator reports this difference as 

partially-matched branches filter==null (highlighted in green 

and accent font in the two methods respectively).  

Compared with the textual differencing results of the two 

cloned methods (see Fig. 6), the contextual differences that our 

tool reports are clearly much more precise. Java Source 

Compare reports some textual differences between the code 

block of listFiles(FileFilter) and the code block of 

listFiles(FilenameFilter). As textual differencing compares 

clones as lines and chars, it cannot report the subtle difference 

in the branch statements filter==null.  And textual differencing 

also reports the two new File() statements are different. 

 

Fig. 5. Contextual differences in CloneDiff Compare Editor 

 

Fig. 6. Textual differences in Java Source Compare 

Syntactic differencing techniques, such as change distilling 

[7] that compares Abstract Syntax Tree (AST), are more robust 

than textual differencing, e.g., they can detect type differences 

of the parameters of the two listFiles methods. However, 

syntactic differencing is still sensitive to arbitrary syntactic 

decisions a developer made while developing a program. For 

example, statements File f = new File(); v.add(f) and 

v.add(new File()) result in different ASTs, but they yield the 

same PDG. Furthermore, AST-based differencing techniques 

are agnostic of control and data flow through a program, and 

thus cannot detect contextual differences resulted from control 

and data flow, such as the differences between the two 

filter==null statements in the two listFiles methods. 
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2) Wala PDG: In general, the nodes of a PDG consist of 

three categories of program statements constructed from the 

source code: simple statements, expressions, and control 

points. A control point represents a point at which a program 

branches, loops, enters or exits a procedure. The edges of a 

PDG encode the data and control dependencies between 

program statements. 

Our CloneDifferentiator tool uses Wala [34] to generate 

PDGs of cloned methods. Wala is a static analysis library for 

Java. It is important to note that using Wala for PDG 

generation in our CloneDifferentiator tool is only an 

implementation choice because Wala is open source and 

publicly available. Furthermore, we conducted empirical 

studies on Java software systems. Our CloneDifferentiator 

approach is not limited to any specific PDG generation tools, 

nor is it limited to analyzing clones in Java software systems. 

We use Wala-PDG to capture the context of cloned 

methods, including program elements referenced in cloned 

methods, associated properties of these program elements, and 

control and data flow in cloned methods. Wala-PDG supports 

three categories of bytecode-like program statements 

constructed from source code: simple statement, control point, 

and expression. Simple statements include field read/write 

FGET/FPUT, method invocation INVOKE, unary and binary 

operation (negate, add, minus, multiply), compare statement (>, 

<, !=), arrayload/store ARRAYLOAD/ARRAYSTORE, type 

checking INSTANCEOF, type casting CAST, object creation 

NEW, and exception throwing THROW. Control points include 

branching BRANCH and switching SWITCH. Expressions 

include parameter PARAM and constant CONST. Different 

types of Wala-statements consist of different sets of properties, 

such as identifier, data type, operator code, and operand. 

Fig. 7 shows a partial Wala-PDG for the cloned method 

PipedWriter.write(int):void listed in Fig. 3. The two PDG 

nodes FGET<this.sink : PipedReader> correspond to the two 

this.sink at lines 104 and 106 respectively, i.e. access the field 

sink of this object, and the data type of sink is PipedReader. 

The node INVOKE<virtual : PipedReader.receive(I)V : void> 

corresponds to receive() at line 106, i.e. the invocation of the 

method PipedReader.receive(I)V, and this invocation is a 

virtual invocation and its return type is void. The node 

NEW<IOException> corresponds to new IOException(“…”) at 

line 105, i.e. the instantiation of an object IOException. The 

node THROW<$> corresponds to the throw statement at line 

105. The node BRANCH<ne : this.sink : null> corresponds to 

the if statement at line 104; it examines whether field this.sink 

is not equal (operator-code ne) to null. The node PARAM<c:I> 

corresponds to the parameter c whose data type is int.  
LegendENTRY

FGET<this.sink : PipedReader>

NEW<IOException>

BRANCH<ne: this.sink : null>

THROW<$>
FGET<this.sink : PipedReader>

INVOKE<virtual : PipedReader.receive(I)V : void>

True

False

PARAM<c: I>

RETURN<void>

Simple statement

Parameter/Constant

Control point

Control dependence

Data dependence

 

Fig. 7. Wala-PDG example: PipedWriter.write(int):void 

C. Detecting Contextual Differences of Clones 

Given a clone set of n cloned methods {m1,…,mn}, let 

PDGi and PDGj be the PDGs of cloned methods mi and mj 

(    ;        ), CloneDifferentiator applies a graph 

differencing algorithm to pair-wisely compare PDGi and PDGj 

and detect contextual differences between cloned methods mi 

and mj. Its current implementation uses GenericDiff [28] (a 

configurable graph matching framework) for comparing Wala-

PDGs. GenericDiff is an efficient graph matching algorithm. It 

can produce high-quality PDG differencing results for 

contextual analysis of clones. Furthermore, GenericDiff is 

configurable and it supports a quick development of graph 

comparator for various graph-based program models. This 

allows us to easily adapt the implementation of our tool for 

working with other PDG generation tools. 

GenericDiff is an approximate graph matching algorithm. 

Given two graphs to be compared, it matches graph nodes and 

edges based on both property similarities of graph nodes and 

structural similarities between graph nodes from the two graphs. 

GenericDiff reports a domain independent symmetric 

difference between two input graphs: a set of matched graph 

nodes and edges that exist in both graphs, and two sets of 

unmatched graph nodes and edges that exist in only one of the 

two graphs. CloneDifferentiator interpret GenericDiff’s PDG 

differencing results in terms of meaningful contextual 

differences of code clones. Interested readers are referred to our 

GenericDiff technical report [30] for the details about how we 

configure GenericDiff for comparing PDGs. 

 Our tool CloneDifferentiator reports the following three 

contextual differences of clones: 

1) Differential Statements or Blocks: Differential 

statements (blocks) represent a pair of Wala-PDG statements 

(blocks of statements), one from each cloned method, that 

appear in similar control and data flow context in the two 

cloned methods, but perform different computations. 

Differential statements are because of the differences in: 

 The methods being invoked in method invocation (INVOKE) 
statements and the fields being accessed in field access 
(FGET/FPUT) statements can be different.  

 The operator-code of method invocation, binary operation, 
compare, and branch statements can be different. 
Furthermore, the data type of field-read/write, method 
invocation, type checking, type casting, object creation, 
array-load/store, and parameter statements can be different.  

 The operand of binary-operation, compare, and branch 
elements or the value of constant elements can be different.  

Fig. 8 presents an example of differential statements from 

our empirical study on JavaIO library. The control and data 

flow of the cloned methods readArray() and 

readOrdinaryObject() is similar. But CloneDifferentiator 

detects two pairs of differential statements between the two 

methods: the method being invoked in the two method-

invocation statements is different: Array.newInstance() versus 

ObjectStreamClass.newInstance(); the operator-code of these 

two method invocations is different: static versus virtual; the 

constant operand of the branch statements is different: 

TC_ARRAY versus TC_OBJECT.  
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Differential blocks are similar to differential statements; the 

only difference is that a block consists of a sequence of 

statements, i.e. a subgraph of the PDG of the cloned method. 

Fig. 9 presents an example of the two cloned test methods from 

our empirical study on Eclipse JDT unit tests. Both test 

methods are used to test creating a member in a class. However, 

our tool detects that the cloned methods have a pair of 

differential blocks, which reveal the differences of the two test 

methods in retrieving and creating different types of class 

members. That is, test002() tests creating a field, while test003() 

tests creating a method. 

2) Missing Statements or Blocks: Missing statements 

(blocks) represent statements (blocks of statements) appearing 

only in one of the clones, not in the other. 

Fig. 10 presents an example of missing statements between 

the two cloned methods. CloneDifferentiator detects that one of 

the cloned method read() has two additional statements that the 

method peek() does not have: a binary operation that adds pos 

by 1 and a field-write statement that updates pos with the new 

value. These two missing statements reveal the key differences 

between read() and peek(), which have different computations. 

Fig. 11 shows an example of missing statements and block 

between the two cloned methods. CloneDifferentiator detects 

that one of the cloned methods SequenceInputStream.read() 

has an additional block that the method 

PipedOutputStream.write() does not have, while 

PipedOutputStream.write() has some statements that 

SequenceInputStream.read() does not have. The two methods 

share the logic of validating input parameters so that they are 

reported as cloned method by CloneMiner. Note that we define 

a block that contains at least 6 continuous unmatched 

statements as an unmatched block, which spans at least 2 lines 

of code, and constitutes noticeable clones [16]. 

ObjectInputStream.readArray(boolean) (JavaIO 1.5) 
1581. …… 
1582. if(bin.readByte() != TC_ARAY) 
1583.     throw new StreamCoruptedException() 
1592. array = Array.newInstance(ccl, len) 
1593. …… 
ObjectInputStream.readOrdinaryObject(boolean) (JavaIO 1.5) 
1689. …… 
1690. if(bin.readByte() != TC_OBJECT) 
1691.     throw new StreamCoruptedException() 
1698. obj = desc.isInstantiable() ? desc.newInstance() …; 
1699. …… 

Fig. 8. Differential statements 

CreateMemberTests.test002() (JDT unit test) 
70. …… 
71. compilationUnit = getCompilationUnit(…  “E.java”); 
76. IField sibling = type.getField(“j”); 
77. type.createField(“int i;”, sibling, true, null); 
78. …… 
CreateMemberTests.test003()(JDT unit test) 
89. …… 
90. compilationUnit = getCompilationUnit(…  “Anno.java”); 
95. IMethod sibling =type.getMethod(“foo”  new String[]{}); 
96. type.createMethod(“String bar()”, sibling, true, null); 
97. …… 

Fig. 9. Differential block 

 

ObjectInputStream$BlockDataInputStream.peek()(JavaIO 1.5) 
3960. if(blkmode) { 
3961.     return (end>=0) ? (buf[pos] & 0xFF) : -1; 
3962. } else { … } 
ObjectInputStream$BlockDataInputStream.read() (JavaIO 1.5) 
3963. if(blkmode) { 
3964.     return (end>=0) ? (buf[pos++] & 0xFF) : -1; 
3965. } else { … } 

Fig. 10. Missing statements 

SequenceInputStream.read (byte b[], int off, int len) (JavaIO 1.5) 
181.     …… // cloned codes 
189.     else if (len == 0) { 
190.        return 0; 
191.     } 
192.     int n = in.read(b, off, len); 
193.     if (n <= 0) { 
194.          nextsStream(); 
195.          return read(b, off, len); 
196.      } 
197.     return n; 
PipedOutputStream.write(byte b[], int off, int len) (JavaIO 1.5) 
122.     …… //cloned codes 
129.     else if (len == 0) { 
130.         return 0; 
131.     } 
132.     sink.receive(b, off, len); 

Fig. 11. Missing statements and block 

3) Missing or Partially Matched Branches: Missing 

branches represent control points that appear only in one of the 

cloned method but not the other, while partially matched 

branches reveal the inconsistencies between a sequence of 

control points between the cloned methods. 

Fig. 4 presents an example of a common inconsistent 

program style in JavaIO that results in a missing branch 

between cloned methods. Fig. 12 presents a typical example of 

another common inconsistent program style in Java IO that 

results in partially-matched branches for parameter validity 

checking. In this example, the cloned methods perform a 

sequence of similar but also different parameter validity 

checkings. They have two pairs of matched parameter validity 

checkings (off<0 and len<0), but they check different 

expressions (len>buf.length-off versus off+len>buf.length) to 

ensure that the sum of off and len is less than the length of buf. 

Furthermore, StringBufferInput-Stream.read() has one more 

checking (off+len<0), which is actually unnecessary, since it 

always evaluates to be false. 

ByteArrayInputStream.read(byte[] buf, int off, int len) (JavaIO1.5) 
160.     …… 
161.     } else if(off<0||len<0||len>buf.length-off) { 
162.         throw new IndexOutOfBoundsException();}} 
163.     …… 
StringBufferInputStream.read(byte[] buf, int off, int len) (JavaIO1.5) 

95.     …… 
96.     } else if(off<0||len<0|| 
97.                 off+len>buf.length||off+len<0) { 
98.         throw new IndexOutOfBoundsException();}} 
99.     …… 

Fig. 12. Partially-matched branches 

IV. EVALUATION 

We evaluated our CloneDifferentiator approach and tool on 

two Java software systems: JavaIO library and Eclipse JDT-
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model unit tests. JavaIO library 1.5 contains 101 classes and 

1038 methods. Our tool uses CloneMiner for clone detection. 

CloneMiner detects 103 clone sets; each set consists of 2-15 

cloned methods. JDT-model unit tests (jdt.core.tests.model) 

3.6.1 contain 336 test suites and 10740 test methods. For JDT-

model unit tests, CloneMiner detects 961 clone sets; each set 

consists of 2 – 35 cloned methods.  

We then use our tool to identify and analyze contextual 

differences of the detected clones. Our evaluation aims at 

gaining insights into these questions: How often is the context 

of clones different? Do contextual differences of clones in 

different systems manifest different characteristics? Can such 

contextual differences help distill useful clones for refactorings? 

In this section, we report the results on using our tool on 

refactoring of clones in JavaIO and JDT-model unit tests. We 

also evaluate runtime performance and accuracy. 

A. Characteristics of Contextual Differences of Clones in 

JavaIO and JDT-model Unit Tests 

Our quantitative analysis suggests that in both systems the 

detected cloned methods usually have various types and 

instances of contextual differences. The differences are often 

subtle. The contextual differences of cloned methods residing 

in various systems may manifest various characteristics, due to 

the nature of the subject systems. 

Table 1 reports the statistics of contextual differences of 

cloned methods in JavaIO. Each row in the table represents a 

type of contextual difference discussed in Section III.C. 

Column “#diff” lists the number of instances of a particular 

type of contextual difference; column “#cloneset(cs)” lists the 

number of clone sets that have at least one instance of a 

particular type of contextual difference; column (#diff/#cs) lists 

the average instance number  of the different types of 

contextual differences per clone set. 

For example, the first row of Table 1 shows that our tool 

identifies 329 instances of differential statements in 79 clone 

sets; on average one clone set has 4.2 instances of differential 

statements. Note that one clone set can have more than one 

type of contextual differences. Thus, the sum of column 

“#cloneset” is greater than the number of clone sets that 

CloneMiner reports. 

CloneDifferentiator reports in total 849 (sum(#diff)) 

instances of different types of contextual differences in the 

cloned methods of JavaIO library. For a particular type of 

contextual difference, each clone set has on average at least one 

instance (#diff/#cs) of that type of difference, for example 1.2 

instances of partially-matched branches per clone set. Each 

clone set has on average three (sum(#cs)/103) types and eight 

(sum(#diff)/103) instances of contextual differences.  

The most common type of contextual differences of the 

cloned methods of JavaIO are missing statements (392 

instances), followed by differential statements (329 instances). 

These two types of contextual differences account for about 85% 

of all 849 instances of differences. Missing blocks (68 

instances) and differential blocks (13 instances) account for 

about 10% of all 849 instances. Partially-matched branches 

(PartialMatch Brch, 21 instances) and missing branches (26 

instances) account for a very small percentage (5%) of all 849 

instances. Overall, differences between cloned methods of 

JavaIO are usually subtle, but sometimes they can be notable. 

TABLE 1. STATISTICS OF CONTEXTUAL DIFFERENCES IN JAVAIO 1.5 

Type # diff #cloneset(cs) #diff/#cs 

Differential Statemt 329 79 4.2 

Differential Block 13 10 1.3 

Missing Statement 392 80 4.9 

Missing Block 68 44 1.6 

Missing Branch 26 18 1.5 

PartialMatch Brch 21 17 1.2 

TABLE 2. STATISTICS OF CONTEXTUAL DIFFERENCES IN JDT-MODEL TESTS 

Type #diff #cloneset(cs) #diff/#cs 

Differential Statemt 7900 931 8.5 

Differential Block 101 90 1.1 

Missing Statement 6761 666 10.2 

Missing Block 1217 460 2.64 

Missing Branch 512 203 2.5 

PartialMatch Brch 13 12 1.1 

Table 2 presents the statistics of contextual differences of 

cloned methods in JDT-model unit tests. The cloned methods 

of JDT-model unit tests have much more (sum(#diff)=16504) 

instances of contextual differences. This is not surprising 

because JDT-model-unit-tests is a much bigger project and it 

has nine times more clone sets than JavaIO. However, the 

percentages of different types of contextual differences in the 

cloned methods of JDT-model-unit-tests are roughly similar to 

those of JavaIO. Furthermore, the percentages of clone sets that 

have a particular type of contextual differences are also roughly 

similar to those of JavaIO. 

One important difference is that the cloned methods of 

JDT-model unit tests have on average more types 

(sum(#cs)/961) and instances (sum(#diff)/961, #diff/#cs) of 

contextual differences than the cloned methods of JavaIO. This 

is mainly because the JDT-model unit test methods are usually 

longer than the methods of JavaIO. 

The other difference is that almost all clone sets of JDT-

model unit tests have differential statements (931/961, 96.8%). 

This is due to the existence of a large amount of differential 

constant statements. In fact, this reflects a common practice in 

writing unit tests in which similar tests are developed to test 

different input values (see examples in Section IV.C). 

B. Refactoring JavaIO Library 

In this study, we are interested in identifying clones that can 

be refactored using Folwer’s refactorings (e.g. extract method, 

pull up method) or Java generics, thus reducing code 

duplication. 

1) Refactoring Clones Using Folwer’s Refactorings: Many 

of Folwer’s refactorings are concerned with code duplication 

[8]. Folwer’s refactorings usually target at identical or almost 

identical cloned methods, which can be removed by 

refactorings such as extract method, pull up method.  

To identify candidate clones for Folwer’s refactorings, we 

formulate the following two queries searching for: 

1. The cloned methods that have no contextual differences, i.e., 
the PDGs of such cloned methods are perfectly matched; 
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2. One of the cloned methods is “part of” the other cloned 
methods, i.e., the PDG of one cloned methods is the 
subgraph of the PDG of the other. So only one of the clone 
methods has missing statements, blocks, and/or branches. 

The first query for cloned methods without contextual 

differences returns 3 pairs of cloned methods. Fig. 2 presents 

one pair of these cloned methods. The two methods perform 

identical computation: they write eight lower-order bits of the 

input argument to the output stream and ignore the 24 high-

order bits. These cloned methods can be refactored by 

replacing the body of one method with a call to the other 

method. Note that CloneDifferentiator does not report that the 

cloned methods in Fig. 2 have differential parameters (b versus 

v highlighted in italic font), because the two parameters declare 

the same data type (int), and the simple identifier difference 

does not affect the computation performed by the cloned 

methods. 

The second query returns 1 pair of cloned methods, 

PipedInputStream.checkStateForReceive() and PipedReader.-

receive(int). Both PipedInputStream and PipedReader need to 

perform the same checking of pipe state in several places 

before starting receiving data. The developer of 

PipedInputStream recognized the repetition of this state 

checking and extracted the state checking logic into the method 

PipedInputStream.check-StateForReceive(). In contrast, the 

developer of PipedReader did not extract the state checking 

logic from PipedReader.receive(int) into a separate method. As 

a result, CloneDifferentiator detects that the state checking 

method PipedInputStream.checkState-ForReceive() is “part of” 

the method PipedReader.receive(int). Identifying this “part of” 

relation between the cloned methods suggests the opportunity 

to extract method.  

Overall, only very few cloned methods (4/103) in JavaIO 

library represent identical or almost identical code clones that 

can be removed by Folwer’s refactorings. 

2) Relaxed Queries for Folwer’s Refactorings: To identify 

more candidate clones for Folwer’s refactorings, we relaxed 

the two queries given in the last section, by allowing the 

cloned methods to have a small number of contextual 

differences. In particular, relaxed queries allow the cloned 

methods to contain a maximum of six instances of differential 

statements, missing statements, missing branches, and/or 

partially-matched branches. 

The relaxed queries return 21 more pairs of cloned methods. 

Four pairs of these cloned methods have only differential 

operator-code and/or operand statements. For example, the 

cloned methods LineNumberInputStream.read(byte,int,int) and 

InputStream.read-(byte,int,int) are all the same but a pair of 

differential operator-code method invocations (special for 

LineNumberInputStream.-read() versus virtual for 

InputStream.read()). The class InputStream declares a template 

method [10] read(byte,int,int) that defines the skeleton of 

reading bytes from the input stream. 

InputStream.read(byte,int,int) calls the abstract method 

InputStream.read(), and the subclasses of InputStream (e.g., 

LineNumberInputStream) must implement the abstract method 

InputStream.read() to read the next byte of data from a specific 

type of input stream. However, the subclass LineNumberInput-

Stream duplicates the template method read(byte,int,int) in 

itself, which deviates from the intent of Template Method [10]. 

So this duplicated LineNumberInputStream.read(byte,int,int) 

should be removed. 

There are also 17 pairs of cloned methods that reveal two 

types of inconsistent program styles in JavaIO library. These 

inconsistent programming styles result in a certain amount of 

missing statements, missing branches and/or partially-matched 

branches in the cloned methods. Fig. 4 and Fig. 12 present two 

examples of these two types of inconsistent program styles, i.e., 

different ways to validate input parameters and handle 

exceptions. Investigating the cloned methods that have such 

inconsistent programming styles suggests that after we 

reconcile inconsistencies among these cloned methods, these 

cloned methods could also be refactored, for example, by 

extracting validity checking of input parameters into a utility 

method. 

3) Refactoring Clones Using Java Generics: Java generics 

support developing common data structures and algorithms 

differing only in the types on which they operate.  

To identify candidate clones that can be replaced with Java 

generic methods or classes, we formulate the following two 

queries based on the two characteristics of JavaIO library: 

1. JavaIO supports reading and writing data of different 
primitive data types (e.g., short, char, int, long, double). 
Thus, we formulate a query to identify cloned methods that 
have only differential typecasting statements; 

2. JavaIO supports reading and writing both byte (8-bit) data 
and char (16-bit) data. Thus, we formulate a query to 
identify cloned methods that have only differential field-
access and method-invocation statements. 

Bits.getChar(byte[] b, int off) (JavaIO 1.5) 
26. return (char)((b[off+1]&0xFF)<<0) +   
27.    (b[off+1]&0xFF)<<8)); 
Bits.getShort(byte[] b, int off) (JavaIO 1.5) 
31. return (short)((b[off+1]&0xFF)<<0) +   
32.    (b[off+1]&0xFF)<<8)); 

Fig. 13. Differential typecast statements 

It is surprising that the first query returns only 1 pair of 

cloned methods Bits.getChar() and Bits.getShort(), as shown in 

Fig. 13. Our inspection of JavaIO library reveals that this is 

because JavaIO mainly relies on bitwise shift and logic 

operations instead of explicit typecasting for processing data of 

different primitive data types. 

The second query returns 26 pairs of cloned methods, 

including the cloned methods PipedOutputStream.write(int) 

and PipedWriter.write(int) listed in Fig. 3. Although the two 

methods are textually identical, they actually have three 

instances of differential statements. Similar types of differential 

statements also exist in other cloned methods returned by our 

query, such as methods connect(), flush(), close() of 

PipedOutputStream and PipedWriter. These differential 

statements reveal that the overall data and control flows are 

similar in many methods of two types of output classes 

(PipedOutputStream versus PipedReader), but the specific data 

operations are different.  
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In fact, these differential statements are resulted from 

parallel inheritance hierarchies in Java IO for processing byte 

data (input/output streams) and char data (readers/writers) 

respectively. JavaIO initially supported only byte data. To 

support char data, a separate hierarchy of classes was later 

developed. The two parallel hierarchies share many similar 

data structures and processing steps. They can be restructured 

into one hierarchy using Java generic classes and methods. 

C. Refactoring Eclipse JDT-model Unit Tests 

Unit tests typically contain groups of test methods that form 

variations for a common testing purpose and therefore are 

similar to each other. In this study, we are interested in 

identifying clones that can be refactored using seed values, 

state machine, or assume/assert invariants testing patterns [32], 

thus reducing code duplication among test methods and 

improving test-case reuse. 

1) Refactoring Clones Using Seed Values: A traditional 

unit test method tests a unit with fixed input value. It is 

necessary to develop several tests with variant input values to 

achieve a good coverage of the unit under test. These tests are 

often similar but also different in the input values that are 

actually used for testing. 

We would like to refactor such duplicated unit tests into 

parameterized unit tests, using seed-values [32] (a pattern for 

parameterized unit testing [25]) to provide concrete input 

values. To that end, we formulate a query searching for cloned 

test methods that have only differential-operand and/or 

differential-constant-value statements. 

JavaSearchTests.testEnum06() 
3672. method = getMethod(“setRole”  new String[] {“Z”}); 
3673. search(method, REFERENCES  …); 
JavaSearchTests.testVarargs03() 
3702. method = getMethod(“vargs”  new String[] {“QSt”}); 
3703. search(method, ALL_REFERENCES  …); 

Fig. 14. Seed values 

Our query returns 173 pairs of cloned test methods in 

Eclipse JDT-model unit tests. Fig. 14 presents one of them. The 

two methods test the Java search API with different search 

entities (setRole versus vargs, and Z versus QSt) and search 

options (REFERENCES versus ALL_REFERENCES).  

Investigating these 173 cloned test methods returned by our 

query suggests that cloned test methods for testing searching 

and formatting features usually have differential-operand 

and/or differential-constant-value statements. Such cloned test 

methods can be parameterized, using their differential operands 

and constant values as seed values, so that parameterized unit 

tests can verify the unit under test for a set of input values. 

2) Refactoring Clones Using State Machine: Eclipse JDT-

model provides APIs for programmatically rewriting Java 

programs, such as creating a member (e.g. field or method) in 

a class. The corresponding unit tests for these APIs often share 

similar control and data flows but also differ in the program-

rewriting APIs under tests.  

We would like to refactor such cloned test methods into 

parameterized unit tests to enforce the flow of testing logics, 

using state machine [32] (another pattern for parameterized 

unit testing) to encapsulate program-rewriting APIs under test. 

To that end, we formulate a query searching for cloned 

methods that have differential method-invocation statements 

and/or differential blocks of program-rewriting APIs. 

ASTRewritingStatementsTest.testSwitchStatement7() 
3956. ListRewrite listRewrite = rewrite.getListRewrite(…) 
3957. listRewrite.replace(assignment, switchCase, null); 
3959. String preview = evaluateRewrite(cu, rewrite); 
ASTRewritingStatementsTest.testSwitchStatement9() 
4098. ListRewrite listRewrite = rewrite.getListRewrite(…) 
4099. listRewrite.remove(assignment,  null); 
4100. listRewrite.insertAfter(switchCase,assignment,null): 
4102. String preview = evaluateRewrite(cu, rewrite); 

Fig. 15. State machine 

Our query returns 153 pairs of cloned test methods. Fig. 9 

presents an example of these cloned methods testing different 

ways to create a class member (field versus method). Fig. 15 

presents another example testing different ways (replace versus. 

remove and insertAfter) to rewrite switch statements in an AST. 

Investigating these 153 cloned test methods reveals that 

cloned test methods for testing program-rewriting APIs often 

invoke different program-rewriting APIs (e.g., createField, 

createMethod, remove, insert, copy, move, replace), or invoke 

some program-rewriting APIs in different orders. The 

invocations of these program-rewriting APIs can be 

encapsulated into state machines [32] that can 

programmatically rewrite Java programs. Then, given state 

machines of a set of program rewriting APIs and a 

parameterized unit test, one can use testing framework, such as 

Pex [33], to instantiate sequences of state transitions to test the 

relevant program-rewriting APIs. 

3) Refactoring Clones Using Assume and Assert 

Invariants: JDT-model unit tests often assert similar sets of 

properties that a unit under test should hold before and after 

exercising the unit under test, for example whether the parent 

AST node is not null or the class contains a specific member.  

We would like to extract these similar assertions before and 

after exercising the unit under test into assume/assert invariants. 

To that end, we formulate a query searching for cloned test 

methods that have at least two matched method-invocations of 

assertxxx() methods. Note that Eclipse JDT-model unit tests 

name assertion methods in the form of assertxxx(). 

ASTTest.testArrayCreation() 
7994. final ArrayCreation x = this.ast.newArrayCreation(); 
7995. assertTrue(this.ast.modificationCount > previousCount); 
7997. assertTrue(x.getAST() == this.ast); 
7998. assertTrue(x.getParent ()== null); 
ASTTest.testSwitchStatement() 
5891. final SwitchStatemnt x = this.ast.newSwitchStatement(); 
5892. assertTrue(this.ast.modificationCount > previousCount); 
5894. assertTrue(x.getAST() == this.ast); 
5895. assertTrue(x.getParent() == null); 

Fig. 16. Assume invariant 

Our query returns 137 pairs of cloned test methods. Fig. 16 

presents one example, in which the matched same method-

invocation statements are highlighted. The two methods test the 

APIs of two different types of AST nodes, array creation versus 

switch statement. However, they share the same set of 
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assertions about the AST under test, i.e. modificationCount > 

prevCount, x.getAST()==this.ast, and x.getParent()==null. 

Checking these 137 cloned test methods reveals that cloned 

test methods for JDT AST/DOM APIs often contain similar 

sets of assertions before and/or after exercising the AST/DOM 

API under test. These similar assertions can be extracted as 

assume and/or assert invariants. These invariants can not only 

remove duplicate assertions across test methods, but ensure 

consistent verification of test assumptions and results. 

D. Runtime Performance and Accuracy 

Our evaluation has been performed on a machine with a 

Core I5 CPU of 2.6GHz, 4G RAM, and Windows 7. For the 

largest subject system Eclipse JDT plugins, detecting clones 

took about 8 minutes; generating the PDGs of clones took 

about 30 minutes; computing the PDG differences of 14520 

clone pairs in 961 clone sets took about 220 minutes; 

automatically summarizing the PDG differences of clones took 

about 70 minutes.  

By analyzing the clones detected by CloneMiner [3], the 

accuracy of our tool is good. We manually inspected the PDG 

comparison results of randomly-selected 10% of all the 

analyzed clone pairs. The precision (i.e., the percentage of the 

correctly reported matches) and the recall (i.e., the percentage 

of matched reported) of our tool is around 94% and 96%.  

ObjectInputStream$BlockDataInputStream  (Java IO 1.5) 
2717. readByte() { 
2718.     int v = read(); 
2719.     if(v<0) throw new EOFException(); 
2720.     return (byte)v;} 
ObjectInputStream$BlockDataInputStream  (Java IO 1.5) 
2549. peekByte() { 
2550.     int v = peek(); 
2551.     if(v<0) throw new EOFException(); 
2552.     return (byte)v;} 

Fig. 17. An erroneous match: read() vs. peek() 

The false positives mainly consist of the erroneous matches 

of the same-type parameters, field accesses and method 

invocations. Fig. 17 presents a typical example, in which the 

PDGs of the two cloned methods differ only in the method 

signature of the two INVOKE statements (peek() vs. read()). As 

both method invocations return int and they have the identical 

neighboring statements in the two PDGs, the PDG differencing 

erroneously matches peek() and read() invocations. However, 

peek() and read() perform different computations (See Fig. 10). 

The false negatives (i.e., missed matches) are due to many 

matches that prevent statements matching to real counterparts. 

V. RELATED WORK 

Researchers have presented many techniques to detect code 

clones based on token [3][15][16][22], AST [4][13], and PDG 

[9][11][19][21]. Roy and Cordy [24], and Koschke [20] 

provide comprehensive surveys of existing clone detection 

techniques. The difference between clone detection techniques 

and our CloneDifferentiator is that clone detectors report which 

parts of the system are similar, while our tool identifies how 

these similar parts are different. However, using differencing 

techniques for clone detection is impractical, because it 

requires a pair-wise differencing of any two code fragments, 

which results in a combinational explosion of differencing 

operation. On the other hand, clone detectors often use reduced 

representation of program (such as encoding PDG in a vector 

space [9]) to scale up to large systems. Such reduced 

representation makes it impossible to compute differences of 

clones during clone detection process. Our tool complements 

clone detectors by helping developers identify and analyze 

contextual differences of clones in post-detection analysis. 

Clone detectors report a large number of clones in large 

systems, while it is common that only a small number of them 

is actually useful for specific maintenance tasks, such as 

refactorings. The effectiveness of clone detection techniques 

has usually been evaluated in terms of precision and recall 

metrics of the detected clones, such as in the quantitative 

evaluation of clone detectors reported in Roy et al. [23], and 

Bellon et al. [5].  

Researchers proposed clone analysis approaches to aiding 

the interpretation and management of software clones. For 

example, Genimi [26] uses a scatter plot to visualize code 

clones detected by CCFinder [16], and it also computes several 

code metrics of clones to aid clone analysis. Balazinska et al. 

[1][2] define a clone classification based on the differences 

between the token sequences forming the clones. This clone 

classification helps to measure the reengineering opportunities 

of clones. CP-Miner [22] finds bugs based on inconsistent 

identifiers between clones. One major limitation of these 

approaches is that they examine only the information of clones, 

ignoring the program context in which clones occur.  

Other approaches perform simple syntactic analysis of 

clones to aid the understanding of clones. For example, Kapser 

and Godfrey [17] classify code clones through the syntactic 

analysis of locality of clones. Jiang et al. [14] consider the 

inner most syntactic constructs that enclose clones as contexts 

and identify three types of contextual inconsistencies in clones. 

In contrast, our CloneDifferentiator raises contextual analysis 

of code clones to PDG, which captures much more contextual 

information than existing work. Besides, CloneDifferentiator 

exploits efficient graph differencing algorithm to systematically 

detect contextual differences of clones.  

Query-based approaches have been proposed for supporting 

program understanding and maintenance. Xing and Stroulia [29] 

proposed to detect and analyze change patterns in software 

evolution by querying elementary design changes reported by 

UMLDiff. Zhang et al. [31] present the CloneAnalyzer tool that 

supports query-based filtering of code clones. However, 

CloneAnalyzer does not support contextual analysis and 

differencing of clones as CloneDifferentiator does. 

Our recent work [28] presents design and key concepts of 

GenericDiff framework. CloneDifferentiator is a new 

application of GenericDiff for comparing PDGs of clones to 

detect their contextual differences. It performs automatic 

contextual analysis of code clones based on PDG differencing 

results of GenericDiff. We present our tool in [27] about the 

details of implementation challenges and visualization features 

of the tool, while this paper describes fundamental concepts of 

our approach, discusses in detail contextual differences of 

clones, and also reports two empirical studies.  
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VI. THREATS TO VALIDITY 

Now our tool CloneDifferentiator uses CloneMiner [3] to 

detect cloned methods. The surveys [20][24] on clone detection 

tools suggest that clones reported by different techniques may 

vary due to the diverse nature of detection techniques and 

similarity metrics. Further studies are required to evaluate our 

approach with respect to different clone detection techniques. 

CloneDifferentiator now compares intra-method PDGs of 

cloned methods, excerpted from Wala-SDG of the system. It 

does not consider inter-method PDGs because it assumes that 

two different methods being invoked in cloned methods would 

perform different computation. This assumption holds in most 

cases and allows scalable and efficient contextual analysis of 

clones. CloneDifferentiator can be easily adapted to analyze 

inter-procedure PDGs around cloned methods, because inter-

procedure PDGs are available in Wala-SDG.  

In this paper, we showed that contextual differences of 

clones are useful for distilling useful clones for refactorings. 

Cloning information has also been used for other types of 

software maintenance tasks, such as bug detection [14][15][22]. 

Further studies are required to investigate the usefulness of our 

approach for other types of maintenance tasks. 

VII. CONCLUSION AND FUTURE WORK 

We cannot understand code clones without understanding 

their differences precisely. In this paper, we proposed and 

implemented an automated approach to help developers 

identify and analyse contextual differences of clones. Our 

evaluation shows that our tool can reduce the effort of post-

detection analysis of clones for refactorings by supporting 

developers to distill useful clones of interest based on 

contextual differences of clones. 

In the future, we plan to conduct more empirical studies to 

enrich our taxonomy of contextual differences of clones. We 

believe this can open new opportunities to refine existing 

token-based clone definitions from a new perspective (i.e., 

contextual differences of clones). This can enhance the 

usefulness of cloning information in many software 

maintenance tasks. 
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