
Distilling Useful Clones by Contextual Differencing

Zhenchang Xing

Nanyang Technological University, Singapore

zcxing@ntu.edu.sg

Yinxing Xue, Stan Jarzabek

National University of Singapore, Singapore

tslxuey@nus.edu.sg, stan@comp.nus.edu.sg

Abstract—Clone detectors find similar code fragments and

report large numbers of them for large systems. Textually similar

clones may perform different computations, depending on the

program context in which clones occur. Understanding these

contextual differences is essential to distill useful clones for a

specific maintenance task, such as refactoring. Manual analysis

of contextual differences is time consuming and error-prone. To

mitigate this problem, we present an automated approach to

helping developers find and analyze contextual differences of

clones. Our approach represents context of clones as program

dependence graphs, and applies a graph differencing technique to

identify required contextual differences of clones. We

implemented a tool called CloneDifferentiator that identifies

contextual differences of clones and allows developers to

formulate queries to distill candidate clones that are useful for a

given refactoring task. Two empirical studies show that

CloneDifferentiator can reduce the efforts of post-detection

analysis of clones for refactorings.

Index Terms—Clone analysis, program dependence graph,

graph matching.

I. INTRODUCTION

Similar code fragments are called code clones, and

techniques [3][4][9][16][21][22] have been proposed to detect

code clones. Many refactorings [8] are concerned with code

clones, so clone detectors are often used for such refactorings.

Fig. 1 shows a method hasArray() that is cloned in seven

subclasses of the Buffer class. Looking at the cloned methods

themselves it seems that they could be removed by pulling up

hasArray() to the superclass Buffer. However, having examined

the context of the method hasArray(), we see that field hb

referred in the method is declared differently for each subclass.

Thus, even if hasArray() is textually identical in seven sub-

classes, pulling it up to superclass Buffer would lead to an error.

Clone detection techniques report large numbers of clones

for industrial systems, only some of which can be refactored.

How can developers tell useful clones for a given refactoring

task from irrelevant ones? Clone detectors provide little or no

additional information to aid developers in distilling useful

clones from the rest. To ease post-detection analysis of clones,

researchers have investigated using textual differencing

[15][18], code metrics [1][2], visualization [26], and query-

based filtering techniques [31]. However, these methods ignore

the program context in which clones occur and cannot identify

differences in the context of clones such as in our buffer

example. As a result, cloned hasArray() would be reported as

type-1 clone [5], i.e. they are considered identical and can be

refactored. However, hasArray() is not a valid candidate for

pull-up method refactoring. On the other hand, cloned methods

in Fig. 2 would be reported as type-2 clone [5], because they

have identifier differences (b versus v). But the current clone

detectors or analyzers cannot conduct analysis on clone context,

i.e. the two methods in fact are identical and can be refactored.

class CharBuffer {

char[] hb;
public final boolean hasArray () {
return (hb != null) && !isReadOnly; } }

Buffer

CharBuffer

ByteBuffer

IntBuffer

DoubleBuffer

FloatBuffer

LongBuffer

ShortBuffer

class LongBuffer {

long[] hb;
public final boolean hasArray () {
return (hb != null) && !isReadOnly; } }

Fig. 1. Can we pull-up these cloned methods?

ObjectOutputStream$BlockDataOutputStream (Java IO 1.5)
1767. public void write(int b) throws IOException {
1768. if(this.pos >= MAX_BLOCK_SIZE)
1769. this.drain();
1770. this.buf[pos++]= (byte)b ; }
ObjectOutputStream$BlockDataOutputStream (Java IO 1.5)
1874. public void writeByte(int v) throws IOException {
1875. if(this.pos >= MAX_BLOCK_SIZE)
1876. this.drain();
1877. this.buf[pos++]= (byte)v ; }

Fig. 2. Cloned methods that have no contextual diffs

To distill useful clones for a given refactoring, we must

raise clone analysis to a higher level of abstraction, and must

examine the program context in which clones occur. The

program context that affects computation of clones includes

program elements referenced in cloned methods (e.g. fields

being accessed, methods being invoked), associated properties

of these program elements (e.g. data type of the field, return

type of the method), and control and data flow surrounding

cloned code fragments. Contextual differences must be

identified and understood to correctly do refactorings on clones.

In this paper, we propose an approach and implement it as a

tool called CloneDifferentiator [27] to help developers identify

and analyze contextual differences of clones. It captures

context of clones using a Program Dependence Graph (PDG)

[6]. It compares PDGs of clones using a graph differencing

algorithm to automatically identify contextual differences of

clones. Furthermore, it offers querying and filtering support to

enable developers distill useful clones of interest, and a GUI to

visually inspect clones and their contextual differences.

We evaluated the effectiveness of our approach and the

CloneDifferentiator tool in two empirical studies aiming at

refactoring JavaIO library and Eclipse JDT-model unit-test

978-1-4799-2931-3/13/$31.00 c© 2013 IEEE WCRE 2013, Koblenz, Germany102

suites. Our studies show that our approach is able to distill a

small number of useful clones for various refactoring tasks, and

thus reduces the efforts of post-detection analysis of clones for

refactorings. We make the following contributions in this paper:

1. We identify contextual differences of clones that must be
identified and understood to correctly refactor clones.

2. We present an automated approach to help developers
distill useful clones for a given refactoring task by
identifying and analyzing contextual differences of clones.

3. We report two empirical studies and demonstrate the
performance, accuracy and effectiveness of our approach
for post-detection analysis of clones for refactorings.

The rest of this paper is structured as follows. Section II

discusses contextual analysis of clones for refactoring. Section

III describes our CloneDifferentiator approach. Section IV

reports our empirical studies. Section V discusses related work.

Section VI discusses threats to validity of our approach. Finally,

we conclude with ideas for future work.

II. CONTEXTUAL ANALYSIS OF CLONES

Suppose John ponders if it might be possible to refactor

Java NewIO library to remove code duplication reported in

[12]. One of the specific refactorings that he is interested in is

to pull up cloned methods from subclasses into superclass. For

the candidate clones that he is looking for are cloned methods

that occur in sibling classes and appear to perform the same

computation.

John uses CloneMiner [3] for clone detection; CloneMiner

reports 98 clone sets in NewIO library for Java 5; each clone

set consists of 2 – 50 cloned methods. He then uses

CloneAnalyzer [31] to inspect the detected clones. As

CloneAnalyzer offers little help in identifying candidate clones

for his pull-up method refactoring, John has to manually

inspect all detected clones one by one; he resorts to Java

Source Compare of Eclipse IDE to determine the differences

between cloned methods.

PipedOutputStream (Java IO 1.5)
36. private PipedInputStream sink;
101. public void write(int b) throws IOException {
102. if(this.sink == null)
103. throw new IOExcetion(“…”);
104. this.sink.receive(b); }
PipedWriter (Java IO 1.5)
25. private PipedReader sink;
103. public void write(int c) throws IOException {
104. if(this.sink == null)
105. throw new IOException(“…”);
106. this.sink.receive(c); }

Fig. 3. Differential statements

ObjectInputStream.read(byte[] buf, int off, int len) (JavaIO 1.5)

806. if(buf==null) {
807. throw new NullPointerException(“…”);}
809. int endoff=off+len;
810. if(off<0||len<0||endoff>buf.length || endoff<0) {
811. throw new IndexOutOfBoundsException();}
ObjectInputStream.readFully(byte[] buf, int off, int len) (JavaIO 1.5)

976. int endoff=off+len;
977. if(off<0||len<0||endoff>buf.length || endoff<0) {
978. throw new IndexOutOfBoundsException();}

Fig. 4. Missing branch and statements

After inspecting 69 clone sets, John identifies a candidate

clone set of seven cloned methods (see Fig. 1). Thus, John tries

to remove these cloned methods using Eclipse’s refactoring

support. However, Eclipse reports an error that field hb referred

in the cloned methods has a different data type in different

subclasses. For example, the data type of CharBuffer.hb is

char[], while the type of LongBuffer.hb is long[]. The type

difference of hb prevents the cloned methods hasArray() from

being pulled up into the superclass Buffer. So pulling up hb into

Buffer would lead to errors in other parts of buffer subclasses.

Note that in the source code of the subclasses of Buffer, the

declaration of field hb is far away from (about 660 lines of

codes in between) the declaration of method hasArray().

Furthermore, the textually identical appearance of the cloned

methods makes John easily ignore the type differences of field

hb in subclasses of Buffer, until his refactoring attempt failed.

The type difference of field hb of different buffer

subclasses is a simple example of what we call differential

statements, i.e. statements that appear in similar control and

data flow contexts, but perform different computations. Fig. 3

presents another example of differential statements from Java

IO library. The control and data flow of the cloned methods are

identical, but the two methods perform different computations.

The field sink refers to the different fields

PipedOutputStream.sink and PipedWriter.sink, respectively.

The types of the two fields are also different, PipedInputStream

versus PipedReader. Thus, sink.receive() is different in these

two methods. In fact, many clones in Java IO have such

differential field-access and method-invocation statements,

which result from parallel inheritance hierarchies for

processing byte data and char data respectively.

Two other important types of contextual differences of

clones are missing statements (i.e. statements that appear in

some cloned methods but not others) and missing/partially-

matched branches (i.e. missing or inconsistent branches among

cloned methods). Fig. 4 shows an example. The method read()

checks if buf is null, and creates and throws a

NullPointerException if buf is null. readFully() does not have

such explicit checking. This example shows a common

inconsistent program style in Java IO for validating input

parameters and handling exceptions.

Once contextual differences of clones are identified, they

can help distill useful clones for a given refactoring task. For

example, developers who are interested in pulling-up cloned

methods can formulate a query searching for cloned methods

that are in sibling classes and have no contextual differences.

The cloned methods in Fig. 1 and Fig. 3 will not be returned by

the query due to the existing differential statements, even if

they look identical. But they are returned by the query

searching for clones that can be replaced by generic method.

Here is another example: after removing the differences due to

inconsistent program styles in Fig. 4, programmers can extract

parameter-validity-checking logic into a utility method.

Clearly, given large numbers of clones, manual contextual

analysis of clones is impractical. The question then becomes:

how can we precisely capture context of clones and

automatically identify contextual differences of clones?

103

III. THE APPROACH

We propose an automatic approach and tool called

CloneDifferentiator that help developers identify and analyze

contextual differences of clones.

A. Overview

CloneDifferentiator analyzes cloned methods detected by

one of the existing code clone detectors, such as CloneMiner

[3]. Clone detectors usually group cloned methods to form

clone sets. The cloned methods called clone instances in each

clone set are pair-wise similar to each other, according to

similarity metrics used by the clone detector.

CloneDifferentiator raises the level of clone analysis to

Program Dependency Graph (PDG) [6]. It represents context of

clones using PDG. PDG allows to precisely capture not only

program elements being referenced in cloned methods and

associated properties of these program elements, but also data

and control flow information in cloned methods. Given PDGs

of cloned methods in a clone set, our tool uses graph

differencing algorithm to compare PDGs of clones. It

automatically detects contextual differences of clones, in terms

of PDG-based differential statements or blocks, missing

statements or blocks, and missing or partially-matched

branches. Because these contextual differences are identified at

PDG level, they contain fine-grained static semantic

information about the differences, including type of statement,

program elements being referenced and its associated

properties, and data/control flow discrepancies.

Our CloneDifferentiator tool [27] stores its contextual

analysis results of clones in a relational database. Stored

information includes PDGs of cloned methods and the

instances of different types of contextual differences of these

clones. Clone-Differentiator is equipped with a set of simple

filters for filtering clones based on the types and number of

their contextual differences. Furthermore, it allows developers

to formulate task-specific queries in terms of which clones and

what types of contextual differences he would like to inspect.

B. Representing Context of Clones as PDG

Let us first discuss why we adopt PDG to represent the

context of clones. We then describe the PDG representation

that our current CloneDifferentiator tool adopts for contextual

analysis of clones.

1) Why PDG: A Program Dependence Graph (PDG) [6] is

a static representation of the control and data flow through a

program. CloneDifferentiator adopts PDG as the internal

representation of context of clones and computes contextual

differences of clones at PDG level.

Fig. 5 presents the contextual differences of a pair of cloned

methods listFiles(FilenameFilter) and listFiles(FileFilter) in a

CloneDiff Compare Editor (see [27] for more details on the

introduction of the CloneDiff Compare Editor of our tool).

CloneDifferentiator reports that the cloned code fragments

(inside light-grey box) of the two methods have a pair of

differential parameters (highlighted in light blue background),

because the two parameters declare different data types

(interface FilenameFilter versus interface FileFilter). Our tool

also reports that the two cloned methods have a pair of

differential method invocations (FilenameFilter.accept() versus

FileFilter accept(), highlighted in red background).

Furthermore, the method listFiles(Filenamefilter) has an

additional array-access statement (ss[i], highlighted in yellow

double underline and italic font), i.e. a missing array-access

statement that listFiles(FileFilter) does not have.

CloneDifferentiator also detects the differences in the

control flow of the two methods: the program control flows

from the matched branch statement (i<ss.length) directly to the

unmatched branch (filter==null) in listFiles(FilenameFilter),

while in listFile(FileFilter) the control flows first to the

instantiation of a File object and then to the unmatched branch

(filter==null). CloneDifferentiator reports this difference as

partially-matched branches filter==null (highlighted in green

and accent font in the two methods respectively).

Compared with the textual differencing results of the two

cloned methods (see Fig. 6), the contextual differences that our

tool reports are clearly much more precise. Java Source

Compare reports some textual differences between the code

block of listFiles(FileFilter) and the code block of

listFiles(FilenameFilter). As textual differencing compares

clones as lines and chars, it cannot report the subtle difference

in the branch statements filter==null. And textual differencing

also reports the two new File() statements are different.

Fig. 5. Contextual differences in CloneDiff Compare Editor

Fig. 6. Textual differences in Java Source Compare

Syntactic differencing techniques, such as change distilling

[7] that compares Abstract Syntax Tree (AST), are more robust

than textual differencing, e.g., they can detect type differences

of the parameters of the two listFiles methods. However,

syntactic differencing is still sensitive to arbitrary syntactic

decisions a developer made while developing a program. For

example, statements File f = new File(); v.add(f) and

v.add(new File()) result in different ASTs, but they yield the

same PDG. Furthermore, AST-based differencing techniques

are agnostic of control and data flow through a program, and

thus cannot detect contextual differences resulted from control

and data flow, such as the differences between the two

filter==null statements in the two listFiles methods.

104

2) Wala PDG: In general, the nodes of a PDG consist of

three categories of program statements constructed from the

source code: simple statements, expressions, and control

points. A control point represents a point at which a program

branches, loops, enters or exits a procedure. The edges of a

PDG encode the data and control dependencies between

program statements.

Our CloneDifferentiator tool uses Wala [34] to generate

PDGs of cloned methods. Wala is a static analysis library for

Java. It is important to note that using Wala for PDG

generation in our CloneDifferentiator tool is only an

implementation choice because Wala is open source and

publicly available. Furthermore, we conducted empirical

studies on Java software systems. Our CloneDifferentiator

approach is not limited to any specific PDG generation tools,

nor is it limited to analyzing clones in Java software systems.

We use Wala-PDG to capture the context of cloned

methods, including program elements referenced in cloned

methods, associated properties of these program elements, and

control and data flow in cloned methods. Wala-PDG supports

three categories of bytecode-like program statements

constructed from source code: simple statement, control point,

and expression. Simple statements include field read/write

FGET/FPUT, method invocation INVOKE, unary and binary

operation (negate, add, minus, multiply), compare statement (>,

<, !=), arrayload/store ARRAYLOAD/ARRAYSTORE, type

checking INSTANCEOF, type casting CAST, object creation

NEW, and exception throwing THROW. Control points include

branching BRANCH and switching SWITCH. Expressions

include parameter PARAM and constant CONST. Different

types of Wala-statements consist of different sets of properties,

such as identifier, data type, operator code, and operand.

Fig. 7 shows a partial Wala-PDG for the cloned method

PipedWriter.write(int):void listed in Fig. 3. The two PDG

nodes FGET<this.sink : PipedReader> correspond to the two

this.sink at lines 104 and 106 respectively, i.e. access the field

sink of this object, and the data type of sink is PipedReader.

The node INVOKE<virtual : PipedReader.receive(I)V : void>

corresponds to receive() at line 106, i.e. the invocation of the

method PipedReader.receive(I)V, and this invocation is a

virtual invocation and its return type is void. The node

NEW<IOException> corresponds to new IOException(“…”) at

line 105, i.e. the instantiation of an object IOException. The

node THROW<$> corresponds to the throw statement at line

105. The node BRANCH<ne : this.sink : null> corresponds to

the if statement at line 104; it examines whether field this.sink

is not equal (operator-code ne) to null. The node PARAM<c:I>

corresponds to the parameter c whose data type is int.
LegendENTRY

FGET<this.sink : PipedReader>

NEW<IOException>

BRANCH<ne: this.sink : null>

THROW<$>
FGET<this.sink : PipedReader>

INVOKE<virtual : PipedReader.receive(I)V : void>

True

False

PARAM<c: I>

RETURN<void>

Simple statement

Parameter/Constant

Control point

Control dependence

Data dependence

Fig. 7. Wala-PDG example: PipedWriter.write(int):void

C. Detecting Contextual Differences of Clones

Given a clone set of n cloned methods {m1,…,mn}, let

PDGi and PDGj be the PDGs of cloned methods mi and mj

(;), CloneDifferentiator applies a graph

differencing algorithm to pair-wisely compare PDGi and PDGj

and detect contextual differences between cloned methods mi

and mj. Its current implementation uses GenericDiff [28] (a

configurable graph matching framework) for comparing Wala-

PDGs. GenericDiff is an efficient graph matching algorithm. It

can produce high-quality PDG differencing results for

contextual analysis of clones. Furthermore, GenericDiff is

configurable and it supports a quick development of graph

comparator for various graph-based program models. This

allows us to easily adapt the implementation of our tool for

working with other PDG generation tools.

GenericDiff is an approximate graph matching algorithm.

Given two graphs to be compared, it matches graph nodes and

edges based on both property similarities of graph nodes and

structural similarities between graph nodes from the two graphs.

GenericDiff reports a domain independent symmetric

difference between two input graphs: a set of matched graph

nodes and edges that exist in both graphs, and two sets of

unmatched graph nodes and edges that exist in only one of the

two graphs. CloneDifferentiator interpret GenericDiff’s PDG

differencing results in terms of meaningful contextual

differences of code clones. Interested readers are referred to our

GenericDiff technical report [30] for the details about how we

configure GenericDiff for comparing PDGs.

 Our tool CloneDifferentiator reports the following three

contextual differences of clones:

1) Differential Statements or Blocks: Differential

statements (blocks) represent a pair of Wala-PDG statements

(blocks of statements), one from each cloned method, that

appear in similar control and data flow context in the two

cloned methods, but perform different computations.

Differential statements are because of the differences in:

 The methods being invoked in method invocation (INVOKE)
statements and the fields being accessed in field access
(FGET/FPUT) statements can be different.

 The operator-code of method invocation, binary operation,
compare, and branch statements can be different.
Furthermore, the data type of field-read/write, method
invocation, type checking, type casting, object creation,
array-load/store, and parameter statements can be different.

 The operand of binary-operation, compare, and branch
elements or the value of constant elements can be different.

Fig. 8 presents an example of differential statements from

our empirical study on JavaIO library. The control and data

flow of the cloned methods readArray() and

readOrdinaryObject() is similar. But CloneDifferentiator

detects two pairs of differential statements between the two

methods: the method being invoked in the two method-

invocation statements is different: Array.newInstance() versus

ObjectStreamClass.newInstance(); the operator-code of these

two method invocations is different: static versus virtual; the

constant operand of the branch statements is different:

TC_ARRAY versus TC_OBJECT.

105

Differential blocks are similar to differential statements; the

only difference is that a block consists of a sequence of

statements, i.e. a subgraph of the PDG of the cloned method.

Fig. 9 presents an example of the two cloned test methods from

our empirical study on Eclipse JDT unit tests. Both test

methods are used to test creating a member in a class. However,

our tool detects that the cloned methods have a pair of

differential blocks, which reveal the differences of the two test

methods in retrieving and creating different types of class

members. That is, test002() tests creating a field, while test003()

tests creating a method.

2) Missing Statements or Blocks: Missing statements

(blocks) represent statements (blocks of statements) appearing

only in one of the clones, not in the other.

Fig. 10 presents an example of missing statements between

the two cloned methods. CloneDifferentiator detects that one of

the cloned method read() has two additional statements that the

method peek() does not have: a binary operation that adds pos

by 1 and a field-write statement that updates pos with the new

value. These two missing statements reveal the key differences

between read() and peek(), which have different computations.

Fig. 11 shows an example of missing statements and block

between the two cloned methods. CloneDifferentiator detects

that one of the cloned methods SequenceInputStream.read()

has an additional block that the method

PipedOutputStream.write() does not have, while

PipedOutputStream.write() has some statements that

SequenceInputStream.read() does not have. The two methods

share the logic of validating input parameters so that they are

reported as cloned method by CloneMiner. Note that we define

a block that contains at least 6 continuous unmatched

statements as an unmatched block, which spans at least 2 lines

of code, and constitutes noticeable clones [16].

ObjectInputStream.readArray(boolean) (JavaIO 1.5)
1581. ……
1582. if(bin.readByte() != TC_ARAY)
1583. throw new StreamCoruptedException()
1592. array = Array.newInstance(ccl, len)
1593. ……
ObjectInputStream.readOrdinaryObject(boolean) (JavaIO 1.5)
1689. ……
1690. if(bin.readByte() != TC_OBJECT)
1691. throw new StreamCoruptedException()
1698. obj = desc.isInstantiable() ? desc.newInstance() …;
1699. ……

Fig. 8. Differential statements

CreateMemberTests.test002() (JDT unit test)
70. ……
71. compilationUnit = getCompilationUnit(… “E.java”);
76. IField sibling = type.getField(“j”);
77. type.createField(“int i;”, sibling, true, null);
78. ……
CreateMemberTests.test003()(JDT unit test)
89. ……
90. compilationUnit = getCompilationUnit(… “Anno.java”);
95. IMethod sibling =type.getMethod(“foo” new String[]{});
96. type.createMethod(“String bar()”, sibling, true, null);
97. ……

Fig. 9. Differential block

ObjectInputStream$BlockDataInputStream.peek()(JavaIO 1.5)
3960. if(blkmode) {
3961. return (end>=0) ? (buf[pos] & 0xFF) : -1;
3962. } else { … }
ObjectInputStream$BlockDataInputStream.read() (JavaIO 1.5)
3963. if(blkmode) {
3964. return (end>=0) ? (buf[pos++] & 0xFF) : -1;
3965. } else { … }

Fig. 10. Missing statements

SequenceInputStream.read (byte b[], int off, int len) (JavaIO 1.5)
181. …… // cloned codes
189. else if (len == 0) {
190. return 0;
191. }
192. int n = in.read(b, off, len);
193. if (n <= 0) {
194. nextsStream();
195. return read(b, off, len);
196. }
197. return n;
PipedOutputStream.write(byte b[], int off, int len) (JavaIO 1.5)
122. …… //cloned codes
129. else if (len == 0) {
130. return 0;
131. }
132. sink.receive(b, off, len);

Fig. 11. Missing statements and block

3) Missing or Partially Matched Branches: Missing

branches represent control points that appear only in one of the

cloned method but not the other, while partially matched

branches reveal the inconsistencies between a sequence of

control points between the cloned methods.

Fig. 4 presents an example of a common inconsistent

program style in JavaIO that results in a missing branch

between cloned methods. Fig. 12 presents a typical example of

another common inconsistent program style in Java IO that

results in partially-matched branches for parameter validity

checking. In this example, the cloned methods perform a

sequence of similar but also different parameter validity

checkings. They have two pairs of matched parameter validity

checkings (off<0 and len<0), but they check different

expressions (len>buf.length-off versus off+len>buf.length) to

ensure that the sum of off and len is less than the length of buf.

Furthermore, StringBufferInput-Stream.read() has one more

checking (off+len<0), which is actually unnecessary, since it

always evaluates to be false.

ByteArrayInputStream.read(byte[] buf, int off, int len) (JavaIO1.5)
160. ……
161. } else if(off<0||len<0||len>buf.length-off) {
162. throw new IndexOutOfBoundsException();}}
163. ……
StringBufferInputStream.read(byte[] buf, int off, int len) (JavaIO1.5)

95. ……
96. } else if(off<0||len<0||
97. off+len>buf.length||off+len<0) {
98. throw new IndexOutOfBoundsException();}}
99. ……

Fig. 12. Partially-matched branches

IV. EVALUATION

We evaluated our CloneDifferentiator approach and tool on

two Java software systems: JavaIO library and Eclipse JDT-

106

model unit tests. JavaIO library 1.5 contains 101 classes and

1038 methods. Our tool uses CloneMiner for clone detection.

CloneMiner detects 103 clone sets; each set consists of 2-15

cloned methods. JDT-model unit tests (jdt.core.tests.model)

3.6.1 contain 336 test suites and 10740 test methods. For JDT-

model unit tests, CloneMiner detects 961 clone sets; each set

consists of 2 – 35 cloned methods.

We then use our tool to identify and analyze contextual

differences of the detected clones. Our evaluation aims at

gaining insights into these questions: How often is the context

of clones different? Do contextual differences of clones in

different systems manifest different characteristics? Can such

contextual differences help distill useful clones for refactorings?

In this section, we report the results on using our tool on

refactoring of clones in JavaIO and JDT-model unit tests. We

also evaluate runtime performance and accuracy.

A. Characteristics of Contextual Differences of Clones in

JavaIO and JDT-model Unit Tests

Our quantitative analysis suggests that in both systems the

detected cloned methods usually have various types and

instances of contextual differences. The differences are often

subtle. The contextual differences of cloned methods residing

in various systems may manifest various characteristics, due to

the nature of the subject systems.

Table 1 reports the statistics of contextual differences of

cloned methods in JavaIO. Each row in the table represents a

type of contextual difference discussed in Section III.C.

Column “#diff” lists the number of instances of a particular

type of contextual difference; column “#cloneset(cs)” lists the

number of clone sets that have at least one instance of a

particular type of contextual difference; column (#diff/#cs) lists

the average instance number of the different types of

contextual differences per clone set.

For example, the first row of Table 1 shows that our tool

identifies 329 instances of differential statements in 79 clone

sets; on average one clone set has 4.2 instances of differential

statements. Note that one clone set can have more than one

type of contextual differences. Thus, the sum of column

“#cloneset” is greater than the number of clone sets that

CloneMiner reports.

CloneDifferentiator reports in total 849 (sum(#diff))

instances of different types of contextual differences in the

cloned methods of JavaIO library. For a particular type of

contextual difference, each clone set has on average at least one

instance (#diff/#cs) of that type of difference, for example 1.2

instances of partially-matched branches per clone set. Each

clone set has on average three (sum(#cs)/103) types and eight

(sum(#diff)/103) instances of contextual differences.

The most common type of contextual differences of the

cloned methods of JavaIO are missing statements (392

instances), followed by differential statements (329 instances).

These two types of contextual differences account for about 85%

of all 849 instances of differences. Missing blocks (68

instances) and differential blocks (13 instances) account for

about 10% of all 849 instances. Partially-matched branches

(PartialMatch Brch, 21 instances) and missing branches (26

instances) account for a very small percentage (5%) of all 849

instances. Overall, differences between cloned methods of

JavaIO are usually subtle, but sometimes they can be notable.

TABLE 1. STATISTICS OF CONTEXTUAL DIFFERENCES IN JAVAIO 1.5

Type # diff #cloneset(cs) #diff/#cs

Differential Statemt 329 79 4.2

Differential Block 13 10 1.3

Missing Statement 392 80 4.9

Missing Block 68 44 1.6

Missing Branch 26 18 1.5

PartialMatch Brch 21 17 1.2

TABLE 2. STATISTICS OF CONTEXTUAL DIFFERENCES IN JDT-MODEL TESTS

Type #diff #cloneset(cs) #diff/#cs

Differential Statemt 7900 931 8.5

Differential Block 101 90 1.1

Missing Statement 6761 666 10.2

Missing Block 1217 460 2.64

Missing Branch 512 203 2.5

PartialMatch Brch 13 12 1.1

Table 2 presents the statistics of contextual differences of

cloned methods in JDT-model unit tests. The cloned methods

of JDT-model unit tests have much more (sum(#diff)=16504)

instances of contextual differences. This is not surprising

because JDT-model-unit-tests is a much bigger project and it

has nine times more clone sets than JavaIO. However, the

percentages of different types of contextual differences in the

cloned methods of JDT-model-unit-tests are roughly similar to

those of JavaIO. Furthermore, the percentages of clone sets that

have a particular type of contextual differences are also roughly

similar to those of JavaIO.

One important difference is that the cloned methods of

JDT-model unit tests have on average more types

(sum(#cs)/961) and instances (sum(#diff)/961, #diff/#cs) of

contextual differences than the cloned methods of JavaIO. This

is mainly because the JDT-model unit test methods are usually

longer than the methods of JavaIO.

The other difference is that almost all clone sets of JDT-

model unit tests have differential statements (931/961, 96.8%).

This is due to the existence of a large amount of differential

constant statements. In fact, this reflects a common practice in

writing unit tests in which similar tests are developed to test

different input values (see examples in Section IV.C).

B. Refactoring JavaIO Library

In this study, we are interested in identifying clones that can

be refactored using Folwer’s refactorings (e.g. extract method,

pull up method) or Java generics, thus reducing code

duplication.

1) Refactoring Clones Using Folwer’s Refactorings: Many

of Folwer’s refactorings are concerned with code duplication

[8]. Folwer’s refactorings usually target at identical or almost

identical cloned methods, which can be removed by

refactorings such as extract method, pull up method.

To identify candidate clones for Folwer’s refactorings, we

formulate the following two queries searching for:

1. The cloned methods that have no contextual differences, i.e.,
the PDGs of such cloned methods are perfectly matched;

107

2. One of the cloned methods is “part of” the other cloned
methods, i.e., the PDG of one cloned methods is the
subgraph of the PDG of the other. So only one of the clone
methods has missing statements, blocks, and/or branches.

The first query for cloned methods without contextual

differences returns 3 pairs of cloned methods. Fig. 2 presents

one pair of these cloned methods. The two methods perform

identical computation: they write eight lower-order bits of the

input argument to the output stream and ignore the 24 high-

order bits. These cloned methods can be refactored by

replacing the body of one method with a call to the other

method. Note that CloneDifferentiator does not report that the

cloned methods in Fig. 2 have differential parameters (b versus

v highlighted in italic font), because the two parameters declare

the same data type (int), and the simple identifier difference

does not affect the computation performed by the cloned

methods.

The second query returns 1 pair of cloned methods,

PipedInputStream.checkStateForReceive() and PipedReader.-

receive(int). Both PipedInputStream and PipedReader need to

perform the same checking of pipe state in several places

before starting receiving data. The developer of

PipedInputStream recognized the repetition of this state

checking and extracted the state checking logic into the method

PipedInputStream.check-StateForReceive(). In contrast, the

developer of PipedReader did not extract the state checking

logic from PipedReader.receive(int) into a separate method. As

a result, CloneDifferentiator detects that the state checking

method PipedInputStream.checkState-ForReceive() is “part of”

the method PipedReader.receive(int). Identifying this “part of”

relation between the cloned methods suggests the opportunity

to extract method.

Overall, only very few cloned methods (4/103) in JavaIO

library represent identical or almost identical code clones that

can be removed by Folwer’s refactorings.

2) Relaxed Queries for Folwer’s Refactorings: To identify

more candidate clones for Folwer’s refactorings, we relaxed

the two queries given in the last section, by allowing the

cloned methods to have a small number of contextual

differences. In particular, relaxed queries allow the cloned

methods to contain a maximum of six instances of differential

statements, missing statements, missing branches, and/or

partially-matched branches.

The relaxed queries return 21 more pairs of cloned methods.

Four pairs of these cloned methods have only differential

operator-code and/or operand statements. For example, the

cloned methods LineNumberInputStream.read(byte,int,int) and

InputStream.read-(byte,int,int) are all the same but a pair of

differential operator-code method invocations (special for

LineNumberInputStream.-read() versus virtual for

InputStream.read()). The class InputStream declares a template

method [10] read(byte,int,int) that defines the skeleton of

reading bytes from the input stream.

InputStream.read(byte,int,int) calls the abstract method

InputStream.read(), and the subclasses of InputStream (e.g.,

LineNumberInputStream) must implement the abstract method

InputStream.read() to read the next byte of data from a specific

type of input stream. However, the subclass LineNumberInput-

Stream duplicates the template method read(byte,int,int) in

itself, which deviates from the intent of Template Method [10].

So this duplicated LineNumberInputStream.read(byte,int,int)

should be removed.

There are also 17 pairs of cloned methods that reveal two

types of inconsistent program styles in JavaIO library. These

inconsistent programming styles result in a certain amount of

missing statements, missing branches and/or partially-matched

branches in the cloned methods. Fig. 4 and Fig. 12 present two

examples of these two types of inconsistent program styles, i.e.,

different ways to validate input parameters and handle

exceptions. Investigating the cloned methods that have such

inconsistent programming styles suggests that after we

reconcile inconsistencies among these cloned methods, these

cloned methods could also be refactored, for example, by

extracting validity checking of input parameters into a utility

method.

3) Refactoring Clones Using Java Generics: Java generics

support developing common data structures and algorithms

differing only in the types on which they operate.

To identify candidate clones that can be replaced with Java

generic methods or classes, we formulate the following two

queries based on the two characteristics of JavaIO library:

1. JavaIO supports reading and writing data of different
primitive data types (e.g., short, char, int, long, double).
Thus, we formulate a query to identify cloned methods that
have only differential typecasting statements;

2. JavaIO supports reading and writing both byte (8-bit) data
and char (16-bit) data. Thus, we formulate a query to
identify cloned methods that have only differential field-
access and method-invocation statements.

Bits.getChar(byte[] b, int off) (JavaIO 1.5)
26. return (char)((b[off+1]&0xFF)<<0) +
27. (b[off+1]&0xFF)<<8));
Bits.getShort(byte[] b, int off) (JavaIO 1.5)
31. return (short)((b[off+1]&0xFF)<<0) +
32. (b[off+1]&0xFF)<<8));

Fig. 13. Differential typecast statements

It is surprising that the first query returns only 1 pair of

cloned methods Bits.getChar() and Bits.getShort(), as shown in

Fig. 13. Our inspection of JavaIO library reveals that this is

because JavaIO mainly relies on bitwise shift and logic

operations instead of explicit typecasting for processing data of

different primitive data types.

The second query returns 26 pairs of cloned methods,

including the cloned methods PipedOutputStream.write(int)

and PipedWriter.write(int) listed in Fig. 3. Although the two

methods are textually identical, they actually have three

instances of differential statements. Similar types of differential

statements also exist in other cloned methods returned by our

query, such as methods connect(), flush(), close() of

PipedOutputStream and PipedWriter. These differential

statements reveal that the overall data and control flows are

similar in many methods of two types of output classes

(PipedOutputStream versus PipedReader), but the specific data

operations are different.

108

In fact, these differential statements are resulted from

parallel inheritance hierarchies in Java IO for processing byte

data (input/output streams) and char data (readers/writers)

respectively. JavaIO initially supported only byte data. To

support char data, a separate hierarchy of classes was later

developed. The two parallel hierarchies share many similar

data structures and processing steps. They can be restructured

into one hierarchy using Java generic classes and methods.

C. Refactoring Eclipse JDT-model Unit Tests

Unit tests typically contain groups of test methods that form

variations for a common testing purpose and therefore are

similar to each other. In this study, we are interested in

identifying clones that can be refactored using seed values,

state machine, or assume/assert invariants testing patterns [32],

thus reducing code duplication among test methods and

improving test-case reuse.

1) Refactoring Clones Using Seed Values: A traditional

unit test method tests a unit with fixed input value. It is

necessary to develop several tests with variant input values to

achieve a good coverage of the unit under test. These tests are

often similar but also different in the input values that are

actually used for testing.

We would like to refactor such duplicated unit tests into

parameterized unit tests, using seed-values [32] (a pattern for

parameterized unit testing [25]) to provide concrete input

values. To that end, we formulate a query searching for cloned

test methods that have only differential-operand and/or

differential-constant-value statements.

JavaSearchTests.testEnum06()
3672. method = getMethod(“setRole” new String[] {“Z”});
3673. search(method, REFERENCES …);
JavaSearchTests.testVarargs03()
3702. method = getMethod(“vargs” new String[] {“QSt”});
3703. search(method, ALL_REFERENCES …);

Fig. 14. Seed values

Our query returns 173 pairs of cloned test methods in

Eclipse JDT-model unit tests. Fig. 14 presents one of them. The

two methods test the Java search API with different search

entities (setRole versus vargs, and Z versus QSt) and search

options (REFERENCES versus ALL_REFERENCES).

Investigating these 173 cloned test methods returned by our

query suggests that cloned test methods for testing searching

and formatting features usually have differential-operand

and/or differential-constant-value statements. Such cloned test

methods can be parameterized, using their differential operands

and constant values as seed values, so that parameterized unit

tests can verify the unit under test for a set of input values.

2) Refactoring Clones Using State Machine: Eclipse JDT-

model provides APIs for programmatically rewriting Java

programs, such as creating a member (e.g. field or method) in

a class. The corresponding unit tests for these APIs often share

similar control and data flows but also differ in the program-

rewriting APIs under tests.

We would like to refactor such cloned test methods into

parameterized unit tests to enforce the flow of testing logics,

using state machine [32] (another pattern for parameterized

unit testing) to encapsulate program-rewriting APIs under test.

To that end, we formulate a query searching for cloned

methods that have differential method-invocation statements

and/or differential blocks of program-rewriting APIs.

ASTRewritingStatementsTest.testSwitchStatement7()
3956. ListRewrite listRewrite = rewrite.getListRewrite(…)
3957. listRewrite.replace(assignment, switchCase, null);
3959. String preview = evaluateRewrite(cu, rewrite);
ASTRewritingStatementsTest.testSwitchStatement9()
4098. ListRewrite listRewrite = rewrite.getListRewrite(…)
4099. listRewrite.remove(assignment, null);
4100. listRewrite.insertAfter(switchCase,assignment,null):
4102. String preview = evaluateRewrite(cu, rewrite);

Fig. 15. State machine

Our query returns 153 pairs of cloned test methods. Fig. 9

presents an example of these cloned methods testing different

ways to create a class member (field versus method). Fig. 15

presents another example testing different ways (replace versus.

remove and insertAfter) to rewrite switch statements in an AST.

Investigating these 153 cloned test methods reveals that

cloned test methods for testing program-rewriting APIs often

invoke different program-rewriting APIs (e.g., createField,

createMethod, remove, insert, copy, move, replace), or invoke

some program-rewriting APIs in different orders. The

invocations of these program-rewriting APIs can be

encapsulated into state machines [32] that can

programmatically rewrite Java programs. Then, given state

machines of a set of program rewriting APIs and a

parameterized unit test, one can use testing framework, such as

Pex [33], to instantiate sequences of state transitions to test the

relevant program-rewriting APIs.

3) Refactoring Clones Using Assume and Assert

Invariants: JDT-model unit tests often assert similar sets of

properties that a unit under test should hold before and after

exercising the unit under test, for example whether the parent

AST node is not null or the class contains a specific member.

We would like to extract these similar assertions before and

after exercising the unit under test into assume/assert invariants.

To that end, we formulate a query searching for cloned test

methods that have at least two matched method-invocations of

assertxxx() methods. Note that Eclipse JDT-model unit tests

name assertion methods in the form of assertxxx().

ASTTest.testArrayCreation()
7994. final ArrayCreation x = this.ast.newArrayCreation();
7995. assertTrue(this.ast.modificationCount > previousCount);
7997. assertTrue(x.getAST() == this.ast);
7998. assertTrue(x.getParent ()== null);
ASTTest.testSwitchStatement()
5891. final SwitchStatemnt x = this.ast.newSwitchStatement();
5892. assertTrue(this.ast.modificationCount > previousCount);
5894. assertTrue(x.getAST() == this.ast);
5895. assertTrue(x.getParent() == null);

Fig. 16. Assume invariant

Our query returns 137 pairs of cloned test methods. Fig. 16

presents one example, in which the matched same method-

invocation statements are highlighted. The two methods test the

APIs of two different types of AST nodes, array creation versus

switch statement. However, they share the same set of

109

assertions about the AST under test, i.e. modificationCount >

prevCount, x.getAST()==this.ast, and x.getParent()==null.

Checking these 137 cloned test methods reveals that cloned

test methods for JDT AST/DOM APIs often contain similar

sets of assertions before and/or after exercising the AST/DOM

API under test. These similar assertions can be extracted as

assume and/or assert invariants. These invariants can not only

remove duplicate assertions across test methods, but ensure

consistent verification of test assumptions and results.

D. Runtime Performance and Accuracy

Our evaluation has been performed on a machine with a

Core I5 CPU of 2.6GHz, 4G RAM, and Windows 7. For the

largest subject system Eclipse JDT plugins, detecting clones

took about 8 minutes; generating the PDGs of clones took

about 30 minutes; computing the PDG differences of 14520

clone pairs in 961 clone sets took about 220 minutes;

automatically summarizing the PDG differences of clones took

about 70 minutes.

By analyzing the clones detected by CloneMiner [3], the

accuracy of our tool is good. We manually inspected the PDG

comparison results of randomly-selected 10% of all the

analyzed clone pairs. The precision (i.e., the percentage of the

correctly reported matches) and the recall (i.e., the percentage

of matched reported) of our tool is around 94% and 96%.

ObjectInputStream$BlockDataInputStream (Java IO 1.5)
2717. readByte() {
2718. int v = read();
2719. if(v<0) throw new EOFException();
2720. return (byte)v;}
ObjectInputStream$BlockDataInputStream (Java IO 1.5)
2549. peekByte() {
2550. int v = peek();
2551. if(v<0) throw new EOFException();
2552. return (byte)v;}

Fig. 17. An erroneous match: read() vs. peek()

The false positives mainly consist of the erroneous matches

of the same-type parameters, field accesses and method

invocations. Fig. 17 presents a typical example, in which the

PDGs of the two cloned methods differ only in the method

signature of the two INVOKE statements (peek() vs. read()). As

both method invocations return int and they have the identical

neighboring statements in the two PDGs, the PDG differencing

erroneously matches peek() and read() invocations. However,

peek() and read() perform different computations (See Fig. 10).

The false negatives (i.e., missed matches) are due to many

matches that prevent statements matching to real counterparts.

V. RELATED WORK

Researchers have presented many techniques to detect code

clones based on token [3][15][16][22], AST [4][13], and PDG

[9][11][19][21]. Roy and Cordy [24], and Koschke [20]

provide comprehensive surveys of existing clone detection

techniques. The difference between clone detection techniques

and our CloneDifferentiator is that clone detectors report which

parts of the system are similar, while our tool identifies how

these similar parts are different. However, using differencing

techniques for clone detection is impractical, because it

requires a pair-wise differencing of any two code fragments,

which results in a combinational explosion of differencing

operation. On the other hand, clone detectors often use reduced

representation of program (such as encoding PDG in a vector

space [9]) to scale up to large systems. Such reduced

representation makes it impossible to compute differences of

clones during clone detection process. Our tool complements

clone detectors by helping developers identify and analyze

contextual differences of clones in post-detection analysis.

Clone detectors report a large number of clones in large

systems, while it is common that only a small number of them

is actually useful for specific maintenance tasks, such as

refactorings. The effectiveness of clone detection techniques

has usually been evaluated in terms of precision and recall

metrics of the detected clones, such as in the quantitative

evaluation of clone detectors reported in Roy et al. [23], and

Bellon et al. [5].

Researchers proposed clone analysis approaches to aiding

the interpretation and management of software clones. For

example, Genimi [26] uses a scatter plot to visualize code

clones detected by CCFinder [16], and it also computes several

code metrics of clones to aid clone analysis. Balazinska et al.

[1][2] define a clone classification based on the differences

between the token sequences forming the clones. This clone

classification helps to measure the reengineering opportunities

of clones. CP-Miner [22] finds bugs based on inconsistent

identifiers between clones. One major limitation of these

approaches is that they examine only the information of clones,

ignoring the program context in which clones occur.

Other approaches perform simple syntactic analysis of

clones to aid the understanding of clones. For example, Kapser

and Godfrey [17] classify code clones through the syntactic

analysis of locality of clones. Jiang et al. [14] consider the

inner most syntactic constructs that enclose clones as contexts

and identify three types of contextual inconsistencies in clones.

In contrast, our CloneDifferentiator raises contextual analysis

of code clones to PDG, which captures much more contextual

information than existing work. Besides, CloneDifferentiator

exploits efficient graph differencing algorithm to systematically

detect contextual differences of clones.

Query-based approaches have been proposed for supporting

program understanding and maintenance. Xing and Stroulia [29]

proposed to detect and analyze change patterns in software

evolution by querying elementary design changes reported by

UMLDiff. Zhang et al. [31] present the CloneAnalyzer tool that

supports query-based filtering of code clones. However,

CloneAnalyzer does not support contextual analysis and

differencing of clones as CloneDifferentiator does.

Our recent work [28] presents design and key concepts of

GenericDiff framework. CloneDifferentiator is a new

application of GenericDiff for comparing PDGs of clones to

detect their contextual differences. It performs automatic

contextual analysis of code clones based on PDG differencing

results of GenericDiff. We present our tool in [27] about the

details of implementation challenges and visualization features

of the tool, while this paper describes fundamental concepts of

our approach, discusses in detail contextual differences of

clones, and also reports two empirical studies.

110

VI. THREATS TO VALIDITY

Now our tool CloneDifferentiator uses CloneMiner [3] to

detect cloned methods. The surveys [20][24] on clone detection

tools suggest that clones reported by different techniques may

vary due to the diverse nature of detection techniques and

similarity metrics. Further studies are required to evaluate our

approach with respect to different clone detection techniques.

CloneDifferentiator now compares intra-method PDGs of

cloned methods, excerpted from Wala-SDG of the system. It

does not consider inter-method PDGs because it assumes that

two different methods being invoked in cloned methods would

perform different computation. This assumption holds in most

cases and allows scalable and efficient contextual analysis of

clones. CloneDifferentiator can be easily adapted to analyze

inter-procedure PDGs around cloned methods, because inter-

procedure PDGs are available in Wala-SDG.

In this paper, we showed that contextual differences of

clones are useful for distilling useful clones for refactorings.

Cloning information has also been used for other types of

software maintenance tasks, such as bug detection [14][15][22].

Further studies are required to investigate the usefulness of our

approach for other types of maintenance tasks.

VII. CONCLUSION AND FUTURE WORK

We cannot understand code clones without understanding

their differences precisely. In this paper, we proposed and

implemented an automated approach to help developers

identify and analyse contextual differences of clones. Our

evaluation shows that our tool can reduce the effort of post-

detection analysis of clones for refactorings by supporting

developers to distill useful clones of interest based on

contextual differences of clones.

In the future, we plan to conduct more empirical studies to

enrich our taxonomy of contextual differences of clones. We

believe this can open new opportunities to refine existing

token-based clone definitions from a new perspective (i.e.,

contextual differences of clones). This can enhance the

usefulness of cloning information in many software

maintenance tasks.

REFERENCES

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,
“Advanced clone-analysis to support object-oriented system refactoring”
WCRE 2000, pp. 98-107, 2000.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,
“Measuring clone based reengineering opportunities”. METRICS 1999,
pp. 292-303, 1999.

[3] H.A. Basit, and S. Jarzabek, “A data mining approach for detecting
higher-level clones in software”. IEEE Trans. Soft. Eng., vol. 35(4):497-
514, 2009.

[4] I.D. Baxter, A. Yahin, L. Marcelo, M. SantAnna, and L. Bier, “Clone
detection using abstract syntax trees”, ICSM 1998, pp. 368-377, 1998.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools”. IEEE Trans. Soft.
Eng. vol. 33(9): 577-591, 2007.

[6] J. Ferrante, J.K. Ottenstein, and J.D. Warren, “The program dependence
graph and its use in optimization”. ACM Trans. Program. Lang. Syst. vol.
9(3): 319-349, 1987.

[7] B. Fluri, M. Wuersch, M. Plnzger, and H. Gall, “Change distilling: Tree
differencing for fine-grained source code change extraction”. IEEE
Trans. Soft. Eng, vol. 33:712-743, 2007.

[8] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[9] M. Gabel, L. Jiang, and Z. Su, Scalable detection of semantic clones.
ICSE 2008, pp. 321-330, 2008.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[11] Y. Higo, and S. Kusumoto, “Enhancing quality of code clone detection
with program dependency graph”. WCRE 2009, pp. 315-316, 2009.

[12] S. Jarzabek, and S. Li, “Eliminating redundancies with a composition
with adaptation meta-programming technique”. ESEC/FSE 2003, pp.
237-246, 2003

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones”, ICSE 2007, pp. 96-
105, 2007

[14] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs”. ESEC/FSE 2007, pp. 55-64, 2007.

[15] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?”, ICSE 2009, pp. 485-495, 2009.

[16] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code”.
IEEE Trans. Soft. Eng., vol. 28(7):654-670, 2002

[17] C. Kapser, and M.W. Godfrey, “Aiding comprehension of cloning
through categorization”. IWPSE 2004, pp. 85-94, 2004.

[18] E. Kodhai, A. Perumal, and S. Kanmani, “Clone detection using textual
and metric analysis to figure out all types of clones”, International
Journal of Computer Communication and Information System (IJCCIS),
vol. 2(1): 99-103, 2010.

[19] R. Komondoor, and S. Horwitz, “Using slicing to identify duplication in
source code”, SAS 2001, pp. 40-56, 2001.

[20] R. Koschke, “Survey of research on software clones”, duplication,
redundancy, and similarity in Software, 2006.

[21] J. Krinke, “Identifying similar code with program dependence graphs”,
WCRE 2001, pp. 301-310, 2001.

[22] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code”. IEEE Trans. Soft. Eng.,
vol. 32(3):176-192, 2006.

[23] C.K. Roy and J.R. Cordy, “Scenario-based comparison of clone
detection techniques”, ICPC 2008, pp. 153-162, 2008.

[24] C.K. Roy and J.R. Cordy, A survey on software clone detection research.
Technical Report 2007-541, Queen’s University, 2007.

[25] N. Tillmannn, and W. Schulte, “Parameterized unit tests”. ESEC/FSE
2005, pp. 253-262, 2005.

[26] Y. Ueda, S. Kamiya, S. Kusumoto, and K. Inoue, Gemini: Maintenance
support environment based on code clone analysis, IEEE METRICS
2002, pp. 67-76, 2002.

[27] Z. Xing, Y. Xue, and S. Jarzabek, “CloneDifferentiator: Analyzing
clones by differentiation”, ASE 2011, pp. 576-579, 2011.

[28] Z. Xing, “GenericDiff: Model comparison with GenericDiff”. ASE 2010,
pp. 135-138, 2010.

[29] Z. Xing, and E. Stroulia, “Refactoring detection based on UMLDiff
change-facts queries”. WCRE 2006, pp. 263-274, 2006.

[30] Z. Xing, GenericDiff: A general framework for model comparison.
Technical report, National University of Singapore, 2011,
http://www.comp.nus.edu.sg/~pat/publications/gendiff.pdf.

[31] Y. Zhang, B.A. Basit, S. Jarzabek, D. Anh, and M. Low, “Query-based
filtering and graphical view generation for clone analysis”. ICSM 2008,
pp. 376-385, 2008.

[32] Parameterized Test Patterns for Microsoft Pex,
http://research.microsoft.com/en-us/projects/pex/patterns.pdf, 2012.

[33] Parameterized Unit Test with Microsoft Pex:
http://research.microsoft.com/enus/projects/pex/pextutorial.pdf, 2012.

[34] WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page, 2012.

111

