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Abstract. The discussion in this paper focuses on the issues involved in
analyzing the availability of networked systems using fault injection and the
failure data collected by the logging mechanisms built into the system. In
particular we address: (1) analysis in the prototype phase using physical fault
injection to an actual system. We use example of fault injection-based
evaluation of a software-implemented fault tolerance (SIFT) environment (built
around a set of self-checking processes called ARMORS) that provides error
detection and recovery services to spaceborne scientific applications and (2)
measurement-based analysis of systems in the field. We use example of LAN of
Windows NT based computers to present methods for collecting and analyzing
failure data to characterize network system dependability. Both, fault injection
and failure data analysis enable us to study naturally occurring errors and to
provide feedback to system designers on potential availability bottlenecks.  For
example, the study of failures in a network of Windows NT machines reveals
that most of the problems that lead to reboots are software related and that
though the average availability evaluates to over 99%, a typical machine, on
average, provides acceptable service only about 92% of the time.

1   Introduction

The dependability of a system can be experimentally evaluated at different phases of
its lifecycle. In the design phase, computer-aided design (CAD) environments are
used to evaluate the design via simulation, including simulated fault injection.  Such
fault injection tests the effectiveness of fault-tolerant mechanisms and evaluates
system dependability, providing timely feedback to system designers. Simulation,
however, requires accurate input parameters and validation of output results.
Although the parameter estimates can be obtained from past measurements, this is
often complicated by design and technology changes. In the prototype phase, the
system runs under controlled workload conditions. In this stage, controlled physical
fault injection is used to evaluate the system behavior under faults, including the
detection coverage and the recovery capability of various fault tolerance mechanisms.
Fault injection on the real system can provide information about the failure process,
from fault occurrence to system recovery, including error latency, propagation,
detection, and recovery (which may involve reconfiguration). In the operational
phase, a direct measurement-based approach can be used to measure systems in the
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field under real workloads. The collected data contain a large amount of information
about naturally occurring errors/failures. Analysis of this data can provide
understanding of actual error/failure characteristics and insight into analytical models.
Although measurement-based analysis is useful for evaluating the real system, it is
limited to detected errors. Further, conditions in the field can vary widely, casting
doubt on the statistical validity of the results. Thus, all three approaches – simulated
fault injection, physical fault injection, and measurement-based analysis – are
required for accurate dependability analysis.

In the design phase, simulated fault injection can be conducted at different levels:
the electrical level, the logic level, and the function level.  The objectives of simulated
fault injection are to determine dependability bottlenecks, the coverage of error
detection/recovery mechanisms, the effectiveness of reconfiguration schemes,
performance loss, and other dependability measures. The feedback from simulation
can be extremely useful in cost-effective redesign of the system. For thorough
discussion of different techniques for simulated fault injection can be found in [10].

In the prototype phase, while the objectives of physical fault injection are similar to
those of simulated fault injection, the methods differ radically because real fault
injection and monitoring facilities are involved. Physical faults can be injected at the
hardware level (logic or electrical faults) or at the software level (code or data
corruption).  Heavy-ion radiation techniques can also be used to inject faults and
stress the system. The detailed treatment of the instrumentation involved in fault
injection experiments using real examples, including several fault injection
environments is given in [10].

In the operational phase, measurement-based analysis must address issues such as
how to monitor computer errors and failures and how to analyze measured data to
quantify system dependability characteristics.  Although methods for the design and
evaluation of fault-tolerant systems have been extensively researched, little is known
about how well these strategies work in the field. A study of production systems is
valuable not only for accurate evaluation but also for identifying reliability
bottlenecks in system design. In [10] the measurement-based analysis is based on over
200 machine-years of data gathered from IBM, DEC, and Tandem systems (note that
these are not networked systems).

In this paper we discuss the current research in the area of experimental analysis of
computer system dependability in the context of methodologies suited for
measurement-based dependability analysis of networked systems. In particular we
focus on:
� Analysis in the prototype phase using physical fault injection to an actual system.

We use example of fault injection-based evaluation of a software-implemented
fault tolerance (SIFT) environment (built around a set of self-checking processes
called ARMORS, [13]) that provides error detection and recovery services to
spaceborne scientific applications.

� Measurement based analysis of systems in the field. We use example of LAN of
Windows NT based computers to present methods for collecting and analyzing
failure data to characterize network system dependability.
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2 Fault/Error Injection Characterization of the SIFT
      Environment for Spaceborne Applications

Fault/error injection is an attractive approach to the experimental validation of
dependable systems. The objective of fault injection is to mimic the existence of
faults and errors and hence to enable studying the failure behavior of the system.
Fault\error injection can be employed to conduct detailed studies of the complex
interactions between fault and fault handling mechanisms, e.g., [1] and [10]. In
particular fault injection aims at (1) exposing deficiencies of fault tolerance
mechanisms (i.e., fault removal), e.g., [3], and (2) evaluating coverage of fault
tolerance mechanisms (i.e., fault forecasting, e.g., [2]. Number of tools were proposed
to support fault injection analysis and evaluation of systems, e.g., FERRARI [14],
FIAT [5], and NFTAPE [22].

This section presents an example of applying fault/error injection in assessing fault
tolerance mechanisms of software implemented fault tolerance environment  for
spaceborne applications. In traditional spaceborne applications, onboard instruments
collect and transmit raw data back to Earth for processing.  The amount of science
that can be done is clearly limited by the telemetry bandwidth to Earth.  The Remote
Exploration and Experimentation (REE) project at NASA/JPL intends to use a cluster
of commercial off-the-shelf (COTS) processors to analyze the data onboard and send
only the results back to Earth.  This approach not only saves downlink bandwidth, but
also provides the possibility of making real-time, application-oriented decisions.

While failures in the scientific applications are not critical to the spacecraft’s health
in this environment (spacecraft control is performed by a separate, trusted computer),
they can be expensive nonetheless. The commercial components used by REE are
expected to experience a high rate of radiation-induced transient errors in space
(ranging from one per day to several per hour), and downtime directly leads to the
loss of scientific data. Hence, a fault-tolerant environment is needed to manage the
REE applications.

The missions envisioned to take advantage of the SIFT environment for executing
MPI-based [19] scientific applications include the Mars Rover, the Orbiting Thermal
Imaging Spectrometer (OTIS). More details on the applications and the full
dependability analysis can be found in [31] and [32], respectively.

The remaining of this section presents a methodology for experimentally
evaluating a distributed SIFT environment executing an REE texture analysis
program from the Mars Rover mission. Errors are injected so that the consequences of
faults can be studied. The experiments do not attempt to analyze the cause of the
errors or fault coverage. Rather, the error injections progressively stress the detection
and recovery mechanisms of the SIFT environment:

1. SIGINT/SIGSTOP injections. Many faults are known to lead to crash and hang
failures . SIGINT/SIGSTOP injections reproduce these first-order effects of faults
in a controlled manner that minimizes the possibility of error propagation or
checkpoint corruption.

2. Register and text-segment injections. The next set of error injections represent
common effects of single-event upsets by corrupting the state in the register set and
text segment memory. This introduces the possibility of error propagation and
checkpoint corruption.
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3. Heap injections. The third set of experiments further broaden the failure scenarios
by injecting errors in the dynamic heap data to maximize the possibility of error
propagation. The results from these experiments are especially useful in evaluating
how well intraprocess self-checks limit error propagation.

REE computational model. The REE computational model consists of a trusted,
radiation-hardened (rad-hard) Spacecraft Control Computer (SCC) and a cluster of
COTS processors that execute the SIFT environment and the scientific applications.
The SCC schedules applications for execution on the REE cluster through the SIFT
environment.

REE testbed configuration. The experiments were executed on a 4-node testbed
consisting of PowerPC 750 processors running the Lynx real-time operating system.
Nodes are connected through 100 Mbps Ethernet in the testbed. Between one and two
megabytes of RAM on each processor were set aside to emulate local nonvolatile
memory available to each node.  The nonvolatile RAM is expected to store temporary
state information that must survive hardware reboots (e.g., checkpointing information
needed during recovery).  Nonvolatile memory visible to all nodes is emulated by a
remote file system residing on a Sun workstation that stores program executables,
application input data, and application output data.

2.1   SIFT Environment for REE

The REE applications are protected by a SIFT environment designed around a set of
self-checking processes called ARMORS (Adaptive Reconfigurable Mobile Objects of
Reliability) that execute on each node in the testbed.  ARMORs control all operations in
the SIFT environment and provide error detection and recovery to the application and
to the ARMOR processes themselves. We provide a brief summary of the ARMOR-based
SIFT environment as implemented for the REE applications; additional details of the
general ARMOR architecture appear in [13].

SIFT Architecture
An ARMOR is a multithreaded process internally structured around objects called
elements that contain their own private data and provide elementary functions or
services (e.g., detection and recovery for remote ARMOR processes, internal self-
checking mechanisms, or checkpointing support). Together, the elements constitute
the functionality that defines an ARMOR’s behavior. All ARMORs contain a basic
set of elements that provide a core functionality, including the ability to (1)
implement reliable point-to-point message communication between ARMORs, (2)
communicate with the local daemon ARMOR process, (3) respond to heartbeats from
the local daemon, and (4) capture ARMOR state.  Specific ARMORs extend this core
functionality by adding extra elements.

Types of ARMORs. The SIFT environment for REE applications consists of four
kinds of ARMOR processes: a Fault Tolerance Manager (FTM), a Heartbeat
ARMOR, daemons, and Execution ARMORs
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� Fault Tolerance Manager (FTM).  A single FTM executes on one of the nodes and
is responsible for recovering from ARMOR and node failures as well as interfacing
with the external Spacecraft Control Computer (SCC).

� Heartbeat ARMOR.  The Heartbeat ARMOR executes on a node separate from the
FTM. Its sole responsibility is to detect and recover from failures in the FTM
through the periodic polling for liveness.

� Daemons. Each node on the network executes a daemon process.  Daemons are the
gateways for ARMOR-to-ARMOR communication, and they detect failures in the
local ARMORs.

� Execution ARMORs. Each application process is directly overseen by a local
Execution ARMOR.

Executing REE Applications
Fig. 1 illustrates a configuration of the SIFT environment with two MPI applications
(from the Mars Rover and OTIS missions) executing on a four-node testbed.  Arrows
in the figure depict the relationships among the various processes (e.g., the application
sends progress indicators to the Execution ARMORs, the FTM is responsible for
recovering from failures in the Heartbeat ARMOR, and the FTM heartbeats the daemon
processes).

Each application process is linked with a SIFT interface that establishes a one-way
communication channel with the local Execution ARMOR at application initialization.
The application programmer can use this interface to invoke a variety of fault
tolerance services provided by the ARMOR.

Error Detection Hierarchy
The top-down error detection hierarchy consists of:
� Node and daemon errors.  The FTM periodically exchanges heartbeat messages

with each daemon (every 10 s in our experiments) to detect node crashes and
hangs. If the FTM does not receive a response by the next heartbeat round, it
assumes that the node has failed.  A daemon failure is treated as a node failure.

� ARMOR errors. Each ARMOR contains a set of assertions on its internal state,
including range checks, validity checks on data (e.g., a valid ARMOR ID), and data
structure integrity checks. Other internal self-checks available to the ARMORs
include preemptive control flow checking, I/O signature checking, and
deadlock/livelock detection [4]. In order to limit error propagation, the ARMOR kills
itself when an internal check detects an error. The daemon detects crash failures in
the ARMORs on the node via operating system calls.  To detect hang failures, the
daemon periodically (every 10 s in the experiments) sends “Are-you-alive?”
messages to its local ARMORs.

� REE applications. All application crash failures are detected by the local Execution
ARMOR. Crash failures in the MPI process with rank 0 can be detected by the
Execution ARMOR through operating system calls (i.e., waitpid). The other
Execution ARMORs periodically check that their MPI processes (ranks 1 through n)
are still in the operating system’s process table. If not, it concludes that the
application has crashed.  An application process notifies the local Execution
ARMOR through its communication channel before exiting normally so that the
ARMOR does not misinterpret this exit as an abnormal termination.
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Fig. 1. SIFT Architecture for Executing two MPI Applications on a Four-Node Network.

A polling technique is used to detect application hangs in which the Execution
ARMOR periodically checks for progress indicator updates sent by the application.  A
progress indicator is an “I’m-alive” message containing information that denotes
application progress (e.g., a loop iteration counter).  If the Execution ARMOR does not
receive a progress indicator within an application-specific time period, the ARMOR
concludes that the application process has hung.

Error Recovery
Nodes. The FTM migrates the ARMOR and application processes that were executing
on the failed node to other working nodes in the SIFT environment.

ARMORs. ARMOR state is recovered from a checkpoint. To protect the ARMOR state
against process failures, a checkpointing technique called microcheckpointing is used
[30]. Microcheckpointing leverages the modular element composition of the ARMOR
process to incrementally checkpoint state on an element-by-element basis.

REE Applications. On detecting an application failure, the Execution ARMOR

notifies the FTM to initiate recovery. The version of MPI used on the REE testbed
precludes individual MPI processes from being restarted within an application;
therefore, the FTM instructs all Execution ARMORs to terminate their MPI processes
before restarting the application. The application executable binaries must be reloaded
from the remote disk during recovery.

2.2   Injection Experiments

Error injection experiments into the application and SIFT processes were conducted
to: (1) stress the detection and recovery mechanisms of the SIFT environment, (2)
determine the failure dependencies among SIFT and application processes, (3)
measure the SIFT environment overhead on application performance, (4) measure the
overhead of recovering SIFT processes as seen by the application.

1. Study the effects of error propagation and the effectiveness of internal self-
checks in limiting error propagation.

The experiments used NFTAPE, a software framework for conducting injection
campaigns [22].
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Error Models
The error models used the injection experiments represent a combination of those
employed in several past experimental studies and those proposed by JPL engineers.

� SIGINT/SIGSTOP. These signals were used to mimic “clean” crash and hang
failures as described in the introduction.

� Register and text-segment errors. Fault analysis has predicted that the most
prevalent faults in the targeted spaceborne environment will be single-bit memory
and register faults, although shrinking feature sizes have raised the likelihood of
clock errors and multiple-bit flips in future technologies. Several error  injections
were uniformly distributed within each run since each injection was unlikely to
cause an immediate failure, and only the most frequently used registers and
functions in the text segment were targeted for injection.

� Heap errors. Heap injections were used to study the effects of error propagation.
One error was injected per run into non-pointer data values only, and the effects of
the error were traced through the system.

Errors were not injected into the operating system since our experience has shown
that kernel injections typically led to a crash, led to a hang, or had no impact.
Maderia et al. [18] used the same REE testbed to examine the impact of transient
errors on LynxOS.

Definitions and Measurements
System, experiment, and run. We use the term system to refer to the REE cluster and
associated software (i.e., the SIFT environment and applications). The system does
not include the radiation-hardened SCC or communication channel to the ground. An
error injection experiment targeted a specific process (application process, FTM,
Execution ARMOR, or Heartbeat ARMOR) using a particular error model.  For each
process/error model pair, a series of runs were executed in which one or more errors
were injected into the target process.

Activated errors and failures. An injection causes an error to be introduced into the
system (e.g., corruption at a selected memory location or corruption of the value in a
register).  An error is said to be activated if program execution accesses the erroneous
value.  A failure refers to a process deviating from its expected (correct) behavior as
determined by a run without fault injection.  The application can also fail by
producing output that falls outside acceptable tolerance limits as defined by an
external application-provided verification program.

Setup the 
environment

App starts App ends
User  submits

app job

User notified
of termination

Actual application
execution time

Perceived application
execution time

time

ARMORs
uninstalled

Fig. 2. Perceived vs. Actual Execution Time
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A system failure occurs when either (1) the application cannot complete within a
predefined timeout or (2) the SIFT environment cannot recognize that the application
has completed successfully. System failures require that the SCC reinitialize the SIFT
environment before continuing, but they do not threaten the SCC or spacecraft
integrity1.

Recovery time. Recovery time is the interval between the time at which a failure is
detected and the time at which the target process restarts. For ARMOR processes, this
includes the time required to restore the ARMOR’s state from checkpoint. In the case of
an application failure, the time lost to rolling back to the most recent application
checkpoint is accounted for in the application’s total execution time, not in the
recovery time for the application.

Perceived application execution time. The perceived execution time is the interval
between the time at which the SCC submits an application for execution and the time
at which the SIFT environment reports to the SCC that the application has completed.

Actual application execution time. The actual execution time is the interval
between the start and the end of the application.  The difference between perceived
and actual execution time accounts for the time required to install the Execution
ARMORs before running the application and the time required to uninstall the
Execution ARMORs after the application completes (see Fig. 2).  This is a fixed
overhead independent of the actual application execution time.

Baseline application execution time. In the injection experiments, the perceived
and actual application execution times are compared to a baseline measurement in
order to determine the performance overhead added by the SIFT environment and
recovery. Two measures of baseline application performance are used: (1) the
application executing without the SIFT environment and without fault injection and
(2) the application executing in the SIFT environment but without fault injection. The
difference between these two measures provides the overhead that the SIFT processes
impose on the application. Table 1 shows that the SIFT environment adds less than
two seconds to the perceived application execution time. The mean application
execution time and recovery time are calculated for each fault model. Ninety-five
percent confidence intervals (t-distribution) are also calculated for all measurements.

Table 1. Baseline Application Execution Time

Perceived Actual

Without SIFT 75.71 � 0.65 75.71 � 0.65

With  SIFT 77.97 � 0.48 75.74 � 0.48

2.3   Crash and Hang Failures

This section presents results from SIGINT and SIGSTOP injections into the
application and SIFT processes, which were used to evaluate the SIFT environment’s

                                                          
11 While the vast majority of failures in the SIFT environment will not affect the trusted SCC,

in reality there exists a nonzero probability that the SCC can be impacted by SIFT failures.
We discount this possibility in the paper because there is not a full-fledged SCC available for
conducting such an analysis.
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ability to handle crash and hang failures. We first summarize the major findings from
over 700 crash and hang injections:

� All injected errors into both the application and SIFT processes were recovered.
� Recovering from errors in SIFT processes imposed a mean overhead of 5% to the

application’s actual execution time. This 5% overhead includes 25 cases out of
roughly 700 runs in which the application was forced to block or restart because of
the unavailability of a SIFT process. Neglecting those cases in which the
application must redo lost computation, the overhead imposed by a recovering
SIFT process was insignificant.

� Correlated failures involving a SIFT process and the application were observed.  In
25 cases, crash and hang failures caused a SIFT process to become unavailable,
prompting the application to fail when it did not receive a timely response from the
failed SIFT process.  All correlated failures were successfully recovered.

Results for 100 runs per target are summarized in Table 2.  In some cases, the
injection time (used to determine when to inject the error) occurred after the
application completed.  For these runs, no error was injected.  The row “Baseline”
reports the application execution time with no fault injection.  One hundred runs were
chosen in order to ensure that failures occurred throughout the various phases of an
application’s execution (including an idle SIFT environment before application
execution, application submission and initialization, application execution,
application termination, and subsequent cleanup of the SIFT environment).

Application Recovery
Hangs are the most expensive application failures in terms of lost processing time.
Application hangs are detected using a polling technique in which the Execution
ARMOR executes a thread that wakes up every 20 seconds to check the value of a
counter incremented by progress indicator messages sent by the application.  Because
the counter is polled at fixed intervals, the error detection latency for hangs can be up
to twice the checking period.

Table 2. SIGINT/SIGSTOP Injection Results

App. Exec. Time  (s)
Target Failures

Successful
Recoveries Perceived Actual

Recovery
Time (s)

SIGINT

Baseline - - 74.78 �  0.55 72.68 � 0.49 -

Application 100 100 89.80 � 1.50 87.88 � 1.50 0.48 � 0.05

FTM 81 81 79.60 � 1.61 73.89 � 0.25 0.64 � 0.16

Execution ARMOR 100 100 77.91 � 1.01 75.98 � 1.00 0.61 � 0.07

Heartbeat ARMOR 97 97 75.26 � 0.92 74.39 � 0.96 0.47 � 0.12

SIGSTOP

Baseline - - 71.96 � 0.32 70.03 � 0.27 -

Application 84 84 112.21 � 1.87 110.21 � 1.87 0.47 � 0.05

FTM 97 97 76.20 � 1.94 70.09 � 0.88 0.79 � 0.15

Execution ARMOR 98 98 85.01 �  4.41 82.21 � 4.28 0.63 � 0.15

Heartbeat ARMOR 77 77 71.88 �  0.24 70.24 � 0.24 0.56 � 0.21
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SIFT Environment Recovery
FTM recovery. The perceived execution time for the application is extended if (1) the
FTM fails while setting up the environment before the application execution begins or
(2) the FTM fails while cleaning up the environment and notifying the Spacecraft
Control Computer that the application terminated. The application is decoupled from
the FTM’s execution after starting, so failures in the FTM do not affect it.  The only
overhead in actual execution time originates from the network contention during the
FTM’s recovery, which lasts for only 0.6-0.7 s.

An FTM-application correlated failure. The error injections also revealed a
correlated failure in which the FTM failure caused the application to restart in 2 of the
178 runs (see [32] for description of correlated failure scenarios).

The SIFT environment is able to recover from this correlated failure because the
components performing the detection (Heartbeat ARMOR detecting FTM failures and
Execution ARMOR detecting application failures) are not affected by the failures.

Execution ARMOR. Of the 198 crash/hang errors injected into the Execution
ARMORs, 175 required recovery only in the Execution ARMOR.  For these runs, the
application execution overhead was negligible.  The overhead reported in Table 2 (up
to 10% for hang failures) resulted from the remaining 23 cases in which the
application was forced to restart.

An Execution ARMOR-application correlated failure. If the application process
attempted to contact the Execution ARMOR (e.g., to send progress indicator updates
or to notify the Execution ARMOR that it is terminating normally) while the ARMOR
was recovering, the application process blocked until the Execution ARMOR
completely recovered. Because the MPI processes are tightly coupled, a correlated
failure is possible if the Execution ARMOR overseeing the other MPI process
diagnosed the blocking as an application hang and initiated recovery.

This correlated failure occurred most often when the Execution ARMOR hung
(i.e., due to SIGSTOP injections): 22 correlated failures were due to SIGSTOP
injections as opposed to 1 correlated failure resulting from an ARMOR crash (i.e.,
due to SIGINT injections). This is because an Execution ARMOR crash failure is
detected immediately by the daemon through operating system calls, making the
Execution ARMOR unavailable for only a short time. Hangs, however, are detected
via a 10-second heartbeat.

2.4   Register and Text-Segment Injections

This section expands the scope of the injections to further stress the detection and
recovery mechanisms by allowing for the possibility of checkpoint corruption and
error propagation to another process. Results from approximately 9,000 single-bit
errors into the register set and text segment of the application and SIFT processes
show that:

� Most register and text-segment errors led to crash and hang failures that were
recovered by the SIFT environment.

� Eleven of the approximately 700 observed failures led to system failures in which
either the application did not complete or the SIFT environment did not detect that
the application successfully completed. These 11 system failures resulted from
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injected errors that corrupted an ARMOR’s checkpoint or propagated outside the
injected process.

� Text-segment errors were more likely than register errors to lead to system failures.
This was because values in registers typically had a shorter lifetime (i.e., they were
either never used or quickly overwritten) when compared to information stored in
the text segment.

Table 3 summarizes the results of approximately 6,000 register injections and
3,000 text-segment injections into both the application and ARMOR processes.
Failures are classified into four categories: segmentation faults, illegal instructions,
hangs, and errors detected via assertions. The second column in Table 3 gives the
number of successful recoveries vs. the number of failures for each set of
experiments. Errors that were not successfully recovered led to system failures (4 due
to FTM failures, 5 due to Execution ARMOR failures, and 2 due to Heartbeat
ARMOR failures).

FTM recovery. Table 3 shows that the FTM successfully recovered from all
register injections.  Two text-segment injections were detected through assertions on
the FTM’s internal data structures, and both of these errors were recovered.

Table 3 also shows that the FTM could not recover from four text-segment errors.
In each case, the error corrupted the FTM’s checkpoint prior to crashing. Because the
checkpoint was corrupted, the FTM crashed shortly after being recovered. This cycle
of failure and recovery repeated until the run timed out.

There were seven cases of a correlated failure in which the FTM failed during the
application’s initialization: three from text-segment injections and four from register
injections.  Both the FTM and the application recovered from all seven correlated
failures.

Table 3. Register and Text-Segment Injection Results

Failure Classification App. Exec. Time (s)

Target
Recoveries/

Failures Seg.
fault

Illegal
instr.

Hang Assert-
ion

Perceived Actual

Recoverry
 Time (s)

Baseline - - - - - 71.96 � 0.32 70.03 � 0.27 -

Register Injections

Application 95 / 95 71 4 20 0 90.70 � 2.57 88.81 � 2.57 0.70 � 0.21

FTM 84 / 84 58 6 16 4 75.65 � 1.54 73.42 � 1.28 0.71 � 0.03

Execution
ARMOR

77 / 80 56 6 15 3 76.19 � 1.82 73.56 � 1.83 0.45 � 0.08

Heartbeat
ARMOR

77 / 77 62 6 8 1 73.00 � 0.22 70.66 � 0.21 0.31 � 0.04

Text-segment Injections

Application 82 / 82 41 23 18 0 89.47 � 2.87 87.49 � 2.88 1.05 � 0.33

FTM 84 / 88 53 28 5 2 76.47 � 2.87 71.00 � 2.31 0.51 � 0.05

Execution
ARMOR

93/ 95 45 31 11 8 77.48 � 1.93 74.83 � 1.86 0.43 � 0.04

Heartbeat
ARMOR

95 / 97 53 33 11 0 73.23 � 0.37 71.21 � 0.36 0.30 � 0.01
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Execution ARMOR recovery. Three register injections and two text-segment
injections into the Execution ARMOR led to system failure. In each of these cases,
the error propagated to other ARMOR processes or to the Execution ARMOR’s
checkpoint.

One text-segment injection and three register injections caused errors in the
Execution ARMOR to propagate to the FTM (i.e., the error was not fail-silent).
Although the Execution ARMOR did not crash, it sent corrupted data to the FTM
when the application terminated, causing the FTM to crash. The FTM state in its
checkpoint was not affected by the error, so the FTM was able to recover to a valid
state. Because the FTM did not complete processing the Execution ARMOR’s
notification message, the FTM did not send an acknowledgment back to the
Execution ARMOR. The missing acknowledgment prompted the Execution ARMOR
to resend the faulty message, which again caused the FTM to crash. This cycle of
recovery followed by the retransmission of faulty data continued until the run timed
out.

One of the text-segment injections caused the Execution ARMOR to save a
corrupted checkpoint before crashing.  When the ARMOR recovered, it restored its
state from the faulty checkpoint and crashed shortly thereafter.  This cycle repeated
until the run timed out.

In addition to the system failures described above, three text-segment injections
into the Execution ARMOR resulted in the restarting of the texture analysis
application. All three of these correlated failures were successfully recovered.

Heartbeat ARMOR recovery. The Heartbeat ARMOR recovered from all register
errors, while text-segment injections brought about two system failures. Although no
corrupted state escaped the Heartbeat ARMOR, the error prevented the Heartbeat
ARMOR from receiving incoming messages. Thus, the Heartbeat ARMOR falsely
detected that the FTM had failed, since it did not receive a heartbeat reply from the
FTM.  The ARMOR then began to initiate recovery of the FTM by (1) instructing the
FTM’s daemon to reinstall the FTM process, and (2) instructing the FTM to restore its
state from checkpoint after receiving acknowledgment that the FTM has been
successfully reinstalled.

Among the successful recoveries from text-segment errors shown in Table 3, four
involved corrupted heartbeat messages that caused the FTM to fail.  Although faulty
data escaped the Heartbeat ARMOR, the corrupted message did not compromise the
FTM’s checkpoint.  Thus, the FTM was able to recover from these four failures.

2.5   Heap Injections

Careful examination of the register injection experiments showed that crash failures
were most often caused by segmentation faults raised from dereferencing a corrupted
pointer. To maximize the chances for error propagation, only data (not pointers) were
injected on the heap. Results from targeted injections into FTM heap memory were
grouped by the element into which the error was injected. Table 4 shows the number
of system failures observed from 100 error injections per element, classified as to the
their effect on the system.  One hundred targeted injections were sufficient to observe
either escaped or detected errors given the amount of state in each element; overall,
500 heap injections were conducted on the FTM.
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Table 4. System Failures Observed Through Heap Injections
Legend (Effect on system): (A) unable to register daemons, (B) unable to install Execution ARMORs, (C) unable to start

applications, (D) unable to uninstall Execution ARMORs after application completes.
Legend (System failure/assertion check classification): (2) system failure without assertion firing, (3) system failure with

assertion firing, (4) successful recoveries after assertion fired.

Element Effect on System System Failures

A B C D Total #2 #3
#4

mgr_armor_info.  Stores information about
subordinate ARMORs such as location and
element composition.

4 1 5 4 14 6 8 19

exec_armor_info.  Stores information
about each Execution ARMOR such as status of
subordinate application.

0 0 5 4 9 4 5 9

app_param.  Stores information about
application such as executable name,
command-line arguments, and number of times
application restarted.

0 0 0 0 0 0 0 2

agr_app_detect.  Used to detect that all
processes for MPI application have terminated
and to initiate recovery if necessary.

0 0 0 0 0 0 0 4

node_mgmt.  Stores information about the
nodes, including the resident daemon and
hostname.

0 14 0 0 14 0 14 3

TOTAL 4 15 10 8 37 10 27 37

Many data errors were detectable through assertions within the FTM, but not all
assertions were effective in preventing system failures. One of four scenarios resulted
after a data error was injected (the last three columns in Table 4 are numbered to refer
to scenarios 2-4):

1. The data error was not detected by an assertion and had no effect on the system.
The application completed successfully as if there were no error.

2. The data error was not detected by an assertion but led to a system failure.  None of
the system failures impacted the application while it was executing.

3. The data error was detected by an assertion check, but only after the error had
propagated to the FTM’s checkpoint or to another process.  Rolling back the
FTM’s state in these circumstances was ineffective, and system failures resulted
from which the SIFT environment could not recover.  These cases show that error
latency is a factor when attempting to recover from errors in a distributed
environment.

4. The data error was detected by an assertion check before propagating to the FTM’s
checkpoint or to another process.  After an assertion fired, the FTM killed itself
and recovered as if it had experienced an ordinary crash failure.

The injection results in Table 4 show that the least sensitive elements (app_param
and mgr_app_detect) were those modules whose state was substantially read-only
after being written early within the run. With assertions in place, none of the data
errors led to system failures. At the other end of the sensitivity spectrum, 28 errors in
two elements caused system failures. In contrast with the elements causing no system
failures, the data in mgr_armor_info and node_mgmt were repeatedly written during
the initialization phases of a run.
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Table 4 also shows the efficiency of assertion checks in preventing system failures.
The rightmost two columns in the table represent the total number of runs in which
assertions detected errors. For example, assertions in the mgr_armor_info element
detected 27 errors, and 19 of those errors were successfully recovered. The data also
show that assertions coupled with the incremental microcheckpointing were able to
prevent system failures in 58% of the cases (27 of 64 runs in which assertions fired).

On the other hand, assertions detected the error too late to prevent system failures
in 27 cases. For example, 14 of the 17 runs in which assertions detected errors in the
node_mgmt element resulted in system failures. This problem was rectified by adding
checks to the translation results before sending the message.

2.6   Lessons Learned

SIFT overhead should be kept small. System designers must be aware that SIFT
solutions have the potential to degrade the performance and even the dependability of
the applications they are intended to protect. Our experiments show that the
functionality in SIFT can be distributed among several processes throughout the
network so that the overhead imposed by the SIFT processes is insignificant while the
application is running.

SIFT recovery time should be kept small. Minimizing the SIFT process recovery
time is desirable from two standpoints: (1) recovering SIFT processes have the
potential to affect application performance by contending for processor and network
resources, and (2) applications requiring support from the SIFT environment are
affected when SIFT processes become unavailable. Our results indicate that fully
recovering a SIFT process takes approximately 0.5 s. The mean overhead as seen by
the application from SIFT recovery is less than 5%, which takes into account 10 out
of roughly 800 failures from register, text-segment and heap injections that caused the
application to block or restart because of the unavailability of a SIFT process.  The
overhead from recovery is insignificant when these 10 cases are neglected.

SIFT/application interface should be kept simple.  In any multiprocess SIFT
design, some SIFT processes must be coupled to the application in order to provide
error detection and recovery. The Execution ARMORs play this role in our SIFT
environment.  Because of this dependency, it is important to make the Execution
ARMORs as simple as possible. All recovery actions and those operations that affect
the global system (e.g., job submission and detecting remote node failures) are
delegated to a remote SIFT process that is decoupled from the application’s
execution. This strategy appears to work, as only 5 of 373 observed Execution
ARMOR failures  led to system failures.

SIFT availability impacts the application. Low recovery time and aggressive
checkpointing of the SIFT processes help minimize the SIFT environment downtime,
making the environment available for processing application requests and for
recovering from application failures.

System failures are not necessarily fatal. Only 11 of the 10,000 injections resulted
in a system failure in which the SIFT environment could not recover from the error.
These system failures did not affect an executing application.
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3 Error and Failure Analysis of a LAN of Windows NT-Based
      Servers

Direct monitoring, recording, and analysis of naturally occurring errors and failures in
the system can provide valuable information on actual error/failure behavior, identify
system bottlenecks, quantify dependability measures, and verify assumptions made in
analytical models. In this section we provide an example of system dependability
analysis using failure data collected from a Local Area Networks (LAN) of Windows
NT servers.

In most commercial systems, information about failures can be obtained from the
manual logs maintained by administrators or from the automated event-logging
mechanisms in the underlying operating system. Manual logs are very subjective and
often unavailable. Hence they are not typically suited for automated analysis of
failures. In contrast, the event logs maintained by the system have predefined formats,
provide contextual information in case of failures (e.g., a trace of significant events
that precede a failure), and are thus conducive to automated analysis. Moreover, as
failures are relatively rare events, it is necessary to meticulously collect and analyze
error data for many machine-months for the results of the data analysis to be
statistically valid. Such regular and prolonged data acquisition is possible only
through automated event logging. Hence most studies of failures in single and
networked computer systems are based on the error logs maintained by the operating
system running on those machines.

This section presents methodology and results from an analysis of failures found in
a network of about 70 Windows NT based mail servers (running Microsoft Exchange
software). The data for the study is obtained from event logs (i.e., logs of machine
events that are maintained and modified by the Windows NT operating system)
collected over a six-month period from the mail routing network of a commercial
organization. In this study we analyze only machine reboots because they constitute a
significant portion of all logged failure data and are the most severe type of failure.
As a starting point, a preliminary data analysis is conducted to classify the nature of
observed failure events. This failure categorization is then used to examine the
behavior of individual machines in detail and to derive a finite state model. The model
depicts the behavior of a typical machine. Finally, a domain-wide analysis is
performed to capture the behavior of the domain in a finite state model. The thorough
failure data analysis, the reader can find in [12].

Related Work. Analysis of failures in computer systems has been the focus of
active research for quite some time. Studies of failures occurring in commercial
systems (e.g., VAX/VMS, Tandem/GUARDIAN) are based primarily on failure data
collected from the field. The focus of such studies is on categorizing the nature of
failures in the systems (e.g., software failures, hardware failures), identifying
availability bottlenecks, and obtaining models to estimate the availability of the
systems being analyzed. Lee [15], [16] analyzed failures in Tandem’s GUARDIAN
operating system. Tang [25] analyzed error logs pertaining to a multicomputer
environment based on VAX/VMS cluster. Thakur [27] presented an analysis of
failures in the Tandem Nonstop-UX operating system.

Hsueh [9] explored errors and recovery in IBM’s MVS operating system. Based on
the error logs collected from MVS systems, a semi-Markov model of multiple errors
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(i.e. errors that manifest themselves in multiple ways) was constructed to analyze
system failure behavior. Measurement-based software reliability models were also
presented in [15], [16] (for the GUARDIAN system) and [25], [26] (for the VAX
cluster).

The impact of workload on system failures was also extensively studied. Castillo
[6] developed a software reliability prediction model that took into account the
workload imposed on the system. Iyer [11] examined the effect of workload on the
reliability of the IBM 3081 operating system. Mourad [21] performed a reliability
study on the IBM MVS/XA operating system and found that the error distribution is
heavily dependent on the type of system utilization. Meyer [20] presented an analysis
of the influence of workload on the dependability of computer systems.

Lin [17] and Tsao [28] focused on trend analysis in error logs. Gray [8] presented
results from a census of Tandem systems. Chillarege [7] presented a study of the
impact of failures on customers and the fault lifetimes. Sullivan [23], [24] examined
software defects occurring in operating systems and databases (based on field data).
Velardi [29] examined failures and recovery in the MVS operating system.

3.1    Error Logging in Windows NT

Windows NT operating system offers capabilities for error logging. This software
records information on errors occurring in the various subsystems, such as memory,
disk, and network subsystems, as well as other system events, such as reboots and
shutdowns. The reports usually include information on the location, time, type of the
error, the system state at the time of the error, and sometimes error recovery (e.g.,
retry) information. The main advantage of on-line automatic logging is its ability to
record a large amount of information about transient errors and to provide details of
automatic error recovery processes, which cannot be done manually. Disadvantages
are that an on-line log does not usually include information about the cause and
propagation of the error or about off-line diagnosis. Also, under some crash scenarios,
the system may fail too quickly for any error messages to be recorded.

An important question to be asked here is: How accurate are event logs in
characterizing failure behavior of the system? While event logs provide valuable
insight into understanding the nature and dynamics of typical problems observed in a
network system, in many cases the information in event logs is not sufficient to
precisely determine a nature of a problem (e.g., whether it was a software or hardware
component failure). The only reliable way to improve accuracy of logs is (1) to
perform more frequent, detailed logging by each component and (2) instrument the
Windows NT code with new (more precise) logging mechanisms. However, there is
always a trade-off between accuracy and intrusiveness of measurements. No
commercial organization will permit someone to install an untested tool to monitor
the network. Consequently, we use existing logs not only to characterize failure
behavior of the network (presented in this paper), but also to determine how the
logging system could be improved (e.g., by adding to the operating system a query
mechanism to remotely probe system components about their status). It should be
noted that in many commercial operating systems (e.g., MVS) event logs are accurate
enough to document failures.
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3.2   Classification of Data Collected from a LAN of Windows NT-Based Servers

The initial breakup of the data on a system reboot is primarily based on the events that
preceded the current reboot by no more than an hour (and that occurred after the
previous reboot). For each instance of a reboot, the most severe and frequently
occurring events (hereafter referred to as prominent events) are identified. The
corresponding reboot is then categorized based on the source and the id of these
prominent events. In some cases, the prominent events are specific enough to identify
the problem that caused the reboot. In other cases, only a high-level description of the
problem can be obtained based on the knowledge of the prominent events. Table 5
shows the breakup of the reboots by category.

Hardware or firmware related problems: This category includes events that
indicate a problem with hardware components (network adapter, disk, etc.), their
associated drivers (typically drivers failing to load because of a problem with the
device), or some firmware (e.g., some events indicated that the Power On Self Test
had failed).

Connectivity problems: This category denotes events that indicated that either a
system component (e.g., redirector, server) or a critical application (e.g., MS
Exchange System Attendant) could not retrieve information from a remote machine.
In these scenarios, it is not possible to pinpoint the actual cause of the connectivity
problem. Some of the connectivity failures result from network adapter problems and
hence are categorized as hardware related.

Table 5. Breakup of Reboots Based on Prominent Events

Category Frequency Percentage
Total reboots 1100 100
Hardware or firmware problems 105 9
Connectivity problems 241 22
Crucial application failures 152 14
Problems with a software component 42 4
Normal shutdowns 63 6
Normal reboots/power-off (no indication of
any problems)

178 16

Unknown 319 29

Crucial application failure: This category encompasses reboots, which are
preceded by severe problems with, and possibly shutdown of, critical application
software (such as Message Transfer Agent). In such cases, it wasn’t clear why the
application reported problems. If an application shutdown occurs as a result of
connectivity problem, then the corresponding reboot is categorized as connectivity-
related.

Problems with a software component: Typically these reboots are characterized by
startup problems (such as a critical system component not loading or a driver entry
point not being found). Another significant type of problem in this category is the
machine running out of virtual memory, possibly due to a memory leak in a software
component. In many of these cases, the component causing the problem is not
identifiable.
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Normal shutdowns: This category covers reboots, which are not preceded by
warnings or error messages. Additionally, there are events that indicate shutting down
of critical application software and some system components (e.g., the BROWSER).
These represent shutdowns for maintenance or for correcting problems not captured in
the event logs.

Normal reboots/power-off: This category covers reboots which are typically not
preceded by shutdown events, but do not appear to be caused by any problems either.
No warnings or error messages appear in the event log before the reboot.

Based on data in Table 5, the following observations can be made about the failures:

1. 29% of the reboots cannot be categorized. Such reboots are indeed preceded by
events of severity 2 or lesser, but there is not enough information available to
decide (a) whether the events were severe enough to force a reboot of the machine
or (b) the nature of the problem that the events reflect.

2. A significant percentage (22%) of the reboots have reported connectivity problems.
Connectivity problems suggest that there could be propagated failures in the
domain. Furthermore, it is possible that the machines functioning as the master
browser and the Primary Domain Controller (PDC)2, respectively are potential
reliability bottlenecks of the domain.

3. Only a small percentage (10%) of the reboots can be traced to a system hardware
component. Most of the identifiable problems are software related.

4. Nearly 50% of the reboots are abnormal reboots (i.e., the reboots were due to a
problem with the machine rather than due to a normal shutdown).

5. In nearly 15% of the cases, severe problems with a crucial mail server application
force a reboot of the machine.

3.3   Analysis of Failure Behavior of Individual Machines

After the preliminary investigation of the causes of failures, we probe failures from
the perspective of an individual machine as well as the whole network.  First we focus
on the failure behavior of individual machines in the domain to obtain (1) estimates of
machine up-times and down-times, (2) an estimate of the availability of each
machine, and (3) a finite state model to describe the failure behavior of a typical
machine in the domain. Machine up-times and down-times are estimated as follows:

� For every reboot event encountered, the timestamp of the reboot is recorded.
� The timestamp of the event immediately preceding the reboot is also recorded.

(This would be the last event logged by the machine before it goes down.)
� A smoothing factor of one hour is applied to the reboots (i.e., for multiple reboots

that occurred within an period of one hour, except the last one, are disregarded).
� Each up-time estimate is generated by calculating the time difference between a

reboot timestamp and the timestamp of the event preceding the next reboot.

                                                          
2 In the analyzed network, the machines belonged to a common Windows NT domain. One of

the machines was configured as the Primary Domain Controller (PDC). The rest of the
machines functioned as Backup Domain Controllers (BDCs).
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� Each down-time estimate is obtained by calculating the time difference between a
reboot timestamp and the timestamp of the event preceding it.

Machine uptimes and machine downtimes are presented in Table 6. As the standard
deviation suggests, there is a great degree of variation in the machine uptimes. The
longest uptime was nearly three months. The average is skewed because of some of
the longer uptimes. The median is more representative of the typical uptime.

Table 6. Machine Uptime & Downtime Statistics

Item Machine
Uptime Statistics

Machine
Downtime Statistics

Number of entries  616 682
Maximum  85.2 days 15.76 days
Minimum  1 hour 1 second
Average  11.82 days 1.97 hours
Median  5.54 days 11.43 minutes
Standard Deviation  15.656 days 15.86 hours

As the table shows, 50% of the downtimes last about 12 minutes. This is probably too
short a period to replace hardware components and reconfigure the machine. The
implication is that majority of the problems are software related (memory leaks,
misloaded drivers, application errors etc.). The maximum value is unrealistic and
might have been due to the machine being temporarily taken off-line and put back in
after a fortnight.

Since the machines under consideration are dedicated mail servers, bringing down
one or more of them would potentially disrupt storage, forwarding, reception, and
delivery of mail. The disruption can be prevented if explicit rerouting is per-formed to
avoid the machines that are down. But it is not clear if such rerouting was done or can
be done. In this context the following observations would be causes for concern: (1)
average downtime measured was nearly 2 hours or (2) 50% of the measured uptime
samples were about 5 days or less.

Availability
Having estimated machine uptime and downtime, we can estimate the availability of
each machine. The availability is evaluated as the ratio:

[<average uptime> / (<average uptime> + <average downtime>)]*100

Table 7 summarizes the availability measurements. As the table depicts, the
majority of the machines have an availability of 99.7% or higher. Also there is not a
large variation among the individual values. This is surprising considering the rather
large degree of variation in the average uptimes. It follows that machines with smaller
average up-times also had correspondingly smaller average downtimes, so that the
ratios are not very different. Hence, the domain has two types of machines: those that
reboot often but recover quickly and those that stay up relatively longer but take
longer to recover from a failure.
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Table 7. Machine Availability

Item Value
 Number of machines  66
 Maximum  99.99
 Minimum  89.39
 Median  99.76
 Average  99.35
 Standard Deviation  1.52

Fig. 3 shows the unavailability distribution across the machines (unavailability was
evaluated as: 100 – Availability). Less than 20% of the machines had an availability
of 99.9% or higher. However, nearly 90% of the machines had an availability of 99%
or higher. It should be noted that these numbers indicate the fraction of time the
machine is alive. They do not necessarily indicate the ability of the machine to
provide useful service because the machine could be alive but still unable to provide
the service expected of it. To elaborate, each of the machines in the domain acts as a
mail server for a set of user machines. Hence, if any of these mail servers has
problems that prevent it from receiving, storing, forwarding, or delivering mail, then
that server would effectively be unavailable to the user machines even though it is up
and running. Hence, to obtain a better estimate of machine availability, it is necessary
to examine how long the machine is actually able to provide service to user machines.

Fig. 3. Unavailability Distribution
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Modeling Machine Behavior
To obtain more accurate estimates of machine availability, we modeled the behavior
of a typical machine in terms of a finite state model. The model was based on the
events that each machine logs. In the model, each state represents a level of
functionality of the machine.  A machine is either in a fully functional state, in which
it logs events that indicate normal activity, or in a partially functional state, in which it
logs events that indicate problems of a specific nature.

Selection and assignment of states to a machine was performed as follows. The
logs were split into time-windows of one hour each. For each such window, the
machine was assigned a state, which it occupied throughout the duration of the
window. The assignment was based on the events that the machine logged in the
window. Table 8 describes the states identified for the model.

Table 8. Machine States

State Name Main Events (id/source/severity) Explanation
Reboot 6005/EventLog/4 Machine logs reboot and other

initialization events
Functional 5715/NETLOGON/4

1016/MSExchangeIS Private/8
Machine logs successful
communication with PDC

Connectivity problems 3096/NETLOGON/1
5719/NETLOGON/1

Problems locating the PDC

Startup problems 7000/Service Control Manager/1
7001/Service Control Manager/1

Some system component or
application failed to startup

MTA problems 2206/MSExchangeMTA/2
2207/MSExchangeMTA/2

Message Transfer Agent has
problems with some internal
databases

Adapter problems 4105/CpqNF3/1
4106/CpqNF3/1

The NetFlex Adapter driver reports
problems

Temporary MTA
problems

9322/MSExchangeMTA/4
9277/MSExchangeMTA/2
3175/MSExchangeMTA/2
1209/MSExchangeMTA/2

Message Transfer Agent reports
problems of a temporary (or less
severe) nature

Server problems 2006/Srv/1 Server component reports having
received badly formatted requests

BROWSER problems 8021/BROWSER/2
8032/BROWSER/1

Browser reports inability to contact
the master browser

Disk problems 11/Cpq32fs2/1
5/Cpq32fs2/1
9/Cpqarray/1
11/Cpqarray/1

Disk drivers report problems

Tape problems 15/dlttape/1 Tape driver reports problems
Snmpelea problems 3006/Snmpelea/1 Snmp event log agent reports error

while reading an event log record
Shutdown 8033/BROWSER/4

1003/MSExchangeSA/4
Application/machine shutdown in
progress

Each machine (except the Primary Domain Controller (PDC) whose transitions
were different from the rest) in the domain was modeled in terms of the states
mentioned in the table. A hypothetical machine was created by combining the
transitions of all the individual machines and filtering out transitions that occurred
less frequently. Fig. 4 describes this hypothetical machine. In the figure, the weight on
each outgoing edge represents the fraction of all transitions from the originating state
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(i.e., tail of the arrow) that end up in a given terminating state (i.e., head of the arrow).
For example, if there is an edge from state A to state B with a weight of 0.5, then it
would indicate that 50% of all transitions from state A are to state B. From Fig. 4 the
following observations can be made:

� Only about 40 % of the transitions out of the Reboot states are to the Functional
state. This indicates that in the majority of the cases, either the reboot is not able to
solve the original problem, or it creates new ones.

� More than half of the transitions out of the Startup problems are to the Connectivity
problems state. Thus, the majority of the startup problems are related to
components that participate in network activity.

� Most of the problems that appear when the machine is functional are related to
network activity. Problems with the disk and other components are less frequent.

Fig. 4. State Transitions of a Typical Machine

� More than 50% of the transitions out of Disk problems state are to the Functional
state. Also, we do not observe any significant transitions from the Disk problems
state to other states. This could be due to one or more of the following:
1. The machines are equipped with redundant disks so that even if one of them is

down, the functionality is not disrupted in a major way.
2. The disk problems, though persistent, are not severe enough to disrupt normal

activity (maybe retries to access the disk succeed).
3. The activities that are considered to be representative of the Functional state

may not involve much disk activity.
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� Over 11% of the transitions out of the Temporary MTA problems state are to the
Browser problems state. We suspect that there was a local problem that caused
RPCs to timeout or fail and caused problems for the MTA and BROWSER.
Another possibility is that, in both cases, it was the same remote machine that
could not be contacted. Based on the available data, it was not possible to
determine the real cause of the problem.

To view the transitions from a different perspective, we computed the weight of each
outgoing edge as a fraction of all the transitions in the finite state machine. Such a
computation provided some interesting insights, which are enumerated below:

1. Nearly 10% of all the transitions are between the Functional and Temporary MTA
problems states. These MTA problems are typically problems with some RPC calls
(either failing or being canceled).

2. About 0.5% (1 in 200) of all transitions are to the Reboot state.
3. The majority of the transitions into the MTA problems state are from the Reboot

state. Thus, MTA problems are primarily problems that occur at startup. In
contrast, the majority of the transitions into the Server problems state and the
Browser problems state (excluding the self loops) are from the Functional state.
So, these problems (or at least a significant fraction of them) typically appear after
the machine is functional.

4. About 92% of all transitions are into the Functional state. This figure is
approximately a measure of the average time the hypothetical machine spends in
the functional state. Hence it is a measure of the average availability of a typical
machine. In this case, availability measures the ability of the machine to provide
service, not just to stay alive.

3.4   Modeling Domain Behavior

Analyzing system behavior from the perspective of the whole domain (1) provides a
macroscopic view of the system rather than a machine-specific view, (2) helps to
characterize the nature of interactions in the network, and (3) aids in identifying
potential reliability bottlenecks and suggests ways to improve resilience to operational
faults.

Inter-reboot Times. An important characteristic of the domain is how often reboots
occur within it. To examine this, the whole domain is treated as a black box, and
every reboot of every machine in the domain is considered to be a reboot of the black
box. Table 9 shows the statistics of such inter-reboot times measured across the whole
domain.

Table 9. Inter-reboot Time Statistics for the Domain

Item Value
 Number of samples  882
 Maximum  2.46 days
 Minimum  Less than 1 second
 Median  2402 seconds
 Average  4.09 hours
 Standard Deviation  7.52 hours
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Finite State Model of the Domain
The proper functioning of the domain relies on the proper functioning of the PDC and
its interactions with the Backup Domain Controllers (BDCs). Thus it would seem
useful to represent the domain in terms of how many BDCs are alive at any given
moment and also in terms of the PDC being functional or not. Accordingly, a finite
state model was constructed as follows:

1. The data collection period was broken up into time windows of a fixed length,
2. For each such time window, the state of the domain was computed, and
3. A transition diagram was constructed based on the state information.

The state of the domain during a given time window was computed by evaluating
the number of machines that rebooted during that time window. More specifically, the
states were identified as shown in Table 10. Fig. 5 shows the transitions in the
domain. Each time window was one hour long.

Table 10. Domain States and their Interpretation

State Name Meaning
  PDC  Primary Domain Controller (PDC) rebooted

  BDC  1 Backup Domain Controller (BDC) rebooted
  MBDC  Many BDCs rebooted
  PDC+BDC  PDC and One BDC rebooted
  PDC+MBDC  PDC and Many BDCs rebooted
  F  Functional (no reboots observed)

Fig. 5. Domain State Transitions

Fig. 5 reveals some interesting insights.
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1. Nearly 77% of all transitions from the F state, excluding the self-loops, are to the
BDC state. If these transitions do indeed result in disruption in service, then it is
possible to improve the overall availability significantly just by tolerating single
machine failures.

2. A non-negligible number of transitions are between the F state and the MBDC state
and between states BDC and MBDC. This would indicate potentially correlated
failures and recovery (see [12] for more details).

3. Majority of transitions from state PDC are to state F. This could be explained by
one of the following:
� Most of the problems with the PDC are not propagated to the BDCs,
� The PDC typically recovers before any such propagation takes effect on the

BDCs, or
� The problems on the PDC are not severe enough to bring it down, but they

might worsen as they propagate to the BDCs and force a reboot.
� However, 20% of the transitions from the PDC state are to the PDC+BDC state.

So there is a possibility of the propagation of failures.

4   Conclusions

The discussion in this paper focused on the issues involved in analyzing the
availability of networked systems using fault injection and the failure data collected
by the logging mechanisms built into the system. To achieve accurate and
comprehensive system dependability evaluation the analysis must span the three
phases of system life: design phase, prototype phase, and operational phase.

For example the presented fault injection study of the ARMOR-based SIFT
environment demonstrated that:

1. Structuring the fault injection experiments to progressively stress the error
detection and recovery mechanisms is a useful approach to evaluating performance
and error propagation.

2. Even though the probability for correlated failures is small, its potential impact on
application availability is significant.

3. The SIFT environment successfully recovered from all correlated failures
involving the application and a SIFT process because the processes performing
error detection and recovery were decoupled from the failed processes.

4. Targeted injections into dynamic data on the heap were useful in further
investigating system failures brought about by error propagation. Assertions within
the SIFT processes were shown to reduce the number of system failures from data
error propagation by up to 42%.

Similarly analysis of failure data collected in a network of Windows NT machines
provides insights into network system failure behavior.

1. Most of the problems that lead to reboots are software related. Only 10% are
attributable to specific hardware components.

2. Rebooting the machine does not appear to solve the problem in many cases. In
about 60% of the reboots, the rebooted machine reported problems within a hour or
two of the reboot.
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3. Though the average availability evaluates to over 99%, a typical machine in the
domain, on average, provides acceptable service only about 92% of the time.

4. About 1% of the reboots indicate memory leaks in the software.
5. There are indications of propagated or correlated failures. Typically, in such cases,

multiple machines exhibit identical or similar problems at almost the same time.

Moreover, the failure data analysis also provides insights into the error logging
mechanism. For example, event-logging features that are absent, but desirable, in
Windows NT can be suggested:

1. The presence of a Windows NT shutdown event will improve the accuracy in
identifying the causes of reboots. It will also lead to better estimates of machine
availability.

2. Most of the events observed in the logs were either due to applications or to high-
level system components, such as file-system drivers. It is not evident if this is due
to a genuine absence of problems at the lower levels or it is just because the lower-
level system components log events sparingly or resort to other means to report
events. If the latter is true, then improved event logging by the lower-level system
components (protocol drivers, memory managers) can enhance the value of event
logs in diagnosis.
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