
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985 881

Distributed Execution of Functional Programs Using
Serial Combinators

PAUL HUDAK, MEMBER, IEEE, AND BENJAMIN GOLDBERG

Abstract—A general strategy for automatically decomposing
and dynamically distributing a functional program is discussed,
suitable for parallel execution on multiprocessor architectures
with no shared memory. The strategy borrows ideas from data
flow and reduction machine research on one hand, and from
conventional compiler technology for sequential machines on the
other. One of the more troublesome issues in such a system is
choosing the right granularity for the parallel tasks. As a solution
we describe a program transformation technique based on serial
combinators that offers in some sense just the "right" granularity
for this style of computing, and that can be 'fine-tuned" for
particular multiprocessor architectures. We show via simulation
the success of our approach.

Index Terms — Combinators, distributed computing, func­
tional programming, graph reduction, lambda calculus, load-
balancing, multiprocessing, parallel computing.

I . INTRODUCTION

IN recent years there has been considerable interest in par­
allel architectures of various sorts, especially ones charac­

terized as "a large number of autonomous processing
elements" interconnected in various ways. We refer to such
machines collectively as multiprocessors, although in this
paper we will concentrate on ones having a regular, sparse
interconnect with no shared memory. The interest in these
machines is not surprising since they are in a sense the most
"obvious" way to get vast amounts of parallelism, and they
are relatively easy to build. Indeed, several manufacturers
are now producing commercial mult iprocessors whose
price/performance ratio appears to be quite favorable. To
fully exploit these architectures, one must obtain near-
maximal performance from each of the individual processors
simultaneously. This is not an easy task.

The majority of researchers interested in programming
such machines view the overall system in its most literal,
concrete form, i .e . , as a network of individual machines
communicating in some cooperative manner. Our viewpoint
is somewhat different: we wish to treat the multiprocessor
abstractly as a single logical entity (sometimes called a net­
work computer or ensemble architecture), and our goal is to
provide a way to automatically decompose and dynamically
distribute a user 's program for parallel execution. Our view

Manuscript received February 1, 1985; revised May 30, 1985. This work
was supported in part by the National Science Foundation under Grant MCS-
8302018 and in part by a grant from Burroughs Corporation. A preliminary
version of this paper was presented at the IEEE 1985 International Conference
on Parallel Processing, St. Charles, IL, Aug. 1985.

The authors are with the Department of Computer Science, Yale University,
New Haven, CT 06520.

also differs from the conventional one in that we wish to build
a general-purpose machine that can execute many users'
parallel programs simultaneously, rather than a dedicated
multiprocessor whose programs are statically mapped for
optimal performance. With these goals in mind, it is not
surprising that our work has centered upon developing a
"virtual machine" with the desired properties, that we believe
can be implemented efficiently on top of a conventional mul­
tiprocessor. We accomplish this by borrowing ideas from
data flow and reduction machine research on one hand, and
from conventional compiler technology for sequential ma­
chines on the other.

One of the more troublesome issues in such a design is
choosing the right granularity for the parallel tasks — if they
are too large, parallelism might be lost, and if too small,
communication costs might dominate the computation. Our
theory of serial combinators offers a medium granularity that
we consider to be quite suitable for this style of computing,
and that can be "fine-tuned" for particular multiprocessor
architectures.

In the next section we describe in more detail the problems
to be solved in reaching our goal and briefly outline our
solutions. Serial combinators are described in detail in
Section III. Then in Section IV we describe the virtual graph
reduction machine that forms the foundation for multi­
processor real izat ions . Simulat ion results are given in
Section V. Finally, in Section VI we discuss other related
efforts and point to future research directions.

II. PROBLEM DESCRIPTION

There are three fundamental obstacles in the way of
achieving the goals stated in Section I: 1) choosing a lan­
guage base with ample and easily detectable parallelism;
2) choosing an evaluation model that does not rely on any
"centralized" data or control that could act as a bottleneck;
and 3) choosing the right process granularity, especially for
architectures with nontrivial communication costs. Each of
these issues is discussed in more detail below.

A. Language Base

If one is to be able to automatically decompose programs
for parallel execution one must choose a language whose
semantics provides ample opportunities for parallelism and
whose syntax makes it easy to detect such parallelism. The
class of functional languages (also known as applicative or
dataflow languages) is particularly good at satisfying these
requirements. Aside from their ' 'standard" virtues, which

0018-9340/85/1000-0881$01.00 © 1985 IEEE

882 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

have been well argued elsewhere [1], [5], [8] and are beyond
the scope of this paper, functional languages have another
feature that becomes virtuous when viewed in the light of
parallel computation. Specifically, the standard evaluation
models for functional languages exhibit the well-known
Church-Rosser property [4], which indirectly states that no
matter what computation order is chosen in executing a pro­
gram, it is guaranteed to return the same result (assuming
termination). This marvelous determinacy property is in­
valuable in parallel systems.

One can argue for the suitability of functional languages in
parallel computing in yet another way that is perhaps more
intuitive and thus more convincing. The argument is simply
that there are no side-effects. Most exper ienced pro­
grammers recognize the importance of at least minimizing
side-effects, but the importance of doing so in a parallel
system is intensified significantly, due to the careful syn­
chronization required to ensure correct behavior when side-
effects are present. Without side-effects, there is no way for
concurrent portions of a program to adversely affect one
another—indeed, this is simply another way of stating the
Church-Rosser property.

To summarize, in functional languages parallelism is im­
plicit, easy to detect, and supported by the underlying seman­
tics. Our intent in providing a general-purpose system is that
one might write and debug a functional program on a se­
quential machine and then run the same program on a parallel
machine for improved performance. There is generally no
need for special message-passing constructs or other commu­
n ica t ions p r i m i t i v e s , no need for p r o c e s s c r ea t i on /
synchroniza t ion p r i m i t i v e s , and no need for special
"parallel" constructs such as "parbegin · · · parend."

B. Evaluation Model

Most conventional languages rely on a sequential stack-
based evaluation model. The stack usually serves two distinct
(indeed, separable) purposes: 1) it provides a data structure
through which lexically bound variables may be referenced
(often called the static chain), and 2) it provides a return
mechanism for recursive procedure calls (often called the
dynamic chain). The stack serves these purposes well since
its last-in, first-out behavior matches the depth-first evalua­
tion that characterizes most sequential execution strategies.
For this same reason it is a particularly bad structure for
general parallel computation. Even if parallelism were pos­
sible, the centralized nature of the environment (allocated on
the stack) would act as a bottleneck.

There is actually considerable motivation for abandoning
stack allocation even for sequential computers. For example,
higher-order functions, central to functional languages as
well as Scheme dialects of Lisp [25], [22], require the equiva­
lent of a "closure," which in general must be heap allocated
(in this paper we use "heap" in the Lisp implementation
sense). Furthermore, coroutines and other "exotic" control
structures (including upward continuations in Scheme) re­
quire at a minimum multiple stacks, which in turn require
some degree of heap allocation.

An alternative evaluation model, that appears well suited
to parallel computation, is graph reduction. Although graph

reduction is simply an operational rendition of reduction in
the lambda calculus [26], we prefer to view it as a gener­
alization of conventional stack-based evaluation, in which
activation records are allocated in a heap instead of on a
stack. We refer to the resultant structure as the program
graph.

In a parallel environment, how does graph reduction serve
the two purposes described earlier, i .e . , the static and dy­
namic chains? It is easy to imagine several reducible expres­
sions (called redexes) being available simultaneously in the
program graph, and the Church-Rosser property permits
us to reduce them simultaneously. Thus parallel execution is
achieved essentially by making the dynamic chain tree-like.
But what about the bottleneck in the static chain? In its sim­
plest form, graph reduction will have the same problem as the
stack-based model — even though the environment structure
is now tree-like, the upper levels of the tree will still behave
as a bottleneck to shared data. Naively making multiple cop­
ies of the environment is an overkill and quite inefficient. A
mechanism is needed to distribute just enough of the environ­
ment to the proper places while avoiding excessive commu­
nication costs.

We can solve this more troublesome problem by basing our
graph reduction on the combinatory calculus [4] instead of
the lambda calculus (for our purposes the two are equivalent
in expressive power). Schonfinkel [24] showed that by using
a fixed set of small constant functions called combinators, all
bound variables may be removed from a program. This some­
what surprising result means that the ubiquitous environ­
ment, central to the notion of beta-reduction in the lambda
calculus, can be eliminated entirely! In Section III we will
describe in detail how this takes place.

C. Process Granularity

Of the many possible program execution models, it is
probably safe to say that a fixed set of combinators offers in
some sense tht finest granularity of computation, even finer
than data flow. However, if one studies the performance
figures for existing multiprocessors, it becomes apparent that
the ratio of interprocessor communication time to CPU in­
struction speed is generally quite high, typically anywhere
from 10 to 100. Thus, it seems that we must find relatively
large "grains" of parallelism for our overall strategy to be
successful. We initially became motivated to do this after
observing via simulation that with a fixed set of combinators
it is possible for a purely sequential computation (i .e . , one
whose data dependences preclude any parallelism) to be­
come decomposed for execution on several processors [11].
Clearly, this is a wasted effort.

On the other hand, little work has been done on larger
grains of parallelism. The strategy used by Keller and
Lin [19] constrains the granularity to that implied by source-
level function definitions, thus placing the burden on the
programmer. Such user-defined functions not only may con­
tain internal parallelism that may be lost, but they are also
seldom combinators. This means that separate mechanisms
are required to import values for free variables, and the useful
property of "full laziness" may not be realized; that is, it is
possible for a partially applied function to recompute some of

HUDAK AND GOLDBERG: SERIAL COMBINATORS 883

its subexpressions if it is shared. Hughes' supercombina-
tors [17] solve the latter problem, but are targeted for se­
quential machines and thus may contain internal parallelism
that will be lost.

The goal then is to retain the environmentless nature of
combinators and their usefulness in a parallel graph reducer,
while maximizing their granularity and ensuring that paral­
lelism is not lost. It turns out that if one is willing to do
without di fixed set of combinators (an idea first suggested by
Hughes [17]), then one can infer program-derived combina­
tors that have the desired properties. We call these serial
combinators, which we argue to be in some sense at just the
right level of granularity, because of the following.

1) They are combinators, facilitating their use in a graph
reduction machine (especially parallel ones).

2) They result in a fully lazy evaluation, guaranteeing that
no extraneous computations are performed.

3) They have no concurrent substructure, guaranteeing
that no available parallelism will be lost.

4) There are no larger objects having these same proper­
ties, ensuring that no extraneous communication costs are
incurred because of too fine a granularity.

We have also made some pragmatic refinements to serial
combinators to increase their efficiency. In particular, we
take into consideration strictness properties of functions,
common subexpressions, complexity of subexpressions, and
the overhead for distributing a computation. We discuss se­
rial combinators and their refinements in more detail in the
next section.

III. SERIAL COMBINATORS

The reader is assumed to have some familiarity with the
lambda calculus and combinatory calculus, although we will
begin with a review of the basic ideas. A more theoretical
discussion may be found in [2] or [4]. We will then proceed
with a description of serial combinators, for which a more
thorough treatment is contained in [14].

A. A Brief Review of Combinators

Consider a funct ion/ defined by f(x) = exp. A functional
object equivalent to / may be obtained by abstraction of the
free variable χ from exp, which is written as [jc]exp. Appli­
cation of this function to a value ν is written as ([jc]exp)v.
The interaction between abstraction and application is de­
fined by the simple rule

([jc]exp)x = e x p . (1)

In the lambda calculus [x]exp is written Ajc.exp, and the
process of applying it to a value ν is called beta-reduction.
Logically, beta-reduction causes substitution of ν for all
free occurrences of χ in exp, but it is more typically imple­
mented by providing an environment to exp in which the
value of χ is bound to v. The environment ensures that
(Ajc.exp)jc = exp.

Alternatively, using the combinatory calculus, one may
abstract JC from exp according to the following rules:

[JC]JC = /

[x]y = Ky, if χ Φ y

[x](el el) = S(Mel)(We2)

where S, Κ, and / are primitive functions called combinators
that are defined (assuming function application associates to
the left) by

/ JC = JC

Ky χ = y

Sfgx = fx(gx)-

Using these rules it is easy to show that this method of ab­
straction obeys the rule given in (1). Note that through re­
peated abstractions of this sort, all bound variables may be
eliminated from a program. Thus, the "substitution" opera­
tion in the lambda calculus becomes meaningless, and there
is no need for an environment.

The combinators S, K, and / form a rather small, fixed set
of primitives, which is quite attractive. However, as argued
earlier, there are reasons for wanting a larger granularity.
Technically, a combinator is simply a lambda expression that
has no free variables and is a "constant applicative form"; that
is, it contains only bound variables and constants that are
combined by application. These are the crucial properties for
a graph reducer since they allow computed values to over­
write the nodes from which they were derived, without mak­
ing copies of the bodies of functions. With this generalization
Hughes [17] introduced the notion of a super combinator, as
explained below.

A free expression in a lambda expression kv.e is defined
as any subexpression of e in which ν does not occur as a free
variable. A maximally free expression is a free expression
which is not part of any larger free expression. In a nutshell,
starting with a program P, Hughes' algorithm for generating
supercombinators is then the following.

1) Find the lef tmost , innermos t lambda express ion
L = Av.exp.

2) Find the maximally free expressions, ej through en,
of L.

3) Create a new combinator (say a) defined by

a ix · · · i > = βχρ[ιΊ/*ι, · · · , i2/e2]

where formal parameter names ix through /„ do not
occur free in exp. (The expression e[x/y] denotes the
result of substituting χ for all free occurrences of y
in e.)

4) Substitute (a el · · · en) for L in P.
5) Repeat steps l) - 4) until step 1) fails.
Together with a few optimizations, the resulting super­

combinators have a very useful property: execution of the
original program results in a fully lazy evaluation. No sub­
expression internal to a combinator body needs to be re­
computed as a result of a partially applied combinator being
shared in several places.

A serial combinator is basically a refinement of a super-
combinator in which several additional constraints have been
added, the most important being that it has no concurrent
substructure, and furthermore, it is not contained in any

884 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

larger combinator with that same property. The purpose of
this refinement should be obvious: if the combinator has no
concurrent substructure, then there is no need to subdivide it
further since doing so can only add communication costs to
an already sequential computation. As argued earlier, serial
combinators are small enough that no parallelism is lost, yet
large enough that no extraneous communication costs are
incurred.

We should also point out from a complexity standpoint that
serial and supercombinators seem to have an inherent effi­
ciency advantage over a fixed set of combinators, based on
the following argument: consider a lambda expression exp
with a free variable χ that occurs at lexical depth n. Using a
standard fixed set of combinators, at least η abstractions are
needed to abstract JC from exp, and likewise at least η reduc­
tions take place when the resulting expression is applied to an
actual argument for x\ Yet with a serial combinator the
overhead is essentially constant, independent of the depth.
Furthermore, research in the last 20 years has produced ex­
cellent compiler techniques for generating efficient code for
lambda expressions, including optimal code for trees and
single-level environments. These optimizations are easily
applied to the bodies of serial combinators, suggesting an
architecture (such as the multiprocessor that is of interest to
us) that combines the elegance and generality of graph reduc­
tion with the efficiency of a conventional register machine.
This particular argument is not made by Hughes, whose re­
duction strategy is to expand supercombinators into their
graphical equivalents, after which normal graph reduction
proceeds. Such a strategy has the advantage of avoiding the
depth η complexity mentioned above, but fails to take advan­
tage of other efficient compilation techniques.

In the remainder of this section we will first give an algo­
rithm to compute "simple" serial combinators and then dis­
cuss some important refinements and their effect on the basic
algorithm.

B. An Algorithm to Generate Simple Serial Combinators

Our examples are expressed in a language called ALFL
[12], a lazy functional language with pattern-matching simi­
lar to SASL [28] and FEL [18]. In ALFL the basic program
structure is an equation group, whose value is denoted by the
keyword result. The equations may define local values or
functions, and are evaluated "by demand." The expression
el -» el, e3 is like if el then el else e3.

We assume the reader to be familiar enough with this style
of language that the examples will be self-explanatory. Most
of the translation process, however, takes place on lambda
expressions. The basic algorithm is as follows.

1) Translate the ALFL source program into a lambda ex­
pression. This is a straightforward translation as de­
scribed in [13].

2) Convert the lambda expression into supercombinators
using Hughes' method described in the last section,
together with the optimizations of eliminating redun­
dant combinators and ordering parameters optimally
[17]. As a further optimization we avoid creating
"trivial closures" (the partial evaluation of primitive

functions) by not abstracting free expressions that con­
sist solely of a primitive operator with an incomplete set
of arguments, such as " + JC."

3) Convert to serial combinators, by doing the following
for each supercombinator.
a) Determine its concurrent substructure. In its basic

form, this simply means finding primitive operators
that are strict in more than one of their arguments,
such as the basic arithmetic and relational operators
(+ , — , = , > , e t c) . It might also include "eager"
versions of cons and append, or even an "eager
conditional."

b) Starting from the outermost expression and working
inward, for each subtree containing several concur­
rent subexpressions, retain one of the subexpres­
sions in the definition of the current combinator
(since it will represent part of the combinators'
"sequential thread"), and compile each of the other
subexpressions into a separate serial combinator
(to allow them to be computed in parallel).

c) For each serial combinator thus generated, repeat
step 3b). Stop when no more refinements are made.

As an example, consider the following divide-and-conquer
version of the factorial function, written in our source lan­
guage ALFL:

{fac 0 = 1;
' η = pfac 1 n;

pfac / h = h=l /,
A = / + 1 - W * A ,
(pfac / (/ + h)/l) * (pfac ((/ + h)/l + 1) A);

result fac n}

After step 1) of the algorithm we get the lambda expression:

pfac = Y(\f λχ Xy. if (= χ y) χ
(if (=y (+x l))(*xy)

(* (/ * (/ (+ * y) 2))
(/(+ (/ (+xy) 2) l) y)))).

Applying step 2) then yields the supercombinator version:

pfac = Y y
yf = fi(af)f
a a b c d h = if (= d h) d

(if (= b h) (* d h)
(* (c (/ (+ d h) 2))

(a (+ (/ (+ d h) 2) 1) A)))
βρςί =p(+l \){ql)L

Note, however, that a contains concurrent subexpressions.
By applying step 3) we thus generate the new serial combina­
tor η :

pfac = Y y
yf = fi(af)f
a a b c d h = if (= d h) d

(if (= b h) (* d h)
(* (c (/ (+ d h) 2)) (η ad A)))

βρςΙ=ρ(+1 \){ql)l
rijkh =j (+ (/ (+ k h) 2) 1) h.

The algorithm given so far generates "simple" serial com-

HUDAK A N D GOLDBERG: SERIAL COMBINATORS 885

binators and is fairly straightforward. However, there are
several critical optimizations that can be made which have
significant effects on performance. They are described below.

C. Refinement 1: Strictness Analysis

Note in step 3a) of the basic algorithm that concurrent
subexpressions are found by analyzing occurrences of strict
primitive operators. However, we can generally do much
better than this. In particular, it is possible that certain serial
combinators are strict in some of their arguments as well.
This can be inferred even for mutually recursive functions,
and techniques for doing so have been discussed in detail
elsewhere [15], [20]. Given such strictness information, the
refinement to step 3a) is obvious: serial combinators are also
generated for the strict arguments to other combinators, and
instructions are included in each serial combinator's com­
piled code for the purpose of spawning strict arguments
in parallel.

D. Refinement!: Complexity Measures

That there is inherent concurrency in an expression does
not mean that distributing its evaluation among several pro­
cessors is the most advantageous thing to do. There may be
cases where the cost of distributing concurrent subexpres­
sions far outweighs the cost of computing the whole expres­
sion locally. We would like to avoid these cases whenever
possible.

Consider an expression exp of the form op el el. The total
time T(exp) to compute exp on a single processor is roughly
T(el) + T(e2) + C(op) where C(op) is the cost of executing
the primitive operation op. If an extra processor is available,
the total time is roughly max(r(el), T(e2) + distribution
costs) 4- C(op), assuming that el was evaluated on the extra
processor. Clearly, if T(e2) + distribution costs < T(el) +
T(el), then distributing the evaluation of el is a win; other­
wise, we are slowing down the overall execution, even
though there is "apparent" parallelism!

Thus, we refine step 3b) by first performing a simple com­
plexity analysis on the concurrent subexpressions. From the
previous paragraph it should be obvious that we should retain
the most complex subexpression for inclusion in the current
serial combinator, making the other subexpression available
for possible parallel execution. In the above example, that
would mean T(el) > T(e2), guaranteeing a minimal value
for max(7(el) , T(el) + distribution costs). If the analysis
then shows that the other subexpression is worth distributing,
it is compiled as a separate combinator, otherwise not. As an
example, note in pfac, presented earlier, that the concurrent
subexpression + d h occurs in the definition of a , but our
compiler decides that distributing this expression would not
be worthwhile.

Determining accurately the time needed to evaluate an
expression is, of course, impossible in the general case. We
use an heuristic in which expressions are weighted by the
complexity of the primitive operations. These heuristics may
be "fine-tuned" to the performance of a particular machine,
but the details are not important to this paper.

E. Refinement3: Common Subexpression Elimination

We would also like to find and eliminate redundant occur­
rences of subexpressions in order to avoid their reevaluation.
The first step in doing this involves using standard compiler
techniques to find common subexpressions (cse's) within
each supercombinator. We do this before having converted
them to serial combinators because once the latter is done it
will be difficult to detect cse's that involve the bound vari­
ables of two or more serial combinators.

For each cse we then determine the smallest expression
that contains all instances of that cse (in a graph-theoretic
sense this amounts to finding the least common ancestor of
all occurrences). From this expression we then abstract the
cse, creating a new combinator which takes a single instance
of the cse as an argument. For example, pfac will now
become

pfac = Y y
7 / = £ (< * /) /
a a b c d h = if (= d h) d

(if (= bh)(*dh)
{8 c ah (/ (+ dh) 2)))

j3p < ? / = / > (+ / \){ql)l
δ χ y h ζ = * (χ ζ)(η y ζ h)
r)jkh =j (+ k 1) h.

Note that the formal parameter ζ in the definition of δ corre­
sponds to the cse (/ (+ d h) 2) in the definition of a , and will
only be computed once.

Unfortunately, the cost of accessing the possibly nonlocal
value of a cse may be greater than recomputing its value
locally! To incorporate this observation we resort again to a
complexity analysis to determine if recomputation of a cse is
worthwhile. The total time to evaluate η instances of a cse
exp is

1) η * T(exp), if we recompute the subexpression each
time;

2) T(exp) + (n * cost of getting its value), if we abstract
the subexpression and compute it once.

Thus, if the average cost of getting its value is less than the
cost of recomputing it, the abstraction is a win. If the value
was computed locally, then the cost of getting its value is
effectively zero; otherwise, it is roughly twice the commu­
nication time to the appropriate processor.

Of course, it is impossible to statically determine the exact
cost of access since the distribution of the computation is
generally not available until run-time. Thus, our compiler
again resorts to an heuristic strategy for cse 's . Specifically,
an instance of a cse is duplicated (meaning it will get re­
computed) if and only if the following conditions hold.

1) It refers only to strict variables (variables whose values
we know have already been computed).

2) It is concurrent with at least one other instance of the
cse.

3) Its complexity is lower than the access cost between
two processors.

It remains to be seen whether this set of heuristics is appro­
priate for a broad range of programs.

886 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

F. Refinement 4: "Uncurrying" and Partial Evaluation

In our previous work on distributed combinator reduction
[11] we discussed a compile-time technique for partially per­
forming some of the graph reduction in order to "uncurry" the
combinators. That is, combinators are generally defined as
curried higher-order functions, as in a = λχ. Ay.exp. Un­
currying them yields definitions such as a = A(jc,j).exp,
which can be implemented in graph reduction more effi­
ciently, especially in a parallel system where granularity is
once again a concern.

Such partial evaluation has a surprising additional effect:
many applications of the serial combinators can be collapsed
into one! This is because a major (and worthwhile) goal of the
serial combinator analysis is to produce combinators that are
"fully lazy," yet most partial applications of serial combina­
tors are not shared, so there is no reason to preserve this
property in all cases. We can also eliminate occurrences of
the Y combinator by making the serial combinators directly
recursive — this also is a form of partial evaluation.

As an example, if we perform partial evaluation on the ser­
ial combinator definition of pfac given earlier, we arrive at

pfac = a
alh = if (= / h) I

if (= (+ / 1) A)(* Ih)
(β (/ (+ / h) 2) / h)

β c I h = * (a / c)(a (+ 1 c) h).

Although the resulting serial combinators in this case bear a
strong resemblance to the original program, in general they
may be quite different.

IV. A DISTRIBUTED VIRTUAL GRAPH REDUCER

With this explication the reader should understand the mo­
tivation for our graph reduction strategy using serial combi­
nators as the primitive graph operations. In this section we
will describe a virtual graph reduction engine suitable for
implementation on a multiprocessor.

A. Abstract Model

As a starting point we will first describe an abstract version
of the reducer that makes no reference to multiple processors.
In this abstract model there is a single global address space
representing a free list of available cells from which the pro­
gram graph is constructed (think of it as one large heap, in the
Lisp sense). Each node in the program graph is labeled with
either a primitive or serial combinator, and contains pointers
to other nodes whose values are arguments to that combinator
(if the argument is already known, its value may be encoded
directly). For example, the initial graph for the program
pfac 1 10 will simply be an a node with the arguments 1
and 10. In general, a node may be in one of three states:

1) dormant, waiting to be evaluated;
2) active, in the process of being evaluated; or
3) terminal, completely evaluated.
Evaluation takes place as messages are passed between

nodes in the program graph. There are two types of such
messages: get-val and return-val, whose behavior depends

on the state of the target node, according to the following
rules.

1) get-val. State of target node:
a) dormant—the node is being "demanded" for the

first time, so: the target node is made active, a
pointer to the "requesting" node is saved, and the
combinator code is executed;

b) active — evaluation of the node has already begun,
so it is only necessary to save a pointer to the re­
questing node;

c) terminal — the target node has already been evalu­
ated, so its value is sent via return-val message to the
requesting node.

2) return-val. State of target node:
a) dormant—error;
b) active — the return value is an argument to the com­

binator represented by the target node, so it is saved
and the compiled combinator code is resumed if ap­
propriate;

c) terminal — error.
The execution of the combinator code in rule la) may

cause further graph mutations and state transitions. For ex­
ample, it may send get-val messages in pursuit of its argu­
ments, or it may compute a final value for the node, which is
stored in the graph and sent to all requesters via a return-val
message. In the latter case the node then becomes terminal.

B. Multiprocessor Model

On a multiprocessor without shared memory, the above
scenario only requires a few changes since the message-based
strategy serves well as an interprocessor communications
protocol. Each processor is made responsible for one con­
tiguous portion of the global address space, and thus paral­
lelism comes to bear when concurrent redexes reside in the
address spaces of different processors. A task queue is main­
tained on each processor that essentially contains get-val or
return-val messages, which act as pointers to available re­
dexes, and which are processed one at a time. Initially, all
processors are given copies of the compiled serial combina­
tors (this corresponds to the "pure code" described in [11]).
Program execution occurs by mapping the initial program
graph onto the global address space and sending a get-val
message to the root node. Eventually, a return-val message is
sent from the root node to the "system," indicating program
termination.

As the evaluation unfolds, expanding portions of the graph
are distributed to neighboring processors for increased paral­
lelism. This distribution process is controlled by a dynamic
load-balancing mechanism that we refer to as diffusion sched­
uling, which may take into account such factors as processor
load, memory utilization, and direction of global references.
The intent is for tasks to be "pushed away" from busy pro­
cessors and "drawn toward" those to which they have global
references (thus maintaining locality). In this way work
"diffuses" through the network in the direction of least
resistance.

As an example of one such diffusion strategy, one may
choose to evaluate a dormant node η on the neighboring

HUDAK AND GOLDBERG: SERIAL COMBINATORS 887

(A) (B)

a

it
dormant

get-val(x,a)

b r c

return-val(x,3)

b r c
get-val(r,x) sent to r

(C)

a

it
umed

return-val(x,w)
return-val (x,u A v)

append

it

append
resumed

terminal

append

(E)

Fig. 1. Example of serial combinator reduction.
(F)

processor ρ having the minimum value of C(n9p) where

C(n,p) = load(p) + (k * ref-cost(n,p)) .

Ref-cost(n,/?) is a measure of the cost of n ' s references to
nodes residing on processors other than p, load(p) is simply
the number of tasks on ρ's task queue, and the constant k is
a weighting factor indicating the relative importance of the
two parameters — the lower the value of k, the more likely
it is that work simply diffuses towards the least-loaded
processors.

An important optimization to this overall strategy is to
avoid the message-passing protocol for local communica­
tions, bypassing the task queue entirely whenever possible.
This, coupled with the fact that the combinator definitions are
represented as conventional compiled straight-line code,
means that we can take advantage of the efficient sequential
features of the von Neumann processors, using message pass­
ing only when necessary.

C. A Simple Example

It is helpful to proceed through a short example showing a
few reduction steps for a typical serial combinator. Consider
the following definition of the serial combinator a , taken
from the "six queens" program given in Section V-D:

a bd row col = if (= row 6) []
(append (β bd row col)

(a bd (+ row 1) col)).

Suppose we are about to evaluate the application of a to three
arguments, shown graphically in Fig. 1(a) as the dormant
node x. Fig. 1(b)—(f) then shows five reduction steps.

Step 1) The message get-val(jc, a) represents a request

from node a for JC'S value. Node χ then becomes active, and
a pointer to a is saved. The code for a is then executed,
which causes a get-val message to be sent in pursuit of r's
value.

Step 2) Eventually, a return-val message produces a value
(in this case 3) for r, which is saved in the graph.

Step 3) Since χ was only awaiting the value of r, the ac­
tivity of a is resumed. Following now the definition of a , we
note that r Φ 6 — t h u s χ is mutated into an append node, and
two new nodes, y and z, are created (possibly on some other
processor due to the work of the diffusion scheduler). The
code for append is then invoked, which causes two get-val
messages to be spawned in pursuit of the values of y and z.

Step 4) Eventually, values also return for y and ζ (note
that the value of a list is really a pair of values, rather than a
pointer to the pa i r—this is yet another optimization aimed at
reducing communication costs).

Step 5) The code for append is then resumed, which
causes a transformation of χ into a pair. At this point χ's value
has been completely determined; therefore, it becomes ter­
minal, and a return-val message is sent to node a.

V. SIMULATION RESULTS

Our intent is that the virtual machine described in the last
section may be implemented on a variety of multiprocessor
architectures, and thus the details may vary significantly
from machine to machine. Previous work by the authors and
others [11], [19] has demonstrated via simulation the viability
of the overall strategy, and we are currently involved in an
implementation on a 128-node Intel iPSC hypercube. In

888 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

number of processors 1 2 4 8 16 32

s e r i a l combinators 491 309 230 216 233 233

standard combinators 12206 6196 3335 2252 1625 1519

Fig. 2. Total cycles consumed, serial versus standard combinators.

number of processors 1 2 4 8 16

with cse e l iminat ion 16363 8437 4433 2559 1698
speedup 1.0 1.9 3.7 6.4 9.6

without cse e l iminat ion 21473 10843 5649 3018 1843
speedup 1.0 2.0 3 .8 7.1 11.7

Fig. 3. Comparison of serial combinator execution time, with and
without cse elimination.

speedup for serial combinators decreases after 8 proces­
sors—this reflects the computation being spread "too thin."

B. The Effect of CSE Elimination

We also conducted a series of experiments to test the effec­
tiveness of common subexpression elimination in the pfac
program. The results, shown in Fig. 3, are for pfac 1 1024 on
a torus, and demonstrate that even though the speedup ex­
hibited without cse elimination was always greater than the
speedup with cse elimination, the latter consistently required
less time to execute.

C. Variations in Program Size

Fig. 4 shows a large number of data points for the pfac
program on a torus, showing variations in program size and
number of processors. The results demonstrate that the de­
gree of parallelism scales well with program size, as well as
with number of processors (up to the point where the number
of processors exceeds the maximum available parallelism in
the program).

D. A Larger Example: Six Queens

Consider the following ALFL program to generate all solu­
tions to the "queens" problem on a six-by-six board:

{n = 6 ;
Result allboards [] 0;
allboards board col =

{Result col=/i —» [board], findboards 0;
findboards row =

{Result row=/i —> [] ,newbds A A findboards (row + 1);
newbds = safe board (col - 1) —>

allboards (row A board) (col + 1) , [] ;
safe [] col l = true;
safe (r A bd) col l = r ^ r o w & col l Φ col &

abs(r - row)^abs(col l - col) &
safe bd (coll - 1)

}
}

}
The symbols " A " and " A A " are infix operators for cons and

tors, compared to only 2.3 for the serial combinators. This is append, respectively, and hd and tl are like car and cdr,
because the higher overhead in using a fixed set of combina- respectively, in Lisp. A list may also be constructed using
tors is itself being distributed for parallel execution! The brackets, as in [a , 6 , c] (which is equivalent to aA&AcA[]). We
introspective speedup factor thus shows "apparent" paral- will assume that the append operator in this example eagerly
lelism that is in fact wasteful. Note, by the way, that the evaluates both of its arguments. In practice this can be ac-

this section we present new simulation results using serial
combinators.

Our simulator allows one to easily change parameters such
as the number of processors, network topology, and diffusion
heuristics. In all of the simulation results given below, the
diffusion heuristic is as described in Section IV-B with
k = 0. Other parameters are adjusted depending on the ex­
periment. We measure execution time by taking as a unit
time step the execution of a single memory-to-memory CPU
instruction, such as a move or addition. Other more complex
operations are weighted accordingly — for example, we
use a message delay of ten time steps between adjacent
processors.

A principal result that we compute for each simulation is
the speedup factor, i .e . , the ratio of time taken to compute
the result on one processor to that taken on the whole system.
This number is somewhat "introspective" since we are com­
paring results within our own evaluation model, but it is
nevertheless a useful tool.

A. Simple Comparison of Serial to Standard Combinators

In our earlier experiments [11] we used a standard fixed set
of combinators, and it is helpful to compare their efficiency
to that of serial combinators. One such comparison is shown
in Fig. 2 for pfac 1 32 run on a torus network of various
sizes. Since the unit time steps were slightly different in the
two cases, it is probably dangerous to draw concrete con­
clusions from these numbers; nevertheless, we believe the
results demonstrate that serial combinators provide a re­
markable time saving over standard combinators when used
in this model of computation. The reason for the large dis­
parity, which appears considerably larger than comparisons
between standard and supercombinators [17], is that our
serial combinators are executed as conventional compiled
machine code, consistent with the target multiprocessor ar­
chitecture. On the other hand, note that the speedup factor
has a maximum value of about 8 for the standard combina-

HUDAK A N D GOLDBERG: SERIAL COMBINATORS 889

CD
CD

in

- 3 2

- 1 6 _...-B Q

£̂l___H h

- 8 / / '

, > / - - - ~® -O

- 4
PFAC 4096

PFAC 2048

- 2 PFAC 1024

2
1

4 8
1

16 3 2 64

N u m b e r of p r o c e s s o r s
Fig. 4. Parallelism scales with program size.

complished either by providing such a strict operator as a
primitive, or by annotating the source program. For example,
one could write

• · · newbds A A #(findboards (row + 1)) · · ·

where the # sign indicates that the second argument is to be
evaluated in parallel. Such annotations are beyond the scope
of this paper, but are discussed thoroughly in [16].

In supercombinators the queens program becomes

Result CI (Y C12)
C12 allbds = C l l (CIO (C8 allbds))
C l l v29 bd = v29 (A bd []) (C4 bd) bd
CIO v26 v25 v21 v2% col =

C2 (= col 6) v25 (Y (v26 (v21 (- col 1)) υ28 (+ col 1) (C6 (C5 col))))
C8 v20 ν\%υ2\ v22 v23 υ 19 row =

u l8 (C3 (= row 6) (υ 19 (+ row 1))) (υ20 (A row v2l) v22) (Y (v23 row))
C6vUv\5 vl6 bd =

υ 14 (= bd []) (Φ (hd bd) υ 15) (abs (- (hd bd) υ 15)) (υ 16 (tl bd))
C5 υ ΐ ΐ v9 υ 10 υ 12 vl3 coll =

if v9 true (& ν 10 (& {Φ coll i / l l)
(& (Φ v\2 (abs (- coll t / l l))) (v l 3 (- coll 1)))))

C4 υ6 vl v5 u8 safe = υ5 (if (safe v6 vl) u8 [])
C3 υ 3 vA newbds = if u3 [] (A A newbds vA)
C2v\v2 findbds = if υ ΐ v2 (findbds 0)
CI allbds = allbds [] 0 .

And finally in serial combinators:

Result 8 [] 0
8 bd col = if (= col 6) (A bd []) (a bd col 0)
a bd col row = if (= row 6) [] (A A (β bd col row)

(a bd col (+ row 1)))
β bd col row = if (y col row bd (— col 1))

(δ (A r o w b d) (+ col 1)) []
y col row bd col 1 = if (= bd []) true

(η col row (hd bd) (tl bd) col 1)
η col row hdbd tlbd col 1 =

(& {Φ hdbd row) (& (Φ col 1 col) (& (Φ (abs (- hdbd row))
(abs (- col 1 col)))

(γ col row tlbd (- coll 1))))).

Fig. 5 shows this "six queens" program run on various
numbers of processors, using both a torus and hypercube
topology. It is interesting to note that the results for the torus
and hypercube are for the most part identical! It remains to be
seen whether other programs and diffusion heuristics will
exhibit different behavior, such that the lower diameter of the
cube will become significant.

V I . RELATED AND FUTURE WORK

Turner reports reasonably good performance in using a
combinator reducer on a conventional machine [29], espe­
cially when compared to a normal-order reducer imple­
mented using a version of Landin's SECD machine [8]. More
extensive results have been reported by Peyton Jones [21].
Combinators have also been used as the intermediate code of
a compiler targeted for a conventional machine [13].

A fair amount of work has been done in the area of reduc­
tion and data flow machines (the list is too long to include
here, but see the summary in [27]), but little has been done
in the way of building machines specifically for combinator
reduction. Two important exceptions to this are the SKIM
machine [3] and Burroughs' NORMA [23], although they
are both strictly sequential machines and use a fixed set of
combinators.

To our knowledge the first use of a "diffusion-style" task
scheduler was by Halstead [6], [7], although his work was
based on the actor model of computation rather than graph
reduction (cf. [9], [10]). A more recent effort is Keller's
Rediflow multiprocessor, a blend of data flow and reduction

890 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

Oh

- 3 2

- 1 6

- 8

- 4

/ T o r u s

- 2 J H y p e r c u b e

2 4 8 16 3 2 64

Number of Processors
Fig. 5. Six queens on torus and hypercube.

ideas [19], but using a lambda calculus reducer instead of
combinators.

An interesting open research problem for serial combina­
tors is determining strategies for migrating code. Instead of
duplicating the serial combinator definitions among the pro­
cessors, one might have them migrate dynamically by de­
mand. This introduces a "meta-garbage-collection" problem,
in that it becomes necessary to keep track of what portion of
the pure code each processor has and where the nearest source
of that code resides. ("Reference trees" are one solution to
this problem [7].)

From a language viewpoint we have also been exploring
ways for experienced programmers to provide more precise
control over their parallel programs. In particular, it is pos­
sible to map a user's program to a particular multiprocessor
topology by annotating the source (see [16] for details). This
is an important capability for programmers who know pre­
cisely the optimal way that their programs should be distrib­
uted for parallel evaluation.

In many ways the research that we have reported only
scratches the surface — few people have any useful experi­
ence with this style of computing and the architectures that it
implies. Ultimately, a machine might be specially tailored for
distributed serial combinator reduction, but we currently do
not have sufficient empirical data to convince us of the right
design choices. It has been our hope that with an abstract
model and flexible simulation tools, these parameters will
become more obvious as our research progresses. Our pend­
ing implementation on a 128-node Intel iPSC will be a useful
testbed for many of our ideas.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the Bur­
roughs Austin Research Center (in particular C. Pixley and L.

Thomas), whose imaginative research efforts make academic/
industrial research collaborations a pleasure.

REFERENCES

[1] J. Backus, "Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs, "Commun. ACM, vol. 21,
no. 4, pp. 613-641, Aug. 1978.

[2] H. P. Barendregt, The Lambda Calculus: Its Syntax and Seman­
tics. Amsterdam, The Netherlands: North-Holland, 1984.

[3] T. Clarke, P. Gladstone, C. MacLean, and A. Norman, "SKIM—The
S,K,I reduction machine," in Proc. 1980 LISP Conf., Stanford Univ.,
Stanford, CA, Aug. 1980, pp. 128-135.

[4] Η. K. Curry and R. Feys, Combinatory Logic. Amsterdam, The Neth­
erlands: North-Holland, 1958.

[5] J. Darlington, P. Henderson, and D. A. Turner, Eds., Functional Pro­
gramming and Its Applications. Cambridge, England: Cambridge
Univ. Press, 1982.

[6] R. H. Halstead, Jr., "Multiple-processor implementations of message-
passing systems," Lab. Comput. Sci., Mass. Inst. Technol., Cambridge,
Tech. Rep. MIT/LCS/TR-198, Jan. 1978.

[7] , "Reference tree networks: Virtual machine and implementation,"
Lab. Comput. Sci., Mass. Inst. Technol., Cambridge, Tech. Rep. MIT/
LCS/TR-22, 1979.

[8] P. Henderson, Functional Programming: Application and Imple­
mentation. Englewood Cliffs, NJ: Prentice-Hall, 1980.

[9] C. Hewitt, "Viewing control structures as patterns of passing messages,"
Mass. Inst. Technol., Cambridge, Working Paper 92, Apr. 1976.

[10] , "Design of the APIARY for actor systems," in Proc. 1980 LISP
Conf, Stanford Univ., Stanford, CA, Aug. 1980, pp. 107-118.

[11] P. Hudak and B. Goldberg, "Experiments in diffused combinator reduc­
tion," in Proc. ACM Symp. Lisp Functional Programming, Aug. 1984,
pp. 167-176.

[12] P. Hudak, ALFL Reference Manual and Programmers Guide, 2nd ed.,
Yale Univ., New Haven, CT, Tech. Rep. YALEU/DCS/TR-322, Oct.
1984.

[13] P. Hudak and D. Kranz, "A combinator-based compiler for a functional
language," in Proc. 11th ACM Symp. Principles Programming Lang.,
Jan. 1984, pp. 121-132.

[14] P. Hudak and B. Goldberg, "Serial combinators: "Optimal" grains of
parallelism," presented at 1985 Conf. Functional Programming Comput.
Architecture, Sept. 1985.

[15] P. Hudak and J. Young, "A set-theoretic characterization of function
strictness in the lambda calculus," Yale Univ., New Haven, CT, Tech.
Rep. YALEU/DCS/TR-391, Jan. 1985.

[16] P. Hudak and L. Smith, "Para-functional programming: A paradigm for
programming multiprocessor systems," Yale Univ., New Haven, CT,
Tech. Rep. YALEU/DCS/TR-390, Jan. 1985.

[17] R. J. M. Hughes, "Super-combinators: A new implementation method for
applicative languages," in Proc. ACM Symp. Lisp Functional Pro­
gramming, Aug. 1982, pp. 1-10.

[18] R. M. Keller, "FEL programmer's guide," Univ. Utah, Salt Lake City,
Tech. Rep. AMPS TR 7, Mar. 1982.

[19] R. M. Keller and F. C. H. Lin, "Simulated performance of a reduction-
based multiprocessor," IEEE Comput., vol. 17, pp. 70-82, July 1984.

[20] A. Mycroft, "The theory and practice of transforming call-by-need into
call-by-value," in Proc. Int. Symp. Programming, vol. 83. New York:
Springer-Verlag, 1980, pp. 269-281.

[21] S.L. Peyton Jones, "An investigation of the relative efficiencies of com­
binators and lambda expressions," in Proc. ACM Symp. Lisp Functional
Programming, Aug. 1982, pp. 150-158.

[22] J. A. Rees and Ν. I. Adams, "T: A dialect of LISP or, Lambda: The
ultimate software tool," in Proc. ACM Symp. Lisp Functional Pro­
gramming, Aug. 1982, pp. 114-122.

[23] H. Richards, Jr., "An overview of the Burroughs NORMA," Burroughs
Austin Res. Cen., Jan. 1985.

[24] M. Schonfmkel, "Uber die bausteine der mathematischen logik," Math.
Ann., vol. 92, p. 305, 1924.

[25] G. L. Steele and G. J. Sussman, "The revised report on scheme," Mass.
Inst. Technol., Cambridge, Tech. Rep. Al 452, Jan. 1978.

[26] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. Cambridge, MA: M.I.T. Press, 1977.

[27] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, "Data-driven
and demand-driven computer architectures," Comput. Surv., vol. 14,
no. 1, pp. 93-143, Mar. 1982.

HUDAK A N D GOLDBERG: SERIAL COMBINATORS 891

[28] D. A. Turner, SASL Language Manual, Univ. St. Andrews, 1976.
[29] , "A new implementation technique for applicative languages,'

Software-Practice Experience, vol. 9, pp. 31-49, 1979.

Dr. Hudak is a member of the ACM (SIGPLAN, SIGARCH, SIGOPS,
SIGACT), Eta Kappa Nu, and Sigma Xi. He is also a recipient of an IBM
Faculty Development Award (1984) and a Presidential Young Investigator
Award (1985).

Paul Hudak (S'79-M'82) was born in Baltimore,
MD, on July 15, 1952. He received the B.S. degree
in electrical engineering from Vanderbilt Univer­
sity, Nashville, TN, in 1973, the M.S. degree in
computer science from the Massachusetts Institute of
Technology, Cambridge, in 1974, and the Ph.D. de­
gree in computer science from the University of
Utah, Salt Lake City, in 1982.

From 1974 to 1979 he was a Member of the Tech­
nical Staff at Watkins-Johnson Company, Gaithers-
burg, MD. He is currently an Assistant Professor in

the Programming Languages and Systems Group, Department of Computer
Science, Yale University, New Haven, CT, a position he has held since 1982.
His primary research interests are functional and logic programming, fifth-
generation computer architecture, and semantic program analysis.

Benjamin Goldberg was born in Las Cruces, NM,
on January 31, 1961. He received the B.A. degree
in mathematical sciences from Williams College,
Williamstown, MA, in 1982 and the M.S. degree
in computer science from Yale University, New
Haven, CT, in 1984. He is currently a fourth-
year doctoral student in the Programming Languages
and Systems Group at Yale where he is designing a
system called ALFALFA, a multiprocessor imple­
mentation of serial combinators.

His general research interests include parallel
computer architecture, programming language semantics, and functional
programming.

