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Serial Combinators 
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Abstract—A general strategy for automatically decomposing 
and dynamically distributing a functional program is discussed, 
suitable for parallel execution on multiprocessor architectures 
with no shared memory. The strategy borrows ideas from data 
flow and reduction machine research on one hand, and from 
conventional compiler technology for sequential machines on the 
other. One of the more troublesome issues in such a system is 
choosing the right granularity for the parallel tasks. As a solution 
we describe a program transformation technique based on serial 
combinators that offers in some sense just the "right" granularity 
for this style of computing, and that can be 'fine-tuned" for 
particular multiprocessor architectures. We show via simulation 
the success of our approach. 

Index Terms — Combinators, distributed computing, func
tional programming, graph reduction, lambda calculus, load-
balancing, multiprocessing, parallel computing. 

I . INTRODUCTION 

IN recent years there has been considerable interest in par
allel architectures of various sorts, especially ones charac

terized as "a large number of autonomous processing 
elements" interconnected in various ways. We refer to such 
machines collectively as multiprocessors, although in this 
paper we will concentrate on ones having a regular, sparse 
interconnect with no shared memory. The interest in these 
machines is not surprising since they are in a sense the most 
"obvious" way to get vast amounts of parallelism, and they 
are relatively easy to build. Indeed, several manufacturers 
are now producing commercial mult iprocessors whose 
price/performance ratio appears to be quite favorable. To 
fully exploit these architectures, one must obtain near-
maximal performance from each of the individual processors 
simultaneously. This is not an easy task. 

The majority of researchers interested in programming 
such machines view the overall system in its most literal, 
concrete form, i .e . , as a network of individual machines 
communicating in some cooperative manner. Our viewpoint 
is somewhat different: we wish to treat the multiprocessor 
abstractly as a single logical entity (sometimes called a net
work computer or ensemble architecture), and our goal is to 
provide a way to automatically decompose and dynamically 
distribute a user 's program for parallel execution. Our view 
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also differs from the conventional one in that we wish to build 
a general-purpose machine that can execute many users' 
parallel programs simultaneously, rather than a dedicated 
multiprocessor whose programs are statically mapped for 
optimal performance. With these goals in mind, it is not 
surprising that our work has centered upon developing a 
"virtual machine" with the desired properties, that we believe 
can be implemented efficiently on top of a conventional mul
tiprocessor. We accomplish this by borrowing ideas from 
data flow and reduction machine research on one hand, and 
from conventional compiler technology for sequential ma
chines on the other. 

One of the more troublesome issues in such a design is 
choosing the right granularity for the parallel tasks — if they 
are too large, parallelism might be lost, and if too small, 
communication costs might dominate the computation. Our 
theory of serial combinators offers a medium granularity that 
we consider to be quite suitable for this style of computing, 
and that can be "fine-tuned" for particular multiprocessor 
architectures. 

In the next section we describe in more detail the problems 
to be solved in reaching our goal and briefly outline our 
solutions. Serial combinators are described in detail in 
Section III. Then in Section IV we describe the virtual graph 
reduction machine that forms the foundation for multi
processor real izat ions . Simulat ion results are given in 
Section V. Finally, in Section VI we discuss other related 
efforts and point to future research directions. 

II. PROBLEM DESCRIPTION 

There are three fundamental obstacles in the way of 
achieving the goals stated in Section I: 1) choosing a lan
guage base with ample and easily detectable parallelism; 
2) choosing an evaluation model that does not rely on any 
"centralized" data or control that could act as a bottleneck; 
and 3) choosing the right process granularity, especially for 
architectures with nontrivial communication costs. Each of 
these issues is discussed in more detail below. 

A. Language Base 

If one is to be able to automatically decompose programs 
for parallel execution one must choose a language whose 
semantics provides ample opportunities for parallelism and 
whose syntax makes it easy to detect such parallelism. The 
class of functional languages (also known as applicative or 
dataflow languages) is particularly good at satisfying these 
requirements. Aside from their ' 'standard" virtues, which 
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have been well argued elsewhere [1], [5], [8] and are beyond 
the scope of this paper, functional languages have another 
feature that becomes virtuous when viewed in the light of 
parallel computation. Specifically, the standard evaluation 
models for functional languages exhibit the well-known 
Church-Rosser property [4], which indirectly states that no 
matter what computation order is chosen in executing a pro
gram, it is guaranteed to return the same result (assuming 
termination). This marvelous determinacy property is in
valuable in parallel systems. 

One can argue for the suitability of functional languages in 
parallel computing in yet another way that is perhaps more 
intuitive and thus more convincing. The argument is simply 
that there are no side-effects. Most exper ienced pro
grammers recognize the importance of at least minimizing 
side-effects, but the importance of doing so in a parallel 
system is intensified significantly, due to the careful syn
chronization required to ensure correct behavior when side-
effects are present. Without side-effects, there is no way for 
concurrent portions of a program to adversely affect one 
another—indeed, this is simply another way of stating the 
Church-Rosser property. 

To summarize, in functional languages parallelism is im
plicit, easy to detect, and supported by the underlying seman
tics. Our intent in providing a general-purpose system is that 
one might write and debug a functional program on a se
quential machine and then run the same program on a parallel 
machine for improved performance. There is generally no 
need for special message-passing constructs or other commu
n ica t ions p r i m i t i v e s , no need for p r o c e s s c r ea t i on / 
synchroniza t ion p r i m i t i v e s , and no need for special 
"parallel" constructs such as "parbegin · · · parend." 

B. Evaluation Model 

Most conventional languages rely on a sequential stack-
based evaluation model. The stack usually serves two distinct 
(indeed, separable) purposes: 1) it provides a data structure 
through which lexically bound variables may be referenced 
(often called the static chain), and 2) it provides a return 
mechanism for recursive procedure calls (often called the 
dynamic chain). The stack serves these purposes well since 
its last-in, first-out behavior matches the depth-first evalua
tion that characterizes most sequential execution strategies. 
For this same reason it is a particularly bad structure for 
general parallel computation. Even if parallelism were pos
sible, the centralized nature of the environment (allocated on 
the stack) would act as a bottleneck. 

There is actually considerable motivation for abandoning 
stack allocation even for sequential computers. For example, 
higher-order functions, central to functional languages as 
well as Scheme dialects of Lisp [25], [22], require the equiva
lent of a "closure," which in general must be heap allocated 
(in this paper we use "heap" in the Lisp implementation 
sense). Furthermore, coroutines and other "exotic" control 
structures (including upward continuations in Scheme) re
quire at a minimum multiple stacks, which in turn require 
some degree of heap allocation. 

An alternative evaluation model, that appears well suited 
to parallel computation, is graph reduction. Although graph 

reduction is simply an operational rendition of reduction in 
the lambda calculus [26], we prefer to view it as a gener
alization of conventional stack-based evaluation, in which 
activation records are allocated in a heap instead of on a 
stack. We refer to the resultant structure as the program 
graph. 

In a parallel environment, how does graph reduction serve 
the two purposes described earlier, i .e . , the static and dy
namic chains? It is easy to imagine several reducible expres
sions (called redexes) being available simultaneously in the 
program graph, and the Church-Rosser property permits 
us to reduce them simultaneously. Thus parallel execution is 
achieved essentially by making the dynamic chain tree-like. 
But what about the bottleneck in the static chain? In its sim
plest form, graph reduction will have the same problem as the 
stack-based model — even though the environment structure 
is now tree-like, the upper levels of the tree will still behave 
as a bottleneck to shared data. Naively making multiple cop
ies of the environment is an overkill and quite inefficient. A 
mechanism is needed to distribute just enough of the environ
ment to the proper places while avoiding excessive commu
nication costs. 

We can solve this more troublesome problem by basing our 
graph reduction on the combinatory calculus [4] instead of 
the lambda calculus (for our purposes the two are equivalent 
in expressive power). Schonfinkel [24] showed that by using 
a fixed set of small constant functions called combinators, all 
bound variables may be removed from a program. This some
what surprising result means that the ubiquitous environ
ment, central to the notion of beta-reduction in the lambda 
calculus, can be eliminated entirely! In Section III we will 
describe in detail how this takes place. 

C. Process Granularity 

Of the many possible program execution models, it is 
probably safe to say that a fixed set of combinators offers in 
some sense tht finest granularity of computation, even finer 
than data flow. However, if one studies the performance 
figures for existing multiprocessors, it becomes apparent that 
the ratio of interprocessor communication time to CPU in
struction speed is generally quite high, typically anywhere 
from 10 to 100. Thus, it seems that we must find relatively 
large "grains" of parallelism for our overall strategy to be 
successful. We initially became motivated to do this after 
observing via simulation that with a fixed set of combinators 
it is possible for a purely sequential computation ( i .e . , one 
whose data dependences preclude any parallelism) to be
come decomposed for execution on several processors [11]. 
Clearly, this is a wasted effort. 

On the other hand, little work has been done on larger 
grains of parallelism. The strategy used by Keller and 
Lin [19] constrains the granularity to that implied by source-
level function definitions, thus placing the burden on the 
programmer. Such user-defined functions not only may con
tain internal parallelism that may be lost, but they are also 
seldom combinators. This means that separate mechanisms 
are required to import values for free variables, and the useful 
property of "full laziness" may not be realized; that is, it is 
possible for a partially applied function to recompute some of 
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its subexpressions if it is shared. Hughes' supercombina-
tors [17] solve the latter problem, but are targeted for se
quential machines and thus may contain internal parallelism 
that will be lost. 

The goal then is to retain the environmentless nature of 
combinators and their usefulness in a parallel graph reducer, 
while maximizing their granularity and ensuring that paral
lelism is not lost. It turns out that if one is willing to do 
without di fixed set of combinators (an idea first suggested by 
Hughes [17]), then one can infer program-derived combina
tors that have the desired properties. We call these serial 
combinators, which we argue to be in some sense at just the 
right level of granularity, because of the following. 

1) They are combinators, facilitating their use in a graph 
reduction machine (especially parallel ones). 

2) They result in a fully lazy evaluation, guaranteeing that 
no extraneous computations are performed. 

3) They have no concurrent substructure, guaranteeing 
that no available parallelism will be lost. 

4) There are no larger objects having these same proper
ties, ensuring that no extraneous communication costs are 
incurred because of too fine a granularity. 

We have also made some pragmatic refinements to serial 
combinators to increase their efficiency. In particular, we 
take into consideration strictness properties of functions, 
common subexpressions, complexity of subexpressions, and 
the overhead for distributing a computation. We discuss se
rial combinators and their refinements in more detail in the 
next section. 

III. SERIAL COMBINATORS 

The reader is assumed to have some familiarity with the 
lambda calculus and combinatory calculus, although we will 
begin with a review of the basic ideas. A more theoretical 
discussion may be found in [2] or [4]. We will then proceed 
with a description of serial combinators, for which a more 
thorough treatment is contained in [14]. 

A. A Brief Review of Combinators 

Consider a funct ion/ defined by f(x) = exp. A functional 
object equivalent to / may be obtained by abstraction of the 
free variable χ from exp, which is written as [jc]exp. Appli
cation of this function to a value ν is written as ([jc]exp)v. 
The interaction between abstraction and application is de
fined by the simple rule 

([jc]exp)x = e x p . (1) 

In the lambda calculus [x]exp is written Ajc.exp, and the 
process of applying it to a value ν is called beta-reduction. 
Logically, beta-reduction causes substitution of ν for all 
free occurrences of χ in exp, but it is more typically imple
mented by providing an environment to exp in which the 
value of χ is bound to v. The environment ensures that 
(Ajc.exp)jc = exp. 

Alternatively, using the combinatory calculus, one may 
abstract JC from exp according to the following rules: 

[JC]JC = / 

[x]y = Ky, if χ Φ y 

[x](el el) = S(Mel)(We2) 

where S, Κ, and / are primitive functions called combinators 
that are defined (assuming function application associates to 
the left) by 

/ JC = JC 

Ky χ = y 

Sfgx = fx(gx)-

Using these rules it is easy to show that this method of ab
straction obeys the rule given in (1). Note that through re
peated abstractions of this sort, all bound variables may be 
eliminated from a program. Thus, the "substitution" opera
tion in the lambda calculus becomes meaningless, and there 
is no need for an environment. 

The combinators S, K, and / form a rather small, fixed set 
of primitives, which is quite attractive. However, as argued 
earlier, there are reasons for wanting a larger granularity. 
Technically, a combinator is simply a lambda expression that 
has no free variables and is a "constant applicative form"; that 
is, it contains only bound variables and constants that are 
combined by application. These are the crucial properties for 
a graph reducer since they allow computed values to over
write the nodes from which they were derived, without mak
ing copies of the bodies of functions. With this generalization 
Hughes [17] introduced the notion of a super combinator, as 
explained below. 

A free expression in a lambda expression kv.e is defined 
as any subexpression of e in which ν does not occur as a free 
variable. A maximally free expression is a free expression 
which is not part of any larger free expression. In a nutshell, 
starting with a program P, Hughes' algorithm for generating 
supercombinators is then the following. 

1) Find the lef tmost , innermos t lambda express ion 
L = Av.exp. 

2) Find the maximally free expressions, ej through en, 
of L. 

3) Create a new combinator (say a) defined by 

a ix · · · i > = βχρ[ιΊ/*ι, · · · , i2/e2] 

where formal parameter names ix through /„ do not 
occur free in exp. (The expression e[x/y] denotes the 
result of substituting χ for all free occurrences of y 
in e.) 

4) Substitute (a el · · · en) for L in P. 
5) Repeat steps l ) - 4 ) until step 1) fails. 
Together with a few optimizations, the resulting super

combinators have a very useful property: execution of the 
original program results in a fully lazy evaluation. No sub
expression internal to a combinator body needs to be re
computed as a result of a partially applied combinator being 
shared in several places. 

A serial combinator is basically a refinement of a super-
combinator in which several additional constraints have been 
added, the most important being that it has no concurrent 
substructure, and furthermore, it is not contained in any 
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larger combinator with that same property. The purpose of 
this refinement should be obvious: if the combinator has no 
concurrent substructure, then there is no need to subdivide it 
further since doing so can only add communication costs to 
an already sequential computation. As argued earlier, serial 
combinators are small enough that no parallelism is lost, yet 
large enough that no extraneous communication costs are 
incurred. 

We should also point out from a complexity standpoint that 
serial and supercombinators seem to have an inherent effi
ciency advantage over a fixed set of combinators, based on 
the following argument: consider a lambda expression exp 
with a free variable χ that occurs at lexical depth n. Using a 
standard fixed set of combinators, at least η abstractions are 
needed to abstract JC from exp, and likewise at least η reduc
tions take place when the resulting expression is applied to an 
actual argument for x\ Yet with a serial combinator the 
overhead is essentially constant, independent of the depth. 
Furthermore, research in the last 20 years has produced ex
cellent compiler techniques for generating efficient code for 
lambda expressions, including optimal code for trees and 
single-level environments. These optimizations are easily 
applied to the bodies of serial combinators, suggesting an 
architecture (such as the multiprocessor that is of interest to 
us) that combines the elegance and generality of graph reduc
tion with the efficiency of a conventional register machine. 
This particular argument is not made by Hughes, whose re
duction strategy is to expand supercombinators into their 
graphical equivalents, after which normal graph reduction 
proceeds. Such a strategy has the advantage of avoiding the 
depth η complexity mentioned above, but fails to take advan
tage of other efficient compilation techniques. 

In the remainder of this section we will first give an algo
rithm to compute "simple" serial combinators and then dis
cuss some important refinements and their effect on the basic 
algorithm. 

B. An Algorithm to Generate Simple Serial Combinators 

Our examples are expressed in a language called ALFL 
[12], a lazy functional language with pattern-matching simi
lar to SASL [28] and FEL [18]. In ALFL the basic program 
structure is an equation group, whose value is denoted by the 
keyword result. The equations may define local values or 
functions, and are evaluated "by demand." The expression 
el -» el, e3 is like if el then el else e3. 

We assume the reader to be familiar enough with this style 
of language that the examples will be self-explanatory. Most 
of the translation process, however, takes place on lambda 
expressions. The basic algorithm is as follows. 

1) Translate the ALFL source program into a lambda ex
pression. This is a straightforward translation as de
scribed in [13]. 

2) Convert the lambda expression into supercombinators 
using Hughes' method described in the last section, 
together with the optimizations of eliminating redun
dant combinators and ordering parameters optimally 
[17]. As a further optimization we avoid creating 
"trivial closures" (the partial evaluation of primitive 

functions) by not abstracting free expressions that con
sist solely of a primitive operator with an incomplete set 
of arguments, such as " + JC." 

3) Convert to serial combinators, by doing the following 
for each supercombinator. 
a) Determine its concurrent substructure. In its basic 

form, this simply means finding primitive operators 
that are strict in more than one of their arguments, 
such as the basic arithmetic and relational operators 
( + , — , = , > , e t c ) . It might also include "eager" 
versions of cons and append, or even an "eager 
conditional." 

b) Starting from the outermost expression and working 
inward, for each subtree containing several concur
rent subexpressions, retain one of the subexpres
sions in the definition of the current combinator 
(since it will represent part of the combinators' 
"sequential thread"), and compile each of the other 
subexpressions into a separate serial combinator 
(to allow them to be computed in parallel). 

c) For each serial combinator thus generated, repeat 
step 3b). Stop when no more refinements are made. 

As an example, consider the following divide-and-conquer 
version of the factorial function, written in our source lan
guage ALFL: 

{fac 0 = 1; 
' η = pfac 1 n; 

pfac / h = h=l /, 
A = / + 1 - W * A , 
(pfac / (/ + h)/l) * (pfac ((/ + h)/l + 1) A); 

result fac n} 

After step 1) of the algorithm we get the lambda expression: 

pfac = Y(\f λχ Xy. if (= χ y) χ 
(if (=y (+x l))(*xy) 

(* ( / * ( / ( + * y ) 2)) 
(/(+ (/ (+xy) 2) l ) y ) ))). 

Applying step 2) then yields the supercombinator version: 

pfac = Y y 
yf = fi(af)f 
a a b c d h = if (= d h) d 

(if (= b h) (* d h) 
(* (c (/ (+ d h) 2)) 

(a (+ (/ (+ d h) 2) 1) A))) 
βρςί =p(+l \){ql)L 

Note, however, that a contains concurrent subexpressions. 
By applying step 3) we thus generate the new serial combina
tor η : 

pfac = Y y 
yf = fi(af)f 
a a b c d h = if (= d h) d 

(if (= b h) (* d h) 
(* (c ( / (+ d h) 2)) (η ad A))) 

βρςΙ=ρ(+1 \){ql)l 
rijkh =j (+ (/ (+ k h) 2) 1) h. 

The algorithm given so far generates "simple" serial com-
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binators and is fairly straightforward. However, there are 
several critical optimizations that can be made which have 
significant effects on performance. They are described below. 

C. Refinement 1: Strictness Analysis 

Note in step 3a) of the basic algorithm that concurrent 
subexpressions are found by analyzing occurrences of strict 
primitive operators. However, we can generally do much 
better than this. In particular, it is possible that certain serial 
combinators are strict in some of their arguments as well. 
This can be inferred even for mutually recursive functions, 
and techniques for doing so have been discussed in detail 
elsewhere [15], [20]. Given such strictness information, the 
refinement to step 3a) is obvious: serial combinators are also 
generated for the strict arguments to other combinators, and 
instructions are included in each serial combinator's com
piled code for the purpose of spawning strict arguments 
in parallel. 

D. Refinement!: Complexity Measures 

That there is inherent concurrency in an expression does 
not mean that distributing its evaluation among several pro
cessors is the most advantageous thing to do. There may be 
cases where the cost of distributing concurrent subexpres
sions far outweighs the cost of computing the whole expres
sion locally. We would like to avoid these cases whenever 
possible. 

Consider an expression exp of the form op el el. The total 
time T(exp) to compute exp on a single processor is roughly 
T(el) + T(e2) + C(op) where C(op) is the cost of executing 
the primitive operation op. If an extra processor is available, 
the total time is roughly max(r(el), T(e2) + distribution 
costs) 4- C(op), assuming that el was evaluated on the extra 
processor. Clearly, if T(e2) + distribution costs < T(el) + 
T(el), then distributing the evaluation of el is a win; other
wise, we are slowing down the overall execution, even 
though there is "apparent" parallelism! 

Thus, we refine step 3b) by first performing a simple com
plexity analysis on the concurrent subexpressions. From the 
previous paragraph it should be obvious that we should retain 
the most complex subexpression for inclusion in the current 
serial combinator, making the other subexpression available 
for possible parallel execution. In the above example, that 
would mean T(el) > T(e2), guaranteeing a minimal value 
for max(7(el) , T(el) + distribution costs). If the analysis 
then shows that the other subexpression is worth distributing, 
it is compiled as a separate combinator, otherwise not. As an 
example, note in pfac, presented earlier, that the concurrent 
subexpression + d h occurs in the definition of a , but our 
compiler decides that distributing this expression would not 
be worthwhile. 

Determining accurately the time needed to evaluate an 
expression is, of course, impossible in the general case. We 
use an heuristic in which expressions are weighted by the 
complexity of the primitive operations. These heuristics may 
be "fine-tuned" to the performance of a particular machine, 
but the details are not important to this paper. 

E. Refinement3: Common Subexpression Elimination 

We would also like to find and eliminate redundant occur
rences of subexpressions in order to avoid their reevaluation. 
The first step in doing this involves using standard compiler 
techniques to find common subexpressions (cse's) within 
each supercombinator. We do this before having converted 
them to serial combinators because once the latter is done it 
will be difficult to detect cse's that involve the bound vari
ables of two or more serial combinators. 

For each cse we then determine the smallest expression 
that contains all instances of that cse (in a graph-theoretic 
sense this amounts to finding the least common ancestor of 
all occurrences). From this expression we then abstract the 
cse, creating a new combinator which takes a single instance 
of the cse as an argument. For example, pfac will now 
become 

pfac = Y y 
7 / = £ ( < * / ) / 
a a b c d h = if ( = d h) d 

(if (= bh)(*dh) 
{8 c ah (/ (+ dh) 2))) 

j3p < ? / = / > ( + / \){ql)l 
δ χ y h ζ = * (χ ζ)(η y ζ h) 
r)jkh =j (+ k 1) h. 

Note that the formal parameter ζ in the definition of δ corre
sponds to the cse ( / ( + d h) 2) in the definition of a , and will 
only be computed once. 

Unfortunately, the cost of accessing the possibly nonlocal 
value of a cse may be greater than recomputing its value 
locally! To incorporate this observation we resort again to a 
complexity analysis to determine if recomputation of a cse is 
worthwhile. The total time to evaluate η instances of a cse 
exp is 

1) η * T(exp), if we recompute the subexpression each 
time; 

2) T(exp) + (n * cost of getting its value), if we abstract 
the subexpression and compute it once. 

Thus, if the average cost of getting its value is less than the 
cost of recomputing it, the abstraction is a win. If the value 
was computed locally, then the cost of getting its value is 
effectively zero; otherwise, it is roughly twice the commu
nication time to the appropriate processor. 

Of course, it is impossible to statically determine the exact 
cost of access since the distribution of the computation is 
generally not available until run-time. Thus, our compiler 
again resorts to an heuristic strategy for cse 's . Specifically, 
an instance of a cse is duplicated (meaning it will get re
computed) if and only if the following conditions hold. 

1) It refers only to strict variables (variables whose values 
we know have already been computed). 

2) It is concurrent with at least one other instance of the 
cse. 

3) Its complexity is lower than the access cost between 
two processors. 

It remains to be seen whether this set of heuristics is appro
priate for a broad range of programs. 



886 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985 

F. Refinement 4: "Uncurrying" and Partial Evaluation 

In our previous work on distributed combinator reduction 
[11] we discussed a compile-time technique for partially per
forming some of the graph reduction in order to "uncurry" the 
combinators. That is, combinators are generally defined as 
curried higher-order functions, as in a = λχ. Ay.exp. Un
currying them yields definitions such as a = A(jc,j).exp, 
which can be implemented in graph reduction more effi
ciently, especially in a parallel system where granularity is 
once again a concern. 

Such partial evaluation has a surprising additional effect: 
many applications of the serial combinators can be collapsed 
into one! This is because a major (and worthwhile) goal of the 
serial combinator analysis is to produce combinators that are 
"fully lazy," yet most partial applications of serial combina
tors are not shared, so there is no reason to preserve this 
property in all cases. We can also eliminate occurrences of 
the Y combinator by making the serial combinators directly 
recursive — this also is a form of partial evaluation. 

As an example, if we perform partial evaluation on the ser
ial combinator definition of pfac given earlier, we arrive at 

pfac = a 
alh = if (= / h) I 

if (= (+ / 1) A)(* Ih) 
(β (/ (+ / h) 2) / h) 

β c I h = * (a / c)(a (+ 1 c) h). 

Although the resulting serial combinators in this case bear a 
strong resemblance to the original program, in general they 
may be quite different. 

IV. A DISTRIBUTED VIRTUAL GRAPH REDUCER 

With this explication the reader should understand the mo
tivation for our graph reduction strategy using serial combi
nators as the primitive graph operations. In this section we 
will describe a virtual graph reduction engine suitable for 
implementation on a multiprocessor. 

A. Abstract Model 

As a starting point we will first describe an abstract version 
of the reducer that makes no reference to multiple processors. 
In this abstract model there is a single global address space 
representing a free list of available cells from which the pro
gram graph is constructed (think of it as one large heap, in the 
Lisp sense). Each node in the program graph is labeled with 
either a primitive or serial combinator, and contains pointers 
to other nodes whose values are arguments to that combinator 
(if the argument is already known, its value may be encoded 
directly). For example, the initial graph for the program 
pfac 1 10 will simply be an a node with the arguments 1 
and 10. In general, a node may be in one of three states: 

1) dormant, waiting to be evaluated; 
2) active, in the process of being evaluated; or 
3) terminal, completely evaluated. 
Evaluation takes place as messages are passed between 

nodes in the program graph. There are two types of such 
messages: get-val and return-val, whose behavior depends 

on the state of the target node, according to the following 
rules. 

1) get-val. State of target node: 
a) dormant—the node is being "demanded" for the 

first time, so: the target node is made active, a 
pointer to the "requesting" node is saved, and the 
combinator code is executed; 

b) active — evaluation of the node has already begun, 
so it is only necessary to save a pointer to the re
questing node; 

c) terminal — the target node has already been evalu
ated, so its value is sent via return-val message to the 
requesting node. 

2) return-val. State of target node: 
a) dormant—error; 
b) active — the return value is an argument to the com

binator represented by the target node, so it is saved 
and the compiled combinator code is resumed if ap
propriate; 

c) terminal — error. 
The execution of the combinator code in rule la) may 

cause further graph mutations and state transitions. For ex
ample, it may send get-val messages in pursuit of its argu
ments, or it may compute a final value for the node, which is 
stored in the graph and sent to all requesters via a return-val 
message. In the latter case the node then becomes terminal. 

B. Multiprocessor Model 

On a multiprocessor without shared memory, the above 
scenario only requires a few changes since the message-based 
strategy serves well as an interprocessor communications 
protocol. Each processor is made responsible for one con
tiguous portion of the global address space, and thus paral
lelism comes to bear when concurrent redexes reside in the 
address spaces of different processors. A task queue is main
tained on each processor that essentially contains get-val or 
return-val messages, which act as pointers to available re
dexes, and which are processed one at a time. Initially, all 
processors are given copies of the compiled serial combina
tors (this corresponds to the "pure code" described in [11]). 
Program execution occurs by mapping the initial program 
graph onto the global address space and sending a get-val 
message to the root node. Eventually, a return-val message is 
sent from the root node to the "system," indicating program 
termination. 

As the evaluation unfolds, expanding portions of the graph 
are distributed to neighboring processors for increased paral
lelism. This distribution process is controlled by a dynamic 
load-balancing mechanism that we refer to as diffusion sched
uling, which may take into account such factors as processor 
load, memory utilization, and direction of global references. 
The intent is for tasks to be "pushed away" from busy pro
cessors and "drawn toward" those to which they have global 
references (thus maintaining locality). In this way work 
"diffuses" through the network in the direction of least 
resistance. 

As an example of one such diffusion strategy, one may 
choose to evaluate a dormant node η on the neighboring 
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Fig. 1. Example of serial combinator reduction. 
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processor ρ having the minimum value of C(n9p) where 

C(n,p) = load(p) + (k * ref-cost(n,p)) . 

Ref-cost(n,/?) is a measure of the cost of n ' s references to 
nodes residing on processors other than p, load(p) is simply 
the number of tasks on ρ's task queue, and the constant k is 
a weighting factor indicating the relative importance of the 
two parameters — the lower the value of k, the more likely 
it is that work simply diffuses towards the least-loaded 
processors. 

An important optimization to this overall strategy is to 
avoid the message-passing protocol for local communica
tions, bypassing the task queue entirely whenever possible. 
This, coupled with the fact that the combinator definitions are 
represented as conventional compiled straight-line code, 
means that we can take advantage of the efficient sequential 
features of the von Neumann processors, using message pass
ing only when necessary. 

C. A Simple Example 

It is helpful to proceed through a short example showing a 
few reduction steps for a typical serial combinator. Consider 
the following definition of the serial combinator a , taken 
from the "six queens" program given in Section V-D: 

a bd row col = if (= row 6) [ ] 
(append (β bd row col) 

(a bd (+ row 1) col)). 

Suppose we are about to evaluate the application of a to three 
arguments, shown graphically in Fig. 1(a) as the dormant 
node x. Fig. 1(b)—(f) then shows five reduction steps. 

Step 1) The message get-val(jc, a) represents a request 

from node a for JC'S value. Node χ then becomes active, and 
a pointer to a is saved. The code for a is then executed, 
which causes a get-val message to be sent in pursuit of r's 
value. 

Step 2) Eventually, a return-val message produces a value 
(in this case 3) for r, which is saved in the graph. 

Step 3) Since χ was only awaiting the value of r, the ac
tivity of a is resumed. Following now the definition of a , we 
note that r Φ 6 — t h u s χ is mutated into an append node, and 
two new nodes, y and z, are created (possibly on some other 
processor due to the work of the diffusion scheduler). The 
code for append is then invoked, which causes two get-val 
messages to be spawned in pursuit of the values of y and z. 

Step 4) Eventually, values also return for y and ζ (note 
that the value of a list is really a pair of values, rather than a 
pointer to the pa i r—this is yet another optimization aimed at 
reducing communication costs). 

Step 5) The code for append is then resumed, which 
causes a transformation of χ into a pair. At this point χ's value 
has been completely determined; therefore, it becomes ter
minal, and a return-val message is sent to node a. 

V. SIMULATION RESULTS 

Our intent is that the virtual machine described in the last 
section may be implemented on a variety of multiprocessor 
architectures, and thus the details may vary significantly 
from machine to machine. Previous work by the authors and 
others [11], [19] has demonstrated via simulation the viability 
of the overall strategy, and we are currently involved in an 
implementation on a 128-node Intel iPSC hypercube. In 
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number of processors 1 2 4 8 16 32 

s e r i a l combinators 491 309 230 216 233 233 

standard combinators 12206 6196 3335 2252 1625 1519 

Fig. 2. Total cycles consumed, serial versus standard combinators. 

number of processors 1 2 4 8 16 

with cse e l iminat ion 16363 8437 4433 2559 1698 
speedup 1.0 1.9 3.7 6.4 9.6 

without cse e l iminat ion 21473 10843 5649 3018 1843 
speedup 1.0 2.0 3 .8 7.1 11.7 

Fig. 3. Comparison of serial combinator execution time, with and 
without cse elimination. 

speedup for serial combinators decreases after 8 proces
sors—this reflects the computation being spread "too thin." 

B. The Effect of CSE Elimination 

We also conducted a series of experiments to test the effec
tiveness of common subexpression elimination in the pfac 
program. The results, shown in Fig. 3, are for pfac 1 1024 on 
a torus, and demonstrate that even though the speedup ex
hibited without cse elimination was always greater than the 
speedup with cse elimination, the latter consistently required 
less time to execute. 

C. Variations in Program Size 

Fig. 4 shows a large number of data points for the pfac 
program on a torus, showing variations in program size and 
number of processors. The results demonstrate that the de
gree of parallelism scales well with program size, as well as 
with number of processors (up to the point where the number 
of processors exceeds the maximum available parallelism in 
the program). 

D. A Larger Example: Six Queens 

Consider the following ALFL program to generate all solu
tions to the "queens" problem on a six-by-six board: 

{n = 6 ; 
Result allboards [ ] 0; 
allboards board col = 

{Result col=/i —» [board], findboards 0; 
findboards row = 

{Result row=/i —> [ ] ,newbds A A findboards (row + 1); 
newbds = safe board (col - 1) —> 

allboards (row A board) (col + 1 ) , [ ] ; 
safe [ ] col l = true; 
safe (r A bd) col l = r ^ r o w & col l Φ col & 

abs(r - row)^abs(col l - col) & 
safe bd (coll - 1) 

} 
} 

} 
The symbols " A " and " A A " are infix operators for cons and 

tors, compared to only 2.3 for the serial combinators. This is append, respectively, and hd and tl are like car and cdr, 
because the higher overhead in using a fixed set of combina- respectively, in Lisp. A list may also be constructed using 
tors is itself being distributed for parallel execution! The brackets, as in [ a , 6 , c ] (which is equivalent to aA&AcA[]). We 
introspective speedup factor thus shows "apparent" paral- will assume that the append operator in this example eagerly 
lelism that is in fact wasteful. Note, by the way, that the evaluates both of its arguments. In practice this can be ac-

this section we present new simulation results using serial 
combinators. 

Our simulator allows one to easily change parameters such 
as the number of processors, network topology, and diffusion 
heuristics. In all of the simulation results given below, the 
diffusion heuristic is as described in Section IV-B with 
k = 0. Other parameters are adjusted depending on the ex
periment. We measure execution time by taking as a unit 
time step the execution of a single memory-to-memory CPU 
instruction, such as a move or addition. Other more complex 
operations are weighted accordingly — for example, we 
use a message delay of ten time steps between adjacent 
processors. 

A principal result that we compute for each simulation is 
the speedup factor, i .e . , the ratio of time taken to compute 
the result on one processor to that taken on the whole system. 
This number is somewhat "introspective" since we are com
paring results within our own evaluation model, but it is 
nevertheless a useful tool. 

A. Simple Comparison of Serial to Standard Combinators 

In our earlier experiments [ 11 ] we used a standard fixed set 
of combinators, and it is helpful to compare their efficiency 
to that of serial combinators. One such comparison is shown 
in Fig. 2 for pfac 1 32 run on a torus network of various 
sizes. Since the unit time steps were slightly different in the 
two cases, it is probably dangerous to draw concrete con
clusions from these numbers; nevertheless, we believe the 
results demonstrate that serial combinators provide a re
markable time saving over standard combinators when used 
in this model of computation. The reason for the large dis
parity, which appears considerably larger than comparisons 
between standard and supercombinators [17], is that our 
serial combinators are executed as conventional compiled 
machine code, consistent with the target multiprocessor ar
chitecture. On the other hand, note that the speedup factor 
has a maximum value of about 8 for the standard combina-



HUDAK A N D GOLDBERG: SERIAL COMBINATORS 889 

CD 
CD 

in 

- 3 2 

- 1 6 _...-B Q 

£̂l___H h 

- 8 / / ' 

, > / - - - ~® -O 

- 4 
PFAC 4096 

PFAC 2048 

- 2 PFAC 1024 

2 
1 

4 8 
1 

16 3 2 64 

N u m b e r of p r o c e s s o r s 
Fig. 4. Parallelism scales with program size. 

complished either by providing such a strict operator as a 
primitive, or by annotating the source program. For example, 
one could write 

• · · newbds A A #(findboards (row + 1)) · · · 

where the # sign indicates that the second argument is to be 
evaluated in parallel. Such annotations are beyond the scope 
of this paper, but are discussed thoroughly in [16]. 

In supercombinators the queens program becomes 

Result CI (Y C12) 
C12 allbds = C l l (CIO (C8 allbds)) 
C l l v29 bd = v29 (A bd []) (C4 bd) bd 
CIO v26 v25 v21 v2% col = 

C2 (= col 6) v25 (Y (v26 (v21 ( - col 1)) υ28 (+ col 1) (C6 (C5 col)))) 
C8 v20 ν\%υ2\ v22 v23 υ 19 row = 

u l8 (C3 (= row 6) (υ 19 (+ row 1))) (υ20 (A row v2l) v22) (Y (v23 row)) 
C6vUv\5 vl6 bd = 

υ 14 (= bd []) (Φ (hd bd) υ 15) (abs ( - (hd bd) υ 15)) (υ 16 (tl bd)) 
C5 υ ΐ ΐ v9 υ 10 υ 12 vl3 coll = 

if v9 true (& ν 10 (& {Φ coll i / l l ) 
(& (Φ v\2 (abs ( - coll t / l l ) ) ) ( v l 3 ( - coll 1))))) 

C4 υ6 vl v5 u8 safe = υ5 (if (safe v6 vl) u8 []) 
C3 υ 3 vA newbds = if u3 [ ] ( A A newbds vA) 
C2v\v2 findbds = if υ ΐ v2 (findbds 0) 
CI allbds = allbds [ ] 0 . 

And finally in serial combinators: 

Result 8 [ ] 0 
8 bd col = if (= col 6) ( A bd []) (a bd col 0) 
a bd col row = if (= row 6) [ ] ( A A (β bd col row) 

(a bd col (+ row 1))) 
β bd col row = if (y col row bd (— col 1)) 

(δ ( A r o w b d ) ( + col 1)) [ ] 
y col row bd col 1 = if (= bd []) true 

(η col row (hd bd) (tl bd) col 1) 
η col row hdbd tlbd col 1 = 

(& {Φ hdbd row) (& (Φ col 1 col) (& (Φ (abs ( - hdbd row)) 
(abs ( - col 1 col))) 

(γ col row tlbd ( - coll 1))))). 

Fig. 5 shows this "six queens" program run on various 
numbers of processors, using both a torus and hypercube 
topology. It is interesting to note that the results for the torus 
and hypercube are for the most part identical! It remains to be 
seen whether other programs and diffusion heuristics will 
exhibit different behavior, such that the lower diameter of the 
cube will become significant. 

V I . RELATED AND FUTURE WORK 

Turner reports reasonably good performance in using a 
combinator reducer on a conventional machine [29], espe
cially when compared to a normal-order reducer imple
mented using a version of Landin's SECD machine [8]. More 
extensive results have been reported by Peyton Jones [21]. 
Combinators have also been used as the intermediate code of 
a compiler targeted for a conventional machine [13]. 

A fair amount of work has been done in the area of reduc
tion and data flow machines (the list is too long to include 
here, but see the summary in [27]), but little has been done 
in the way of building machines specifically for combinator 
reduction. Two important exceptions to this are the SKIM 
machine [3] and Burroughs' NORMA [23], although they 
are both strictly sequential machines and use a fixed set of 
combinators. 

To our knowledge the first use of a "diffusion-style" task 
scheduler was by Halstead [6], [7], although his work was 
based on the actor model of computation rather than graph 
reduction (cf. [9], [10]). A more recent effort is Keller's 
Rediflow multiprocessor, a blend of data flow and reduction 
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Fig. 5. Six queens on torus and hypercube. 

ideas [19], but using a lambda calculus reducer instead of 
combinators. 

An interesting open research problem for serial combina
tors is determining strategies for migrating code. Instead of 
duplicating the serial combinator definitions among the pro
cessors, one might have them migrate dynamically by de
mand. This introduces a "meta-garbage-collection" problem, 
in that it becomes necessary to keep track of what portion of 
the pure code each processor has and where the nearest source 
of that code resides. ("Reference trees" are one solution to 
this problem [7].) 

From a language viewpoint we have also been exploring 
ways for experienced programmers to provide more precise 
control over their parallel programs. In particular, it is pos
sible to map a user's program to a particular multiprocessor 
topology by annotating the source (see [16] for details). This 
is an important capability for programmers who know pre
cisely the optimal way that their programs should be distrib
uted for parallel evaluation. 

In many ways the research that we have reported only 
scratches the surface — few people have any useful experi
ence with this style of computing and the architectures that it 
implies. Ultimately, a machine might be specially tailored for 
distributed serial combinator reduction, but we currently do 
not have sufficient empirical data to convince us of the right 
design choices. It has been our hope that with an abstract 
model and flexible simulation tools, these parameters will 
become more obvious as our research progresses. Our pend
ing implementation on a 128-node Intel iPSC will be a useful 
testbed for many of our ideas. 
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