
978-3-9810801-7-9/DATE11/©2011 EDAA

Fast and Accurate Transaction-Level Model of a
Wormhole Network-on-Chip with Priority Preemptive

Virtual Channel Arbitration

Leandro Soares Indrusiak, Osmar Marchi dos Santos
Real-Time Systems Group, Department of Computer Science

University of York
York, United Kingdom

Abstract—Simulation is a bottleneck in the design flow of on-chip
multiprocessors. This paper addresses that problem by reducing
the simulation time of complex on-chip interconnects through
transaction-level modelling (TLM). A particular on-chip
interconnect architecture was chosen, namely a wormhole
network-on-chip with priority preemptive virtual channel
arbitration, because its mechanisms can be modelled at
transaction level in such a way that accurate figures for
communication latency can be obtained with less simulation time
than a cycle-accurate model. The proposed model produced
latency figures with more than 90% accuracy and simulated
more than 1000 times faster than a cycle-accurate model.

Keywords-system specification; transaction-level modeling;
network-on-chip; on-chip multiprocessing; simulation.

I. INTRODUCTION
As the number of cores grows, the design of on-chip

multiprocessors has become increasingly communication
centric. The choice and customisation of the on-chip
interconnect architecture is a critical element of performance
tuning, as communication latency becomes a key issue. Despite
of some progress in static analysis such as in [1], most design
flows use simulation to evaluate the latency overhead imposed
by on-chip interconnects. In the case of complex interconnects
like Networks-on-Chip (NoCs), cycle-accurate simulation of a
few seconds of the system’s execution can take several hours or
days [2]. Simulation has been identified many times before as a
bottleneck on the embedded systems design flow, and many
alternative techniques have been proposed such as emulation,
rapid prototyping and abstract models. This has also happened
in the domain of NoCs, but the alternatives are either too
difficult to implement and maintain [2], or have to sacrifice
accuracy in order to be faster. In this paper, we attempt to build
a NoC simulation model that is both fast and accurate with
regard to its cycle-accurate counterpart. We do that by
restricting the NoC design space to a class of NoC
interconnects that can be accurately described at higher levels
of abstraction. The proposed model follows the transaction-
level modelling approach, which is reviewed in Section II,
followed by a discussion about the trade-off between accuracy
and simulation speed. Section III presents the region of the
NoC design space that we concentrate in this paper, and
justifies the constraining of design space exploration in favour

of predictability. The proposed TLM model and its
functionality are detailed in Section IV, followed by extensive
experimental results in Section V and our conclusions.

II. RELATED WORK
In brief, TLM attempts to speed-up simulation by

abstracting away low-level events occurring during
communication, focusing instead on large-granularity data
transfers. It has mainly been applied in designs created with
SystemC, but its methodology is generic enough to be used
within other simulation frameworks and languages. In TLM
2.0, a transaction models the transfer of a payload between
components of the system. Components are either transaction
initiators, transaction targets or interconnects, which modify
and forward transactions from initiators to targets [3].

The trade-off between accuracy and simulation speed in
TLM was very well characterised by Schirner and Dömer [4].
While TLM models can simulate up to four orders of
magnitude faster than their cycle-accurate counterparts, this
comes at the price of low accuracy. Because TLM models are
based on a simplified structure of the system, they have a larger
granularity of data and arbitration handling. As a consequence,
such models cannot model effects that happen at a finer
granularity, resulting in loss of accuracy. However, the notion
that TLM models can be either fast or accurate has been
recently challenged by a number of works. TLM models of
processing elements (PE) can increase simulation speed by
dealing with a granularity which is larger than individual
instructions. Accuracy of such models is kept high by the use
of timing annotations extracted from code profiling, which
even allows the modelling of effects such as pipelining,
caching [5] and interrupts [6].

Accurate TLM models for on-chip interconnects have also
been proposed. In [7], bus protocol specifications are used to
identify a reduced set of timing points when models of a
particular on-chip bus architecture should be simulated without
loss of accuracy. The authors reported an improvement of two
orders of magnitude in simulation speed without loss of
accuracy, in comparison with a cycle-accurate model. The
drawback is that this technique depends on the ability to
identify a set of timing points which are small enough to
significantly reduce the number of simulation events while

covering all possible protocol state transitions, which will not
be straightforward in complex on-chip interconnects.

Fast and accurate TLM models of busses are also discussed
in [8], where the concept of Result-Oriented Modelling (ROM)
is introduced. ROM optimistically predicts the delay of a
particular transaction and retroactively corrects it in case it
detects that the delay was affected by the outcome of other
transactions. It presents convincing results without any loss of
accuracy, as demonstrated through two case studies with CAN
and AMBA AHB busses. However, its improvement on
simulation speed is inversely proportional to the frequency of
corrections needed by the optimistic predictions, and such
corrections are likely to occur very often in interconnects with
complex contention patterns.

Specific approaches to TLM of NoC interconnects are also
available in the literature. In [9], a speed-up of 50x with
99.999% accuracy have been shown by using a timed TLM
approach which reduces the overhead of the simulation kernel
by using local time references for each individual task that
communicates over the NoC. The local clocks of different tasks
are only synchronised when those tasks are initiator or target of
the same transaction. In [10] a modest speed-up of 38% has
been reported by using lightweight schedulers that handle the
time reference for a group of tasks. Unlike those approaches, in
this paper we do not change TLM simulation semantics or
simulation kernel implementation, but rather constrain our
approach to use interconnect architectures whose behaviour can
be better captured by standard TLM semantics.

Existing work on optimising simulation of wormhole
networks has also been taken into account [11] [12], where a
reduction of simulation events is achieved by simulating only
packet headers and trailers. This work can be considered as an
improvement of the work presented in [12].

III. INTERCONNECT ARCHITECTURE
The design space of NoC architectures is very large, as

many of its components can be parameterized to better meet
design goals: routers, arbiters, buffers, flow controllers, among
others. However, the experience acquired through the
development of many commercial and research-oriented NoCs
allowed the identification of a few mechanisms that are
adequate for a wide variety of NoC configurations, and so they
were adopted widely. For example, sophisticated routing
algorithms do not significantly reduce communication latency
when compared with simple deterministic routers such as
XY[13], so most NoC designers avoid the costs in area and
power consumption by adopting the simpler solution.
Wormhole switching is another example of a mechanism that
was widely adopted in NoCs because it does not require large
capacity buffers (which in turn means lower power and area
overhead of the routers, a top priority among NoC designers).

In this paper, we also adopt such widely used architectural
patterns and consider NoCs with mesh topology, wormhole
switching and XY deterministic routing. However, such
architectures are particularly vulnerable to network contention
and its effects can only be accurately predicted by using cycle-
accurate models. Taking as an example the situation when two
packet headers arrive at a NoC router within one cycle of each

other, this minimal time difference could determine which of
the packets would be granted access to a mutually exclusive
resource (e.g. an output port) while the other would have to
wait, significantly affecting the latency of both of them. Such
scenario can obviously not be modeled with a time granularity
that is larger than one cycle, such as in TLM, therefore a TLM
model of such system will certainly present low accuracy
figures for latency. To solve this issue, we further constraint
our design space and focus on architectural constructs whose
behaviour can be accurately modelled at transaction level.
While this decision is not based on a functional requirement of
a particular design, it has the potential to speed up design space
exploration by reducing the time to evaluate each alternative
solution within that space. As a consequence, more alternatives
can be analysed and designers are more likely to find solutions
that fulfil functional requirements.

In this paper, we focus on one particular architectural
construct that can be accurately described using TLM, namely
a flow controller based on priority preemptive virtual channels.
By assigning priorities to packets, and by allowing high priority
packets to preempt the transmission of low priority ones,
network contention scenarios become more predictable and do
not require cycle-accurate models to be analysed. Fig. 1 shows
the internal structure of a NoC router using such architecture,
which is similar to QNoC [14] and HERMES [15]. In each
input port, a different FIFO buffer stores flits of packets
arriving through different virtual channels (one for each
priority level). The router assigns an output port for each
incoming packet according to their destination. A credit-based
approach [16] guarantees that data is only forwarded from a
router to the next when there’s enough buffer space to hold it.

Figure 1. NoC architecture with detail of the router structure

priority ID

…

highest priority
with remaining credit

data_in

credit_out

data_out

credit_in

…

routing
&

transmission
control

PE PE PEPE

PE PE PEPE

PE PE PEPE

priority ID

…

highest priority
with remaining credit

…

routing
&

transmission
control

PE PE PEPE

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

01 sendPacket(flowi , currenttime) {
02 tai = currenttime; flitstosendi = payloadi; activei = false;
03 routei = routing(srci, dsti);
04 for each flown in flowlist {
05 if (routei ∩ routen ≠ ∅) {
06 if (priorityi < priorityn) {add flown to interferencei;}
07 else {add flowi to interferencen;}
08 }
09 }
10 add flowi to flowlist;
11 requestUpdate(currenttime) ;
12 }

At any time, a flit of a given packet will be sent through its
respective output port if it has the highest priority among the
packets being sent out through that port, and if it has credits
(that is, buffer space on the respective buffer of the
neighbouring node connected to that output port). If the highest
priority packet can’t send data because it is blocked elsewhere
in the network, the next highest priority packet can access the
output link. The identified architecture is therefore able to
provide guaranteed throughput (GT) to traffic of higher
priority, and also provides means to calculate upper latency
bounds to best-effort (BE) traffic, as the priority ordering
clearly shows when a packet will be blocked. Its approach to
guarantee throughput is more efficient than time-division
multiplexing (TDM), as used in many NoC architectures such
as [17] and [18], where GT traffic gets a pre-assigned time-slot
to use resources. Priority preemptive arbitration does not
unnecessarily reserves resources, so low priority traffic can
always use the NoC if there are no requests from GT flows.

IV. TRANSACTION-LEVEL MODEL OF THE NETWORK-ON-
CHIP ARCHITECTURE

Unlike regular NoC simulation models which are
composites of routers, buffers, arbiters and links, the proposed
TLM model is a single interconnect component connected to
all processing cores, which are both transaction initiators and
targets (Fig. 2). Following TLM principles, a NoC
communication flow is the main element of a transaction.
Therefore, a transaction is initiated for every packet header
received by the NoC and is alive until that packet is delivered
to the target. Initiators create new transactions by calling the
interconnect’s non-blocking interface, passing as arguments the
packet itself, its priority and the target’s address. Likewise, the
NoC calls the target’s non-blocking interface when a packet is
completely delivered and stored at its network interface.

While structurally simple, our TLM model must be able to
accurately estimate the lifetime of each transaction, which in
turn denotes the communication latency of each packet. The
core of our approach is the notion of interference suffered by a
given communication flow. If a flow has the whole network to
itself, estimating its latency is trivial, as it becomes a function
of the number of communication hops and the packet’s flit
count (the packet’s so-called basic latency). However, the
latency estimation becomes harder when multiple flows
compete for the same NoC resources. When using priority pre-
emption, it is possible to deterministically decide which flow is
the first to acquire a shared resource, making it possible to
quantify the amount of interference that each flow suffers from
other flows of higher priority (i.e. the time it has to wait for
them to release the shared resources). To do that, our model
uses the internal representations and algorithms described
below.

Each communication flow is characterised by a tuple
flowi(src, dst, tr, priority, payload) where src and dst are the
address of the packet’s source and destination over the NoC
(e.g. 1 to 16 in Figure 1); tr is the time the packet header was
received at the NoC router attached to src; priority is an integer
number which is unique to each flow, denoting which flow has
higher priority to acquire shared resources; and payload is an
integer number denoting the number of flits of the packet.

Figure 2. Structure of the proposed TLM model of a NoC

The TLM model maintains a list flowlist of all flows, sorted
by their priority. Each entry includes the parameter tuple flowi
of the respective flow and additional information required by
the proposed algorithm to calculate the completion time of each
transaction: routei is the path through which the flow’s packet
is routed across the NoC from srci to dsti according to the NoC
routing algorithm; interferencei is the set of flows {flowa,
flowb,…,flown} whose route shares at least one link with routei
and whose priority is higher than priorityi; activei denotes
whether flowi is active, as opposed to blocked by any active
flown ∈ interferencei; tai is the time flowi last became active;
flitstosendi is the number of flits yet to be delivered at dst.
Listing 1 describes the behaviour of the TLM model when a
new transaction is initiated, showing in lines 5-7 the process of
identifying interference lists for each flow based on their
priorities and route intersections.

Listing 1. Pseudocode for initiating a new transaction

When new transactions are initiated or terminate, flowlist
must be updated. Updates are used to discriminate which flows
in flowlist are active, and to schedule additional updates to the
time instant when active flows are likely to terminate. Such
update events must be explicitly requested. For example, an
update is requested at the exact time that a transaction is added
(line 11 of Listing 1). For clarity, the pseudocode shows an
update request with syntax that resembles a wait-for-delay. Its
implementation, however, is similar to the approach presented
in [6] and follows a wait-for-event semantics.

Active flows are all those that have no active flows on their
interference sets, so the typical case is that several flows can be
active at the same time on a NoC, as long as their routes do not
intersect. When flows are added or terminated, interference sets
may change and therefore a new update is required. Listing 2
shows the proposed update algorithm. Every time an update is
triggered, the TLM model iterates over flowlist and updates the
status of active (lines 7-8) and inactive (lines 12-13) flows
according to changes on their interference set (i.e. a flow

processing
core

init

target

processing
core

init

target

processing
core

init

target

interconnect

...

01 update(currenttime) {
02 for each flowi in flowlist {
03 if (activei) {
04 flitstosendi = flitstosendi – sentFlits(currenttime- tai);
05 tai = currenttime;
06 if (flitstosendi ==0) { remove flowi from flowlist;}
07 for each flown in interferencei {
08 if(activen) {activei = false;}
09 }
10 }
11 else {
12 if (!activen for all flown in interferencei){
13 activei = true;
14 requestUpdate(currenttime + basiclat(flitstosendi));
15 }
16 }
17 }
18 }

becomes inactive because a new flow is added to its
interference set, or becomes active because all active flows in
its interference set terminated or became inactive). As flowlist
is sorted by flow priorities, we can guarantee that when the
algorithm iterates over a given entry of flowlist, all possible
changes to the interference set of its flow have already been
committed (because a flow only suffers interference from
higher priority flows). When a flow becomes active, another
update event is requested for the time it is likely to terminate
(according to the basic latency of its remaining flits, line 14). If
the flow is forced into inactivity before that time, that update
event is then cancelled (a new one will be scheduled when the
flow is activated the next time). Additionally, updates must
check if each active flow has terminated (by checking whether
it was active for long enough to send all remaining flits, lines
4-6), at which point its entry is removed from flowlist, its
transaction is concluded and its corresponding packet is sent
out to the transaction target.

The proposed algorithm can substantially reduce simulation
time because it simulates the system only at the time instants
when packets enter or exit the NoC, rather than every clock
cycle or flit transmission. Therefore, potential speed up is
directly proportional to the length of the packets and the hop
count of their paths across the NoC.

Listing 2. Pseudocode for updating list of communication flows

However, the proposed approach assumes route intersection
as the one and only prerequisite for interference between flows
(Listing 1, line 5). This is not necessarily the case, because in
wormhole switching packets will gradually occupy their route
from source to destination (“growing” phase), and the other
way around when they finish transmission (“shrinking” phase).
Furthermore, if the flit count of a packet is less than the hop
count of its route, it will never fully occupy the route. In all
those cases, our TLM model could assume interferences which
would not occur in reality (e.g. flow A on its growing phase
shares the last link of its route with the first link of the route of
flow B, which is on its shrinking phase already). As a
consequence, obtained latency figures may be higher than
reality, and the percent difference will grow with the increase
of the ratio between route hop count and packet flit count.

V. EXPERIMENTAL RESULTS
To evaluate the simulation speed-up and the accuracy of the

proposed TLM model, we performed a number of experiments,
aiming to compare it to a cycle-accurate (CA) model of the
same NoC architecture. For the sake of fairness, the same
simulation framework is used in both cases, namely Ptolemy II.
Following TLM principles, transaction initiators and targets are
mostly the same, and include abstract models of application
tasks, operating system, processing cores and NoC interfaces.
The only difference appears at the network interface modules,
which transmit packets flit-by-flit in the CA model, while in
TLM they pass a reference to the whole packet when
transactions are initiated. The chosen configuration for both
NoC models has a 4x4 mesh topology, router input ports with
eight virtual channels and two-position buffers each, XY
routing, operating at 100 MHz. For the first set of experiments,
we used as a testbench the application presented in [1], which
models the video processing, navigation and stability control
subsystems of an autonomous vehicle (AV). The application
comprehends 33 tasks and 38 inter-task fixed-priority
communication flows. Each flow has fixed-size payloads, the
smallest with 7kbits and the largest 525kbits. Flows are
initiated sporadically but respect a minimum inter-release time
(which may or may not suffer jitter). After using a static
mapping heuristic to assign tasks to each of the 16 cores of the
chosen platform, we simulated the execution of the application
and obtained latency figures for each communication flow.

To evaluate the simulation speed-up obtained by the
proposed TLM model, we obtained the time required by the
chosen simulation host (an Intel Core Duo at 3.02 GHz) to run
both CA and TLM models for distinct target execution times
(i.e. simulated periods of the vehicle application execution): 1s,
2s, 4s, 8s, 20s, 200s, 800s and 1400s. The figures for the last
three target times were obtained only for the TLM model, as
the CA model would take several days to simulate them on the
chosen host. The results, depicted in Fig. 3, show that after
simulation initialisation (which took about 7 seconds on the
chosen host), the TLM model presents a speed-up of more than
three orders of magnitude. In terms of accuracy, the worst case
latency results have a maximum percent difference of 6.25%
when using a NoC with flit size of 64 bits, 3.23% for flit size of
32 bits and 1.64% for 16 bits (Table I). Such figures are in line
with the expectations that the accuracy loss of the proposed
approach is less significant when simulating packets with a
larger number of flits for the same route (i.e. for the same
payload, packets with half the flit size require almost two times
the number of flits). Accuracy figures for average and best case
latency results were higher, as interference plays a lesser role.

Figure 3. Simulation time comparison (for distinct target times)

application
time (s) .

1
2
4
8

20
200
800

1400

cycle-accurate
1465.18
2895.69
5978.32

11806.91
29927.24

simulation time (s)
 TLM

7.67
7.89
7.98
8.28
9.77

26.55
86.29

169.06
1

10

100

1000
10000

100000

1 2 4 8 20 200 800 1400

CA
TLM

TABLE I. FLOW LATENCY RESULTS FOR AUTONOMOUS VEHICLE

Flow

Communication Latency (ms)
CA TLM % diff

flit size (bits) flit size (bits) flit size (bits)
16 32 64 16 32 64 16 32 64

1 0.491 0.251 0.131 0.492 0.252 0.132 0.20 0.40 0.76
2 0.488 0.248 0.128 0.489 0.249 0.129 0.20 0.40 0.78
3 0.970 0.490 0.250 0.981 0.501 0.261 1.13 2.22 4.31
4 1.452 0.732 0.372 1.476 0.756 0.396 1.64 3.23 6.25
5 1.514 0.762 0.386 1.528 0.776 0.400 0.92 1.82 3.56
6 0.492 0.252 0.132 0.492 0.252 0.132 0.00 0.00 0.00
7 0.971 0.491 0.251 0.981 0.496 0.261 1.02 1.01 3.91
8 0.491 0.251 0.131 0.492 0.252 0.132 0.20 0.40 0.76
9 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
10 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
11 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
12 10.638 5.326 2.670 10.654 5.342 2.686 0.15 0.30 0.60
13 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
14 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
15 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
16 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
17 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
18 9.608 4.808 2.408 9.609 4.809 2.409 0.01 0.02 0.04
19 1.928 0.968 0.488 1.929 0.969 0.489 0.05 0.10 0.20
20 3.850 1.930 0.970 3.858 1.938 0.978 0.21 0.41 0.82
21 1.041 0.529 0.273 1.042 0.53 0.274 0.10 0.19 0.37
22 2.059 1.035 0.523 2.060 1.036 0.524 0.05 0.10 0.19
23 2.059 1.035 0.523 2.060 1.036 0.524 0.05 0.10 0.19
24 32.779 16.395 8.203 32.780 16.396 8.204 0.00 0.01 0.01
25 32.776 16.392 8.200 32.777 16.393 8.201 0.00 0.01 0.01
26 8.200 4.104 2.056 8.201 4.105 2.057 0.01 0.02 0.05
27 2.061 1.037 0.525 2.075 1.051 0.539 0.68 1.34 2.63
28 1.032 0.520 0.264 1.033 0.521 0.265 0.10 0.19 0.38
29 1.038 0.526 0.270 1.039 0.527 0.271 0.10 0.19 0.37
30 2.056 1.032 0.520 2.057 1.033 0.521 0.05 0.10 0.19
31 1.999 1.007 0.511 2.029 1.037 0.541 1.49 2.94 5.70
32 2.056 1.032 0.520 2.057 1.033 0.521 0.05 0.10 0.19
33 8.206 4.110 2.062 8.207 4.111 2.063 0.01 0.02 0.05
34 2.540 1.276 0.644 2.558 1.294 0.662 0.71 1.40 2.76
35 2.059 1.035 0.523 2.060 1.036 0.524 0.05 0.10 0.19
36 1.035 0.523 0.267 1.036 0.524 0.268 0.10 0.19 0.37
37 1.032 0.520 0.264 1.033 0.521 0.265 0.10 0.19 0.38
38 2.058 1.034 0.522 2.072 1.048 0.536 0.68 1.34 2.65

In the second set of experiments, our goal was to evaluate
the scalability of our approach in terms of size and complexity
of the application using the NoC as communication media. For
that, we created a set of random flows that would periodically
send a random amount of data to a random destination over the
NoC. We then simulated, in turn, 20, 40, 60, 80 and 100 of
those flows with both CA and TLM NoC models, and
measured the host simulation time for each case. The results
depicted in Fig. 4 show that the scalability of our approach is
similar to the CA model, but again with a speed-up that
exceeds three orders of magnitude. The percent difference
between worst case, average and best case latencies of both
models was below 1%.

Figure 4. Simulation time comparison (for distinct application flow counts)

The final set of experiments aimed at showing that the
percent difference between CA and the proposed TLM model
could be much higher than the values obtained by the
experiments reported so far. By carefully selecting flow release
times, routes and intersection patterns, we were able to identify
cases where the percent difference would be arbitrarily large.
For instance, we could create in the CA model an arbitrarily
large high priority flow A on its growing phase that would
nearly block another flow B on its shrinking phase. In the TLM
model, A would block B for an arbitrarily long period of time
(proportional to A’s basic latency), because it has higher
priority and they share a link, driving up the percent difference
of B’s latency. While this may seem as a shortcoming of the
proposed approach, it actually mimics possible interference
scenarios that would occur in a real system if flows are allowed
some release jitter (which is often the case). Even a small delay
on the release of a particular flow may cause another
interference pattern to arise, which would be more likely to be
captured by our approach than by a CA model.

Taking that into account, the proposed approach can be
considered safe and conservative, as it is able to capture each
and every interference pattern that appears when simulating the
CA model, and it offers an additional margin of safety by also
capturing interference patterns that are likely to appear if the
release jitter of the flows follows a stochastic behaviour. To
gather evidence on worst case latency increase due to jitter, we
extended the autonomous vehicle application used in the first
set of experiments to allow for release jitter on each of its 38
flows. During simulation, jitter was introduced before the
release of each packet, assuming a random delay value between
zero and 10% of the flow’s minimum inter-release time. Fig. 5
shows the worst case latency results obtained from simulating
both scenarios - with and without jitter- for a target time of
1000.0 seconds. It can be seen that for many flows (e.g. 24, 25,
27, 28, 29) the introduction of jitter clearly resulted in
increased worst case latencies because new interference
patterns arose. Interestingly, the worst case latency with jitter
for some flows (such as 4 and 31) was actually lower than
without jitter, because the particular flow release configuration
that resulted in those higher numbers did not appear in the
random jitter scenario (as the probability of randomly assigning
zero jitter to all interfering flows is very low).

Figure 5. Worst case latency (in ms) for all 38 flows of AV application –
TLM model, flit size = 64 bits (without jitter, and with jitter bounded to 10%
of the flow’s minimum inter-release time)

application
flows .

20
40
60
80

100

cycle-accurate
17105.42
31490.13
55561.87
70231.76
86626.07

simulation time (s)
 TLM

5.47
19.17
45.78
83.06

105.28

1

10

100
1000

10000
100000

20 40 60 80 100

CA
TLM

Based on that evidence, we argue that that the results
obtained from the proposed TLM model are actually useful
even when there is a possibility that they could report inflated
latency resulting from interference patterns that do not appear
on a cycle-accurate simulation. If jitter is taken into account,
those interference patterns are likely to happen, and in that case
the inflated worst case latency result would actually be
accurate.

In any case, a fully accurate model could be still be
developed, using a mixed-time approach to capture the cycle-
accurate behaviour of the growing and shrinking phases of each
flow, but the increased number of simulation events resulting
from that would significantly reduce simulation speed.
Therefore, we state that the modelling of the growing and
shrinking phases of flows is not justified, because a slightly
conservative model is a very low price to pay for the
unprecedented speed-up that was obtained with the proposed
TLM approach.

VI. CONCLUSIONS
This paper has proposed a novel TLM modelling approach

for NoC interconnects, aiming to achieve fast and accurate
simulation of on-chip communication. Unlike previous
approaches, this work does not change TLM simulation
semantics or kernel implementation. Instead, it identifies a NoC
architecture whose resource arbitration mechanisms can be
adequately modelled at time granularities that are larger than a
clock cycle or a flit, namely a wormhole NoC with priority
preemptive virtual channel arbitration. The proposed approach
is therefore independent from modelling language and
simulation kernel, and it can potentially deliver the same level
of speed-up in all cases, because its is based on the reduction of
the number of events that must be simulated, rather than on
simulating the same set of events faster.

Extensive experimentation has shown that the proposed
TLM model consistently allowed for a simulation speed-up of
more than three orders of magnitude. Such speed-up is not
completely unusual for TLM models, but this is unprecedented
when it comes to complex NoC-based multiprocessors. The
accuracy of the model exceeds 90%, which is comparable to
the figures obtained from TLM models of systems of much
lower complexity, therefore showing that the proposed
approach could handle well the additional complexity of NoC-
based multiprocessors.

The paper also discussed the fact that the proposed model is
conservative, in the sense that it takes into account all possible
flow interference scenarios that appear on a CA model, as well
as additional interference scenarios that are likely to appear if
flow release jitter is taken into account. From a designer’s
perspective, this adds a safety margin that prevents undesirable
timing hazards from going unnoticed.

REFERENCES

[1] Z. Shi, A. Burns, and L. S. Indrusiak, “Schedulability Analysis for

Real Time On-Chip Communication with Wormhole Switching,”
International Journal of Embedded and Real-Time Communication
Systems, vol. 1, no. 2, pp. 1 - 22, Jun. 2010.

[2] N. Genko et al., “A novel approach for network on chip emulation,” in
Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on, pp. 2365-2368 Vol. 3, 2005.

[3] J. Aynsley, “TLM-2.0 Language Reference Manual,” OSCI, 2009.
[4] G. Schirner and R. Dömer, “Quantitative analysis of the

speed/accuracy trade-off in transaction level modeling,” ACM Trans.
Embed. Comput. Syst., vol. 8, no. 1, pp. 1-29, 2008.

[5] Kai-Li Lin, Chen-Kang Lo, and Ren-Song Tsay, “Source-level timing
annotation for fast and accurate TLM computation model generation,”
in Design Automation Conference (ASP-DAC), 2010 15th Asia and
South Pacific, pp. 235-240, 2010.

[6] Ke Yu and N. Audsley, “A Mixed Timing System-Level Embedded
Software Modelling and Simulation Approach,” in Embedded
Software and Systems, 2009. ICESS '09. International Conference on,
pp. 193-200, 2009.

[7] H. van Moll, H. Corporaal, V. Reyes, and M. Boonen, “Fast and
accurate protocol specific bus modeling using TLM 2.0,” in Design,
Automation & Test in Europe Conference & Exhibition, 2009. DATE
'09., pp. 316-319, 2009.

[8] G. Schirner and R. Dömer, “Result-Oriented Modeling—A Novel
Technique for Fast and Accurate TLM,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 9,
pp. 1688-1699, 2007.

[9] E. Viaud, F. Pêcheux, and A. Greiner, “An efficient TLM/T modeling
and simulation environment based on conservative parallel discrete
event principles,” in Proceedings of the conference on Design,
automation and test in Europe: Proceedings, pp. 94-99, 2006.

[10] M. Hosseinabady and J. L. Nunez-Yanez, “SystemC Architectural
Transaction Level Modelling for Large NoCs,” in ECSI Forum on
Specification and Design Languages (FDL), 2010.

[11] P. K. McKinley and C. Trefftz, “MultiSim: A Simulation Tool for the
Study of Large-Scale Multiprocessors,” in Proceedings of the
International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems, pp. 57–62, 1993.

[12] L. Ost et al., “A simplified executable model to evaluate latency and
throughput of networks-on-chip,” in Proceedings of the 21st annual
Symposium on Integrated Circuits and System Design, 2008.

[13] A. Vieira de Mello, L. C. Ost, F. G. Moraes, and N. Calazans,
Evaluation of Routing Algorithms on Mesh Based NoCs. Porto Alegre:
Faculdade de Informatica - PUCRS, 2004.

[14] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of
Systems Architecture, vol. 50, no. 2, pp. 105-128, Feb. 2004.

[15] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels
in networks on chip: implementation and evaluation on hermes NoC,”
in Proceedings of the 18th annual symposium on Integrated circuits
and system design, pp. 178-183, 2005.

[16] T. Bjerregaard and J. Sparso, “Virtual channel designs for
guaranteeing bandwidth in asynchronous network-on-chip,” in
Norchip Conference, 2004. Proceedings, pp. 269-272, 2004.

[17] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on
chip: concepts, architectures, and implementations,” Design & Test of
Computers, IEEE, vol. 22, no. 5, pp. 414-421, 2005.

[18] M. Schoeberl, “A Time-Triggered Network-on-Chip,” in Field
Programmable Logic and Applications, 2007. FPL 2007.
International Conference on, pp. 377-382, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

