
Formalizing and Verifying Stochastic System
Architectures Using Monterey Phoenix

(SoSyM Abstract)
Songzheng Song∗, Yang Liu∗, Mikhail Auguston†, Jun Sun‡, Jin Song Dong§, and Tieming Chen¶

∗Nanyang Technological Univerisity, Singapore
†Naval Postgraduate School, USA

‡Singapore University of Technology and Design, Singapore
§National University of Singapore, Singapore
¶Zhejiang University of Technology, China

Abstract—The analysis of software architecture plays an
important role in understanding the system structures and
facilitate proper implementation of user requirements. Despite
its importance in the software engineering practice, the lack
of formal description and verification support in this domain
hinders the development of quality architectural models. To
tackle this problem, in this work, we develop an approach for
modeling and verifying software architectures specified using
Monterey Phoenix (MP) architecture description language. MP
is capable of modeling system and environment behaviors based
on event traces, as well as supporting different architecture
composition operations and views. First, we formalize the syntax
and operational semantics for MP; therefore, formal verification
of MP models is feasible. Second, we extend MP to support
shared variables and stochastic characteristics, which not only
increases the expressiveness of MP, but also widens the properties
MP can check, such as quantitative requirements. Third, a
dedicated model checker for MP has been implemented, so
that automatic verification of MP models is supported. Finally,
several experiments are conducted to evaluate the applicability
and efficiency of our approach.

I. INTRODUCTION

This is an extended abstract for the Models 2015 Conference
of the journal paper of the same name [1]. Monterey Phoenix
(MP) is a framework for software system architecture and
related workflow modeling with the focus on behavior of
software system and its environment [2], [3], [4]. When in tra-
ditional architecture models the main elements are components
(representing the functionality), and connectors (representing
the information flow between components), in MP the main
concepts are behaviors and interactions between behaviors.
Behavior is defined as a set of events (event trace) with two
basic relations: precedence and inclusion, and the structure
of possible event traces is specified using event grammar and
composition operations organized into schemas. Events may
have attributes, for example, timing.

The essential MP feature is event coordination abstraction
for modeling interactions within the system. The generative
event grammar concept provides a lightweight operational
semantics definition for the computing system under devel-
opment. The approach leads to executable architecture speci-
fications with following features.

1) System developers are guided from the very beginning to think
about system’s behavior and interactions.

2) Environment’s behavior is an integral part of architecture
model. MP provides a uniform method for modeling behaviors
of the software, hardware, business processes, and other actors.
This emphasizes the role of architecture as a bridge between
the system requirements and design.

3) Event grammar formalism supports exhaustive generation of
system’s behavior examples (Use Cases). Humans can under-
stand and evaluate examples better then general descriptions,
and most flaws in models could be demonstrated on relatively
small counterexamples.

4) Executable architecture models may be used for assessment of
non-functional requirements, such as performance, latency, and
throughput based on systematic scenario generation (within a
given scope) or on statistical simulation.

5) Multiple viewpoints (including diagrams) can be extracted
from the same architecture model to facilitate the interaction
with stakeholders.

6) MP framework is amenable to architecture reuse. Typical
architecture styles and design patterns can be formalized and
reused.

7) MP framework can supplement and enhance standard architec-
ture frameworks, like UML, SysML, DoDAF.

This paper extends MP to support stochastic characteristics
of behavior, and to support early system safety and security
assessment. A dedicated model checker for MP has been
implemented using PAT tool [5], [6]. Currently MP editor and
trace generator is available at http://firebird.nps.edu/.

REFERENCES

[1] S. Song, J. Zhang, Y. Liu, M. Auguston, J. Sun and J. S. Dong and T
Chen, ”Formalizing and verifying stochastic system architectures using
Monterey Phoenix”, Software & Systems Modeling, pp.1–19, April 2014.

[2] M. Auguston, “Software Architecture Built from Behavior Models”, ACM
SIGSOFT Software Engineering Notes, vol. 34, no. 5, 2009.

[3] M. Auguston, “Monterey Phoenix, or How to Make Software Architecture
Executable”, in OOPSLA, pp.1031–1038, 2009.

[4] M. Auguston, “Behavior Models for Software Architecture”,
Technical Report NPS-CS-14-003, Naval Postgraduate School,
http://calhoun.nps.edu/handle/10945/43851, 2014.

[5] J. Sun and Y. Liu and J. S. Dong and J. Pang, “PAT: Towards Flexible
Verification under Fairness”, in CAV, pp. 709–714, 2009.

[6] Y. Liu, J. Sun, and J. S. Dong. “Pat 3: An Extensible Architecture for
Building Multi-domain Model Checkers”. In ISSRE, pages 190C199,
2011.

978-1-4673-6908-4/15/$31.00 c© 2015 IEEE MODELS 2015, Ottawa, ON, Canada
SoSyM Abstracts

52

449

