
Domain-Driven Software Development —

A World of Transformations

Shane Sendall

IBM Research
Zurich Research Laboratory

CH-8803 Rüschlikon, Switzerland
sendall@acm.org

Extended Abstract:
Software development teams are faced with bridging the gap between the problem, as
envisaged by the stakeholders and constrained by the environment, and a software
solution, which is built upon the abstractions offered by current software
technologies. Unfortunately, too often the abstractions offered are limited and
disparate with respect to the problem space. Reducing this gap would facilitate more
sophisticated problems to be tackled in software development projects, and it would
comparatively reduce development costs and time-to-market, and remove errors
caused by the disparity. In this talk, I will explore a number of techniques for
improving current software development practice, which relate to the theme of
domain-driven software development.

Domain-driven software development is concerned with making use of languages that
better capture the problem by using abstractions that are more familiar to experts in
the domain. These domain-specific languages are made executable either directly
(compilation or interpretation) or through tool-supported refinement/elaboration to
computational models that can be executed, e.g., to a mainstream programming
language where one can make use of existing frameworks, components, services, etc.
In the later case, real value is added to software development only if we can automate
as much as possible the transformation step(s). Automating these steps requires
languages that can express such transformations in a concise and maintainable
manner.

The principles of abstraction, separation of concerns, and problem decomposition are
essential in providing intuitive and manageable domain-specific languages. The
practice of software modeling has become a significant way of applying these
principles to software development. Over the last few years, the software
development industry has gone through the process of standardizing visual modeling
notations. The Unified Modeling Language (UML) [UML] is the product of this
effort, and it unifies scores of notations that were proposed in the ‘80s and ‘90s. The
language has gained significant industry support and became an Object Management
Group (OMG) standard in 1997. Nowadays, the majority of software modeling
techniques and approaches use UML.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

2 Shane Sendall

UML gives numerous options to developers for specifying software systems. A UML
model can graphically depict the structure and/or behavior of the system under
discussion from a certain viewpoint and at a certain level of abstraction. This is
desirable as one can typically better manage the complexities of a system description
through the use of multiple models, where each captures a different aspect of the
solution. Models can also be refined and decomposed into other models. Thus, models
can be utilized not only in a horizontal manner (to describe different system aspects),
but also in a vertical manner (to be refined from higher to lower levels of abstraction).
Nevertheless, working with multiple, interrelated models that describe a software
system require significant effort to ensure their overall consistency.

It is also necessary to point out that models are used in software development with a
number of purposes. These include:

• Problem Documentation
The model is used to communicate an understanding of the problem, and/or ensure
that there is a common understanding of the problem between stakeholders.

• Solution Blueprints
The model defines a view of the structure/function/behavior of system to develop,
which is elaborated to produce the final system.

• Solution Documentation
The model is used to document the implemented system.

• Analysis
The model is used to explore the problem or solution space.

• Verification/Validation
The model can be used as a means to gauge the correctness of the delivered
system.

o Informal: inspection, review, testing, etc.
o Formal: specification-based testing, proofs (refinement,

existence/absence of properties), animation of model
• Execution
The model is the code.

Being aware of various purposes that a model can possess, e.g., according to the
categories given above, allows methodologists to clearly create and integrate models
into software development activities. In fact, significant tool support is only possible
once a systematic approach is devised for relating and composing models.

In this presentation, I will present the vision of domain-driven software development
and briefly discuss how it relates to current standards and initiatives such as the
Unified Modeling Language (UML), the Meta Object Facility (MOF) [MOF], Model
Driven Architecture (MDA) [MDA, KWB03], and OMG's Query/View
/Transformation (QVT) Request for Proposal [QVT]. Thereafter, I will describe
various techniques and approaches that can be used in the realization of the
transformations needed in the context mentioned above. I will also present a number
of ideas for improving the way models can be conceived and developed.

Biography:

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Domain-Driven Software Development —

A World of Transformations 3

Dr. Shane Sendall is a researcher in the e-business solutions group at IBM Zurich
Research Laboratory. His research interests are focused on improving model-based
software development practices. In particular, he is enthused by: the foundations and
applications of model transformation and techniques and languages that support it,
software development tools that support UML and OCL specification, techniques to
smooth and/or automate the transition from software requirements to design artifacts.
He received his PhD in computer science from the Swiss Federal Institute of
Technology in Lausanne. Contact him at sendall@acm.org

References

[KWB03] A. Kleppe, J. Warmer, and W. Bast; “MDA Explained: the Practice and
Promise of Model-Driven Architecture”. Addison-Wesley, 2003.

[MDA] OMG Model Driven Architecture web site; http://www.omg.org/mda/
[MOF] OMG Meta Object Facility web site;

http://www.omg.org/technology/documents/formal/mof.htm
[QVT] OMG TC; “MOF 2.0 Query/Views/Transformations RFP”.
 http://cgi.omg.org/cgi-bin/doc?ad/02-04-10
[UML] OMG Unified Modeling Language web site; http://www.uml.org/

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

