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Abstract—With their significant performance and energy ad-
vantages, emerging manycore processors have also brought new
challenges to the architecture research community. Manycore
processors are highly integrated complex system-on-chips with
complicated core and uncore subsystems. The core subsystems
can consist of a large number of traditional and asymmetric
cores. The uncore subsystems have also become unprecedentedly
powerful and complex with deeper cache hierarchies, advanced
on-chip interconnects, and high-performance memory controllers.
In order to conduct research for emerging manycore processor
systems, a microarchitecture-level and cycle-level manycore sim-
ulation infrastructure is needed.

This paper introduces McSimA+, a new timing simulation
infrastructure, to meet these needs. McSimA+ models x86-
based asymmetric manycore microarchitectures in detail for
both core and uncore subsystems, including a full spectrum
of asymmetric cores from single-threaded to multithreaded and
from in-order to out-of-order, sophisticated cache hierarchies,
coherence hardware, on-chip interconnects, memory controllers,
and main memory. McSimA+ is an application-level+ simulator,
offering a middle ground between a full-system simulator and an
application-level simulator. Therefore, it enjoys the light weight of
an application-level simulator and the full control of threads and
processes as in a full-system simulator. This paper also explores
an asymmetric clustered manycore architecture that can reduce
the thread migration cost to achieve a noticeable performance im-
provement compared to a state-of-the-art asymmetric manycore
architecture.

I. INTRODUCTION

Multicore processors have already become mainstream.
Emerging manycore processors have brought new challenges to
the architecture research community, together with significant
performance and energy advantages. Manycore processors
are highly integrated complex system-on-chips (SoCs) with
complicated core and uncore subsystems. The core subsystems
can consist of a large number of traditional and asymmetric
cores. For example, the Tilera Tile64 [46] has 64 small cores.
The latest Intel Xeon Phi coprocessor [9] has more than 50
medium-size cores on a single chip. Moreover, ARM recently
announced the first asymmetric multicore processor known
as big.LITTLE [12], which includes a combination of out-
of-order (OOO) Cortex-A15 (big) cores and in-order (IO)
Cortex-A7 (little) cores. While the Cortex-A15 has higher
performance, the Cortex-A7 is much more energy efficient.
Using them at the same time, ARM big.LITTLE targets high
performance and energy efficiency at the same time. The
uncore subsystems of the emerging manycore processors have
also become more powerful and complex than ever, with
features such as larger and deeper cache hierarchies, advanced
on-chip interconnects, and high performance memory con-
trollers. For example, the Intel Xeon E7-8870 already has a

30MB L3 cache. Scalable Network-on-Chip (NoC) and cache
coherency implementation efforts have also emerged in real
industry designs, such as the Intel Xeon Phi [9]. Moreover,
emerging manycore designs usually require system software
(such as OSes) to be heavily modified or specially patched.
For example, current OSes do not support the multi-processing
(MP) mode in ARM big.LITTLE, where both fat A15 cores
and thin A7 cores are active. A special software switcher [12]
is needed to support thread migration on the big.LITTLE
processor.

Simulators have been prevalent tools in the computer
architecture research community to validate innovative ideas,
as prototyping requires significant investments in both time and
money. Many simulators have been developed to solve differ-
ent research challenges, serving their own purposes. However,
new challenges brought by emerging (asymmetric) manycore
processors as mentioned above demand new simulators for the
research community. As discussed in the simulator taxonomy
analysis in Section II, while high-level abstraction simulators
are not appropriate for conducting microarchitectural research
on manycore processors, full-system simulators usually are
relatively slow, especially when system/OS events are not the
research focus. Moreover, with unsupported features in existing
OSes, such as the asymmetric ARM big.LITTLE processor,
larger burdens are placed on researchers, especially when
using a full-system simulator. Thus, a lightweight, flexible,
and detailed microarchitecture-level simulator is necessary for
research on emerging manycore microarchitectures. To this
end, we make the following contributions in this paper:

• We introduce McSimA+. McSimA+ models x86 based
(asymmetric) manycore (up to more than 1,000 cores)
microarchitectures in detail for both core and uncore
subsystems, including a full spectrum of asymmetric
cores (from single-threaded to multithreaded and from
in-order to out-of-order), cache hierarchies, coher-
ence hardware, NoC, memory controllers, and main
memory. McSimA+ is an application-level+ simulator,
representing a middle ground between a full-system
simulator and an application-level simulator. There-
fore it enjoys the light weight of an application-level
simulator and full control of threads and processes as
in a full-system simulator. It is flexible in that it can
support both execution-driven and trace-driven simula-
tions. McSimA+ enables architects to perform detailed
and holistic research on manycore architectures.

• We perform rigorous validations of McSimA+. The
validations cover different processor configurations
from the entire multicore processor to the core and
uncore subsystems. The validation targets are compre-

74978-1-4673-5779-1/13/$31.00 ©2013 IEEE



TABLE I. SUMMARY OF EXISTING SIMULATORS CATEGORIZED BY FEATURES. ABBREVIATIONS (DETAILS IN MAIN TEXT):
(FS/A)-FULL-SYSTEM (FS) VS. APPLICATION-LEVEL (A), (DC)-DECOUPLED FUNCTIONAL AND PERFORMANCE SIMULATIONS,

(μAR)-MICROARCHITECTURE DETAILS, (X86)-X86 ISA SUPPORT, (MC)-MANYCORE SUPPORT, (SS)-SIMULATION SPEED; (A+)-A
MIDDLE GROUND BETWEEN FULL-SYSTEM AND APPLICATION-LEVEL SIMULATION, (Y)-YES, (N)-NO, (N/A)-NOT APPLICABLE,

(P)-PARTIALLY SUPPORTED. †X86 IS NOT FULLY SUPPORTED FOR MANYCORE. �MANYCORE (E.G. 1,000 CORES AND BEYOND) IS NOT
FULLY SUPPORTED DUE TO EMULATORS/HOST OSES. A PREFERRED MANYCORE SIMULATOR SHOULD BE LIGHTWEIGHT (A+ AND DC)

AND REASONABLY FAST, WITH SUPPORT OF MC, μAR, AND X86. †UNLIKE OTHER SIMULATORS, THE CMP$IM FAMILY IS NOT PUBLICLY
AVAILABLE.

Simulators FS/A DC μAr x86 Mc SS Simulators FS/A DC μAr x86 Mc SS
gem5 [35] FS N Y Y P� + SimpleScalar [3] A N Y N† N ++
GEMS [30] FS Y Y N† P� + Booksim [22] N/A N/A Y N/A N ++
MARSSx86 [11] FS Y Y Y P� + Garnet [2] N/A N/A Y N/A N ++
SimFlex [45] FS Y Y N† P� + GPGPUsim [5] A Y Y N/A N ++
PTLsim [48] FS Y Y Y P� + DRAMsim [39] N/A N/A Y N/A N ++
Graphite [31] A Y N Y Y +++ Dinero IV [19] A N Y N/A N ++
SESC [38] A N Y N† N ++ Zesto [26] A N Y Y N +
Sniper [8] A Y N Y Y +++ CMP$im [21], [33]‡ A Y Y Y N ++
Preferred A+ Y Y Y Y ≥ ++

hensive ranging from a real machine to published re-
sults. In all validation experiments, McSimA+ demon-
strates good performance accuracy.

• We propose an Asymmetry Within a cluster and
Symmetry Between clusters (AWSB) design to reduce
thread migration overhead in asymmetric manycore
architectures. Using McSimA+, our study shows that
the AWSB design performs noticeably better than the
state-of-the-art clustered asymmetric architecture as
adopted in ARM big.LITTLE.

II. WHY YET ANOTHER SIMULATOR?

Numerous processor and system simulators are already
available as shown in Table I. All of these simulators have their
own merits and serve their different purposes well. McSimA+
was developed to enable detailed asymmetric manycore mi-
croarchitecture research, and we have no intention to position
our simulator as “better” than existing ones. For a better
understanding of why we need another simulator for the above-
mentioned purpose, we first navigate through the space of the
existing simulators and explain why those do not cover the
study we want to conduct. Table I shows the taxonomy of the
existing simulators with the following six dimensions: 1) full-
system vs. application-level simulation (FS/A), 2) decoupled
vs. integrated functional and performance simulation (DC), 3)
microarchitecture-level (i.e., cycle-level) vs. high-level abstract
simulation (μAr), 4) supporting x86 or not (x86), 5) whole
manycore system support or not (Mc), and 6) the simulation
speed (SS).

a) Full-system (FS) vs. application-level simulation (A):
Full-system simulators, such as gem5 [35] (full-system mode),
GEMS [30], MARSSx86 [11], and SimFlex [45] run both
applications and system software (mostly OSes). A full-system
simulator is particularly beneficial when the simulation in-
volves heavy I/O activities or extensive OS kernel function
support. However, these simulators are relatively slow and
make it difficult to isolate the impact of architectural changes
from the interaction between hardware and software stacks.
Moreover, because they rely on existing OSes, they usually
do not support manycore simulations well. They also typically
require research on both the simulator and the system software
at the same time, even if the research targets only architectural

aspects. For example, current OSes (especially Linux) do not
support manycore processors with different core types; thus,
OSes must be changed to support this feature. In contrast,
these aspects are the specialties of application-level simulators,
such as SimpleScalar [3], gem5 [35] (system-call emulation
mode), SESC [38], and Graphite [31] along with its derivative
Sniper [8]. However, a pure application-level simulation is
insufficient, even if I/O activity and time/space sharing are not
the main areas of focus. For example, thread scheduling in a
manycore processor is important for both performance accu-
racy and research interests. Thus, it is desirable for application-
level simulators to manage threads independently from the host
OS and the real hardware on which the simulators run.

b) Decoupled vs. integrated functional and performance
simulation (DC): Simulators need to maintain both func-
tional correctness and performance accuracy. Simulators such
as gem5 [35] choose a complex “execute-in-execute” ap-
proach that integrates functional and performance simulations
to model microarchitecture details with very high levels of
accuracy. However, to simplify the development of the simu-
lator, some simulators trade modeling details and accuracy for
reduced complexity and decouple functional simulation from
performance simulation by offloading the functional simulation
to third party software, such as emulators or dynamic instru-
mentation tools, while focusing on evaluating the performance
of new architectures with benchmarks. This is acceptable
for most manycore architecture studies, where reasonably
detailed microarchitecture modeling is sufficient. For example,
GEMS [30] and SimFlex [45] offload functional simulations to
Simics [29], PTLSim [48] and its derivative MARSSx86 [11]
offload functional simulations to QEMU [6], and Graphite [31]
and its derivative Sniper [8] offload functional simulations to
Pin [28].

c) Details (μAr) vs. simulation speed (SS): A many-
core processor is a highly integrated complex system with
a large number of cores and complicated core and uncore
subsystems, leading to a tradeoff between simulation accuracy
and speed. In general, the more detailed an architecture the
simulator can handle, the slower the simulator simulation
speed. For example, Graphite [31] uses less detailed models,
such as the one-IPC model, to achieve better simulation speed.
Sniper [8] uses better abstraction methods such as interval-
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Fig. 1. McSimA+ infrastructure. Abbreviations: “Inst. stream”– instruction stream, “Thrd. Schd. Cmd”– thread scheduling commands.

based simulation to gain more accuracy with less performance
overhead. While these simulators are good for early stage
design space explorations, they are not sufficiently accurate
for detailed microarchitecture-level studies of manycore archi-
tectures. Graphite [31] and Sniper [8] are considered faster
simulators because they use parallel simulation to improve the
simulation speed. Trace-driven simulations can also be used
to trade simulation accuracy for speed. However, these are not
suitable for multithreaded applications because the real-time
synchronization information is usually lost when using traces.
Thus, execution-driven simulations (i.e., simulation through
actual application execution) are preferred. On the other
hand, full-system simulators model both microarchitecture-
level details and OSes. Thus, they sacrifice simulation speed
for accuracy. Zesto [26] focuses on very detailed core-level
microarchitecture simulations, which results in even lower
simulation speeds. Instead, it is desirable to have a simulator
to model manycore microarchitecture details while remaining
faster than full-system simulators, which have both hardware
and software overhead.

d) Support of manycore architecture (Mc): As this
paper is about simulators for emerging (asymmetric) manycore
architectures, it is important to assess existing simulators on
their support of (asymmetric) manycore architectures. Many
simulators were designed with an emphasis on one subsys-
tem of a manycore system. For example, Booksim [22] and
Garnet [2] focus on NoC; Dinero IV [19] and CMP$im [21],
[33] family focus on the cache; DRAMsim [39] focuses on
the DRAM main memory system, Zesto [26] focuses on cores
with limited multicore support, and GPGPUSim [5] focuses on
GPUs. Full-system simulators support multicore simulations
but require non-trivial changes (especially to the OS) to support
manycore systems stably with a large number (e.g., more than
1,000) of asymmetric cores. Graphite [31] and Sniper [8]
support manycore systems but lack microarchitecture-level
details, as mentioned earlier.

e) Support of x86 (x86): While it is arguable as to
whether an ISA is a key feature for simulators given that many
researches do not need support for a specific ISA, supporting
the x86 ISA has advantages in reality because most studies
are done on x86 machines. For example, complicated cross-
platform tool chains are not needed in a simulator with x86
ISA support.

As shown in Table I, while existing simulators serve their
purposes well, research on emerging (asymmetric) manycore
processors prefers a new simulator that can accurately model

the microarchitecture details of manycore systems. The new
simulator is better at avoiding the weight of modeling both
hardware and OSes so as to be lightweight yet still capable
of controlling thread management for manycore processors.
McSimA+ was developed specifically to fill this gap.

III. MCSIMA+: OVERVIEW AND OPERATION

McSimA+ is a cycle-level detailed microarchitecture simu-
lator for multicore and emerging manycore processors. More-
over, McSimA+ offers full control over thread/process man-
agement for manycore architectures, so it represents a middle
ground between a full-system simulator and an application-
level simulator. We refer to this as an application-level+ sim-
ulator henceforth. It enjoys the light weight of an application-
level simulator and better control of a full-system simulator.
Moreover, its thread management layer makes implementing
new functional features in emerging manycore processors
much easier than changing the OSes with full-system sim-
ulators. McSimA+ supports detailed microarchitecture-level
modeling not only of the cores, such as OOO, in-order, multi-
threaded, and single-threaded cores, but also of all uncore com-
ponents, including caches, NoCs, cache-coherence hardware,
memory controllers, and main memory. Moreover, innovative
architecture designs such as asymmetric manycore architec-
tures and 3D stacked main-memory systems are also supported.
By supporting the microarchitectural details and rich features
of the core and uncore components, McSimA+ facilitates holis-
tic architecture research on multicore and emerging manycore
processors. McSimA+ is a simulator capable of decoupled
functional simulations and timing simulations. As shown in
Figure 1, there are two main areas in the infrastructure of
McSimA+: 1) the Pin [28] based frontend simulator (frontend)
for functional simulations and 2) the event-driven backend
simulator (backend) for timing simulations.

Each frontend performs a functional simulation of a multi-
threaded workload using dynamic binary instrumentation using
Pin and generates the instruction stream for the backend
timing simulation. Pin is a dynamic instrumentation framework
that can instrument an application in the granularity of an
instruction, a basic block, or a function. Applications being
executed are instrumented by Pin and the information of each
instruction, function call, and system call is delivered to the
McSimA+ frontend. After being processed by the frontend, the
information is delivered to the McSimA+ backend, where the
detailed target system including cores, caches, directories, on-
chip networks, memory controllers, and main-memory subsys-
tems are modeled. Once the proper actions are performed by
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the components affected by the instruction, the next instruction
of the benchmark is instrumented by Pin and sent to the
backend via the frontend. The frontend functional simulator
also supports fast forward, an important feature necessary to
skip instructions until the execution reaches the simulation
region of interest.

The backend is an event-driven component that improves
the performance of the simulation. Every architecture operation
(such as a TLB/cache access, an instruction scheduling, and
an NoC packet traversal) triggered by instruction processing
generates a unique event with a component-type attribute (such
as a core, a cache, and an NoC) and a time stamp. These
events are queued and processed in a global event-processing
engine. When processing the events, a series of architecture
events may be induced in a chain reaction manner; the global
processing engine shown in Figure 1 processes all of the events
in a strict timing order. If events occur in a single cycle, the
simulation is performed in a manner similar to that of a cycle-
by-cycle simulation. However, if no event occurs in a cycle, the
simulator can skip the cycle without losing any information.
Thus, McSimA+ substantially improves the simulation speed
without a loss of cycle-level accuracy compared to cycle-driven
simulators.

A. Thread Management for Application-level+ Simulation

Although McSimA+ is not a full-system simulator, it is
not a pure application-level simulator either. Given that a
manycore processor includes a large number of cores, hard-
ware threads, and complicated uncore subsystems, a sophis-
ticated thread/process management scheme is needed. OSes
and system software usually lag behind the new features in
emerging manycore processors; thus, modifying OSes for full-
system simulators is a heavy burden. Therefore, it is important
to gain full control of thread management for manycore
microarchitecture-level studies without the considerable over-
head of a full-system simulation. By using thread management
layer and by taking full control over thread management from
the host OS, McSimA+ is an application-level+ simulator that
represents a middle ground between a full-system simulator
and an application-level simulator.

The fact that it is an application-level+ simulator is also
important in how it reduces simulation overhead and improves
performance accuracy. As a decoupled simulator, McSimA+
leverages Pin by executing applications on native hardware
to achieve a fast simulation speed. One way to support a
multithreaded application in this framework is to let the host
OS (we borrow the terms used on virtual machines) orchestrate
the control flow of the application. However, this approach
has two drawbacks. First, it is difficult to micro-manage the
execution order of each thread governed by the host OS. The
timing simulator can make progress only if all the simulated
threads held by all cores receive instructions to be executed or
are explicitly blocked by synchronization primitives, whereas
the host OS schedules the threads based on its own policy
without considering the status of the timing simulator. This
mismatch requires huge buffers to hold pending instructions,
which is especially problematic for manycore simulations [32].
Second, if an application is not race free, we must halt the
progress of a certain thread if it may change the flow of
other threads that are pending in the host OS but may also be

executed at an earlier time on the target architecture simulated
in the timing simulator, which is a very challenging task.

B. Implementing the Thread Management Layer in McSimA+

When implementing the thread management layer in Mc-
SimA+ for an application-level+ simulation, we leveraged the
solution proposed by Pan et al. [40] and designed a special
Pthread [7] library1 implemented as part of the McSimA+
frontend. This Pthread library enables McSimA+ to manage
threads completely independently of the host OS and the real
system according to the architecture status and characteristics
of the simulated target manycore processors. There are two
major components in the special Pthread library: the Pthread
controller and the Pthread scheduler. The Pthread controller
handles all Pthread functionalities, such as pthread create,
pthread destroy, pthread mutex, pthread local storage and
stack management, and thread-safe memory allocation. The
thread scheduler in our special Pthread library is responsible
for blocking and resuming threads during thread join, mu-
tex/lock competition, and conditional wait operations. Existing
Pthread applications can run on McSimA+ without any change
of the code. An architect only needs to link to the special
Pthread library rather than to the native one. During execution,
all Pthread calls are intercepted by the McSimA+ frontend and
replaced with the special Pthread calls. In order to separate
thread execution from the OS, a multithreaded application
appears to be a single threaded process from the perspective of
the host OS/Pin. Thus, OS/Pin is not aware of the threads in
the host OS process and surrenders the full control of thread
management and scheduling to McSimA+.

In order to simulate unmodified multi-programmed work-
loads (each workload can be a multithreaded application),
multiple frontends are used together with a single backend
timing simulator. All frontends are connected to the backend
via inter-process communication (sockets). All threads from
the frontend processes are mapped to the hardware threads in
the backend and are managed by the process/thread scheduler
in the backend, as shown in Figure 1. The thread scheduler in
the Pthread library in the frontend maintains a queue of threads
and schedules a particular thread to run when the backend
needs the instruction stream from it. We implemented a global
process/thread scheduler in the backend that controls the
execution of all hardware threads on the target manycore pro-
cessor. While the frontend thread scheduler manages threads
according to the program information (i.e., the thread function
calls), the backend process/thread scheduler has the global
information (e.g. cache misses, resource conflicts, branch mis-
predictions, and other architecture events) of all of the threads
in all processes and manages all of the threads accordingly.
The backend scheduler sends the controlling information to the
individual frontends to guide the thread scheduling process in
each multithreaded application, with the help of the thread
scheduler in the special Pthread libraries in the frontends.
Different thread scheduling policies (the default is round-robin)
can be implemented to study the effects of scheduling policies

1Building a full fledged special Pthread library requires a significant
amount of work, even if our implementation is based on the preliminary
implementation from Pan et al. [40]. First, we built important Pthread APIs,
such as pthead barrier, that were previously unsupported. Second, we re-
implemented the library since the previous implementation was incompatible
with the latest Pin. Third, we added 64-bit support for the library.
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Fig. 2. Example manycore architectures modeled in McSimA+. (a) shows a fully connected (with a bus/crossbar) multicore processor such as
the Intel Nehalem [24] and Sun Niagara [23] processors, where all cores directly share all last-level caches through the on-chip fully connected
fabric. (b) shows a tiled architecture, such as the Tilera Tile64 [46] and Intel Knights Corner [9], where cores and local caches are organized
as tiles and connected through a ring or a 2D-mesh NoC. (c) shows a clustered manycore architecture as proposed in [12], [25], [27], where
on-chip core tiles first use local interconnects to form clusters that are then connected via ring or 2D-mesh NoC.

on the simulated system. Thus, as an application-level+ simu-
lator, McSimA+ can be used to study advanced thread/process
management schemes in manycore architectures.

IV. MICROARCHITECTURE MODELING OF ASYMMETRIC
MANYCORE ARCHITECTURES

The key focus of McSimA+ is to provide fast and de-
tailed microarchitecture simulations for manycore processors.
McSimA+ also supports flexible manycore designs. Figure 2
shows a few examples of the flexibility of McSimA+ in
modeling different manycore architectures from a fully con-
nected multicore processor (Figure 2(a)), such as the Intel
Nehalem [24] and Sun Niagara [23], to tiled architectures (Fig-
ure 2(b)), such as the Tilera Tile64 [46] and Intel Knights Cor-
ner [9], and to clustered manycore architectures (Figure 2(c))
as in ARM big.LITTLE [12]. Moreover, McSimA+ supports
a wide spectrum of innovative and/or emerging technologies,
such as asymmetric cores [12] and 3D main memory [41].
By supporting detailed and flexible manycore architecture
modeling, McSimA+ facilitates comprehensive and holistic
research on multicore and manycore processors.

A. Modeling of Core Subsystem

McSimA+ supports detailed and realistic models of the
scheduling units based on existing processor core designs,
including in-order, OOO, and multithreaded core architectures.
Figure 3 demonstrates the overall core models in McSimA+
for OOO and in-order cores. We depict the cores as a series
of units and avoid calling them “pipeline stages,” as they are
high-level abstractions of the actual models in McSimA+ and
because many detailed models of hardware structures (e.g., L1
caches and reservation stations) are implemented within these
generic units.

1) Modeling of Out-of-Order Cores: The OOO core archi-
tecture in McSimA+ has multiple units, including the fetch,
decode, issue, execution (exec), write-back, and commit stages,
as shown in Figure 3(a). The fetch unit reads a cache line
containing multiple instructions and stores the instructions
in an instruction stream buffer. By modeling the instruction
stream buffer, McSimA+ ensures that the fetch unit only ac-
cesses the TLB and instruction cache once for each cache line
(with multiple instructions) rather than for each instruction.
As pointed out in earlier work [26], most other academic

simulators fail to model the instruction stream buffer and
generate a separate L1-I$ request and TLB request for each
instruction, which leads to overinflated accesses to the L1-I$
and TLB and subsequent incorrect simulation results. Next,
instructions are taken from the instruction stream buffer and
decoded. Because McSimA+ obtains its instruction stream
from the Pin-based frontend, it can easily assign different
latency levels based on the different instruction types and
opcodes.

The issue unit assigns hardware resources to the individual
instructions. By default, McSimA+ models the reservation-
station (RS)-based (data-capture scheduler) OOO core follow-
ing the Intel Nehalem [24]/P6 [18] microarchitectures. Mc-
SimA+ allocates a reorder buffer (ROB) entry and an RS entry
to each instruction. If either resource is full, the instruction
issue stalls until both the ROB and RS have available entries.
Once instructions are issued to the RS, the operands available
in either the registers or the ROB are sent to the RS entry. The
designators of the unavailable source registers are also copied
into the RS entry and are used for matching the results from
functional units and waking up proper instructions; thus, only
true read-after-write data dependencies may exist among the
instructions in the RS.

The execution unit handles the dynamic scheduling of
instructions, their movement between the reservation stations
and the execution units, the actual execution, and memory
instruction scheduling. While staying in the RS, instructions
wait for their source operands to become available so that they
can be dispatched to execution units. If the execution units are
not available, McSimA+ does not dispatch the instructions to
execute, even if the source operands of the instructions are
ready. It is possible for multiple instructions to become ready
in the same cycle. McSimA+ models the bandwidth of each
execution unit, including both integer ALUs, floating point
units, and load/store units. Instructions with operands ready
bid on these dispatch resources, and McSimA+ arbitrates and
selects instructions based on their time stamps to execute on
the proper units. Instructions that fail in the competition have
to stall and try again at the next cycle. For load and store
units, McSimA+ assumes separate address generation units
(AGU) are available for computing addresses as in the Intel
Nehalem [24] processor.

The write-back unit deals with writing back the results of
both non-memory and memory instructions. Once the result is
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Fig. 3. Core modeling in McSimA+.

available, McSimA+ will update both the destination entry in
the ROB and all entries with pending results in the RS. The
RS entry will be released and marked as available for the next
instruction. The commit unit completes the instructions, makes
the results globally visible to the architecture state, and releases
hardware resources. McSimA+ allows the user to specify the
commit width.

2) Modeling of In-Order Cores: Figure 3(b) shows an
in-order core with fine-grained interleaved multithreading as
modeled in McSimA+. The core has six units, including the
fetch, decode, select, execution (exec), memory, and write-back
units. For an in-order core, the models of the fetch and decode
units are similar to those of OOO cores, while the models of
execution and writeback units are much simpler than those
for OOO cores. For example, the model of the instruction
scheduling structure for in-order cores in McSimA+ degen-
erates to a simple instruction queue. Figure 3(b) also shows
the modeling of interleaved multithreading in McSimA+. This
core model closely resembles the Sun Niagara [23] processor.
McSimA+ models the thread selection unit after the fetch
unit. McSimA+ maintains the detailed status of each hard-
ware thread and selects one to execute on the core pipeline
every cycle in a round-robin fashion from all active threads.
A thread may be removed from the active list for various
reasons. Threads can be blocked and marked as inactive by
the McSimA+ backend due to operations with a long latency,
such as cache misses and branch mispredictions or by the
McSimA+ frontend thread scheduler owing to the locks and
barriers within a multithreaded application. When selecting
the thread to run in the next cycle, McSimA+ also considers
resource conflicts such as competitions pertaining to execution
units. McSimA+ arbitrates the competing active threads in a
round-robin fashion, and a thread that fails will wait until the
next cycle.

B. Modeling of Cache and Coherence Hardware

McSimA+ supports highly detailed models of cache hier-
archies (such as private, coherent, shared, and non-blocking
caches) to provide detailed microarchitecture-level modeling
for both core and uncore subsystems in manycore processors.
Faithfully modeling coherence protocol options for manycore
processors is critical to model all types of cache hierarchies
correctly. Because McSimA+ supports flexible compositions
of cache hierarchies, the last-level cache (LLC) can be either
private or shared. The address-interleaved shared LLC has a
unique location for each address, eliminating the need for a
coherence mechanism. However, even when the LLC is shared,
coherence between the upper-level private (e.g., L1 or L2)
caches must be explicitly maintained. Figure 4 shows the tiled
architecture with a private LLC to demonstrate the coherence

models in McSimA+. We assume directory-based coherence
because McSimA+ targets future manycore processors that can
have 64 or more cores, where frequent broadcasts are slow,
difficult to scale, and power-hungry.

McSimA+ supports three mainstream directory-based
cache coherence implementations (to enable important trade-
off studies of the performance, energy, scalability, and com-
plexity of different architectures): the DRAM directory with a
directory cache (DRAM-dir, as shown in Figure 4(a)) as in the
Alpha 21364 [20], the distributed duplicate tag (duplicate-tag,
as shown in Figure 4(b)) as in the Niagara processors [23],
[36], and the distributed sparse directory (sparse-dir, as shown
in Figure 4(b)) [13].

DRAM-dir is the most straightforward implementation; it
stores directory information in main memory with an ad-
ditional bit-vector for every memory block to indicate the
sharers. While the directory information is logically stored
in DRAM, performance requirements may dictate it to be
cached in the on-chip directory caches that are usually co-
located at the on-chip memory controllers, as the directory
cache has frequent interactions with main memory. Figure 4(a)
demonstrates how the DRAM-dir is modeled in McSimA+.
Each core is a potential sharer of a cache block. A cache
miss triggers a request and sends it through the NoC to the
appropriate memory controller based on address interleaving
to where the target directory cache resides. The directory
information is then retrieved. If the data is on chip, the
directory information manages the data forwarding between
the owner and the sharers. If a directory cache miss/eviction
occurs, McSimA+ generates memory accesses at a memory
controller and fetches the directory information (and the data
if needed) from the main memory.

McSimA+ supports both the duplicate-tag and the sparse-
dir features to provide smaller storage overheads than DRAM-
dir and to make the directory scalable for processors with a
large number of cores. The duplicate-tag maintains a copy
of the tags of every possible cache that can hold the block,
and no explicit bit vector is needed for sharers. During a
directory lookup operation, tag matches indicate finding by
the sharers. The duplicate-tag eliminates the need to store and
access the directory information in DRAM. A block not found
in a duplicate tag is known to be uncached.

Despite its good coverage for all of the cached memory
blocks, a duplicate-tag directory can be challenging as the
number of cores increases because its associativity must equal
the product of the cache associativity and the number of
caches [4]. McSimA+ supports sparse-dir [37] as a low-cost
alternative to the duplicate-tag directory. Sparse-dir reduces
the degree of directory associativity but increases the number

79



Tile

O R

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r 

&
 D

ir
e

c
to

ry
 c

a
c

h
e

Request Mem A

Fwd Data

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r 

&
 D

ir
e

c
to

ry
 c

a
c

h
e

RequestorTile node owns the dirty copy

1 

2 3

(a) DRAM-dir

Tile

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Request Mem A

Fwd Data

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Data

RO

RequestorTile other than the home node owns the dirty copy

1 
2

3 4

Home

(b) Duplicate-tag and Sparse-dir, both with home nodes

Fig. 4. Cache coherence microarchitecture modeling in McSimA+. In DRAM-dir (a) model, each tile contains core(s), private cache(s), local
interconnect (if necessary) within a tile, and global interconnect for inter-tile communications. Directory caches are co-located with memory
controllers. In Duplicate-tag and Sparse-dir (b), McSimA+ assumes that directory is distributed across the tiles using the home node concept [9],
[23], [36]. Thus, the tiles in (b) have the extra directory information although not shown in the figure.

of directory sets. Because this operation loses the one-to-
one correspondence of directory entries to cache frames, each
directory entry is extended with the bit vector for storing
explicit sharer information. Unfortunately, the non-uniform
distribution of entries across directory sets in this organization
incurs set conflicts, forcing the invalidation of cached blocks
tracked by the conflicting directory entries and thus reducing
the performance of the system. McSimA+ provides all these
different designs to facilitate in-depth research of manycore
processors.

As shown in Figure 4(a), a coherent miss in DRAM-dir
generates NoC traffic, and the request needs to travel through
the NoC to reach the directory even if the data is located
nearby. In order to model scalable duplicate-tag directories
and sparse-dirs, we model the home node-based distributed
implementation as in the Intel Xeon Phi [9] and Niagara
processors [23], [36], where the directory is distributed among
all nodes by mapping a block address to the home node,
as shown in Figure 4(b). We assume that home nodes are
selected by address interleaving on low-order blocks or page
addresses. A coherent miss first looks up the directory in the
home node. If the home node has the directory and data, the
data will be sent to the request directly via steps (1)-(2) shown
in Figure 4(b). The home node may only have the directory
information without the latest data, in which case the request
will be forwarded to the owner of the copy and the data will
be sent from there via steps (1), (3), and (4), as shown in
Figure 4(b). If a request reaches the home node but fails to
find a matching directory entry, it allocates a new entry and
obtains the data from memory. The retrieved data is placed in
the home tile’s cache and a copy is returned to the requesting
core. Before victimizing a cache block with an active directory
state, the protocol must first invalidate sharers and write back
dirty copies to memory.

C. Modeling of Network-on-Chips (NoCs)

McSimA+ supports different on-chip interconnects, in-
cluding buses, crossbars, and multi-hop NoCs with various
topologies, including ring and 2D mesh topologies. A multi-
hop NoC has links and routers, where the per-hop latency
is a tunable parameter. As shown in Figure 2, McSimA+
supports a wide range of hierarchical NoC designs, where
cores are grouped into local clusters and the clusters are
connected by global networks. The global interconnects can be
composed of buses, crossbars, or multi-hop NoCs. McSimA+
models different message types (e.g., data blocks, addresses,
and acknowledgements) that route in the NoC of a manycore

processor. Multiple protocol-level virtual channels in the NoC
are used to avoid deadlocks in the on-chip transaction proto-
cols. A protocol-level virtual channel is also modeled to have
multiple virtual channels inside to avoid a deadlock within the
NoC hardware and improve the performance of the network.

McSimA+’s detailed message and virtual channel models
not only guarantee simulation correctness and performance ac-
curacy but also facilitate important microarchitecture research
on NoCs. For example, when designing a manycore processor
with a NoC, it is often desirable to have multiple independent
logical networks for deadlock avoidance, privilege isolation,
independent flow control, and traffic prioritization purposes.
However, it is an interesting design choice as to whether the
different networks should be implemented as logical or virtual
channels over one large network, as in the Alpha21364 [20],
or as independent physical networks as in Intel Xeon Phi [9].
An architect can conduct in-depth studies of these alternatives
using McSimA+.

D. Modeling of the Memory Controller and Main Memory

McSimA+ supports detailed modeling of memory con-
trollers and main-memory systems. First, the placement of
memory controllers, an important design choice [1], can be
freely determined by the architects. As shown in Figure 2,
the memory controllers can be connected by crossbars/buses
and placed at edges. They can also be distributed throughout
the chip and connected to the routers in the NoC. McSimA+
supports numerous memory scheduling policies, including FC-
FRFS [43] and PAR-BS [34]. For each memory scheduling
policy, an architect can further choose to use either open-page
or close-page scheduling policies on top of the base scheduling
policy. For example, if the PAR-BS policy is assumed to
be the base memory scheduling policy, a close-page policy
on top of it will close the DRAM page when there is no
pending access in the scheduling queue to the current open
DRAM page. Moreover, the modeled memory controller also
supports a DRAM power-down mode during which DRAM
chips consume only a fraction of their normal static power but
require extra cycles to enter and exit the state. When this option
is chosen, the controller will schedule the main memory to
enter a power-down mode after the scheduling queue is empty
and thus the attached memory system has been idle for a pre-
defined interval. This facilitates research on trade-offs between
power-saving benefits and performance penalties.

In order to model the main-memory system accurately, the
main-memory timing is also rigorously modeled in McSimA+.
For the current and near-future standard DDRx memory
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TABLE II. CONFIGURATION SPECIFICATIONS OF THE VALIDATION TARGET SERVER WITH INTEL XEON E5540 MULTI-CORE
PROCESSOR. IF/CM/IS STANDS FOR FETCH/COMMIT/ISSUE.

Freq (GHz) 2.53 RS entry 36 (IF/CM/IS) width 4/4/6 L2$ per core 256KB, 8-way, inclusive
Cores/chip 4 L1 I-TLB entry 128 L1 I-$ 32KB, 4-way L3$ (shared) 8MB, 16-way, inclusive
ROB entry 128 L1 D-TLB entry 64 L1 D-$ 32KB, 8-way Main memory 3 channels, DDR3-1333

systems, McSimA+ includes user-adjustable memory timing
parameters such as row activation latency, precharge latency,
row access latency, column access latency, and the row cycle
time with different banks.

V. VALIDATION

There are two aspects in the validation of an execution-
driven architectural simulator: functional correctness that guar-
antees programs to finish correctly and performance accu-
racy that ensures that the simulator faithfully reflects the
performance of the execution, as if the applications were
running on the actual target hardware. Functional correctness is
typically straightforward to verify, especially for the simulators
with decoupled functional simulations such as GEMS [30],
SimFlex [45] and our McSimA+. We checked the correctness
of the simulation results on SPLASH-2 using the correctness
check option within each program. However, performance
accuracy is much more difficult to verify. Moreover, a recent
trend (as in a recent workshop panel [10] with several industrial
researchers) argues that provided that academic simulators can
foster correct research insights through simulations the valida-
tion of the simulators against real systems is not necessary.
This trend partially leads to the fact that the majority of
existing academic simulators lack sufficient validation against
real systems. However, considering that McSimA+ focuses on
microarchitecture-level simulations for manycore processors,
we believe that a rigorous validation against actual hardware
systems is required. We performed the validations in layers,
first validating at the entire multicore processor level and then
validating the core and uncore subsystems.

The performance accuracy of McSimA+ at an overall mul-
ticore processor level was validated using the multithreaded
benchmark suite SPLASH-2 [47] against an Intel Xeon E5540
(Nehalem [24]) based real server whose configuration specifi-
cations (listed in Table II) were used to configure the simulated
target system in McSimA+. For all of the validations, we
turned off hyper-threading and the L2 cache prefetcher in the
real server and configured McSimA+ accordingly. Figure 5
shows the IPC (Instructions Per Cycle) results of the SPLASH-
2 simulations on McSimA+ normalized to the IPCs of the
native executions on the real server as collected using Intel
Vtune [17]. When running benchmarks on the real machines,
we ran the applications multiple times to minimize the system
noise. As shown in Figure 5, the IPC results of the SPLASH-
2 simulations on McSimA+ are in good agreement with the
native executions, which have an average error of only 2.1%
(14.2% on average for absolute errors). Its standard deviation
is also as low as 12%.

We then validated the performance accuracy of McSimA+
at the core level using SPEC CPU2006 benchmarks, which
are good candidates for validation because they are popular
and single-threaded. The same validation target shown in
Table II was used. Figure 5 shows the IPC results of McSimA+
simulations normalized to native machine executions on the

real server for SPEC CPU2006. The simulation results track
the native execution result from the real server very well, with
an average error of only 5.7% (15.4% on average for absolute
errors) and a standard deviation of 17.7%.

While the core subsystem validation is critical, the un-
core subsystems of the processor are equally important. To
validate the uncore subsystems, we focused on the last-level
cache (LLC), as LLC statistics represent the synergy between
cache/memory hierarchy and on-chip interconnects. We used
SPLASH-2 benchmarks to validate the cache miss rates for
the LLC, where both the cache size and the associativity
vary to a large degree, ranging from 1KB to 1MB and
from one way to fully-associative, respectively. We used the
results published in the original SPLASH-2 paper [47] as the
validation targets because it is not practical to change the
cache size or associativity on a real machine. We configured
the simulated architecture as close as possible to the archi-
tecture (a 32-processor symmetric multiprocessing system) in
the original paper [47]. Validation results on Cholesky and
FFT are shown in Figure 6 as representatives. While FFT
is highly scalable, Cholesky is dramatically different with
poor scalability. As shown in Figure 6, the miss rate results
obtained from McSimA+ very closely match the corresponding
results reported in the earlier work [47]. For all SPLASH-
2 benchmarks (including examples shown in Figure 6), the
LLC miss rate difference between McSimA+ and the validation
target does not exceed 2% over hundreds of data points
collected at one time. This experiment demonstrates the high
accuracy of McSimA+’s uncore subsystem models.

Our validation covers different processor configurations
ranging from the entire multicore processor to the core and the
uncore subsystems. The validation targets are comprehensive
ranging from a real machine to published results. Thus, the
validation stresses McSimA+ in a comprehensive and detailed
way as well as tests its simulation accuracy with different pro-
cessor architectures. In all validation experiments, McSimA+
demonstrates good performance accuracy.

VI. CLUSTERING EFFECTS IN ASYMMETRIC MANYCORE
PROCESSORS

We illustrate the utility of McSimA+ by applying it to the
study of clustering effects in emerging asymmetric manycore
architectures. Asymmetric manycore processors, such as ARM
big.LITTLE, have cores with different performance and power
capabilities (e.g., fat OOO and thin in-order (IO) cores) on
the same chip. Clustered manycore architectures (Figure 2(c)),
as proposed in several studies [14], [25], [27] have demon-
strated significant performance and power advantages over flat
tiled manycore architectures (Figure 2(b)) due to the synergy
of cache sharing and scalable hierarchical NoCs. Moreover,
clustering has already been adopted in ARM big.LITTLE,
the first asymmetric multicore design from industry. Despite
the adoption of clustering in asymmetric multicore designs,
effectively organizing clusters in a manycore processor remains
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Fig. 6. Validation of McSimA+ L2 cache simulation results to the simulation results from [47].

an open question. Here, we perform a detailed study of clus-
tered asymmetric manycore architectures to provide insights
regarding this question.

A. Manycore with Asymmetry Within or Between Clusters

There are two clustering options for an asymmetric many-
core design as shown in Figure 7. The first option is to have
Symmetry Within a cluster and Asymmetry Between clusters
(SWAB) as illustrated in Figure 7(a), where cores of the same
type are placed within a single cluster but where different
clusters can have different core types. SWAB is the clustering
option used in the ARM big.LITTLE design. The second
option, which we propose, is to have Asymmetry Within a
cluster and Symmetry Between clusters (AWSB), as illustrated
in Figure 7(c). AWSB places different cores in a single cluster
and forms an asymmetric cluster, but all clusters in a chip are
symmetric despite the asymmetry within a single cluster.

Generally, thin (e.g., in-order) cores can achieve good
performance for workloads with inherently high degrees of
(static) instruction-level parallelism (ILP) (where ILP does
not need to be dynamically extracted because the subsequent
instructions in the stream are inherently independent), while
fat (e.g., OOO) cores can easily provide good performance
for workloads with hidden ILP (where the instructions in the
stream need to be reordered dynamically to extract ILP). Thus,
it is critical to run workloads on appropriate cores to maximize
the performance gain and energy savings. In addition, the
behavior of an application can vary at a fine-grained time scales
during execution because of phase changes (e.g., a switch
between computation-intensive and memory-intensive phases).
Thus, frequent application/thread migrations may be necessary
to fully exploit the performance and energy advantages of
asymmetric manycore processors.

However, thread migrations are not free. In typical many-
core architectures as shown in Figure 2, thread migrations

have two major costs: 1) the architecture-state migration
cost, including the transfer of visible architecture states (e.g.,
transferring register files, warming up a branch prediction
table and TLBs) and allowing invisible architecture states to
become visible (drain a core pipeline, finish/abort speculation
execution, for example); and 2) the cache data migration cost.
In this paper, we focus on a heterogeneous multi-processing
system (i.e., the MP mode of the big.LITTLE [12] processor),
in which all cores are active at the same time. Thus, a thread
migration always involves at least a pair of threads/cores, and
all cores involved in the migration will have new tasks to exe-
cute after the migration. The cache data migration cost varies
significantly according to the cache architecture. Migration
within a shared cache does not involve any extra cost, while
migration among private caches requires the transfer of data
from an old private cache to a new private cache. Although
it can be handled nicely by coherence protocols without off-
chip memory traffic, data migration among private caches is
still very expensive when the capacity of the last-level caches
are large, especially when all cores involved in the thread
migration will have new tasks to execute after the migration
and thus will have to update their private caches.

Because the architecture-state migration cost is inevitable,
it is critical to reduce the amount of cache data migration to
support fine-grained thread migration so as to fully exploit the
performance and energy advantages of asymmetric manycore
processors. Thus, we propose AWSB, as in shown Figure 7(c)
to support finer-grained thread migrations via its two-level
thread migration mechanism (i.e., intra-cluster and inter-cluster
migrations). Because AWSB has clusters consisting of asym-
metric cores, thread migration can be and is preferred within
a cluster. Only when no candidates can be found within the
same cluster (and the migration is very necessary to achieve
higher performance and energy efficiency), an inter-cluster
migration is performed. However, for SWAB, as shown in
Figure 7(a), only high-overhead inter-cluster migrations are
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TABLE III. PARAMETERS INCLUDING AREA AND POWER ESTIMATIONS OBTAINED FROM MCPAT [25] OF BOTH OOO AND IO CORES.

Parameters Issue width RS ROB L1D cache L2 cache Area (mm2) Power (W)

OOO (Nehalem [24]-like) 6 (peak) 36 128 32KB, 8-way 2MB 16-way 6.56 3.97
IO (Atom [16]-like) 2 N/A N/A 16KB, 4-way 512KB 16-way 2.15 0.66
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possible when the mapping between workloads and core types
needs to be changed. Thus, by supporting two-level thread
migrations, AWSB has the potential to reduce the migration
cost and increase the migration frequency for a better use of the
behavioral changes in the application execution and to achieve
better system performance and energy efficiency than SWAB.

B. Evaluation

Using McSimA+, we evaluate our AWSB proposal, as
shown in Figure 7(c), and compare it to the SWAB design
adopted in the ARM big.LITTLE, as shown in Figure 7(a). We
assume two core types (both 3GHz) are used in the asymmetric
manycore processors, an OOO Nehalem [24]-like fat core and
an in-order Atom [16]-like thin core. The parameters of both
cores, including the area and the power estimations obtained
from McPAT [25], are listed in Table III. We assume a core
count ratio of fat cores to thin cores of 1:3 so that both fat and
thin cores occupy a similar silicon area overall. Each fat core is
assumed to have a 2MB L2 cache based on the Nehalem [24]
design, while each thin core is assumed to have a 512KB
L2 cache based on the Pineview Atom [16] design. Based
on the McPAT [25] modeling results, a processor with 22nm
technology with a ∼260mm2 die area and a ∼90W thermal
design power (TDP) can accommodate 8 fat cores and 24 thin
cores together with L2 caches, an NoC, and 4 single-channel
memory controllers with DDR3-1600 DRAM connected. The
AWSB architecture has 8 clusters with each cluster containing
1 fat core and 3 thin cores. The SWAB architecture has 2
fat clusters each containing 4 identical fat cores and 6 thin
clusters each containing 4 thin cores. All of the cores in a
cluster share a multi-banked L2 cache via an intra-cluster
crossbar. Because both AWSB and SWAB have 8 clusters,
the same processor-level substrate as shown in Figure 7(b) is
used with an 8-node 2D mesh NoC having a data width of 256
bits for inter-cluster communication. A two-level hierarchical
directory-based MESI protocol is deployed to maintain cache
coherency and to support private cache data migrations. Within
a cluster, the L2 cache is inclusive and filters the coherency
traffic between L1 caches and directories. Between clusters,
coherence is maintained by directory caches associated with
the on-chip memory controllers.

We constructed 16 mixed workloads, as shown in Figure 8
using the SPEC CPU2006 [15] suite for evaluating SWAB and
AWSB. Because there are 32 cores on the chip in total, each
of the workloads contains 32 SPEC CPU2006 benchmarks,
and some benchmarks are used more than once in a workload.
Some of the workloads (e.g., WL-5, as shown in Figure 8)
contain more benchmarks with high IPC speedup, while others
(e.g., WL-1) contain more benchmarks with low IPC speedup.

We first evaluated the thread migration overhead on the
SWAB and AWSB architectures. We deployed all 32 bench-
marks on all 32 cores for both SWAB and AWSB with
the same benchmark to core mapping and then initiated a
thread migration to change the mapping after an interval with
100K, 1M, or 10M instructions. The thread migration occurs
during every interval until the simulation reaches 10 billion
instructions or finishes earlier. Figure 9(a) shows the AWSB
over SWAB speedup (measured as the ratio of the aggregated
IPC) of the asymmetric 32 core processors. As shown in
Figure 9(a), AWSB demonstrated much higher performance,
especially when the thread migration interval is small. For
example, AWSB shows a 35% speedup over SWAB when
running workload 8 (WL-8) at a thread migration interval
of 100K instructions. On average, the AWSB architecture
achieves 18%, 11%, and 8% speedup over the SWAB archi-
tecture with a thread migration interval of 100K instructions,
1M instructions, and 10M instructions, respectively. While the
benchmark to core mapping changes from interval to interval,
the SWAB and AWSB architectures have the same mapping
at each interval. Thus, the performance differences observed
from Figure 9(a) are solely caused by the inherent differences
in the thread migration overhead between the SWAB and
AWSB architectures, and the results demonstrate AWSB’s
better support of thread migration among the asymmetric
cores.

We then evaluated the implications of the thread migration
overhead on the overall system performance. We deployed
32 benchmarks in each workload to all cores in SWAB and
AWSB with the same benchmark to core mapping scheme
and then initiated a thread migration every 10M instructions.
Unlike the previous study, in which SWAB and AWSB always
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SPEC CPU2006 445 458 400 453 483 471 473 470 437 410 459 450 429 436 482 433 464 465 403 401 416 447 462 444 434 454 456
WorkLoad    Spdup 2.3 2.5 2.7 2.7 2.8 2.9 3.3 3.3 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.9 3.9 4.0 4.0 4.1 4.5 4.6 4.7 5.2 5.2 6.3 6.4
  WL-1 2 3 3 5 2 1 1 1 3 1 3 1 1 1 3 1
  WL-2 2 3 3 2 2 3 2 1 1 2 1 5 1 1 2 1
  WL-3 2 1 1 1 2 2 1 1 1 2 1 1 2 2 3 2 2 1 2 2
  WL-4 1 1 1 1 1 1 1 2 1 1 3 1 1 1 4 2 2 2 1 4
  WL-5 1 1 1 1 1 4 1 2 2 1 3 5 1 3 5
  WL-6 2 1 5 1 0 0 2 0 2 1 0 2 2 0 0 2 0 3 2 2 3 0 0 0 1 1 0
  WL-7 1 3 0 4 0 0 1 1 3 2 0 2 2 0 0 1 0 2 3 0 3 0 0 0 1 2 1
  WL-8 0 0 2 0 2 0 1 1 2 0 1 3 3 0 1 1 2 2 1 2 4 0 1 1 2 0 0
  WL-9 2 1 3 1 2 0 0 2 1 1 2 1 1 1 0 1 1 1 0 2 0 0 3 0 0 4 2
  WL-10 3 1 1 1 0 0 0 0 0 0 1 2 0 1 1 3 2 3 3 2 0 3 1 1 2 0 1
  WL-11 1 2 2 3 0 1 1 0 1 0 2 1 1 0 2 2 2 0 3 1 2 2 0 0 0 2 1
  WL-12 2 3 2 1 1 0 3 2 2 0 3 2 0 0 0 0 1 0 0 0 2 2 2 0 0 1 3

WL-13 1 3 1 1 2 0 1 3 1 1 2 1 0 0 0 1 3 2 1 1 2 2 0 0 1 2 0
  WL-14 1 1 1 0 2 0 2 2 1 1 2 2 2 0 1 2 2 1 2 0 3 1 0 1 0 1 1
  WL-15 0 0 1 1 0 0 1 2 1 0 2 2 1 2 1 1 1 1 3 1 3 1 1 1 3 0 2
  WL-16 4 1 3 0 1 0 2 0 2 0 1 2 2 1 1 2 1 1 1 2 1 2 1 0 0 1 0

Fig. 8. Mixed workloads used in the case study constructed from SPEC CPU2006 benchmarks. The benchmarks are sorted by IPC speedup
(the IPC on fat cores over the IPC on thin cores) from the lowest to the highest. Each row represents a mixed workload, where the box
representing a benchmark is marked gray if it is selected and the number in the box indicates the number of copies of this benchmark used
in the workload.
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(a) Thread migration induced performance difference.
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(b) Performance difference with optimized thread migration.

Fig. 9. Performance comparison between SWAB and AWSB architectures. (a) Thread migration induced performance difference on SWAB
and AWSB architectures with different thread migration intervals of 100K instructions, 1M instructions, and 10M instructions. (b) Performance
difference between SWAB and AWSB architectures when running workloads with dynamic thread migration to run applications on appropriate
cores with intervals of 10M instructions. Both figures show a subset of the 16 workloads due to limited space, but the averages (AVGs) are
over all 16 workloads for both figures.

have the same benchmark to core mapping so as to isolate
the thread migration overhead, this study allows both SWAB
and AWSB to select the appropriate migration targets for each
benchmark. At the end of each interval, McSimA+ initiates a
thread migration to place the high IPC speedup benchmarks
on the fat cores with the low IPC speedup on the thin cores,
as in earlier work [44].2 As shown in Figure 9(b), AWSB
demonstrates a noticeable performance improvement of more
than 10% for workloads 3 and 8, with a 4% improvement on
average for all 16 workloads. It is expected that the benefits
of AWSB will be higher with finer-grained thread migrations,
because the thread migration overhead of AWSB becomes
much smaller than that of SWAB when moving to finer-grained
thread migrations, as shown in Figure 9(a).

VII. LIMITATIONS AND SCOPE OF MCSIMA+

There is no single “silver bullet” simulator that can satisfy
all of the research requirements of the computer architecture
community, and McSimA+ is no exception. Although it takes
advantages of full-system simulators and application-level sim-
ulators by having an independent thread management layer,
McSimA+ still lacks the support of system calls/codes (the
inherent limitation of application-level simulators). Therefore,
research on OSes and applications with extensive system
events (e.g. I/Os) is not suitable for McSimA+. Because the

2We made oracular decisions on migration targets as we have the IPC
values of each application on specific moments in McSimA+. The actual
implementation of IPC estimators for thread migration is a hot research
topic [42], [44] and beyond the scope of this paper.

Pthread controller in the frontend Pthread library is specific
to the thread interface, non-Pthread multithreaded applications
cannot run on McSimA+ without re-targeting the thread inter-
face despite the fact that the frontend Pthread scheduler and
backend global process/thread scheduler are feasible despite
the particular thread interface used. McSimA+ targets emerg-
ing manycore architectures with reasonably detailed microar-
chitecture modeling, and outside its scope it is most likely
suboptimal as compared to other suitable simulators.

Another limitation is the modeling of speculative wrong-
path executions. Because McSimA+ is a decoupled simulator
that relies on Pin for its functional simulation, wrong-path
instructions cannot be obtained naturally from Pin, as they
were never committed in the native hardware and are thus
invisible beyond the ISA interface. However, this limitation is
different from the inherent limitation of lacking the support
of system calls. Although speculative wrong-path executions
are not supported at this stage, they can be implemented via
the context (architectural state) manipulation feature of Pin,
as used to implement the thread management layer. The same
approach can be employed to guide an application to execute
a wrong path, roll back an architectural state, and execute a
correct path.

VIII. CONCLUSIONS AND USER RESOURCES

This paper introduces McSimA+, a cycle-level simulator to
satisfy new demands of manycore microarchitecture research.
McSimA+ supports asymmetric manycore systems in detail for
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comprehensive core and uncore subsystems, and can be scaled
to support 1,000 cores or more. As an application-level+ simu-
lator, McSimA+ takes advantage of full-system simulators and
application-level simulators, while avoiding the deficiencies of
both. McSimA+ enables architects to perform detailed and
holistic research on emerging manycore architectures. Using
McSimA+, we explored clustering design options in asym-
metric manycore architectures. Our case study showed that
the AWSB design, which provides asymmetry within a cluster
instead of between clusters, reduces the thread migration over-
head and improves performance noticeably compared to the
state-of-the-art SWAB-style clustered asymmetric manycore
architecture. McSimA+ and its documentation are available
online at http://code.google.com/p/mcsim/.
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