©Copyright by Wooyoung Kim, 1997

THAL: AN ACTOR SYSTEM FOR
EFFICIENT AND SCALABLE CONCURRENT COMPUTING

BY
WOOYOUNG KIM

B.S., Seoul National University, 1987
M.S., Seoul National University, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois

Abstract

Actors are a model of concurrent objects which unify synchronization and data abstraction
boundaries. Because they hide details of parallel execution and present an abstract view of the
computation, actors provide a promising building block for easy-to-use parallel programming sys-
tems. However, the practical success of the concurrent object model requires two conditions be
satisfied. Flexible communication abstractions and their efficient implementations are the necessary
conditions for the success of actors.

This thesis studies how to support communication between actors efficiently. First, we dis-
cuss communication patterns commonly arising in many parallel applications in the context of an
experimental actor-based language, THAL. The language provides as communication abstractions
concurrent call/return communication, delegation, broadcast, and local synchronization constraints.
The thesis shows how the abstractions are efficiently implemented on stock-hardware distributed
memory multicomputers. Specifically, we describe an experimental runtime system and compiler.
The THAL runtime system recognizes and exploits the cost difference between local and remote
message scheduling; it transparently supports actor’s location independence; and, it implements
non-blocking remote actor creation to improve utilization of computation resources. The THAL
compiler incorporates a number of analysis and transformation techniques which work hand in
hand with the runtime system. Among the techniques are: global data flow analysis to infer
type information — the compiler optimizes code for each message send according to the type of
its receiver expression; concurrency restoration through dependence analysis and source-to-source
transformation; concurrency control with dependence analysis which allows multiple threads to be
active on an actor with thread safety, i.e. with no interference between the threads. Experiments
on a stock-hardware distributed memory multicomputer (CM-5) show that the compiler and the
runtime system yield efficiency and scalability on applications with sufficiently large granularity
which are comparable to the performance of other less flexible systems.

iii

To my parents, JongSeok Kim and LeeSook Sung

v

Acknowledgements

I wish thank my parents, JongSeok Kim and LeeSook Sung, for their never-ending love, care,
and encouragement. I would not be what I am without them. In particular, their continuous
concern about my health is the bedrock of the thesis. I thank my brother, JooYoung, for the care
that he has taken of our parents since my leaving my family, that the eldest son is supposed to
do. I owe him a lot. I would also like to thank SooKyung Ham who has been my best friend and
adviser since 1996 autumn, giving me love, support, and a reason to graduate.

My doctoral committee — Gul Agha, Prithviraj Banerjee, and David Padua — have been invalu-
able through their advice and comments. I am thankful to my advisor, Gul Agha, who has been
my mentor since the very first moment I met him and has treated me like a peer, a friend, and a
family member, guiding me to the right direction when I was wondering in my research, and not
complaining of my night-owl-like work habit. I also thank Prithviraj Banerjee and David Padua
for their kindness in agreeing to the last-minute scheduling of my final examination.

I give thanks to members of the Open Systems Laboratory. In particular, I thank Svend Frglund,
Christopher Houck, Rajendra Panwar, Daniel Sturman, Mark Astley, and Shangping Ren, for their
suggesting different ways of thinking and their reading my boring papers patiently and returning
countless comments.

I thank JaeHoon Kim for his innumerable discussions with me. I would like to express my thank
to members of the Champaign-Urbana Korean Catholic Church, including Jin-Woo Bak, NamJung
Jung, Han-Sun Yang, Yoo Joong Kim, SangSook Park, JongHoon Lee, Chang-Hyun Kim, and
Seung-Han Song, for their friendship and care. I especially thank Hong Seo Ryoo and SoonY Kang
for caring me when I was in near-death situation in the summer of 1996.

Table of Contents

Chapter
1 Introduction e 1
1.1 The Actor model of computation 2
1.2 Contributions 3
1.3 History e e e e e e e 4
1.4 Thesis Overview 0 o o e e e e 5
2 Background e e 6
2.1 Object-Oriented Programming 6
2.2 Concurrent Object-Oriented Programming 7
2.3 Actor-Based Languages e 8
2.4 Other COOP Languages i ittt 9
3 THAL: A Tailored High-level Actor Language 11
3.1 The Computation Model 11
3.2 Essential THAL Syntax 13
3.3 Groups.o 15
3.4 Communication Abstractions o oo 16
3.4.1 Concurrent Call/Return Communication. 17
342 Delegation. L e 18
3.4.3 Local Synchronization Constraints 19
3.4.4 Group Communication Abstractions, 21
3.5 Dynamic Actor Placemento 25
3.6 Related work 27
4 Runtime Support 28
4.1 The Execution Model 28
4.2 The Design of the Runtime Support 29

vi

421 Goals e e e 29

4.2.2 The Architecture L 29
4.2.3 Architecture of the Virtual Machine 31
4.3 Distributed Shared Message Queues L . 32
4.3.1 Scheduling with Deferred Message Stack 33
4.3.2 Static Method Dispatch using Deferred Message Stack 36
4.3.3 Dynamic Load Balance 0 0. 37
4.3.4 Fairnesso 37
4.4 Distributed Name Server L 37
441 Mail Address L 38
4.4.2 Locality Descriptor L 38
4.4.3 Distributed Name Table oo o 39
4.44 Message Delivery Algorithm o . 40
4.5 Remote Actor Creation e 44
4.6 Implementation of Communication Abstractions 46
4.6.1 Local Synchronization Constraints 46
4.6.2 Groups and Group Communications, 46
4.7 Migration e 47
4.8 Related Work L 48
Compiler-time Analysis and Optimization 50
5.1 TypelInference L 50
5.2 Transformation of Concurrent Call/Return Communication 51
5.2.1 Join Continuation Transformation: the Base Algorithm 52
5.2.2 Join Continuation Closure L Lo oo 53
5.2.3 Common Continuation Region Analysis 58
5.24 Method Fission e 59
5.2.5 The Deadlock Problemo oo 61
5.3 State Caching and Eager Write-Back 65
5.4 Local Actor Creation 68
5.5 Related Work 68
Performance Evaluation 0 0 70
6.1 The Runtime System on the TMC CM-5. 70
6.2 Performance of the Runtime Primitives 72
6.3 Fibonacci Number Generator o oo 72

vii

6.4 Systolic Matrix Multiplicationo L L oo 73

6.0 Bitonic Sort 74
6.6 N-Queen Problem 75
6.7 Adaptive Quadrature oL L 76
7 Conclusion e 79
Bibliography e 81
Vita 88

viii

List of Tables

3.1

4.1

6.1
6.2
6.3
6.4
6.5
6.6

Timing results of a set of C implementations of the Cholesky decomposition algo-

rithmona CM-5. 23
Performance comparison of the two different scheduling mechanisms. 33
Execution times of runtime primitives. L Lo 72
Execution times of the Fibonacci number generator. 73
Execution times of a systolic matrix multiplication problem. 74
Performance of a bitonic sorting problem. 0. 75
Performance of a 13-Queen problem. Lo 0oL 77
Performance of an adaptive quadrature problem. 77

ix

List of Figures

1.1 Primitive operations in the Actor model. oL 0oL, 3
3.1 The semantic model of THAL. 12
3.2 The essential THAL syntaxin BNF. 13
3.3 A bank account program. L 14
3.4 An implementation of the N-Queen problem. 18
3.5 Message trajectory in delegation. oL oL Lo oL 19
3.6 An example using delegation. Lo o L 20
3.7 Tree construction implementations using CCRC and delegation. 21

3.8 An implementation of a systolic matrix multiplication using local synchronization
constraints. L L e 22

3.9 An actor implementation of the Gaussian elimination algorithm using the group

abstractions.o 24
3.10 Placement of sub-matrices in a systolic matrix multiplication. 26
4.1 An abstract view to the THAL runtime system. 30
4.2 The architecture of the THAL virtual machine. 31
4.3 The actor message structure. L L L e 33
4.4 An implementation of the Fibonacci number generator. 35
4.5 Scheduling local messages using function invocation. 36
4.6 Scheduling local messages using deferred messagestack. 36
4.7 Indefinite postpone Lo 38
4.8 The implementation of the locality descriptor., 39
4.9 Inconsistency in the name tables.o o o oL 41
4.10 The message send and delivery algorithm. 42
4.11 Inconsistency correction and message forwarding in migration. 43
4.12 Remote actor creation. 45
5.1 The transformation result of twoRsps using continuation actors. 54

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3

6.4
6.5

6.6
6.7
6.8

Extracting continuations from a method with no branch.
Extracting continuations from a method with branches.
Extracting continuations from a method with loops.
The structure of the join continuation.
The coloring algorithm to compute maximal CCRs.
The coloring of an N-Queen implementation.
An incorrect fission result. L L Lo
Fibonacci number generator with a recursive messagesend.
An incorrect join continuation transformation.
The transformation result. Each message send is augmented with a reply address.

A deadlock example involving indirect recursive message sends.

An algorithm to generate write-back statements for acquaintance variables.

The THAL runtime kernel on the TMC CM-5.
The communication topology of the implementation of the broadcast primitive. . . .

Comparison of performance of Fibonacci implementations with and without dynamic
load balancing. L

Comparison of performance of Fibonacci implementations on a single Sparc processor.

Comparison of performance of THAL and Split-C implementations of systolic matrix
multiplication. L e

Comparison of performance of a bitonic sorting problem with different problem sizes.

Comparison of performance of a 13-queen problem with different placement strategies.

Comparison of performance of an adaptive quadrature problem with different place-
ment strategies. L L L e

xi

71
71

73
74

75
76
78

Chapter 1

Introduction

For the past 25 years the computer industry has witnessed a steady increase in computer perfor-
mance: 18% - 35% per year depending on the class of computers. In particular, performance growth
of microprocessors is phenomenal [111, 49, 94, 48, 50, 39, 51, 52, 94]; they have grown in performance
by a factor of almost 2 every year. The performance improvement in off-the-shelf microprocessors
together with the availability of different kinds of low-latency high-bandwidth interconnects has
caused stock-hardware parallel machines to proliferate [65, 122, 134, 66, 60, 32, 77, 31, 110, 8].
Such machines offer a vast amount of computation capability to an extent that we have never
dreamed of before.

Indeed, it has been a challenge from the beginning of the parallel computing era to develop a
general-purpose programming system which allows users to enjoy the dramatically increased raw
performance. Although a number of concurrent programming models have been proposed and
actively investigated both in theory and in practice [17, 58, 18, 57, 1], programmers still write
their parallel applications in a low-level message passing paradigm [112, 42] or a shared memory
paradigm. By almost any measure, massively parallel MIMD machines remain difficult to program.

Because actors [53, 55, 30, 1] (or, concurrent active objects) hide details of parallel execution and
present a transparent view of the computation, they provide a promising building block for efficient
easy-to-use parallel programming systems. In particular, actors extend sequential object models
by abstracting over threads of control along with data and procedures. The encapsulation of both
control and data in a single actor makes parallelism and synchronization implicit. Actors specify
concurrent computation using asynchronous communication. Use of unique abstract entities called
mail addresses to name actors makes the communication location-independent. The encapsulation
and the location independence simplify exploitation of data locality as well as enable actor relocation
at execution time for scalable execution.

Since the introduction of the Actor model by Hewitt [53] in late 60’s, a number of actor-
based programming systems have been developed in software on single processor or multiprocessor
platforms [88, 121, 56, 13, 16, 89, 11, 70] and implemented directly on silicon [12, 37]. With the
availability of low-cost, high-performance microprocessors, it becomes a challenge to implement
actor-based programming systems on stock-hardware multicomputers in an efficient and scalable
way [119, 117, 28, 75]. It is challenging because actors are inherently concurrent and fine-grained
while current-generation microprocessors support coarser-grained, sequential execution semantics.
Furthermore, the cost difference between local and remote access is visible to applications on
distributed memory multicomputers.

We argue that a key to a successful implementation is to make communication (i.e. message
sending and scheduling) efficient while retaining the flexibility of actor communication. The the-
sis experimentally validates the argument by developing compile and run-time techniques on the
implementation of an actor-based language, THAL. The language has been designed by adding
flavor of sequentiality to the Actor model in controlled ways. As a result, the programmer is given
complete control over execution grain size so that she may express the granularity at the most
efficient level. Abstracting computation in terms of messages between actors hides architectural
details of underlying platforms, improving programmability and portability.

Efficient execution of programs written in the language needs efficient compilation and runtime
support. In particular, the extra sequentiality introduced for programmability should be eliminated
for the sake of efficiency. In the dissertation we propose implementation techniques for actor
primitives as well as message scheduling. We also propose a suite of compilation techniques to
remove the sequentiality and restore concurrency in a profitable way. Finally, we evaluate the
effectiveness of these techniques using a number of benchmarks on a stock-hardware multicomputer.

1.1 The Actor model of computation

Actors are autonomous components of a system which operate asynchronously. They encapsulate
data, procedures to manipulate the data, and a reactive process which triggers local procedures
in response to messages received. Because actors are conceptually concurrent and distributed, the
simplest form of message passing between them is asynchronous.

A standard way to visualize an actor is to have an active object with a mail queue that is
identified with a unique mail address. An actor may send messages to other actors whose mail
addresses it knows of. Thus, the communication topology of actors is deterministic at any given
instant in time. At the same time, mail addresses may be included in a message — enabling a
dynamic communication topology. The uniqueness property of mail addresses provides for a global
actor space: an actor can send another actor a message regardless of its current location as long as
it knows the receiver’s mail address. It is also the uniqueness property that makes actors location
independent.

Computation in actor systems is message-driven. Messages are buffered in the receiver’s mail
queue and by default processed first-come-first-served. Processing a message involves triggering a
method script. The method execution follows the dynamic data flow specified by the method script
without unnecessary synchronization. Such synchronization may be necessary in other program-
ming models due to potential uncertainty in determining real dependencies in sequential control
constructs. The model does not enforce any specific constraint on the order of message delivery.
In particular, two messages sent by an actor to the same actor may arrive in an order different
from their sending order. By implication the Actor model abstracts over possible dynamic routing.
Although message arrival order is nondeterministic, all messages are guaranteed eventual reception.
The guarantee of delivery is a useful assumption in reasoning about systems where fault-tolerance
need not be explicitly modeled at the level of an application.

In response to a message, an actor may create new actors, send messages to actors, and change
its state with which it responds to the next message (Figure 1.1). These actions are implemented
by extending a sequential language with the following operators:

Figure 1.1: Primitive operations in the Actor model.

e create takes a behavior description and creates an actor. The operator may take additional
initialization arguments.

e send-to takes the receiver’s mail address and puts the message into its mail queue.

e become and update take state variables and replace their values with new ones. The former
changes the state collectively while the latter does it individually.

State change is atomic. Atomic state change serializes message reception [3], thereby offering syn-
chronization on the method boundary. Also, state change may finish before all the other actions
in response to a message have been completed. An actor may process the next message without
violating the atomic state change requirement as long as the next state is specified. This allows
multiple threads to be active on a single actor under a multiple-reader, single-writer constraint [3].
Furthermore, mutually independent actions in a method may be executed concurrently (i.e., inter-
nal concurrency). Since no state is shared among actors, it is unnecessary to provide hardware or
software support for maintaining consistency of shared data.

The Actor model is fairly primitive and abstract so that it may be used to model many different
concurrent computing systems. For example, the J-machine [36, 37] is a fine-grained concurrent
computer which directly implements the Actor model on its hardware. Moreover, the actor opera-
tors form a powerful set upon which to build a wide range of higher-level abstractions [2].

1.2 Contributions

The contributions of the thesis are summarized as follows:

o We designed an actor-based language THAL. The language supports a range of high-level
abstractions which help specify frequent interaction patterns in concurrent computation.

o We designed and implemented a message delivery subsystem which transparently supports
actor’s location independence. Mail addresses are defined to guarantee location transparency
while facilitating name translation.

e The design of mail address makes unpredictable the time for remote actor creation. We
developed a non-blocking remote actor creation mechanism using locally-allocated globally-
unique entities called aliases which overlaps remote creation with other useful computation.

o We designed and implemented a message scheduling mechanism using distributed shared mes-
sage queue and tail calling which recognizes cost difference in scheduling local and remote
messages and exploits it in the scheduling. Part of the implementation is exposed to the
compiler to optimize local message scheduling.

e Among the THAL communication abstractions is concurrent call/return communication that
is analogous to a function invocation abstraction in sequential programming. We designed an
analysis technique which identifies independent CCRCs and implemented a source-to-source
transformation technique which maximally retains profitable concurrency.

1.3 History

The precursor of THAL is HAL, a high-level Actor language [62, 63] designed and implemented by
Christopher Houck. HAL had Lisp-like syntax and focused on remote execution of actors to provide
data locality. Its programs were compiled to C and executed on top of CHARM, an architecture-
independent runtime system [73]. The language featured inheritance, limited forms of reflection,
and synchronization constraints. HAL had been used as a test-bed for experimenting with new
language constructs and dependability methods.

After Houck graduated and left the Open Systems Laboratory, ! the language underwent a
series of evolution under the same name. First, join continuation transformation was implemented
in the compiler and the abstraction for synchronization constraints were extended [78]. Then, a
notion of group was introduced to the language and the communication mechanism was extended
with a broadcast abstraction [5]. At this time, the language syntax was changed from Lisp-like
one to Modula-like one. Finally, we implemented a runtime system with migration capability. It
was initially operational on a network of DEC workstations which was connected by Ethernet and
ran ULTRIX V4.2A. Then, the runtime system was ported to the Thinking Machine Corporation
CM-5 [79].

During the initial period of experimentation on a CM-5, we found that the versatility of HAL
caused an intolerable amount of performance overhead on program execution. The finding led us
to drop support for reflection and inheritance. At this time we changed the name to THAL [103], 2
an acronym standing for Tailored High-level Actor Language. Currently, THAL supports multi-
dimensional arrays and interface to other conventional sequential languages, such as C. Its compiler
features full support for type inference and a number of optimizations including the common con-
tinuation region analysis [80].

'to work on Mosaic and then Netscape.

2THAL should be pronounced as [tal]. It is a Korean term (EEI_) for masks that are used in a traditional Korean
dance-and-play which is loved and enjoyed especially by common folk.

1.4 Thesis Overview

The rest of the thesis is organized as follows. We summarize some background on our research in
Chapter 2. The description of the design and evaluation of THAL are given in Chapter 3. Chapter 4
presents the design and implementation of the runtime support. Compiler-time optimizations are
discussed in Chapter 5. We report in Chapter 6 on the performance of the runtime primitives and
other evaluation results on a stock-hardware multicomputer. Chapter 7 concludes the thesis with
a brief summary and a sketch of future work.

Chapter 2

Background

The roots of actor languages extend to functional and object-oriented programming paradigms.
Although both paradigms had been first developed as early as in the late 50’s and early 60’s, it was
not until 70’s that the attempt to unify them with a model of concurrency was initiated. Since its
introduction by Carl Hewitt, interest in actor languages have intensified through the 80’s and 90’s -
leading to the development of dozens of languages and implementations. In this chapter, we survey
some of these programming languages as well as other representative concurrent object-oriented
programming languages.

2.1 Object-Oriented Programming

Object-oriented programming paradigm encourages modular design and knowledge sharing (in
particular, code reuse). The concept of object-oriented programming has its root in SIMULA [35].
Since then, it has been developed as an important software engineering methodology through a
series of breakthroughs in the field of programming language theory and practice.

In object-oriented languages, computation is abstracted as communication between a collection
of objects. Each object is an instance of an abstract data type (ADT) (often called class) which
encapsulates instance variables and methods that operate on them. An ADT has an external inter-
face and its internals are invisible from the outside; the internals may only be accessed through the
interface. Such encapsulation or information hiding minimizes interdependencies among separately-
written ADTs and allows changes to the internals of an ADT to be made safely without affecting
its users. Since the interface of an ADT captures the “essential” attributes of the ADT, the user
of an object need not be concerned with the ADT itself or its instance objects but only with the
abstract interface.

Computation proceeds as objects invoke procedures in other objects. A procedure identifier
together with its arguments is called as a message and the process of invoking procedures known
as passing messages or communicalion; a message invokes a method (i.e. procedure) at the re-
ceiving object. However, the nomenclature of communication is misleading in a sense that the
model of invocation is closer to procedure activation in imperative languages. Unlike actors, the
communication is inherently synchronous and blocking.

In general, which method is to be invoked is not known until the message’s dispatch time
because a method in an object may share the same name with one in another object. Moreover,

the meaning of a method cannot be determined statically since the method definition may be shared
by two or more objects. The semantics of dynamic binding may vary from language to language,
depending on how the dynamic method lookup is implemented. The semantics are further affected
by the knowledge sharing mechanism a language adopts.

Delegation versus Inheritance: a philosophical debate

There are two common mechanisms that people use to represent knowledge about generalizations
they make from experience with concrete examples. The first is based on the idea of abstract sets;
the set (or class) abstracts out what one believes is true about all the examples she experienced.
The other is to use prototypical objects. One generalizes a concept incrementally as new examples
arise by making new analogies to the previous concept that preserves some aspects of the “defaults”
for that concept and ignoring others. The traditional controversy between the two gives rise to
two mechanisms, inheritance and delegation, for sharing behavior between related objects in object
oriented languages.

Implementing the set-theoretic approach to sharing knowledge in object-oriented systems is
traditionally done by inheritance. An object called class encodes common behavior for a set of
objects. All instances of a class share the same behavior but can maintain unique values for a set of
state variables. A class may inherit from other classes. The inheriting class (or subclass) may add
methods and instance variables to the class. When an object of a subclass receives a message, it
tries to respond to it using its own methods. If it fails, it climbs up the inheritance tree to respond
to the message.

Delegation implements the prototype approach to sharing knowledge in object oriented systems.
It appears in actor languages [88, 135, 29] and several Lisp-based object oriented systems such as
Director [72], T [67], Orbit [113], and others. An object shares knowledge with a prototype by
simply having the prototype as its acquaintance; the object may also keep its personal behavior
idiosyncratic to itself. When it receives a message, it first attempts to respond to the message using
the behavior stored in its personal part. If it fails, it forwards (or delegates) the message onto its
prototypes to see if one can respond to the message.

2.2 Concurrent Object-Oriented Programming

Object-orientation is a useful methodology to attack program complexity; however, it does not ad-
dress issues of concurrency and distribution. Concurrent objects combine concurrency with object
orientation by associating a notion of process or thread with them. They are promising for program-
ming on parallel computers because they hide many details related to parallel execution behind
abstract interfaces of objects, thereby allowing programmers to concentrate on algorithm design.
Increasing deployment of multiple node systems with high-bandwidth, low-latency interconnects in
recent years has been an impetus for active and extensive research on concurrent object-oriented
programming languages.

COOQOP languages differ in how processes are associated with objects. In process-based COOP
languages, process and object are two separate notions. An object with a process is said active. How
much a language distinguishes the two notions determines its flavor. The extent is also reflected
on synchronization abstractions that the language provides. By contrast, the distinction between
active and passive objects is removed in actor languages because actors are active by definition.

Every actor is associated with a thread; however, the thread makes its presence manifest only when
a message is scheduled.

2.3 Actor-Based Languages

The Actor model was first introduced by Carl Hewitt [53], refined by many others [55, 54, 30, 56]
and defined in its current standard form by Agha [1]. Particularly, since its introduction many
actor-based languages [121, 13, 88, 16, 11, 85, 135, 89, 70, 29] have been proposed for programming
concurrent computation.

Actl [88] was an early actor language which was implemented in Lisp. It supported a number
of abstractions which are still found in other contemporary actor-based languages. For example, it
used continuations to support bidirectional control structure of sending a request and receiving a
reply. Delegation was used to share knowledge among actors and implement error handling. The
language also used futures for parallel computation and serializers for synchronization. Another
actor language with Lisp-based implementation is Acore [89] which even borrowed the syntax of
Lisp. Acore was the first language based on the Actor model defined in [1] so that a mutable actor
implicitly serializes messages it receives and the expressions in a message handler may be evaluated
concurrently.

Cantor [11] is the first actor language that was implemented and executed on multicomputers.
The “essential cantor” described in [11] preserved message order between pairs of directly com-
municating actors. It originally employed dynamic typing which was subsequently replaced with
strong typing through the use of type declaration. Cantor version 2.2 also added vectors along with
internal iteration.

Another actor language targeted for parallel execution is Plasma-II [85], a parallel extension
of Plasma which was the first actor language defined by Carl Hewitt. Plasma-II was designed
to be executed on a set of virtual machines distributed on heterogeneous platforms. It allowed
programmers to specify distribution of actors and supported broadcast communication abstraction
for data parallel style of programming.

The most commercially successful actor-based language up to now is Rosette [125] which was
used as a language for the interpreter of the extensible services switch in the Carnot project at
Microelectronics and Computer Technology Corporation (MCC). The language continues to be
used to provide heterogeneous interoperability for middleware in intranet and enterprise integration
software. Rosette is prototype-based and supports inherent concurrency, inheritance, and reflection.
Synchronization in Rosette is specified by enabled set which defines what methods can be executed
under the current state of an actor.

In some ways the Actor model is a very primitive model. Thus, many actor languages extended it
to improve their programmability. Along these lines is a family of languages [133, 134, 120] rooted
at ABCL/1 [135]. ! Though they differ from one another in detail, all the languages share the
core computation model proposed in ABCL/1. Message sending order is preserved between pairs
of directly communicating actors, as in Cantor. ABCL/1 supports three asynchronous message
sending mechanisms called now, future, and past. The first two have blocking semantics whereas
the last is non-blocking. Another actor language, Concurrent Aggregates (CA), extends the Actor
model with inheritance and aggregates. An aggregate is a group of actors of the same kind. All

! ABCL stands for Actor-Based Concurrent Language.

constituent actors share the same name. A message sent to the aggregates is processed by one and
only one constituent but which constituent receives the message is left unspecified (i.e., one-to-
one-of-many type of communication). Unlike the Actor model, every message send in CA expects
a reply by default [28, 75].

All of the above-mentioned actor languages have been designed and implemented from scratch.
A different approach involves extending an existing sequential object-oriented language with the
concurrency semantics of actors. In this approach, actors inherit their actions from a single Actor
class which wraps sequential objects with actor semantics. Two examples following this approach
are Actalk [21] and actra [124] which were built upon Smalltalk-80. Actalk implemented actors by
augmenting ordinary Smalltalk objects with asynchronous message passing and message buffering.
Actra was implemented by modifying the Smalltalk virtual machine. In contrast to the basic Actor
model, communication between actors in Actra was synchronous. Another language following the
extension approach is ACT++ [70]; it extended C++ with a class hierarchy which provides the
concurrency abstraction of the Actor model.

2.4 Other COOP Languages

The desire to leverage the existing compiler technology motivates implementing a COOP language
by extending an existing sequential object-oriented language, such as C++ or Smalltalk, with a
notion of process or thread. In particular, given the popularity and portability of C++,a number
of COOP languages based on C++ have proliferated [23, 69, 47, 73, 27, 87, 86, 95]. We describe a
few examples below.

Compositional C++4 (CC++) [69] extends C++ with a number of abstractions for process
creation and synchronization. Synchronization is done via special shared variables. COOL [27]
is targeted for shared-memory multiprocessors. Invocation of a parallel function creates a thread
which executes asynchronously. Threads communicate through shared data and synchronize using
monitors and condition variables. Mentat [47] and Charm++ [73] are similar in that both distin-
guish parallel objects from sequential ones; programmers are required to specify what classes are
to be executed in parallel. Mentat objects map one-to-one onto processes in a virtual machine.
By contrast, Charm++ requires programmers take the responsibility of mapping of objects onto
processing nodes. pC++ [87], C** [86], and pSather [95] are all C++-based COOP languages which

are designed to support data parallelism. They differ in how to initiate data parallel execution.

CST [61, 38] and DistributedConcurrentSmalltalk (DCS) [96] are two of many COOP languages
which extended Smalltalk-80 [43]. CST supports concurrency using locks, asynchronous message
passing, and distributed objects. Distributed objects are similar to aggregates in CA and are
equipped with similar communication mechanisms. DCS is an extension of ConcurrentSmalltalk [96]
to a distributed interpersonal environment. Concurrency is supported with asynchronous as well
as synchronous method call as well as synchronous thread manipulation. DCST allows multiple
processes in a single object. Synchronization of the processes may be may be specified by a method
relation which defines an exclusive relation between two methods or by a guard expression which
defines when a method is enabled.

Both Emerald [64] and Orca [116] support encapsulated abstract data types but without in-
heritance. Furthermore, they have clear distinction of a process and an object. For example,
in Emerald, multiple threads of control may be active concurrently within a single object. Syn-
chronization is provided by monitors. Unlike other concurrent languages, communication between

processes is synchronous. Orca implements the shared single address space on distribute memory
multicomputers and maintains the coherency by using shared objects and reliable broadcasting.
Parallel execution is accomplished by dynamically creating processes on multiple processors.

SOMIW Operating System (SOS) [108] is an object-oriented distributed system which was im-
plemented in C++ on top of UNIXTM | It was designed to be language-independent by adopting a
library approach and providing a language-independent interface. SOS supports a notion of groups
called Fragmented Objects (FO) and object migration which involves both data and code migra-
tion. SOS objects communication with one another using synchronous, asynchronous, or multicast
communication. Another language that supports code migration is Java [45] which promotes ar-
chitectural neutrality, the property of “write-once, run-anywhere.” Java is designed as a simplified
derivative of C+4 and supports a limited form of concurrency through lightweight threads and
remote method invocation. Although object migration is yet to be supported, a programmer may
mimic it by remotely creating an object and explicitly forwarding its associated code.

10

Chapter 3

THAL: A Tailored High-level Actor

Language

THAL is a high-level language based on actors; it is a descendant of HAL [63, 5]. THAL allows a
programmer to create actors, initialize their behaviors, and send them messages. As the computa-
tion unfolds, new messages are generated, new actors are created, and existing actors undergo state
change. Data flow and control flow in a program are concurrent and implicit; a programmer thinks
in terms of what an actor does, not about how to thread the execution of different actors to ensure
a correct (or efficient) order of execution. Although communication in actors is point-to-point,
non-blocking, asynchronous, and thus buffered, THAL simplifies programming by providing other
forms of communication at the application level.

An important goal of THAL is to provide high performance execution on stock-hardware multi-
computers. THAL addresses two important problems to achieve this goal. First, processing nodes
of stock-hardware multicomputers have large overhead in utilizing fine-grain concurrency offered
by actors. Thus, THAL is designed with the understanding that not all available concurrency in
an actor program may be exploited in execution. Specifically, the execution semantics of THAL
is defined by systematically introducing sequentiality to the Actor model while preserving the
concurrency semantics of actor programs. Second, although naming in actors is location indepen-
dent, different actor placement strategies result in significantly varying performance characteristics.
Actor placement subsumes what is usually termed partitioning and distribution as well as actor
migration. THAL makes actor locality potentially visible to programmers to give them explicit
control over actor placement. However, programmers still do not need to keep track of the location
to send a message to an actor.

3.1 The Computation Model

THAL supports a message-driven model of execution. Message reception by an actor creates a
thread on the actor which executes the specified method with the message as its argument. Thus,
thread execution is reactive. Only message reception can initiate thread execution. Furthermore,
thread execution is atomic and finite. Once successfully launched, a thread executes to completion
without blocking. The atomicity requirement allows at most one thread to be active on an actor
at any time. As a direct consequence, an active thread is given exclusive control over an actor’s
state (Figure 3.1). This atomicity is a natural basis upon which a number of synchronization

11

Figure 3.1: The semantic model of THAL. Each bubble represents an actor which encapsulates
a behavior, a mail queue, and a state. A thread is created when an actor processes a message
from its mail queue. At most one thread per actor is allowed to be active at any time. Mail queue
is not shown in the picture.

mechanisms are built. It also simplifies the task of keeping actors data-consistent. Although a
thread execution may make incremental state change, the net result is visible to the outside as if
it were done atomically.

Thread execution is guaranteed to terminate in a finite number of steps. An implication of
the finiteness is that unbounded loops are not allowed. Even if a programmer unintentionally
specifies a potentially unbounded loop the compiler should transform it to a finite one by bounding
the number of iterations. Infinite computation, if ever needed, may be expressed alternatively by
sending messages to self. ! Finally, method execution is sequential: no concurrency inside a method
is exploited. The overhead of exploiting internal concurrency is not justified on current generation
stock-hardware multicomputers.

The semantics of atomicity and sequentiality allows THAL to support a multi-lingual paradigm
to some extent. Specifically, concurrency and synchronization constructs may be used to glue
together and coordinate otherwise independent sequential procedures written in different languages.
Component procedures of existing sequential application may even be imported. In this way, THAL
may facilitate incremental migration of legacy codes to parallel ones. However, not all sequential
procedures may be used. To be eligible a procedure must be side effect free: its functionality
should be characterized solely by inputs and an output. Furthermore, it should not contain any
unbounded loop. The latter requirement is rather demanding in that the compiler may not easily
detect the presence of an unbounded loop. Currently, THAL supports C and Fortran interface
declarations [98].

! Explicit sending of a message to self does not hurt fairness.

12

3.2 Essential THAL Syntax

A THAL program consists of a script called main and behavior templates. main signifies the
starting point of program execution. Behavior templates are similar to classes in other object-
oriented programming languages. A behavior template is used to define the behavior of a new
actor. Unlike sequential object-oriented languages, neither global variables nor class variables are
provided: actors are encapsulated and they do not share state. This simplifies distribution of actors.
It also allows concurrent access to them without any interference. Another characteristic that
differentiates THAL from other object-oriented languages is that it lacks support for inheritance,
although it could easily be incorporated in the language. In the tradition of actor languages, we
prefer to use delegation.

A behavior template (or, simply behavior) is composed of acquaintance variables and a set of
method definitions.? The method definitions together with the values assigned to the acquaintance
variables comprise an actor’s state. The former is immutable while the latter is mutable. A behavior
may have an optional init method. An init method is hidden from outside and executed exactly
once when an actor is created. The method customizes the creation by specifically prescribing the
actor’s initial state. An ordinary method specifies a response to a message. A method is defined by
an optional local variable declaration followed by a sequence of operations, such as actor creation,
state change, and message send. Figure 3.2 summarizes the syntax of THAL.

(program) ::= (behvs)* (main)
(behvs) ::= behv (behv-id) [(var-decl)] [{init)] (methods) end
(init) = 1init ((formal-parameter-list)) (stmt)+ end
(methods) ::= method (meth-selector) [(var-decl)] (stmt)+ end
(meth-selector) ::= (meth-name) ((formal-parameter-list))
(var-decl) = | (var-list) |
(main) = main [(var-decl)] (stmt)+ end

Figure 3.2: The essential THAL syntax in BNF.

Actors are created and initialized using the new primitive operator. The operator takes a
behavior name and a set of arguments to the init method. It may also take an optional location
expression which specifies where to create the actor. By default, an actor is created locally. State
change is incrementally specified with the update primitive operator; an update is nothing more
than an assignment to an acquaintance variable. Thus, updates encountered in a method execution
collectively define the actor’s next state with which it responds to the next message.

A canonical example of a bank account program is given in Figure 3.3. “%)” starts a comment
which extends to the end of the line. The program creates a checking account with an initial balance
of $100 owned by Mark. Two messages are then sent to the account to deposit $200 and withdraw
$150, respectively. Both acquaintance variables and temporary variables are declared by enclosing
a list of identifiers with a pair of vertical bars. curr_bal and owner are acquaintance variables
and checking and mark are temporary variables. Thus, assignments to curr_bal represent updates
while that to checking is a binding.

2A behavior may also have function definitions. Functions are private methods and may not be invoked from
outside.

13

behv CheckingAccount

| curr_bal,owner | 4/ aquaintance variable declaration
init (ib,io) %% init method definition
curr bal = ib; 4% update to curr bal
owner = jio; 4% update to owner
end

method deposit (id)
curr_bal = curr_bal + id;
end
method withdrawal (iw, teller)
if (iw > curr_bal) then
teller <- over_drawn(iw - curr_bal);
else
curr_bal = curr_bal - iw;
teller <- done();
end
end
method balance ()
owner <- balance(curr_bal);

end
end
main 4% main script
checking,mark,teller... %% temporary variable declaration
g P y

checking = CheckinglAccount.new(100,mark); %) a binding to checking

checking <- deposit(200); k% asynchronous message send
checking <- withdrawal(150,teller);
end

Figure 3.3: A bank account program. Left arrows represent asynchronous message sends. As-
signments to curr_bal represent updates whereas the assignment to checking is a binding to a
temporary variable.

14

What makes THAL unique is that it is untyped but strongly type checked at compile time.
Indeed, type specification is redundant in variable declaration. Instead, the compiler type-checks
a program by analyzing the global data flow and scrutizing its type consistency. Type information
for each variable is inferred as a by-product (Section 5.1).

A left arrow specifices sending an asynchronous message. It was chosen to signify physical
transmission of a message; it demarcates a receiver from a message. A method selector and a set of
arguments comprise a message. A method selector is either a method name or a variable. A method
name is the first class object and may be assigned to a variable or sent in a message. Having the
first-class method names allows programmers to manipulate continuations in more flexible ways.

3.3 Groups

A group is a collection of homogeneous actors which have the same method definitions but differ
in their states. A group is given a unique name which is shared by all its members. There are
a number of computations that may be concisely modeled using groups. Data parallel or SPMD
(single program multiple data) computations are the most conspicuous examples among others.
Using groups a collection of data is partitioned and distributed among members. Data parallel
execution is modeled by broadcasting a message to all the members.

Groups in THAL are based on a simple restrictive model; the goal is to simplify their specifica-
tion and to provide an efficient implementation of data parallel computations. Two characteristics
are important in this respect. First, groups are flat: they may not be nested and may not overlap.
Second, membership is static: no members may be added to or removed from a group and the size
of a group is fixed at its creation time.

The actor primitives are sufficient to express data parallel computations. Member actors may
be created by repeating actor creation. Broadcasting a message is implemented by sending a copy
to each member. Nonetheless, using point-to-point communication to specify a broadcast does not
make perspicuous the homogeneity of group members; it thus complicates reasoning about program
behavior. Besides complicating programmability and reducing readability (refer to Section 3.4.4),
an implementation using only actor primitives suffers from at least three sources of inefficiency.
First, creation of members by repeated actor creation does not exploit homogeneity of the member
actors in memory management. Second, the implementation of the broadcast communication in
terms of explicit point-to-point communication increases communication cost; the same message
needs to be marshaled and to traverse the network as many times as the number of remote members.
Lastly, available network bandwidth may be underutilized because the implementation minimizes
involvement of other processing elements, eliminating the opportunity of more concurrent sending.

A group is created using grpnew or clone. grpnew is similar to new but takes an additional
argument representing the size of the group. clone is a specialized grpnew in that it places exactly
one actor on each processing node. Both operators return a unique group identifier. Group identi-
fiers may be communicated in a message, just like mail addresses. Creation of a group distributes
its members across processing nodes; a specific placement may be specified by the programmer
or determined by the system. From the programmer’s point of view, member actors constitute
elements of an ordered collection. A member is specified by qualifying its group identifier with an
index expression.

In addition to group identifiers, four pseudo variables are made available to member actors to
facilitate naming their groups and peer members. Use of these pseudo variables is legitimate only

15

when used in member actors; the compiler is responsible for checking their validity. The first one is
mygrp which refers to the group a member belongs to. mygrpidx and mygrpsize denote a member’s
relative position in the group and the group size, respectively. The last one is mygrpcreator which
refers to the creator of the group. The first three pseudo variables may be used to name peer member
actors. Member actors may share information through their creator. They also synchronize and
coordinate computations by naming their creator.

Array

Arrays are extensively used in many numerical applications. Specification of computations other
than numerical ones may also be greatly simplified using arrays. Arrays are provided in THAL as a
degenerate group. Semantically, arrays are viewed as an ordered collection of primitive actors which
export only implicit read/write methods. For convenience, a notation to specify multidimensional
arrays is provided. For example, an (i,j)-th element of a two-dimensional array temp may be
represented by temp[i] [j].

Before being accessed, an array need be explicitly allocated using the array operator. However,
the programmer is not allowed to deallocate any array; deallocation is done automatically through
garbage collection. The array operator takes a list of constants each of which denotes the size of a
dimension. The element type need not be specified; it is inferred from the context by the compiler
(Section 5.1).

Arrays may be sent in a message. Unlike sending an ordinary group, sending an array causes
a copy of the whole array to appear in the destination node if the destination is different from the
source. If both nodes are the same, only a handle to the array is sent to the receiver. This rather
awkward semantics has to do with access locality. Local access is much cheaper than remote access.
When an array is multi-dimensional, a contiguous sub-dimension of the array may be sent. For
example, the following message sends are all valid.

arr = array (3,4,5); %% allocate 3 dimensional array and
%% assign it to arr

rl1 <- ml (arr); 4% send the entire array

r2 <- m2 (arr [11[11[1]1); %% send the first element

r3 <- m3 (arr [11[11); %% send the first vector of size b5

r4 <- m4 (arr [1]); 4% send the first plane of size 4x5

r5 <- mb (arr [1]1{1:3}); %% another way to send the entire array

3.4 Communication Abstractions

Although point-to-point non-blocking asynchronous message passing is efficient as well as funda-
mental, it is inconvenient to use in some cases. In this section, we describe three communication
abstractions which complement the point-to-point non-blocking asynchronous message passing,
namely concurrent call/return communication, delegation, and broadcast.

16

3.4.1 Concurrent Call/Return Communication

In many cases, a method execution may require information from other actors to complete: such
computations may be represented by sending a request and waiting for a reply to continue. We
call this call/return communication. In the Actor model, call/return communication requires ex-
plicit manipulation of continuation actors and synchronization because communication in actors is
point-to-point and non-blocking. Both of these characteristics provide an efficient execution model
but are insufficient as programming abstractions. Like many earlier actor languages [89, 135],
THAL provides an abstract way of specifying call/return communication without requiring the
programmer to necessarily manipulate continuations

Call/return communication may be best expressed in the actor paradigm using the concurrent
call/return communication (CCRC) abstraction; CCRC directly models the call/return commu-
nication by having continuation and synchronization implicit in its semantics. Examples of the
concurrent call/return communication abstraction are ask [89], now [135], blocking send [29], and
request [5].

THAL supports CCRC using two constructs, request and reply. They are represented with “.”
and reply, respectively. Execution of a request blocks the sender until a reply is sent back. The
sender may be context switched to avoid wasting compute cycles. reply is used by the callee to
send a result back to the caller. Reply messages to the nil actor are consumed by the system and
never delivered.

Consider an N-Queen problem which computes the number of different ways to place N queens
on an N X N chess board such that all queens are placed in a safe position, i.e., no two queens
are in a row, a column, or a diagonal. An actor implementation may carry out the computation
by dynamically creating actors; each actor creates children, waits for results from them, sums
results, and sends the sum to its parent actor. With non-blocking asynchronous communication,
a programmer need encapsulate into a separate actor both summing the results and sending the
sum to its parent and explicitly specify synchronizations. Figure 3.4 illustrates a more succinct
alternate implementation [117] using CCRC.

The semantics of CCRC allows concurrent execution of mutually independent message sends.
A sender continues to execute even after sending a request as long as the continuation does not
need the reply right away. It blocks when it cannot proceed further without the results from the
previous requests. Consider a statement:

val = add(r1.m1(), r2.m2());

Execution of r2.m2() does not need the result of r1.m1(). As a result, the sender executes the
second request as soon as it sends the first, which allows r1 and r2 to proceed concurrently. The
result from r2.m2() may be available even before that from r1.m1(). Furthermore, the result of
each request may depend on the message reception order at the receiving actor if r1 and r2 are
indeed the same. The sender blocks before it calls add because it requires the two results from the
requests.

This is in contrast to remote procedure call (RPC): RPC semantics guarantee that, for any two
RPCs in a method, all computations caused by the first RPC are completed before the second call
is made (i.e., no concurrency). Thus, execution of the above statement with the RPC semantics
completes the execution of r1.m1() before that of r2.m2(). RPC transfers control as well as data
to ensure sequential execution whereas CCRC ships data off without sending control.

17

method compute (col,diagl,diag2,maxcol,depth)

initialize the array replies.
for i = 1, N do
if (cl1 > maxcol) then break; end
if ((collcl) == maxcol) then
sols = sols + 1;

else
where = random () % #no_nodes;
replies[i] = (NQueen.new() on where).

compute((collcl), (((diagllcl)<<1)&maxcol),
((diag2lc1)>>1) ,maxcol,depth+1);
cl = ((cl<<l)+c)&"c;
end

end

sums replies[i] into sum

reply (sum+sols);

end

Figure 3.4: An implementation of the N-Queen problem. The method computes the number of
the solutions of an N-Queen problem.

3.4.2 Delegation

THAL provides delegate (denoted with !) as a separate communication abstraction which realizes
delegation (Section 2.1). When a sender delegates a message the reply address to the continuation
is replaced with the sender’s reply address. The latter is used by the receiver as its reply address.
As a result, a reply is directly sent to the client (Figure 3.5) (cf. tail recursive optimization).
Furthermore, delegating actors (e.g., Broker in Figure 3.5) need not block because a reply bypasses
the actors en route to the client. Note that clients are assumed to send messages using either
asynchronous communication or call/return communication.

In addition to delegation, delegate may efficiently implement certain communication patterns
which frequently arise in many applications. One example is the implementation of exception
handling. Exception handlers may be collected and implemented as a system of actors each of
which handles a specific exception. The mail address of the receptionist of the system may be
known to actors at their creation time or communicated to them in the course of computation.
When an exception raises, a message is sent to the receptionist which delegates it to an appropriate
handler actor. Another is implementation of a multi-node web server. Requests may be sent to
a gateway node which is known to the outside world. The gateway node distributes requests to
server nodes taking into account balancing the load among the nodes. Replies are sent directly to
clients bypassing the gateway node.

The tree construction phase in an actor implementation of the Barnes-Hut algorithm [97] illus-
trates advantages of delegation over CCRC. The phase begins with each body sending its coordi-
nates to the root. The message climbs down the partially constructed tree and the body is added

18

BROKER

request
L}

\delegation
'llmuu LTINS ")

reply 'y 4
CLIENT i .

SERVER

Figure 3.5: Message trajectory in delegation. A client sends a request to a broker. It does not
matter whom it receives a reply from. The broker delegates a message to a server. The server
sends a reply to the given destination. It does not know the reply goes to the original client.

appropriately. For a body to be sure, it must be notified of its addition. Figure 3.6 shows the
definition of add body which implements the tree construction phase using delegation.

CCRC offers an easier mechanism for implementing the multi-party communication: CCRC
implements the mutli-party communication in terms of point-to-point communication without re-
quiring explicit specification of synchronization and continuation. However, an implementation
using CCRC incurs unnecessary overhead. For example, the inner tree nodes involved are unnec-
essarily blocked. Since the root is also blocked it becomes a bottleneck and the tree construction
is completely serialized. Furthermore, replies are unnecessarily passed through inner nodes; they
never use the reply but just forward it (Figure 3.7(a)).

These disadvantages translate into advantages of using delegation. First, unnecessary reply
communication is eliminated since a reply is now directly sent to its destination body. Message
traffic is reduced and bodies are notified much earlier. Second, continuation allocation by tree
nodes is avoided. Finally and most significantly, the inner tree nodes need no longer be blocked,
thereby allowing multiple additions to proceed concurrently (Figure 3.7(b)).

3.4.3 Local Synchronization Constraints

The sender of a message and its recipient operate asynchronously in actor communication. Thus,
the sender may not know if the recipient will be in a consistent state in which it can logically
respond to an incoming message. This problem is addressed in some process-oriented languages
with input guards on synchronous communication [24, 92, 136, 57]: the recipient refuses to accept
a message from a given sender (or a specific channel) until it is in a state in which it can process
that message. Thus, the sender must busy-wait until the recipient is ready to accept the message.
The net result is potentially inefficient execution — both because communication traffic is increased
and because computation and communication do not overlap. In THAL, a programmer may

19

method add body (..., body,...)
compute quadrant
if (typelquadrant] == nil) then
typelquadrant] = BODY;
child[quadrant] = body;
elseif (typelquadrant] == BODY) then
temp = child[quadrant];
child[quadrant] = Node.new (...);
typelquadrant] = NODE;
child[quadrant] .add body (..., temp,...);
child[quadrant] ! add body (..., body,...);
else
child[quadrant] ! add body (..., body,...);
end
end

Figure 3.6: An example using delegation.

specify local synchronization constraints; the processing of incoming messages not satisfying these
constraints is delayed until such time when the state of the actor changes to allow their satisfaction.

Proper synchronization is essential for efficient as well as correct execution of a concurrent
program. Consider an actor implementation of the Cholesky Decomposition algorithm for dense
matrices. For a given symmetric positive definite matrix A of size n X n the algorithm computes
a lower triangular matrix L, of size n x n such that A = LLT [44]. In the implementation, each
row of a matrix is abstracted as an actor and the matrix itself is represented as a group of actors.
Factorization proceeds as row actors send messages to actors representing lower rows. Because
actors operate and communicate asynchronously, messages corresponding to different iterations
may be in transit at the same time. As a consequence, an actor i on processor P, may send an
actor r a message Mg ; for iteration k after an actor j on processor Pj has sent r a message MEy1,;
for iteration k + 1. Even if my; is sent before my1 j, mi; may take a longer path and arrive at
r later than my, ;. Thus, it is necessary to specify the synchronization on message reception to
process messages in the correct order.

In general, using global synchronization results in suboptimal performance. Table 3.1 supports
the argument by comparing performance results from a set of C implementations of the Cholesky
Decomposition algorithm on the CM-5: implementations using local synchronization exhibit better
performance than those using global synchronization. The results show that proper synchronization
is essential for efficient as well as correct execution of concurrent programs.

In THAL, synchronization necessary for correct execution is specified using local synchroniza-
tion constraints. Synchronization constraints are a language construct to specify a subset of an
actor’s states under which the specified method of the actor may be invoked [127, 70, 40]. Unlike
input guards in conventional process oriented languages [58], they do not cause a sender to wait
until such time when the recipient is in a state in which it can process the message. Thus, synchro-
nization constraints ensure maximal overlap of computation and communication. Synchronization
constraints are local if they are specified on a per actor basis. By postponing the processing of

20

\\ f\
A N N7 LA AN\

(a) Treeadd implementation with request sends (b) Tree add implementation with delegation

Figure 3.7: Tree construction implementations using CCRC and delegation. In (a), gray colored
actors are blocked until they get a reply from their child. In the example, three replies will be
sent even though one is enough to notify the requesting body. In (b), no actors are blocked except
for the one which currently processes a message. Replies are sent directly to the requesting body
actors.

certain messages, local synchronization constraints enforce the correct order on message processing
and guarantee data consistency of the receiver.

A local synchronization constraint is specified using a restrain expression:
restrain msg-expr with (bool-expr);

where msg-expr denotes a message pattern consisting of a method name and formal arguments and
bool-expris a boolean expression over acquaintance variables and the method arguments. Processing
a message which matches msg-ezpr is delayed if bool-expr evaluates to true. Such synchronization
constraints are called disabling constraints. These constraints may be specified separated from
their corresponding method definition [91]. Such separation facilitates code reuse [40]. Making
synchronization constraints a disable condition and having them separated from corresponding
method definitions are to avoid interference with inheritance [40] and a legacy from HAL.

Figure 3.8 shows an example illustrating the use of local synchronization constraints. The ex-
ample is a THAL implementation of a systolic matrix multiplication algorithm known as Cannon’s
algorithm [82]. Systolic algorithms employ synchronized data movement in lock step. However, our
implementation does not use any global synchronization (e.g., barrier); instead, the correct order
of execution is enforced by using local synchronization constraints only.

3.4.4 Group Communication Abstractions

THAL provides two mechanisms for group communication: broadcast and point-to-point asyn-
chronous message passing. Sending a message to a group using a group identifier or mygrp denotes
broadcasting. Semantically, the message is replicated and a copy is delivered to each member.
Point-to-point communication among member actors is expressed by naming individual member
actors. Some systems, such as [29, 25], provides one to one-out-of-many type of communication
mechanism [26] which sends a message to an indeterminate representative member. We found that

21

behv SystolicMatrixMultiplication
| result, subright, subbelow, next_iter, left, up

restrain fromright (sm,i) with (i "= next_iter);
restrain frombelow (sm,i) with (i “= next_iter);
init ()

next_iter = 1;

end
method fromright (submatrix, iter)

next_iter = next_iter + 1;
left <- fromright (submatrix, next_iter);
up <- frombelow (subbelow, next_iter);
end
method frombelow (submatrix, iter)

next_iter = next_iter + 1;

left <- fromright (subright, next_iter);

up <- frombelow (submatrix, next_iter);
end

end

Figure 3.8: An implementation of a systolic matrix multiplication using local synchronization
constraints. KEach message has its intended iteration number which is compared against the
receiver’s next iteration number to maintain the correct processing order.

22

256 x 256 512 x 512
Seq BP CP Bcast Seq BP CP Bcast
2.559 2,567 2,572 2.572 | 21.597 21.603 21.613 21.512
1.429 1430 0.726 1.662 | 12.192 12.223 5.583 13.383
6 | 0471 0.422 0.271 0.696 | 4.016 3.833 1.755 4.985
64 | 0.294 0.211 0.160 0.448 | 1.602 1.225 0.895 2.217
256 | 0.282 0.135 0.137 0.386 | 1.280 0.767 0.558 1.569

= ey

Table 3.1: Timing results of a set of C implementations of the Cholesky decomposition algorithm
on a CM-5. The unit is msec. P is the number of processing elements. Columns Seq and Bcast
represent the implementations which employed global synchronization, thereby completing the
execution of one iteration before starting the execution of the next. The column Seq used barrier
synchronization provided in the CM-5 Active Message layer while the column Bcast used global
synchronization implicit in a CMMD broadcast primitive which was implemented on the CM-5
broadcast network. Columns BP and CP have execution times from the implementations which
overlap the execution of different iterations by using local synchronization. Implementations of
BP and CP are identical except that the former uses block mapping and the latter uses cyclic
mapping. Communication between row actors was implemented using a minimum spanning tree-
like broadcast mechanism built on top of the CM-5 Active Message (CMAM) layer in Seq, BP, and
CP. A vendor-provided CMMD broadcast primitive was used for Bcast.

such a communication pattern does not occur in actor computations frequently enough to justify
the cost of its implementation, and thus, did not support it.

Figure 3.9 illustrates the use of the group abstractions. The methods iterate and eliminate
implement the i-th iteration of the Gaussian elimination algorithm to solve a linear system Az = b.
The i-th iteration gets started by normalizing the i-th row of A and the i-th element of b. Then,
it eliminates the i-th column below the i-th row by broadcasting eliminate message.

Some applications, especially a number of matrix applications, have a successive computation
structure; they step through a sequence of computation stages over their data elements. When
the data elements in these applications are abstracted in terms of a group of actors, some member
actors become idle in a predictable manner while others actively take part in the computation.
For example, in the implementation of the Gaussian elimination algorithm, the i-th row does
not participate in the computation until the back substitution begins after the i-th normalization.
Therefore, copies of eliminate messages which are broadcast by actors representing i+1-th through
N-th rows are simply discarded if they are received by one of actors representing the first through
the #-th rows.

The unnecessary delivery of a broadcast message may be avoided by controlling the scope of the
message. Initially, the scope of a broadcast message is the entire group. A member places itself out
of the scope by executing the resign operator. restore is a global operation and resets the scope.
By controlling the scope the local scheduling cost on processing node p is reduced from & X N,
to K X AN, where k, N, and AN, are the scheduling cost per broadcast message, the number of
member actors in p, and the number of active member actors in p, respectively.

23

behv Row
| rowidx, rowhA, eltB, nextiter
restrain eliminate (iter,inRow,inB) with (iter==nextiter) ;

method iteration ()
Y
for i = rowidx+1l to N do
rowA[i] = rowA[i] / rowA[rowidx] ;
end
eltB = eltB / rowA[rowidx] ;
rowA[rowidx] = 1;
if (rowidx == N) then
mygrp.restore () ;
mygrp <- backsubst (rowidx, eltB) ;
else
resign Q) ;
mygrp <- eliminate (rowidx, rowd, eltB) ;
end
end
method eliminate (iter, inRow, inB)

if (iter == mygrpidx) then
self <- iteration ();

end

end

Figure 3.9: An actor implementation of the Gaussian elimination algorithm using the group

abstractions.

24

3.5 Dynamic Actor Placement

Performance of programs on parallel computers depends largely on the time spent in communica-
tion. In general, the cost associated with communication is a function of the proximity between a
sender and a receiver. The cost of a remote message send is much higher than that of a local one.
Although communication latency in current generation parallel computers is roughly independent
of the distance between a sender and a receiver, sustained bandwidth between two nodes under
busy traffic may vary considerably as a function of the physical distance between the two nodes.
As a consequence, one may favor actor placements resulting in less remote communication. On
the other hand, over-emphasizing locality may hurt scalability because scalable execution often
requires actor placement which balances load across processing nodes. Optimal placement is one
that harmonizes locality and load balance.

Such optimal placement is often both application and architecture specific. Specifically, it may
depend on data structures that an application employs, on how input data are partitioned, and/or
on network and processor characteristics in an architecture. Some applications may even have
multiple phases each of which has a different communication pattern, and thus, has a different
optimal data distribution. For those applications, migration of data and computation may result
in a more efficient and scalable execution.

Programmers may specify application-specific distribution and placement strategy using anno-
tations as well as migration. Placement is specified by annotating a create expression with an on
<location> phrase where <location> is an expression that evaluates to a processor identifier. We
represent a processor identifier by a positive integer. For multi-phase applications with different
optimal placement for each phase, programmers may migrate actors before entering a new phase.
Migration is triggered by sending an actor a migrate message with a piece of location information.

Figure 3.10 illustrates the use of placement. Consider the systolic matrix multiplication C =
A x B. Each matrix is divided into small equal-sized square blocks that are distributed over a
square grid of processors. Matrices A, B, and C are implemented as an actor group with a different
placement. The matrix C is simply overlapped onto the processor grid. The matrix A is row-skewed
before it is overlapped; i.e., sub-blocks in the i-th row are cyclic-shifted to the left ¢-1 times. The
matrix B is similarly distributed in a column-skewed manner, i.e., sub-blocks in the é-th column
are cyclic-shifted upward ¢-1 times.

Note that placement functions are defined outside the behavior definitions of matrix actor
A and B. In this way, the behaviors may be combined with different placement functions by
simply changing the annotation. Also, the placement functions may be reused with other behavior
definitions. However, the separate specification of placement function makes it difficult to specify
member-specific placement. Use of a meta variable @grpidx alleviates the difficulty. The compiler
extends the function’s interface so that the function can take a member index as a formal parameter.
The runtime system instantiates the variable with each group member index at the function’s
invocation time.

More often than not, a placement strategy leads to different performance results on differ-
ent architectures. Thus, when an application is migrated from one platform to another, different
placement strategies may be used to improve performance. Note that placement affects only per-
formance; correctness of an implementation is orthogonal to placement. Thus, in order to reuse
algorithm specification in porting an application, placement specification needs to be separated
from algorithm specification. Different placement strategies may be specified in a meta language
and kept in a library. A programmer may write her application in an architecture-independent

25

function f row_skew (gridsize)
| rsub 1, ¢
r_sub_1l = (@grpidx-1) / gridsize;
c = @grpidx & (gridsize-1);
if (c == 0) then c = gridsize; end
c =c¢c - r_sub_1;
if (c <= 0) then ¢ = ¢ + gridsize; end
rsub_1 = r_sub_1 * gridsize + c;

return (r_sub_1);
end

function f_column skew (gridsize)

| r_sub_1, c | 0 3
r_sub_l = (@grpidx - 1) / gridsize; 1 6 11 16
c = Ogrpidx & (gridsize - 1); 4 7
if (c == 0) then c = gridsize; end 5 10 15 4
rsub_1 = rsub_1 - (¢ - 1); 5 11
if (r_sub_1 < 0) then o ° 1 s o
rsub_1 = r_sub_1 + gridsize; 12 =
end
rsub_1 = rsub_1 * gridsize + c; 13 2 ! 12

return (r_sub_1);
end

main
| ¢, sqrt_partition size |
sqrt_partition size = sqrt (#no_nodes);
¢ = SystolicMatrixMultiplication.clone ();
MatrixLeft.clone (c)
on f row skew (sqrt_partition size);
MatrixRight.clone (c)
on f _colum skew (sqrt_partition size);
end

Figure 3.10: Placement of sub-matrices in a systolic matrix multiplication. Sub-matrices ab-
stracted as group members are placed on 4 X 4 processor grid. Bold face numbers denote processor
numbers and numbers in squares represent member actors which are placed in column-skewed

manner.

26

way, and then, choose the best placement strategy for the application on a given architecture from
the library and combine the two to obtain an efficient implementation. Such a modular specifica-
tion methodology for actor placement has been developed in [102] on top of the THAL placement
constructs.

3.6 Related work

THAL owes much of its linguistic features to HAL which was, in turn, influenced by other actor
languages, such as Acore [89], ABCL/1 [135], and Rosette [126]. The language featured inheritance,
limited forms of reflection, and synchronization constraints; the first two features are not supported
in THAL for the sake of performance. HAL had been used as a test-bed for experimenting with
new language constructs and dependability methods.

A general framework for modeling groups may be found in the ActorSpace paradigm [25] which
provides group abstractions as a key component of its semantics. ActorSpace adopts a pattern-
based model of communication. Messages may be sent to groups of actors which are identified
with patterns. Groups in THAL are a passive container as in the ActorSpace model, but have
only flat structures. Concurrent Aggregates (CA) [29] also supports a notion of groups but with a
one-to-one-out-of-many type of communication where a message sent to a group (i.e., an aggregate)
is processed by a unspecified member. pC++ [87, 20] has a notion of groups similar to that of CA
but its use is limited to data parallel computation.

The communication abstractions supported in THAL are found in other actor languages with
different names. For example, CCRC appears in Acore as ack, in ABCL/1 as now, and in CA as
blocking send. Both ABCL/1 and CA support delegation, too. However, broadcasting in THAL
seems to be a unique feature. In particular, ABCL/1 has no notion of groups. CA does not have
any particular support for broadcasting; they can be explicitly expressed by repeatedly sending a
message to each of the group members. Synchronization constraints in THAL is also unique in that
they are expressed as a disabling condition. Synchronization constraints in THAL are modeled
after the work in [40]. Synchronization constraints in Rosette [127] are specified by using enabled
sets. The ABCL family also has some provision for specifying synchronization constraints [90].

THAL is one of a few languages which make object locality visible to programmers. The place-
ment primitives have been used as a basis for modular specification of partitioning and distribution
strategy in [102]. The ABCL family provides a way to specify actor placement similar to ours, but
does not support object migration. CA also supports user-specified object placement to some extent
but the runtime system largely takes responsibility to control over object placement. Charm++ [73]
provides programmers with only partial control over object placement. For example, migration of
parallel objects is not allowed. Emerald [64] allows object migration as well as code migration. In
particular, Emerald objects have fine-grained mobility. Programmers may use a range of primi-
tives to to control object mobility, such as object location, object movement, and object fix/unfix.
Currently, THAL supports simpler object mobility; actors may migrate but behavior definitions
must be available in the destination node. Behavior definitions of an application are broadcast to
all processing elements upon its execution.

27

Chapter 4

Runtime Support

In general efficient execution of actor programs requires efficient runtime support. The runtime
support implements machinery for actor execution as well as the actor primitives (Section 1.1).
It also collaborates with a compiler to provide high-level abstractions. This chapter describes the
design and implementation of such runtime support for THAL. Specifically, we describe the design
philosophy of the runtime support and its organization. The description is followed by detailed
discussion on the implementation of its components. We also present how the runtime support
realizes high-level communication abstractions as well as how it supports migration.

4.1 The Execution Model

Actor computation unfolds as actors communicate each other. The communication is asynchronous,
which requires a message be buffered at the receiver because it may be busy processing another
message. The messages in the queue are processed one after another. The scheduling does not
assume any particular order to pick up the next message to process though the first-come-first-
served order would be the most natural as well as the easiest-to-implement choice.

Processing a message involves method invocation. The invocation creates a light-weight thread
which carries out the method execution. Threads are guaranteed to execute to the completion with-
out blocking. Non-blocking execution is particularly important in stock-hardware multicomputers
where context switching is an expensive operation. The atomic execution gives a thread exclusive
control over the actor state. The exclusiveness, however, does not preclude concurrent execution of
multiple threads on an actor as long as they do not interfere with each other, 7.e., all the changes
made by a thread to an actor can be seen to others as if they were done instantly.

Ideally, an actor is allocated its own processing element. In reality, processing elements are a
scarce resource even on a massively parallel multicomputer, considering the fine-granularity and
the resulting multiplicity of actors during typical executions. Thus, it is necessary for the runtime
support to provide a sharing mechanism. It needs to be fair to keep an actor from monopolizing
the processor, although the semantics does not specially prescribe how to implement the fairness.
The decision is left to individual implementations. Now, upon completion of a thread execution
control is transfered to the scheduler, which yields the control to the next actor.

28

4.2 The Design of the Runtime Support

4.2.1 Goals

The runtime support has been designed with three goals in mind: performance, modularity, and
portability. First, the runtime support closely interacts with a compiler to achieve performance
goal. It relies on information inferred by the compiler to avoid redundant computation. Also,
it makes fine-grained access to its internals available to the compiler so that the compiler may
utilize them to generate efficient code. Secondly, related functions are placed together in modules
in ways that minimize inter-dependence between the modules. The modular design allows easy
maintenance and facilitates component-based enhancement where implementation changes to a
function are contained in the enclosing module without affecting others. Furthermore, the design
naturally puts machine-dependent functions together in a module and thus makes porting to other
platforms relatively straight forward.

4.2.2 The Architecture

The runtime system may be viewed as a network of virtual machines completely connected by
some communication medium (Figure 4.1, which are mapped to physical processing elements, i.e.
processor-memory pairs. The virtual machine approach makes opaque architectural difference ex-
isting in different platforms, thereby providing application portability. It also simplifies placement
specification of actors.

Single Address Space Design

The runtime support has been designed to concurrently execute multiple programs from different
users. What makes it unique, however, is it makes them share the same address space [81]. Sup-
porting a multi-user environment with a single instance of a runtime support precludes the library
approach, where a compiled code is linked to a runtime library before execution. In the library
approach, an executable is self-contained and does not share any address space with others. Thus,
the same runtime support is replicated in each executable and is loaded on each execution, wast-
ing resources. Instead, we use dynamic loading. The runtime support runs on the background. A
compiler is assumed to generate executables with load information. Upon execution, an application
is dynamically loaded and integrated into the runtime support. (From now on, we use the term
“runtime system” and runtime support, interchangeably.)

The design offers several advantages. The most conspicuous one is that it minimizes the sys-
tem’s idle cycles and maximizes system throughput. The design reduces cycles spent in context
switching as each thread uses a smaller amount of execution context. The cycles which may be
wasted otherwise are productively used to process messages from different programs. Network
throughput increases because, unlike gang scheduling [123], context switch occurs between light-
weight threads, and thus, there is no possibility of packet loss during context switch and no need
to flush the network. Finally, the design eases the operating system’s burden for fair scheduling
in an environment where processors may have the dual responsibility of executing sequential and
parallel applications, as in networks of workstations.

There are, however, two difficulties associated the design. One is possible running out of avail-
able address space. It seems unlikely to happen, though, because most current-generation micro-

29

& 4

Figure 4.1: An abstract view to the THAL runtime system. Each terminal icon stands for a
virtual machine. Mapping from virtual machines (VMs) to processing elements (PEs) may differ
from one implementation to another, although running a VM on a PE is most common. The PEs
may not be completely connected physically but users see the system as if they are.

30

ACTOR INTERFACE
T
\/
- MEMORY
Dispatcher Node Manager Name Server MANAGEMENT
MODULE
7
\/
PROGRAM LOAD MODULE COMMUNICATION MODULE
T
\/
NETWORK INTERFACE
Figure 4.2: The architecture of the THAL virtual machine.

processors adopted a 64-bit architecture which provides up to 2%% ~ 1.8 x 10!® bytes of virtual
address space. ! The other has to do with security. Exceptions raised by individual actors, whether
they are benign or malicious, must be caught and handled gracefully; the runtime system must
be tolerant to them and should not fail. THAL employs strong type checking at compile time
and most type related errors are caught before execution. Furthermore, memory access is strictly
compiler-controlled. Thus, there is only one possible security breach left: assignment to array ele-
ments. A compiler may generate a bound check for an array reference or the runtime system may
implement a fault isolation technique similar to [132]. Either technique is yet to be implemented.

4.2.3 Architecture of the Virtual Machine

A virtual machine (VM) implements an execution environment for actors and provides supporting
machinery. It mostly serves as a passive substrate for active actors: they don’t actively take
part in actor computation. Only functions that a VM performs actively are those related to
remote requests, such as delivering messages sent by remote actors and creating actors upon remote
requests. Others are executed as a part of caller’s execution. A VM exports a well-defined interface
and restricts access to its internals only through the interface. The encapsulation makes the VM
generic in that any program written in a language with actor-like semantics may be compiled and
run on the runtime system.

The components of the virtual machine and their interaction are shown in Figure 4.2. On the
top level is an actor interface which is exported to the compiler. The communication module and
the program load module together constitute the kernel’s interface to the network and are the only
architecture-dependent modules. In between the two layers are the node manager, the dispatcher
and the name server.

!To our best knowledge, no current-generation implementation supports a full 64-bit address space.

31

The communication module and the program load module may be built on top of any well-defined
low-level messaging layer, such as TCP/IP, Active Messages [130, 106], and Fast Messages [76].
They make actors an illusion of the completely connected network. Moreover, the hierarchical
organization offers the runtime system some degree of network independence, and thus, portability.

The node manager delivers messages from remote nodes, creates actors in response to remote
requests, and dynamically loads and integrates user executables into the runtime system. Also,
the node managers in the virtual machines communicate with each other to maintain the system’s
consistency and to dynamically load-balance the system. A request to a node manager is delivered
in the form of a system-level message. When a request is posted, it steals cycles from the currently
active actor, processes the request within the actor’s execution environment, and then, resumes the
actor’s execution (minimal context switch). The node manager is the only active component in a
virtual machine.

The dispatcher provides only data structures necessary for actor scheduling. Actual scheduling
is delegated to individual actors. The delegation allows scheduling to be done on an individual
actor’s current execution context, making unnecessary context switching between the actor and the
node manager. The name server contains data structures for translating a mail address to physical
location information and implements location transparency. The following two sections describe in
more detail the implementations of the two components.

4.3 Distributed Shared Message Queues

Actors are autonomous; each may have its own computation power and process messages with a
scheduling policy. In actor implementations on stock-hardware multicomputers, however, processors
are a scarce resource and actors on a processing element are required to share the processor. Thus,
most actor systems adopt a hierarchical scheduling mechanism. In the scheduling mechanism, the
scheduler in a processing element selects an actor and yields control over the processor to the
actor. The actor processes one of its messages and returns the control. Although fair and simple
to implement, scheduling actors to process their messages is redundant, considering that it is not
actors but messages that abstract computation.

The redundancy may be removed by extending message structure with a reference to a re-
ceiver (Figure 4.3) and unifying the two separate schedulings into message-only scheduling. In the
message-only scheduling, all individual mail queues (which either already exist or will exist) are
combined into a single message queue and shared by all actors. The queue is distributed over the
processing nodes. Messages delivered to an actor are enqueued in the sub-queue in the node (thus,
the name distributed shared message queve (DSMQ)). Eliminating actor scheduling simplifies the
scheduler implementation. It also simplifies actor creation. Table 4.1 compares two scheduling
mechanisms, one scheduling both actors and messages and the other scheduling messages only.

Figure 4.3 shows the definition of the message structure. A message consists of two parts,
message header and message arguments. receiver holds a reference to the receiver of a message.
To reduce message frame allocation overhead, the runtime system maintains a pool of message
frames. actualsize contains message frame size which is used to allocate/deallocate a message
frame from the pool. msgsize represents effective message size i.e. the size of the message header
plus the argument size of a message. The effective message size is used to send the message off the
node. Since messages delivered to an actor are now scattered in the DSMQ), sending them along
with the actor at its migration time would be overly expensive. Instead, messages are forwarded

32

typedef struct _actor msg header {
struct _actor message *next;

Method method;
struct _actor *receiver;
int msgsize;
int actualsize;
int *locale;

int packer;

int dummy ;

} ActorlMsgHeader;

typedef struct _actor message {
ActorMsgheader hdr;
int data [0];

} ActorMessage;

Figure 4.3: The actor message structure.

message-only hierarchical
usec cycle usec cycle
local creation 8.04 265 11.52 380
remote creation | 5.83 (20.831) | 192 (687) | 5.83 (23.68) | 192 (781)
Isend & dispatch 0.45/5.67 15/187 8.10 267
rsend & dispatch 9.91 327 15.26 504

Table 4.1: Performance comparison of the two different scheduling mechanisms. Isend and rsend
stand for local send and remote send, respectively. Local send and dispatch time does not include
the time for locality check. Times obtained for the THAL runtime system are measured on TMC
CM-5 by repeatedly sending a message with no argument. Each CM-5 node hosts a 33 MHz Sparc
processor. | The local execution of remote actor creation in THAL takes 5.83 usec while the actual
latency is 20.83 usec.

when necessary. The forwarding is enabled by use of 1locale which points to the actorDefPtr field
of the receiver’s locality descriptor, which is nullified when the actor migrates. When a message
is about to be processed the presence of the receiver is examined by dereferencing locale. If not
present, the message is forwarded to the receiver. Marshaling and sending arrays in a message poses
a problem when forwarding the message. The compiler rearranges message arguments, puts array
arguments after all simple ones, and store encoded packing information in packer (Section 4.7)/

4.3.1 Scheduling with Deferred Message Stack

Recognizing cost difference between remote and local message sending offers a substantial amount
of performance gain, especially in fine-grained COOP languages [119, 75]. To exploit the cost
difference in local message scheduling, the runtime system divides the message queue in a node
into two sub-queues, local and remote, and distinguishes scheduling local messages from scheduling

33

remote messages. To reduce message frame allocation time, local messages are allocated not from
the message pool but from a separate LIFO buffer. Distinguishing local and remote messages and
giving higher scheduling priority to local messages simplify queue management and reduce message
scheduling cost.

To reduce overhead further, part of message scheduling is exposed to the compiler. For each
send statement the compiler inserts a runtime locality check to see if the receiver actor is local i.e.
it is on the same node and is ready to execute. Depending on the result, the compiler generates two
versions of message sending code. One is specialized for local message sending and the other is a
generic one that is used when the locality check fails. Furthermore, both message frame allocation
and argument marshaling are done in user code to eliminate redundant memory copy of message
arguments from user space to kernel space.

Methods execute to completion without blocking. Non-blocking execution precludes the use of
immediate dispatch of a local message with function invocation [119, 75] because function invocation
implicitly blocks the sender of the message. The message is scheduled in the local message queue
and its dispatch is deferred until the sender finishes its execution. (The local message queue is
named deferred message stack (DMS) because it holds deferred local messages and behaves like a
stack.) Upon completion, the sender dispatches the next message with its receiver by tail-calling
the specified method. Since control information need not be stored upon method dispatch, the
amount of memory for control information is bounded.

Local message scheduling with DMS (SDMS) is a little more expensive compared to that with
function invocation (SFI) because the former requires explicit message frame allocation and ar-
gument marshaling which are implicit in the latter. On the other hand, the SDMS allows more
concurrent message sending in a method and thus is more scalable. Consider a method which sends
two messages where the first is local and the second is remote. The SDMS defers the dispatch of
the first message so that the second message is sent right after scheduling the first one. The two
messages are dispatched concurrently; the second may even be dispatched before the first one. This
is not the case when using the SFI. The scheduling suspends the method execution at the time of
sending the first message until the receiver finishes its computation and returns the control. The
blocking semantics keeps the second message from being sent concurrently.

Another advantage of the SDMS has to do with load balancing. Consider the implementation
of the Fibonacci number generator in Figure 4.4. The program places a subtree of the compu-
tation tree on a processing node. Since the computation tree is lop-sided, the execution of the
program eventually develops severe load imbalance. Notice that the compute method of the behav-
ior Fib_Local sends two local messages. The SDMS schedules one in the DMS while the other is
being processed. The messages in the DMS are available for dynamic load balancing, resulting in
more scalable execution. On the other hand, the SFI may not generate the second message in ad-
vance and thus not support dynamic load balance. The SDMS may be thought of as a compromise
between locality and scalability.

The atomic method execution semantics, which allows no more than one active thread on an
actor, interferes with the SFI and may cause a deadlock when two actors send messages in a mutually
recursive manner. Other systems [119, 75] which employ the SFI avoid deadlock by providing a
stack unwinding mechanism along with futures.

Figure 4.5 shows snapshots of a stack and a message queue when function invocation is used to
schedule local messages. Suppose actors 51, R, and S, are on the same node. Before S, sends a
message to Sy, it examines if S; is indeed local (Figure 4.5.(3)). The check fails because S; has yet

34

behv Fib
method compute (n,dist)
if (n <= 1) then
reply (1);
else
if (dist > 1) then
reply ((Fib.new()).compute(n-1,dist/2) +
(Fib.new() on (#myvpn+dist)).compute(n-2,dist/2));
else
reply ((Fib_Local.new()).compute(n-1) +
(Fib_Local.new()) .compute(n-2));
end
end
end
end

behv Fib_Local
method compute (n,dist)
if (n <= 1) then
reply (1);
else
reply ((Fib.new()).compute(n-1) + (Fib.new()).compute(n-2));
end
end

main

print ((Fib.new()) .compute(33,#no nodes/2));
end

Figure 4.4: An implementation of the Fibonacci number generator.

35

(€] (2 (3) (C)] Legend:

STACK S, S, S2]
= < R ms R R the current
(activation frame
Sq S, Sq S1

msg transfer
—l

MSG QUEUE enqueued message

BN BN m-u -E-u

msg

Figure 4.5: Scheduling local messages using function invocation. (1) S; sends a message to R.
R starts execution immediately. (2) R sends a message to Sy. S starts execution immediately.
(3) Sz sends a message to S;. Since S; is running, the message is sent using the generic message
send mechanism. (4) The message is enqueued in the local message queue.

1)) 3) Legend:
up STACK I
method def ‘ s ‘ ‘ R ‘ ‘ S ‘ the current
- L 2 activation frame
receiver
msg size DMS 9.
loc ptr - - - enqueued message
msg args / SR R=>S, msg

Figure 4.6: Scheduling local messages using deferred message stack. (1) S; sends a message to
R. R starts the execution after S; has finished its execution (2) R sends a message to Sy. Sa
starts the execution after R has finished its execution (3) Sy sends a message to S;. Since S;
has finished its execution, the message is pushed into the deferred message stack. The specified
method is dispatched using unconditional jump.

to finish its method execution. Sy is forced to send its message using the more expensive generic
send. Note that function invocation may be used for the message from 53 to S; if S; has finished
its method execution before the message is sent.

Figure 4.6 has snapshots of a stack and a DMS for the same example but with the SDMS.
It also shows the components of a message frame. The up field points to a message frame right
above the message frame and loc ptr holds the memory address to the receiver actor’s location
information. Each message frame in the DMS encapsulates the complete information for the method
execution. The encapsulation allows a scheduler to migrate messages for load-balanced scalable
program execution. A scheduler may migrate the bottom-most message in the DMS and its receiver
actor.

4.3.2 Static Method Dispatch using Deferred Message Stack

The meaning of a message depends on the receiver in (concurrent) object-oriented programming
languages. Type dependent method dispatch necessitates the method table lookup at the receiver

36

when processing a message. The cost is significant especially in actor languages because their
method execution is fine-grained. The situation gets worse if the language supports inheritance
and the class hierarchy gets deeper.

The dynamic method lookup may be bypassed if, at compile time, the type of the receiver
can be known to be unique throughout all possible executions. The type information may be
obtained through a global data flow analysis. We extended the type inference presented in [100,
101] (see Section 5.1) to infer types for expressions in a THAL program. The kernels integrate
application programs into their address space so that each program is located in the identical space
in all the kernels. Thus, a function address has the same meaning wherever it is accessed. If the
method selector in a message send expression has a unique meaning throughout the entire program
execution, we replace the method selector with the corresponding function address.

4.3.3 Dynamic Load Balance

Even when programmers may specify their application-specific load balancing policy, load imbalance
may develop as computation unfolds. Multiprogramming supported in the THAL runtime system
should alleviate the impact of load imbalance on the system throughput. To further improve
processor efficiency and scalability, the runtime system supports dynamic load balancing. As a
virtual processor runs out of messages to process, it randomly selects a target virtual processor and
steals a message from it (random polling). The target processor looks for a candidate message from
its remote message queue and then its local message queue and sends it to the requesting processor.
For a message to be migrated, its target actor should not be engaged in any computation at that
moment. When the message is migrated, it takes the receiver along with it. Other messages to the
actor are subsequently forwarded.

4.3.4 Fairness

One problem with the SDMS is that processing certain messages may be indefinitely postponed
in a finite computation. Figure 4.7 has a non-strict program which terminates even though one
of its subcomputations does not. Fair message scheduling eventually dispatches the done method,
making the computation halt and the actor be reclaimed. The halt primitive cannibalizes the
actor and reclaims its resources. However, the SDMS indefinitely postpones the dispatch of the
done method.

We use a counter to guarantee the eventual message delivery in the Actor model. Recall that any
method can only execute finitely in THAL. At first, the counter is set to 0. It is incremented upon
each method dispatch. If the value of the counter exceeds a predefined value, the actor yields control
and schedules the bottom-most message of the DMS. The counter is then reset to 0. The counter
is also reset when the DMS becomes empty. It never decrements, though. Non-strict computation
in a CPS transformed method can be similarly handled with an additional overhead for restoring
concurrency. We have assumed that the non-strict computation occurs relatively infrequently.

4.4 Distributed Name Server

Sending a message requires the receiver’s current locality be known to the sender. The actor’s
where-abouts are abstractly represented by its mail address. It is this abstraction that provides

37

behv InfiniteFinite
method send_twice ()

self <- send_twice (); main
self <- send_twice (); | inFinite |
end inFinite = InfiniteFinite.new ();
method done () inFinite <- send_twice ();
halt; inFinite <- domne ();
end inFinite <- send_twice ();
end end

Figure 4.7: Indefinite postpone. With a fair scheduler, the program terminates even though one
of its subcomputations does not terminate. A fair scheduler eventually dispatches done method,
making the computation halt and reclaiming the actor. halt cannibalizes the actor and reclaims
its resources. However, the static method dispatch may indefinitely postpone the dispatch of done
method.

actors with location transparency. However, a receiver’s abstract location must be translated to a
physical location before the first byte of a message is injected into the network. The name server
manages data structures and exports access routines for name translation. We describe in this
section how a mail address is defined to facilitate name translation while guaranteeing location
transparency. The implementation of the distributed name server in the runtime system is also
discussed in the section.

4.4.1 Mail Address

An actor is uniquely identified with a mail address which represents its locality in the computation
space. The entities used to define a mail address determine the efficiency of name translation as well
as the degree of location transparency. Often, the two are found be conflicting requirements. On
one hand, the use of location-dependent entities tightly coupled with actors offers efficient name
translation at the expense of location transparency. On the other hand, location-independent
entities allow location transparency but increase name translation time.

To meet both requirements well, we define mail addresses using location-dependent entities
which are loosely-coupled with actors. A mail address is composed of two parts. One part is the
address of a creator node — its actor’s birthplace. The location dependency enables efficient name
translation. The other is the memory address of a locality descriptor which contains the actor’s
location information. Decoupling of the mail address of an actor from its physical location makes
it location independent and relocatable.

4.4.2 Locality Descriptor

The name server keeps actors’ locality information in locality descriptors. The implementation of
a locality descriptor is shown in Figure 4.8. If an actor is local, the locality descriptor contains the
memory address of the actor in the actorDefPtr field. Otherwise, the locality descriptor contains
the remote node address (location) and the memory address of the actor’s locality descriptor on
the remote node (ALD_cache). A locality descriptor is allocated when an actor is created. It is also

38

typedef struct _actor_locality descriptor {
struct _actor_locality descriptor *fwd;
int status;
ActorAddress actorAddr; /* 2 words */
int location;
Actor *actorDefPtr;
struct _actor_locality. descriptor *ALD _cache;
ActorMessage *hold_list;
struct _back_prop_task *reverse_forward._chain;
int dummy; /* for double word alignment */
} ActorLocalityDescriptor;
Figure 4.8: The implementation of the locality descriptor.

allocated at message sending time if the receiver’s locality descriptor is not found at the sending
node.

Using locality descriptors, a generic message send mechanism may be implemented as follows.
During a message send, the sender composes a message and consults the name server. If the location
information is locally available, the message is sent using the information. Otherwise, a locality
descriptor is allocated and the message is sent to the node where the receiver was created. Note
that the location information is encoded in the mail address. No inter-processor communication is
required to get the receiver’s location information. (For the moment we assume that actors never
migrate. A more general solution with actor migration is given in Section 4.4.4.) The memory
address of the locality descriptor in the receiving node is sent back to the sending node and cached
in the newly allocated locality descriptor while the message is delivered. Subsequent messages to
the same receiver are sent with the cached address, obviating name table lookup at the destination
node.

4.4.3 Distributed Name Table

The name server is consulted every time a message is sent, either locally or remotely. Thus, the
name server should be distributed to not be a bottleneck. This is done by having local copies of
the name server manage their own local name table independently of each other. Each local name
table is implemented as a hash table whose entries are pointers to locality descriptors. To avoid
inter-processor communication in the name translation process, each local name table may have
its own copies of actors’ locality descriptors. As a result, name translation from mail address to
location information is performed by consulting only the local name table.

Allowing multiple locality descriptors for an actor implies local name servers collaborate in
order to maintain the consistency of the name tables. Note that inconsistency arises only when
actors migrate. The most straight forward mechanism to maintain consistency is broadcasting: a
virtual processor involved in the migration broadcasts the actor’s new location information. Since
broadcasting requires participation of all virtual processors, it typically wastes compute cycles
because only a few virtual processors will have a locality descriptor for the migrating actor. To
reduce migration cost and give better resource utilization, we relax the consistency requirement

39

and update only two name tables: one at the source node and one at the birth place node if the
two nodes are different.

Figure 4.9 illustrates how incorrect location information arises in name tables. In the example,
the actor was originally created in node 3 and then migrated to node 1, to node 2, and to node 4.
Since only the name tables at the source node and at the birthplace node are updated, when the
actor moved to node 4 the location information in the name table in node 2 becomes out of date
and inconsistent.

Allowing inconsistency in the name tables makes location information for remote actors only
“best guess.” A name server cannot tell if information in its local name table is up to date;
at best, it believes that an actor is still there when it sends it a message. If migration occurs
infrequently the guess may be correct most of the time. Indeed, it is our underlying assumption
for the implementation that user specified migration is a relatively infrequent, bursty event. Thus,
instead of maintaining stringent consistency requirement, we allow inconsistency in the name table
and provide a mechanism to correct the inconsistency.

4.4.4 Message Delivery Algorithm

The message send and delivery algorithm is summarized in Figure 4.10. The algorithm is straight-
forward except for the inconsistency correction mechanism. We describes the algorithm in detail.

Actors may migrate, and an actor’s migration history is kept in its locality descriptors. Since
location information for a remote actor is only a best guess, a message may be sent to a node from
which the receiver has already migrated. If a node manager is requested to deliver a message but
finds the receiver has already moved, it forwards the message using the history information kept in
its local name table.

Consider the two examples in Figure 4.11. The top one illustrates a situation where a receiver’s
location information is not found in the local name table upon message send. Even though the
receiver has a migration history of node 5 — node 1 — node 2 — node 3, the sender has no means
of knowing it. Since no location information is available at all, the message is sent to the receiver’s
birth place, from which it is forwarded to node 3. Recall that an actor’s birth-place node always
has up-to-date location information.

The one at the bottom depicts a more complicated situation. The actor A was first created on
node 5. After it moved from node 5 to node 1 and to node 2, another actor in node 4 sent A4 a
message. Thus, node 4 thinks A is on node 2. Then, A moved again to node 3. Although the name
tables on nodes 2 and 5 (A’s birth place) are updated, those on nodes 1 and 4 are not. Then an
actor on node 4 (it may be the same actor which sent the previous message) sends a message to A.
Since the name server guesses that A is on node 2, the message is sent to node 2 and forwarded to
node 3 from the node.

The forwarding process consists of three phases. In the first phase, the requesting node manager
sends a special forwarding information request (FIR) message to locate the actor. The FIR message
is relayed until it reaches the receiver. Then, the receiver’s locality information, i.e., the node
number and the memory address of the receiver’s locality descriptor, is back-propagated along
the forward chain (reverse_forward_chain in Figure 4.8). Meanwhile, all node managers in the
forward chain update their name tables as the message passes by. The shaded arrows in Figure 4.11
denotes the information flow. Once the receiver’s location is known, the original message is sent
directly to the node.

40

I SE

w
>
= l|"

i 3
»

Figure 4.9: Inconsistency in the name tables. The figure shows how inconsistency is introduced
in the name tables.

41

if mail address is in my local table then
if the actor is local then
deliver the message
else if it is on a known remote node (note: the actor may not be there) then
send the message to the node
else if the location is not known then
send the message to the birthplace of the actor
else if it is on a remote node but a forwarding information request has been sent
enqueue the message and hold it until the actual location is known
else
error
else
if its birthplace is me then
error
else
send the message to its birthplace

(a) Sender Actor

if mail address is in my local table then
if the actor is local then
deliver the message
else if it is on a known remote node (note: the actor may not be there) then
enqueue the message and send a forwarding information request
else if the location is not known then
it will never happen
else if it is on a remote node but a forwarding information request has been sent
enqueue the message and hold it until the actual location is known
else
error
else
error

(b) Receiving Node Manager

Figure 4.10: The message send and delivery algorithm.

then

then

42

(a) No location information is available in the local name table.

AR\
s

(b) Incorrect location information is in the local name table.

Figure 4.11: Inconsistency correction and message forwarding in migration.

43

When a node manager is requested to deliver a message to an actor, it may have already sent
an FIR message. Since it is unnecessary for it to send an FIR message again, it simply enqueues
the message in the hold list (hold_1list in Figure 4.8) and waits until the receiver’s location is
known. When the information is available, it updates the name table, forwards the messages in the
hold list to the node, and relays the information back to the virtual processors which wait for the
information.

4.5 Remote Actor Creation

A mail address is allocated and assigned to an actor at its creation time. The use of an entity which
is coupled with an actor in defining its mail address requires it be allocated at the node where the
actor is placed. This implies that an actor requesting remote creation must wait until the mail
address is returned. In consequence the remote creation time varies unpredictably as traffic in the
network or load at the remote node changes.

The unpredictable remote creation time makes split-phase allocation (Figure 4.12.a) desirable
on platforms with hardware support for context switch; context switch to another from a thread
requesting remote creation while the latter waits for the mail address to be delivered, effectively
hides the latency and saves idle cycles [9, 34]. However, it is less desirable in stock-hardware
multicomputers where context switch is very costly (e.g., 52 psec in the TMC CM-5).

We use aliases instead of relying on context switch. An alias is a locally allocated clone of a
mail address, which is equally capable of uniquely identifying an actor. An actor’s alias may be
used interchangeably with its mail address. The use of aliases is based on the observation that an
actor requesting remote creation may continue with its remaining computation as soon as it gets a
handle that uniquely identifies the newly created actor. Note that actors created as results of local
creation requests need not have aliases.

An alias has the same structure (i.e., <birthplace,address>) as a mail address. However,
birthplace now represents not the node where the actor was created, but the node where the
creation request was issued. The address of the node on which the actor is created is also encoded
in birthplace. The encoded information may be used when an actor sends a message using an
alias and the locality descriptor is not found in the name table. The sender sends the message
to the receiver’s birthplace node with the assumption that it has not migrated. Having the same
structure allows us to implement message sending with aliases without incurring any additional
cost.

When an actor issues a remote creation request it allocates an alias and sends it along with the
request. As soon as the last packet of the request is injected into the network the alias is returned
to the sender which then continues its execution with it. On the receiving end, the node manager
creates an actor with an ordinary mail address and registers the actor in its local name server with
the received alias (Figure 4.12.b). Meanwhile, the locality descriptor’s memory address is sent back
to the requesting node and cached there (on the background). Our measurements show that local
execution of remote creation with no initialization argument completes within 5.83us whereas the
actual creation (i.e., time taken from request sending to completion of the creation at the receiving
node) takes 20.83 pus.

44

=mmm actor execution
=== Kkernel execution
Actor 1 —#— context switching

I —— kernel call

_ Kernel
I\ creation
Actor 2 o —— request
— mail
-
address

(a) remote creation using split-phase allocation.

=mmm gctor execution
=mmm kernel execution
—#— context switching

Actor 1 ——kernel call
2 L Kernel
°.83 1 j\» creation
usec .
Yy alias request
Actor 2

(b) remote creation using alias.

Figure 4.12: Remote actor creation.

45

4.6 Implementation of Communication Abstractions

THAL provides flexible high-level communication abstractions. These abstractions must be imple-
mented efficiently by the compiler and the runtime system. We describe how the runtime system
interacts with the compiler to implement the abstractions. Runtime support for CCRC is discussed
in Section 5.2 in conjunction with the compile-time transformation.

4.6.1 Local Synchronization Constraints

Synchronization constraints are bound at compile time to methods that they constrain. The runtime
system allocates an auxiliary queue called pending queue to an actor upon its creation to enforce
local synchronization on the actor. When a message is dispatched, the runtime system evaluates
the synchronization constraints of the target method. If any of them evaluates to true, the method
is disabled for the moment and the message is enqueued in the actor’s pending queue. If none of
them evaluates to true, the method is enabled and the dispatch is granted. Since a synchronization
constraint is a function of actor state and message arguments, some messages in the pending queue
may become enabled when an actor changes its state. Before dispatching the next message in the
DSMQ), the actor re-evaluates synchronization constraints for each pending message and attempts
to consume them.

When a message is dequeued for processing, the synchronization constraints of the specified
method are evaluated. A positive evaluation result means the method is disabled under the actor’s
current state and the message is put into the actor’s pending queue [79]. Recall that synchronization
constraints are a function of actor state and message arguments. When an actor changes its state,
some messages in its pending queue may become enabled for processing. Before yielding control
over computation resources, an actor re-evaluates synchronization constraints for each pending
message and digests the enabled ones.

Synchronization constraints have been used to maintain the correct iteration order in our exper-
iments. Our experience is that pending queues are usually short. Few messages are delivered out of
order and the cost associated with re-evaluating synchronization constraints of pending messages
is kept tolerable. However, if a long pending queue may develop in an application, re-evaluating
synchronization constraints for each pending message every time an actor changes its state would
be expensive. In this case, dependencies between state variables and synchronization constraints
should be analyzed at compile time so that only those pending messages for methods that might
be enabled are re-examined if they may be processed. The current compiler does not implement
such an analysis.

4.6.2 Groups and Group Communications

The group abstractions in THAL provide additional opportunities for optimization. The flat struc-
ture of a group and the homogeneity of member actors often allow efficient memory management.
The broadcast communication may be implemented more efficiently than by using point-to-point
message passing. The runtime system takes advantage of the opportunities and provides efficient
support for the group abstractions.

First, the runtime system allocates member actors in a node in a contiguous block. The con-
tinuity of member actors in the address space enables the compiler to generate efficient collective

46

scheduling code because the next actor may be accessed via simple pointer arithmetic. Since mem-
ber actors belong to the same group, they share common attributes, such as group size and creator.
These attributes are collected in a group descriptor and a copy is kept in each node to allow efficient
access. To further facilitate the access, each copy is allocated with the same local address in each
memory . Among the shared attributes is a distribution map which records locations of members.
This map contains a pointer to a member actor if it is local; else, the address of a processing
element.

Conceptually, a message sent to a group is replicated and a copy is delivered to each member
(i.e. broadcast). In consequence, the cost associated with broadcast is O(N) where N is the group
size. To reduce the cost the runtime system implements broadcast with two phases: explicit and
tmplicit. In the explicit phase, each processing node is delivered one copy of the message. The
optimal implementation should be architecture-dependent; it may be directly implemented using
a broadcast facility available in the underlying architecture or it may be simulated using a point-
to-point communication. We sketch our implementation of the explicit phase on the TMC CM-5
in Section 6.1. It has a binary tree-like communication structure and a cost of O(logP) where P
is the number of processing nodes in the system. When a broadcast message arrives at a node,
the node manager delivers it to the first member actor in the node. The compiler puts scheduling
code at the end of the method, which schedules the next member actor with the message. Thus,
only the first member in a node receives a broadcast message; the others simply reuse the message
(¢.e.the implicit phase). The compiler ensures that the content is intact.

Send-to-member shares the same syntax with ordinary message sending but has a member
actor as a receiver. Since the exact location information for member actors is locally available in
the distribution map, the locality check and the point-to-point message send for a member actor
are implemented differently from those for ordinary actors to take advantage of the locally available
information. A direct consequence of having different implementations is that their interfaces to
the compiler are different. For the compiler to use type-dependent interfaces correctly, it must
distinguish group communications from ordinary communications. It also should generate methods
invoked on groups differently than those invoked on individual actors. The compiler analyzes the
global data flow of a program and collects type information about methods and receivers. This
type information is used to translate the program correctly.

4.7 Migration

The communication module supports location transparency. So, the remaining implementation
question on migration is when and how to migrate actors. During its life, an actor may be in one of
three states: ready, running, and blocked. To minimize the context that must be transmitted with
an actor, the runtime system migrates actors only when they are in the ready state. When an actor
receives a migration request, a flag is posted if it is either running or blocked. Actual migration is
put off until the actor completes its processing of the current message.

Use of the DSMQ may scatter messages delivered to an actor through the message queue.
This complicates migrating messages along with the actor. Instead, only the actor is moved. The
messages are forwarded subsequently as the absence of the receiver is detected when they are
dispatched.

Supporting migration would be easier if arrays were not available in the language. However,
THAL allows arrays to be part of an actor’s state, hence migratable. It even allows sending arrays

47

in a message. A naive solution would be to make programmers supply a marshaling function for
each actor and message [73]. Unfortunately, the solution may fail to work with dynamic load
balancing that programmers are not aware of. Our solution is to let the compiler keep sufficient
information available to the runtime system so that it can easily deduce relevant information for
state and message packing.

The compiler rearranges acquaintance variables/message arguments so that it places array argu-
ments after all simple arguments. Then, it generates packing information composed of the number
of arguments and the number of simple arguments and puts them in the packer field (see Fig-
ure 4.3). Each array object is associated with a size information which is accessed by the runtime
system. For example, consider a message send statement

recv <- m0 (arr0, sim0, arrl, siml, arr2, sim2);

Suppose sim; are all simple integers and arr; are all arrays of real numbers. The types are supposed
to be inferred from the enclosing context. The compiler takes the arguments, shuffles them, and
generates the following C structure.

struct msg0 {

int sim0;
int simi;
int sim2;

float *arrO;

float *arri;

float *arr2;
} MsgO;

Of course, the formal parameters in the corresponding method interface are also reordered following
the same rule. Then, the compiler generates packing information of (6,3) meaning there are a total
of 6 arguments and the first 3 are simple. When the message must be forwarded, the runtime system
sees the packing information in packer and packs the message accordingly. Note that strings are
treated as one-dimensional arrays of characters.

4.8 Related Work

Among other systems the implementations of ABCL/onAP1000 [119, 120] and the Concert sys-
tem [28, 75] have influenced the design of THAL most.

ABCL/onAP1000 adopted an encapsulation approach to implement its runtime system. For
example, the runtime system determines whether to use the stack-based or the queue-based schedul-
ing mechanism for local messages. In consequence, the message scheduling mechanisms are hidden
from the compiler, hampering the generation of codes which efficiently utilize scheduling informa-
tion available at execution time. By contrast, our runtime system exposes part of its scheduling
mechanism for the compiler to generate executables that use the scheduling information to choose
where to schedule local messages.

Objects in ABCL/onAP1000 are identified with a unique mail address, as in our system. Al-
though actor placement is put under programmer control, the use of location-dependent addresses

48

to favor fast locality check undermines object mobility. We believe that language support for dy-
namic object relocation (i.e., migration) is crucial in load balanced and scalable execution of many
dynamic, irregular applications.

The runtime support of the Concert system provides the compiler with a flexible interface,
as in our system. Both systems make cost of runtime operations explicit to a compiler, thereby
enabling the compiler to perform a range of optimizations. The main difference is in the extent
of location transparency they support. Aggregates in the Concert system are located at the same
memory address on each node [74]. This location dependence limits aggregates’ mobility, making it
difficult to load-balance in dynamic, irregular computation. Concert objects other than aggregates
are allocated in a global space and subject to global name translation. THAL’s locality check uses
only locally available information which is made possible by our name management scheme which
works efficiently with migration.

Threaded Abstract Machine (TAM) supports multithreading at instruction level [34]. It defines
an extension of a hybrid dataflow model with a multilevel scheduling hierarchy where synchro-
nization, scheduling and storage management are explicit and under compiler control. In TAM, a
thread executes to completion once successfully initiated, like our method execution. Furthermore,
quasi-dynamic scheduling allows the compiler to exploit temporal locality existing among logically
related threads. Such temporal locality is utilized in our runtime system with coarser grain by
collectively scheduling messages broadcast to a group of actors.

Cilk [19] is a C-based runtime system for multithreaded parallel programming. The Cilk lan-
guage is defined by extending C with an abstraction of threads in the explicit continuation-passing
style. A Cilk program is a collection of Cilk procedures, each of which is broken into a sequence of
threads. As in TAM, each Cilk thread is a nonblocking C function and runs to completion with-
out waiting or suspending once invoked. Although the decision to break procedures into separate
nonblocking threads simplifies the runtime system, writing programs in the explicit continuation-
passing style is onerous and error-prone. In our system, programmers are allowed to use blocking
asynchronous communications and the compiler translates them away into explicit continuation-
passing style code (Section 5.2).

49

Chapter 5

Compiler-time Analysis and
Optimization

We have introduced sequentiality to enhance programmability. However, excessive sequentiality
should be removed from a program for efficiency before it is executed on parallel computers. Our
compiler optimizations focus on restoring useful concurrency. First, the compiler infers types for
each expression. The type information is used to reduce message scheduling cost and automatic
memory management. The compiler also transforms request expressions into asynchronous sends
with appropriate synchronization. The constraint of serialization of message processing in the Actor
model requires only one thread be active on an actor. This is enforced by locking/unlocking the
actor. Note that multiple threads may be active on actors unless they interfere with each other.
The compiler uses data flow analysis to unlock actors as early as possible so that multiple threads
may be concurrently running on an actor.

The compiler translates method definitions in a user program to a set of C functions. Acquain-
tance variables of a behavior are collected in a C structure definition to provide the runtime system
with size information for actor allocation. These are compiled using a C compiler, linked together
into an executable, and loaded into the runtime system to execute on parallel computers.

5.1 Type Inference

Untyped languages allow rapid prototyping and parametric polymorphism [107]. They have better
programmability and encourage code reuse. On the other hand, typed languages have the advantage
of type safety. All possible misuses of variables are checked against their type declarations at
compile time and/or execution time. The resulting static type checking removes many run-time
type checks, guaranteeing efficient execution. Type inference is a compile-time analysis which
provides untyped languages with the advantages of static typing. By having the THAL compiler
infer types for expressions and verify their consistency, programmers may enjoy untyped languages’
programmability and typed languages’ reliability and efficiency at the same time [93, 109, 100].

The THAL compiler uses an extension of the constraint-based type inference developed by
Palsberg and Schwartzbach [100]. In the algorithm, types are defined as a set of classes. A type
variable is assigned to an expression and type relations between expressions are represented as a set
inclusion between the corresponding type variables called type constraint. The algorithm derives a

50

set of type constraints by examining statements and expressions in each method. It derives another
set of type constraints from actual/formal parameter relations in message send expressions. Then,
the algorithm tries to iteratively solve the two sets of type constraints. Existence of the smallest
solution means the program is type safe. If none exists, the program is rejected as type unsafe.

The implementation is similar to that of [99]; it incrementally builds a trace graph and suc-
cessively refines the solution. A trace graph represents all possible message sends in any program
execution. Incremental construction of a trace graph and successive refinement of the solution
make complexity of the implementation polynomial. If a partial solution does not satisfy any single
constraint, the program is rejected as type unsafe. If the current solution does not improve the pre-
vious solution, the solution is the smallest solution and the program is accepted as type safe. The
reconstructed type information is used to bypass the method lookup process in method dispatch.

5.2 Transformation of Concurrent Call/Return Communication

Concurrent call/return communication (CCRC) provides programmers with an easy way to express
remote function invocation. The convenience comes from its blocking semantics, which requires a
form of context switch. However, a naive implementation of CCRC which context-switches a sender
whenever it sends a request would make it less attractive on stock-hardware multicomputers because
their context switch costs are high (e.g., 52 usec on CM-5).

A technique used in a number of systems [117, 75] to implement CCRC-like abstractions is one
using futures [68]. Futures are a promise for a value; they are a place holder for a value which is
yet to be defined. In the future-based implementations, sending a request message creates a future
which is immediately returned as the result of the request. Execution continues until the result
is actually used (i.e., the future is touched). If the value is available, execution proceeds with the
value. Otherwise, it is blocked until the value is available.

Although simple to implement, a future-based implementation still makes CCRC a potential
performance bottleneck because it relies on context switching. Consider an N-Queen implementa-
tion in Figure 3.4. Suppose an actor creates N children in response to a compute message. An
implementation using futures would allocate N futures which are assigned to replies[i] for i
ranging from 1 to N. The next expression to be evaluated is a summation; here the execution
blocks on a future whose value is yet to be defined. In the worst case, 2N context switchings are
required to finish the computation (i.e. 2 for each touch). Furthermore, a separate mechanism
is needed which resumes an actor blocked on a future when its value is available. Out-of-order
arrival of replies does not help because futures are touched sequentially conforming to the order of
appearance of the requests in a method.

In contrast to the future-based implementations, we employ a compiler-oriented approach [78, 5].
The compiler transforms a method containing CCRCs in such a way that a programmer would
write a method with the same semantics if CCRC is not available. The compiler analyzes data
dependence among requests in a method to identify those that may be executed concurrently. It
isolates computation simultaneously dependent on the requests (¢.e. a join continuation [1]) into
a continuation actor and translates the requests to non-blocking asynchronous message sending
expressions. A unique reply address represented as a triple is appended to each expression as
an additional message argument. Use of non-blocking asynchronous message passing allows us to
avoid expensive context switching. Instead, the continuation actor caches only the context needed
to execute the join continuation.

51

5.2.1 Join Continuation Transformation: the Base Algorithm

The transformation exploits functional parallelism existing in evaluation of an expression; subex-
pressions of an expression may be evaluated in any order because actor state does not change in
between their evaluations. In particular, there is no control dependence between argument expres-
sions of a function invocation or a message send expression. Note that the control dependence does
not exist in the Actor model; only data dependence does. It appears in THAL because we introduce
sequentiality to method execution for execution efficiency and implementation convenience.

Let A,, denote the data dependence relation of a method m and I',,, denote the control depen-
dence relation of m. Each of them defines a partial order between evaluations of any two expression
in m. Further, let R,, be a set of all requests in m. We define request send partition (RSP), a
subset of R,,, to be a set of requests which are mutually independent. Borrowing the set inclusion
notation, for any r;, r; € RSP, (r;, ;) € Am, (7§, 1) € Am, (ri, vj) € I's, and (74, 75) € T'py,. Thus,
an RSP is a set of requests from a statement which are mutually data independent. In the method

method twoRsps ()
r0 <- m0 (ri.m1 (r2.m2 ()), r3.m3 (r4.m4 ()));
end

r1.m1 and r3.m3 are in the same RSP and r2.m2 and r4.m4 are in the same RSP. The join
continuation transformation (JCT) proceeds by recursively isolating a continuation of an RSP into
a separate actor.

JCT begins with partitioning R,, into RSPs. Before the compiler begins the partitioning, it
promotes each request to an assignment statement with a fresh temporary variable. After being
modified, the method twoRsps looks as follows:

method twoRsps ()
€D) t2 = r2.m2 ();
2) tl = ri.m1 (t2);
(3) t4 = r4.mé4 ();
(4) t3 = r3.m3 (t4);
(5) r0 <- m0 (t1, t3);
end

With the transformed method m/, the compiler computes the def-use chain DUCy,, [6] for each
definition d ! in m and constructs data dependence relation A,,:. Using A,,:, the compiler shuffles
the requests promoted from the same statement in such a way that requests in the same RSP are
placed together without violating the partial order relation defined by A,,. Note that requests in
the same statement may be evaluated in any order. After the requests are partitioned into RSPs
lines (2) and (3) are exchanged:

!We use the terms definition and assignment interchangeably though definition subsumes assignment.

52

method twoRsps ()
€D) t2 = r2.m2 ();
(3) t4 = r4.mé4 ();
(2) tl1 = ri.ml (t2);
(4) t3 = r3.m3 (t4);
(5) r0 <- mo0 (t1, t3);
end

After the partitioning is done the method is recursively split on each RSP. The input to this
phase is the flow graph of a method. It is a directed graph FG = (V,E) where V = {b | b is
a basic block in the method} and E = {(b;,b;) | b; can immediately follow b; in some execution
sequence} [6]. One node is distinguished as the initial node: it is the block whose leader is the first
statement of the method.

The compiler traverses F'G in a topological order starting from the initial node. As soon as it
encounters an RSP, it splits the enclosing basic block at the point right after the RSP. It pulls out
the portion of the flow graph which is dependent on requests in the RSP and encapsulates it into
the behavior of a separate continuation actor. The continuation actor has slots to hold replies until
all are available. It also keeps the execution context at the moment of sending the request messages
in the RSP. The compiler guarantees that only part of the context is cached in the continuation
actor, which may actually be accessed during the continuation execution. Thus, it implements the
semantics of context switching with minimal overhead.

A statement creating the join continuation actor with the necessary context is placed before the
RSP. All request send statements in the RSP are transformed to non-blocking asynchronous send
statements, each of which is appended with a set of arguments that collectively identify the unique
entry point to the continuation actor. The arguments consist of the mail address of the continuation
actor and a method name. After separating out remaining RSPs in the method the compiler applies
the split process recursively to each of extracted continuations. The transformation result of the
method twoRsps are shown in Figure 5.1. Figure 5.2 through Figure 5.4 illustrate how to split
methods with different control structures.

5.2.2 Join Continuation Closure

The behavior of a continuation actor is deterministic: as soon as all the expected replies are received,
it executes the specified computation and cannibalizes itself. We exploit the deterministic behavior
and optimize continuation actors using a structure called Join Continuation Closure (JCC) and
specialized reply messages.

A JCC consists of four components, namely counter, function, creator, and argument slots
(Figure 5.5). Counter contains the number of empty argument slots yet to be filled. A reply
message fills the specified slot and decrements the counter. As soon as all slots are filled, function
implementing the join continuation is invoked with the JCC as its argument. The argument slots
which are filled at the creation time are reserved for the execution context used in the continuation
execution. With JCC, a reply address is defined by a triple <processor number,continuation
address,slot address>. The discussion of the use of creator which represents the actor that sent
the request messages is deferred to Section 5.2.4.

53

method twoRsps ()
cl = Cl.new (r1,r3,r0);
t2 <- r2.m2 (cl, m2t2cl);
t4 <- r4.m4 (cl, mdtdcl);
end
behv C1
| ricl, r3cl, rOcl, t2cl, t4cl, cnt |
init (i1,i2,i3)

ricl = iil; r3cl = i2; rOcl = i3;
t2cl = nil; t4cl = nil;
cnt = 2;
end
method m2t2c1 (r)
| c2 |

if (ecnt == 0) then
c2 = C2.new (rOcl);
tl <- ricli.ml (t2cl, c2, mitic2);
t3 <- r3cl.m3 (t4cl, c2, m3t3c2);

else
cnt = cnt - 1;
t2cl = r;
end
end
method m4t4cl () ... end
end
behv C2
| roc2, tic2, t3c2, cnt |
init (i)
r0c2 = i;
tlc2 = nil; t3c2 = nil;
cnt = 2;
end

method mitic2 (r)
if (cnt == 0) then
r0c2 <- m0 (tlc2, t3c2);

else
cnt = cnt -1;
tic2 = r;
end
end
method m3t3c2 (r) ... end
end

Figure 5.1: The transformation result of twoRsps using continuation actors.

54

ACTOR al: method m1l

ACTOR a2: method m2

X |= a2.m2();_/
e [reply(n);

(a) Before the transformation

ACTOR al: method m1

ACTOR a2: method m2

a2<-m2(); /'
method m1_cont M

X =1

reply(r);

(b) After the transformation

Figure 5.2: Extracting continuations from a method with no branch.

55

(a) Before the transformation

B1
Y
B2
B3 B4-1

a2<-m2();

method g

m2_cont (r)) x = r;

B4-2
\d L4
B5 B5

(b) After the transformation

Figure 5.3: Extracting continuations from a method with branches.

56

B1

B2
X [z a2.m2(); >
—

B3

(a) Before the transformation

method

m3_cont () "'

Bl X =1

if the condition of

if the condition of .
for is true

for is false

if the condition of
for is false

(b) After the transformation

Figure 5.4: Extracting continuations from a method with loops.

57

counter 3

function — !
creator func_64(cont)
E— cont.slotl <— mB(cont.slot2,cont.slot3,cont.slot4,cont.slot5);
slotl actorB end
slot2 X

slot3 0
slot4 0 =
slot5 0

Figure 5.5: The structure of the join continuation. The code segment pointed by function
represents the compiler-generated continuation of a message send. When executed, it sends to
actorB a message mB with values in slot2 through slotb as its arguments.

5.2.3 Common Continuation Region Analysis

The algorithm described above can only exploit functional parallelism which is inherent in the eval-
uation of function arguments with the CCRC. Consider a code fragment for the N-body example.
The algorithm is not general enough to recognize that request sends in the if blocks are indeed
independent of each other and can be executed concurrently. In this section, we present a more
general transformation framework based on a data dependence analysis. The proposed technique
is sufficiently general so that it can identify a set of request send statements which can share the
same join continuation across statement boundary. The transformation technique is based on a
simple observation: any two request sends can be executed concurrently if no data dependence
exists between the two request message sends.

As before, the transformation is divided into a partitioning phase and split phase. The input to
the partitioning phase is an abstract syntax tree AST = (AV, AE) of a method. As in the algo-
rithm discussed in Section 5.2.1, we assume that all request sends have been lifted to assignment
statements and there are no expressions containing embedded request sends. Since all relevant
information is at the statement level, we abstract away expressions in each statement and assume
that AV is a set of all statements in the method. if statement and for statement represents if
conditional and for loop header, respectively.

Given an AST for a method, we define a common continuation region at s € AV (CCR;) to be
a subtree rooted at s such that all request send statements it contains may share the same join
continuation. A mazimal CCR is defined to be a CCR which is not contained in any other CCRs in
the AST. Formally, a CCR is the set S = (SV, SE) where SV C AV, SE C AFE if for any request
send statement 7 in a method m, the cardinality of set {(r,s) € A, | s € S}is 1.

During the partitioning phase, we partition the request message send statements in a method
into maximal CCRs. The partitioning algorithm itself can be described as a tree coloring (Fig-
ure 5.6). We color subtrees in the AST using three colors, white, grey and black which represent a
subtree with no request send statement, a CCR, and a subtree which has at least one request
send statement but is not a CCR, respectively. First, we color a leaf node grey if it is a request
send statement; otherwise, we color it white. For each internal node, we color it black if at least
one of its children has request send statement(s) but is not a CCR (i.e., if it has at least one black
child node). If a subtree has no request send (i.e., all of its children are white), we color it white.
If neither case applies, the subtree must have some white children and some grey children. We

58

INPUT: the abstract syntax tree AST = (AV, AF) of a method.
OUTPUT: the abstract syntax tree with CCRs marked.
ALGORITHM:

For each s € AV, let Child, = {c| (s,c) € AE} and

let color, denote a color assigned to s.

1. Color each leaf node with white or grey using the definition of CCR for leaf nodes.

2. For each s € AV, color s with

o black if dc € Child,, color, is black.
o white if Ve € Child,, color. is white.

e Let D = {s | for ¢ € Child,, color. is white A r € R.ANs € AV, — AV. A7+ s} where R,
is a set of request send statements in a subtree rooted at ¢. Color s with grey if D =
0. Otherwise, color it with black.

Figure 5.6: The coloring algorithm to compute maximal CCRs.

determine if there is data dependence from any request send statement to any other statement in
the subtree rooted at the node except one from which the request send is pulled out. If there is
no such data dependence, we make it a grey node. Otherwise, we make it a black node. Finally,
we merge into a single CCR, consecutive maximal CCRs that have the same parent node in the
AST and have no data dependence between them. Figure 5.7 illustrates how maximal CCRs are
determined for a given AST.

Split phase is similar to the one described in Section 5.2.1. After all request sends are par-
titioned into maximal CCRs, we compute for each maximal CCR the maximum number of reply
slots that may be used. If the conservative estimate of the number cannot be determined 2 or if the
compiler finds that splitting at the CCR is not profitable, the corresponding subtree is changed to
non CCR and join continuations are extracted for the smaller CCRs in the subtree. The method
is split at the point right after each maximal CCR and a separate object is allocated to encapsu-
late the continuation to the CCR. Then, all the request sends are transformed into non-blocking
asynchronous sends with an additional statement which counts the number of messages that are
actually sent. Finally, a statement is appended to the CCR to adjust the number of replies that the
continuation object must wait before it executes the specified continuation. If nodes in a maximal
CCR are all leaf nodes (i.e., all are request send statements), the overhead associated with CCRs
is not justified and we use the algorithm in Section 5.2.1 to separate out the join continuation.

5.2.4 Method Fission

JCT restores useful concurrency by separating out join continuations from an original computa-
tion. However, indiscriminate application of JCT may result in incorrect computation. Consider a
method which sends a request message and defines the actor’s next state with the result. The next
state is only partially defined; the sender should not process messages until the reply arrives and

’E.g., a subtree corresponding to the CCR may represent two branch if statement that contains for loops.

59

(a) Abstract Syntax Tree (b) After coloring leaf nodes (c) After coloring level 4 internal nodes
Qﬁg\o\ 000 @ O
N\ N\
\ \
\ \
T | T |
O /
/ /
SRRed 1 SECReE |
(d) After coloring level 3 internal nodes (e) Atfter coloing level 2 internal nodes (f) A maximal CCR
Legend () Not Determined (O NoRpc — — = Data Dependence

@ HesRpcbutnotaCCR @ aCCR

Figure 5.7: The coloring of an N-Queen implementation. The figure shows how the abstract
syntax tree of an N-Queen implementation is colored by the algorithm. The implementation has a
request message send inside if block which is enclosed in a for loop. There is a data dependence
from the request send to the statement outside the for loop (represented as a dotted line). Only
the dependence from a request send is shown. Each white leaf node represents a simple statement.

60

execution of the continuation completes. However, applying JCT blindly may cause the actor to
process the next message in an inconsistent state.

For example, the result of a request in Figure 5.8 is used to define the value of acquaintance
variable a. The result of blind application of JCT is shown in Figure 5.8.b. The result from the
message send is erroneously assigned to a compiler-generated temporary variable.

For a class of methods which modifies the actor’s next state using a result from a request, we
still apply JCT but with more care. As before, the continuation is separated into JCC. But, this
time the actor locks itself right after sending the request (the compiler inserts an additional lock
statement). The continuation is dispatched by the runtime system through the JCC regardless
of the actor’s state. Note that the sole purpose of locking the actor is to keep it from processing
subsequent messages prematurely. Execution of continuation unlocks the actor using the creator

field in JCC.

5.2.5 The Deadlock Problem

Consider a program in Figure 5.9. The program generates the Fibonacci sequence. The figure
also has the expected message trace when n = 3. Suppose a naive implementation is used which
simply blocks a sender on each request. Under the atomic method execution the program cannot
be executed without causing deadlock. The shaded actor is blocked after sending its very first
message to self and unable to progress because it cannot process the message. A future-based
implementation is no better than the naive implementation [118].

Some systems replace a message send to self with a function call [28, 75]. It may be successful in
avoiding deadlock but may not be used with the atomic method execution because the replacement
may alter the meaning of the program incorrectly, as shown in Figure 5.10. Further, it it serializes
the sender’s computation eliminating the possibility of dynamic load balancing. In this example,
JCT helps avoid deadlock by allowing the sender to continue executing the remaining computation
independent of the result of the request after sending a request (Figure 5.11).

Nonetheless, the deadlock problem is a potential difficulty that limits the usefulness of the
CCRC abstraction. Although the compiler detects and avoids many spurious deadlocks using
data dependence analysis and the join continuation transformation, it is in general not feasible to
prevent all deadlock situations by using compile-time analysis and source-level transformation. For
example, Suppose the following code fragment has been executed with behaviors in Figure 5.12:

left = DeadlLockLeft.new ();
right = DeadLockRight.new();
left <- setup (right);

right <- setup (left);

left <- deadlock ();

The last message send statement causes a deadlock if the method execution is atomic. The left
actor blocks upon the request send to the right actor and vice versa.

Even the JCT could not break a deadlock if it was caused by an indirectly recursive request
send whose result defines the actor’s next state. In general, it is impossible to break such deadlocks
with compile-time transformation.

61

behv Customer
| a, b, ¢
method mi(x,y)
%% computation 1
a = (Server.new()). m2(x,y);
%% computation 2
end

end

(a) Customer behavior

behv Customer

| a, b, ¢

method mi(x,y)
4% computation 1
Server.new() <- m2(x,y);
end

end

func_28 (cont)

o |

t = cont. sloti;

%% computation 2 with t
%% having replaced a.
end

(b) An incorrect transformation result

Figure 5.8: An incorrect fission result. The result from the request send m2 defines instance
variable a’s new value. The application of join continuation transformation alters the meaning of

method m1.

62

behv Fib
method compute(n)
if (n == 0) then reply(0);
elseif (n == 1) then reply(1);
else reply(self.compute(n-1) + (Fib.new()).compute(n-2));
end
end
end

(a) An implementation

———= Creation/Request
— ——=- Request/Reply
———= Reply

(b) Message trace graph. Associated numbers denote the argument passed.

Figure 5.9: Fibonacci number generator with a recursive message send.

63

behv WriteAndSendPlusOne
| value

method read and addi()
reply (value+l);
end
method write(to,n)
to <- send plus one(self.read and addi());
value = n;
end

end
(a) Before

behv WriteAndSendPlusOne
| value

method read_and_addi()
reply (value+l);

end

method write(to,n)
to <- send plus_one(read and addi());
value = n;

end

end
(b) After

Figure 5.10: An incorrect join continuation transformation. The transformation of a message
send to self to a function call may alter the meaning of the program. (a) Method read_and add1
is meant to read the new value of value which is to be written in method write. (b) The
transformation makes method read_and_add1 read the old value of value incorrectly.

64

counter 2
function
creator NULL
slot 0
ot2 ()

func_64(cont)
reply(cont.slotl+cont.slot2);
end

t=continuation(8,2,func 64,0);
self<-comp(n-1,#pn, addr(t),addr(t.slotl));
Fib.new() <-comp(n-2, #pn,addr(t),addr(t.slot2));

Figure 5.11: The transformation result. Each message send is augmented with a reply address.

At best, a compiler may conservatively alert programmers of the possible presence of deadlock.
The THAL compiler is able to do so by using a form of global flow analysis to construct a call graph
and checking whether or not the request sends form a (potential) cycle. The compiler constructs
a message trace graph [99] for a given program and detects a cycle that contains a request send
whose result is used to define the next state of the actor. The trace graph can represent only a
subset of all possible message trace. Thus, detecting deadlock using a trace graph can be no more
than an approzimation. But it is safe: if a program may indeed encounter deadlock, the compiler
gives a warning.

The JCT tends to generate many small methods, especially for those programs that use request
sends extensively. This does not necessarily degrade the execution performance because compiler-
generated methods are dispatched only by continuations and need not be included in a method
lookup table.

5.3 State Caching and Eager Write-Back

In actor computation a method is given exclusive access to the actor when executed. If an actor
is executing a method, the next message is not scheduled until the actor’s next behavior is fully
defined. The semantics of atomic method execution is realized by making become an instant
operation and by creating an anonymous actor with the same behavior when become is executed.
The actor becomes ready to process the next message as soon as it executes become. The anonymous
actor carries out the rest of the computation. The use of anonymous actors allows for concurrent
execution of methods belonging to the same actor in the Actor model.

THAL implementation creates a thread to carry out a method execution (Chapter 4). In such
implementations, atomic method execution may be realized by locking the actor and caching into
the thread a subset of the actor’s state which may be accessed during the method execution. No
further messages are processed while an actor is locked. A method is executed using the local copy
of the state in the thread (i.e., state caching). At the end of the method execution the acquaintance
variables that might be modified is written back. Notice that such implementations serialize the

65

behv DeadLockLeft
| right,result,value
init ()
right = nil; result = 0; value = 0;

end

method setup(a)
right = a;

end

method deadlock()
result = right.dead();
end
method lock()
value = value + 1;
reply (value);
end

end

behv DeadLockRight

| left |

init (a)
left = nil;

end

method setup(b)
left = b;

end

method dead()
reply (left.lock() + 1);

end

end

Figure 5.12: A deadlock example involving indirect recursive message sends.

66

method executions which may change the actor’s state as well as serialize the state changes. They
allow for only the concurrent execution of read-only methods.

Such serialization is unnecessarily stringent and prevent even safe overlap in executions which
might be profitable in some cases. Suppose an actor executes a method m; which modifies some
acquaintance variables and then uses them without further modification. When another actor
wants to read some of the actor’s acquaintance variables (say the corresponding method is my),
the implementation cannot dispatch my until the actor have finished the execution of m;. This is
because the new values are written at the end of the method execution. If the values are written
back as soon as they are defined (or, at least as soon as the last value to the modification is defined),
the actor may be released even before the end of the method. my may be dispatched while m; is
executing and both actors may proceed concurrently.

The input to the analysis is the control flow graph of a method whose nodes are a basic block. A
basic block is a sequence of consecutive statements in which flow of control enters at the beginning
and leaves at the end without halt or possibility of branching except at the end [6]. A basic block
may have one or two successor blocks, jump-on-true (JOT) and jump-on-false (JOF). JOF is not
defined for a simple block; only if block and for block have two successor blocks.

For each basic block acquaintance variables whose values are newly defined in the block are
collected into a set called Updates (Ug). The set is upward propagated so that each block has a set
of acquaintance variables whose values may be defined along an execution path starting from the
block to the end of the method (Reachable Updates (RUg)). More concisely,

RUp =Ug U RUJOTB U RUJOFB 3

Using these two sets, the compiler generates the write-back statements on the fly as it generates
codes for a basic block. After the generation of the last update statement * in each basic block, the
compiler generates write-back statements for acquaintance variables whose values are finalized (z.e.
Up — (RUjory U RUjoFy)). The rest (i.e. Up N (RUjory U RUjoF,)) are passed to its successor
blocks as leftover (LO o1, and LOjory).

More specifically, for a block with two successor blocks, LOp is passed to both of its successor
blocks. If the basic block is a single branched if, it is made double branched by adding a ghost
block as its JOF' successor before passing LOp down.

For a simple basic block which has only one successor block, the compiler generates LOp — RUp
before generating any statement in the block. After the generation of the last update statement in
the basic block, write-backs for Up — RUjoT, are generated and Up N RUjoT, is passed as leftover.

Consider an update statement enclosed in a for loop. If we simply generate write-backs as
described thus far, the acquaintance variable will be unnecessarily written for the number of loop
iterations. It would be more efficient to put all the write-backs outside the loop and let the
updates be done on local variables so that the write-back occurs only once, The write-backs for
the acquaintance variables whose values may be defined in a for loop body are not generated in
the loop body but the set of variables are passed contained in LO. They are generated in the
block which follows the for loop in the input program. The generation algorithm is summarized
in Figure 5.13.

3If JOF is not defined, JOFp is an empty set.

*An update statement is an assignment statement to an acquaintance variable.

67

INPUT: Control flow graph of a method whose nodes are basic blocks
OUTPUT: Code generation as side effects
ALGORITHM:

for each basic block B, compute Up and RUp.
for each basic block in the topological order

1. generate leftover write-back statements.
2. after generating the last update statement in the basic block,

e if the statement is an IF statement

— if enclosed in neither a FOR loop block nor a single branch IF statement, gen-
erate write-backs for LOg — RUjoT,

— else, pass its leftover to both jump-on-true and jump-on-false successor blocks

e if the statement is a FOR header, pass its leftover to the jump-on-false successor

block

o if neither of the above holds and if not enclosed in a FOR loop, generate write-backs
for Ug — RUJOTB and let LOJOTB =UgnN RUJOTB

Figure 5.13: An algorithm to generate write-back statements for acquaintance variables.

5.4 Local Actor Creation

An actor may send a message to any actor as long as it knows the receiver’s mail address independent
of its physical location. Thus, actor creation in stock-hardware multicomputers should involve more
than simple allocation of a chunk of heap space; it must involve location-transparent mail address
allocation, heap space allocation and possibly actor initialization. Support for location transparency
adds quite an overhead to actor creation. Fortunately, not all actors need such full-fledged creation.
For example, functional actors which have no acquaintance variables need not be created at all.
Certain local actors will never receive messages from remote actors and need not have location
transparency. To get better performance, a cheaper implementation may be used when creating
these actors. The compiler uses the def-use analysis and the constant propagation [6] to identify
such actors. Specifically, the compiler examines each creation expression to see if the following
conditions are to be satisfied: (7) both the creator and the createe never migrate, (i7) the creator
does not export the mail address of the createe to the third party actors, and (z¢7) the createe does
not export its mail address to third party actors. If the compiler ascertains that the conditions will
hold during the execution, it generates the codes that exploit the information.

5.5 Related Work

A number of type inference mechanisms for object-oriented programming languages have been
proposed [115, 46, 100, 22]. In particular, the type inference in the THAL compiler is implemented
using a constraint-based type inference algorithm [100]. The implementation is similar to that of
[99] but is extended to infer types for groups and member actors. A more detailed discussion on
constraint-based type inference for object-oriented programming languages may be found in [101]. A

68

similar constraint-based type inference mechanism was implemented on the Concert system [28, 75]
and is presented in [104]. The implementation iteratively traverses a global flow graph of a program
to refine type information it gathers.

The discussion of join continuation in the context of the Actor model appears in [1]. Extracting
join continuation through a source-to-source transformation was attempted in other actor-based
languages as well [89, 62]. Also, a similar transformation technique for explicitly message-passing
programs was presented in [59]. The common continuation region analysis extends the base join
continuation transformation (Section 5.2.1 to restore concurrency across loop boundary by using
data dependence analysis [7, 14, 15].

69

Chapter 6

Performance Evaluation

The runtime system has been running on the TMC CM-5 and porting it to other platforms, such
as Cray T3D/T3E, SGI PowerChallenge array, and networks of workstations, is in progress. This
section presents implementation details and evaluation results of the TMC CM-b version. Most of
the runtime system on the CM-5 is written in C and only part of scheduling code that implements
tail-call is written in the assembly language. The part written in C was compiled using the GNU
C compiler with -O3 option and the assembly part was compiled using the GNU assembler. The
compiler takes a THAL program and generates C code which is compiled using the GNU C compiler
with -O3 option.

6.1 The Runtime System on the TMC CM-5

The TMC CM-5 is a distributed memory multicomputer which may be scaled up to 16K processors.
The machine may be configured in different partitions; a partition has a control processor called
partition manager and a set of processing elements. Each processing element hosts a 33 MHz
Sparc processor and a network interface chip. The network chip supports all accesses to the
interconnection network. The CM-5 has three kinds of networks: the data network, the control
network, and the diagnosis network. The data network is responsible for application data motion
and connects the processing nodes in the fat tree topology. The other two CM-5 networks have
binary tree topologies. See [122] for additional details on the three CM-5 interconnection networks.

Figure 6.1 shows the virtual architecture defined on the TMC CM-5. The runtime system
consists of a front-end which runs on the partition manager and a set of virtual processors which
run on the processing elements (i.e., nodes). Kernels are implemented as ordinary UNIX processes.
Users are provided with a simple command interpreter which communicates with the front-end to
load the executables. In addition to dynamic loading, the front-end processes all I/O requests from
the kernels.

The communication module is implemented with a veneer layer on top of CMAM [131]. All
THAL messages have a destination actor address and a method selector. The layer exploits these
properties to minimize communication overhead. The broadcast primitive is implemented in terms
of point-to-point communication on the CM-5 data network, using a hypercube-like minimum
spanning tree communication structure (Figure 6.2). Although the CM-5 has a broadcast facility
using the separate control network, it is not available in the CMAM layer. Moreover, simulating

70

7"\

noxmmnc

—@

FRONT END

(PARTITION)
MANAGER

/

PROCESSING
ELEMENTS

Figure 6.1: The THAL runtime kernel on the TMC CM-5.

000 001
O/

-----...._____..> C%go (%?1

010 011
O—0O
110 111
O—0O

Figure 6.2: The communication topology of the implementation of the broadcast primitive.

broadcast on the data network was more efficient when sending bulk data because the bandwidth
of the data network is much higher than that of the control network [84].

Since Active Messages are not buffered [131], sending bulk data from one node to another
requires a three-phase protocol. The source sends size information and the destination acknowledges
with a buffer address. Then the source sends data without any concern about overflow. However,
because Active Messages are scheduled immediately at the destination, the unconstrained three-
phase protocol may develop multiple outstanding bulk data transfers at the destination, increasing
contention at the network interface and packet back-up in the network and degrading network
performance. In order to avoid the problems the runtime system controls the flow of bulk data
transfer. A node manager acknowledges bulk data transfer requests in a first-come-first-served
manner so that only one request is outstanding at any time. Flow control reduces packet back-up
in the network, improving network performance as well as processor efficiency.

71

THAL ABCL Concert

usec | cycle usec | cycle usec | cycle
platforms CM-5 (33 MHz) AP1000 (25 MHz) | CM-5 (33 MHz)
local creation 8.04 265 2.1 69 N/A N/A
remote creation | 5.83 (20.83) | 192 (687) | N/A N/A N/A N/A
locality check 1.00 33 0.12 3 11.70 390
Isend & dispatch 0.45/5.67 15/187 | 2.18/9.6 | 55/240 | 0.12/8.44 | 4/277
rsend & dispatch 9.91 327 8.9 223 7.67 252

Table 6.1: Execution times of runtime primitives. Local send and dispatch time does not include
the locality check time. Times are measured by repeatedly sending a message with no argument.
Others are cited from the previously published papers. The local execution of remote actor creation
in HAL takes 5.83 usec while the actual latency is 20.83 usec.

6.2 Performance of the Runtime Primitives

Table 6.1 summarizes execution time of the THAL runtime primitives. As mentioned earlier, the
use of aliases makes it possible to complete a local execution of remote creation in 5.83 usec where
the actual latency is 20.83 usec. A locality check is done using only locally available information
and completes within 1 psec for locally created actors. The performance of the runtime primitives
is comparable to that of other systems [119, 75]. The runtime system also supports two primitives
to implement the call/return communication abstraction: continuation creation and reply. Con-
tinuation creation with two slots, one empty and one filled, takes 2.27 usec and deallocation takes
0.75 psec. Sending a reply locally takes 2.76 usec and sending it remotely takes 9.26 usec.

Below we present performance results of five benchmarks: namely the Fibonacci number gen-
erator, a systolic matrix multiplication, a bitonic sorting problem, an N-Queen problem, and an
adaptive quadrature problem. The Fibonacci number generator is used to examine overhead of
the message layer of the runtime system as well as effectiveness of dynamic load balancing. The
systolic matrix multiplication example shows that the THAL system delivers performance compa-
rable to less flexible systems when execution granularity is sufficiently large. The bitonic sorting
problem also shows that the runtime system supports scalable execution. The last two examples
are presented to demonstrate the effects of different placement strategies. For each application, we
put a brief problem statement, evaluation results, and analysis.

6.3 Fibonacci Number Generator

The Fibonacci number generator computes the n-th number in the Fibonacci sequence using the
recurrence relation, Fib(0) = 1, Fib(1) = 1, Fib(n) = Fib(n—1)+ Fib(n—2) (Figure 4.4). Although
it is a very simple program, it can be used to measure overhead of the messaging layer in the runtime
system takes because each Fibonacci actor’s thread length is quite small. Figure 6.4 compares
performance of THAL versions computing Fibonacci of 33 on a single node of TMC CM-5 with
that of an optimized C version on a single Sparc processor. The C version completes in 8.49 seconds.
As a point of comparison, computing Fib(33) in the Cilk system [19] on a single Sparc processor
takes 73.16 seconds.

72

Figure 6.3: Comparison of performance of Fibonacci implementations with and without dynamic

load balancing.

The Fibonacci program is extremely concurrent: naively computing Fib(33) creates 11,405,773
actors. However, the THAL compiler optimizes away actor creations since Fibonacci actors are
purely functional. The computation tree of the Fibonacci program has a great deal of load im-
balance. Table 6.2 and Figure 6.3 compare two execution results with and without dynamic load
balancing (DLB). A receiver-initiated random polling scheme [83] is used for dynamic load balanc-
ing. As Figure 6.3 shows, the version with DLB performs worse on partitions of a small size due to
the overhead for extra book-keeping. However, it eventually outperforms the version without DLB
as the size increases.

6.4 Systolic Matrix Multiplication

The systolic matrix multiplication algorithm, also known as Cannon’s algorithm [82], uses N2
processors where N is a natural number. To compute C = A X B, each matrix is divided into N2
square blocks and matrix A is row-skewed and matrix B is column-skewed. Then, A, B, and C are
placed on the square processor grid (Figure 3.10). At each step of the execution, node P;; performs

73

Figure 6.4: Comparison of performance of Fibonacci implementations on a single Sparc proces-
SOT.

P 2 4 8 16
M
256 1.06 | 0.31 | 0.12 | 0.05
512 8.40 | 2.37 | 0.69 | 0.23
1024 72.78 | 12.51 | 4.94 | 1.46

Table 6.3: Execution times of a systolic matrix multiplication problem. (unit: seconds). All
results were obtained by executing the program with a M X M matrix on a P X P processor array.

local matrix multiplication with blocks Ap,; and Bp,;. Then, Ap;s are cyclicly shifted to the left,
and Bp,;s to the upward. After N iterations, the result is in matrix C.

Unlike usual systolic implementations, no global synchronization is used to make computation
march in lock-step fashion. Rather, per-actor-basis local synchronization is used to simulate the
barrier synchronization. Local block matrix multiplication is implemented using the same assembly
routine used in [33]. Table 6.3 shows the execution times of a THAL implementation on TMC
CM-5. Results are comparable to those given in [33] (Figure 6.5). For example, the performance
peaks at 434 MFlops for a 1024 by 1024 matrix on a 64 node partition of a CM-5. The results show
that, despite its flexibility, our implementation is as efficient as other more restrictive low-level ones
when granularity is sufficiently large.

6.5 Bitonic Sort

A bitonic sequence is a sequence of elements (ag, a1, ..., an—1) with the property that either (1)
there exists an index i, 0 < ¢ < n — 1, such that {ao,...,a;) is monotonically increasing and

74

Figure 6.5: Comparison of performance of THAL and Split-C implementations of systolic matrix
multiplication.

1 2 4 8 16 32 64 128 256
32768 | 3.103 | 1.458 | 0.694 | 0.333 | 0.171 | 0.093 | 0.056 | 0.038 | 0.029
65536 | 7.084 | 3.279 | 1.593 | 0.789 | 0.387 | 0.206 | 0.114 | 0.070 | 0.047
131072 | 15.83 | 7.376 | 3.578 | 1.758 | 0.920 | 0.459 | 0.246 | 0.143 | 0.085

Table 6.4: Performance of a bitonic sorting problem. (unit: seconds). A block of elements in a
node is sorted using the sequential heap sort algorithm.

{(@it1,--.,an—1) is monotonically decreasing, or (2) there exists a cyclic shift of indices so that (1)
is satisfied. We define bitonic merge as a process of rearranging a bitonic sequence into a sorted
sequence. Then, bitonic sort is defined as an algorithm which sorts a sequence of numbers by
repeatedly merging bitonic sequences of increasing length. In the experiments, a group of actors is
created using clone: thus, one actor per processor. Array elements were distributed evenly over the
member actors. As a result, the number of elements assigned to an actor decreases as the number
of processors increases. Each actor independently sorts a block of elements using the sequential
heap sort algorithm before the block bitonic sorting begins. Synchronization is enforced by using
local synchronization constraints. Timing results using different numbers of elements are shown in
Table 6.4; Figure 6.6 shows their scalability.

6.6 N-Queen Problem

The goal of the N-Queen problem is to place N queens on an N X N chess board such that no
two queens are placed on the same row, column, or diagonal. The version used in the experiment
computes the number of solutions of a given configuration [117]. Table 6.5 has the timing results

75

Figure 6.6: Comparison of performance of a bitonic sorting problem with different problem sizes.

with different placement policies when N = 13. The first column shows the results obtained
with random placement while others have the numbers with the subtree-to-subcube placement. In
the subtree-to-subcube cases, actors are randomly placed until the depth reaches D. A subtree-
to-subcube placement with a smaller depth places more actors locally. Note that the execution
times on a single processor are different. Although the same program was used, the random version
followed an execution path which visited local message sending with a more general interface because
receiver’s locality is not known until the message sending time. By contrast, some of messages
destined to local actors are known at compile time in the subtree-to-subcube versions and the
compiler uses a more efficient interface for these message sends. Thus, the performance difference in
the local scheduling mechanisms (refer to Table 6.1) is reflected in the single processor performance
numbers.

The subtree-to-subcube versions show better scalability as well as better performance than the
version using random placement (Figure 6.7). Scalability characteristics differ even among the
subtree-to-subcube versions, demonstrating the importance of placement in performance. As a
point of comparison, a C implementation without any object allocation takes 8.05 seconds.

6.7 Adaptive Quadrature

Evaluation of integrals is called quadrature. An automatic quadrature algorithm takes as inputs
a function f, an interval [a, b], and an accuracy request ¢ and produces a result @ and an error
estimate F. The algorithm recursively divides all subintervals until it meets the accuracy request
€. A sequential, globally adaptive quadrature technique [71] saves computation time by starting
integral evaluation from coarser subintervals and repeatedly dividing the subinterval with the largest
local error estimate until the accuracy request is met.

76

PEs | Random | D=7 | D=6 | D=5
1 105.4 | 91.23 | 90.70 | 90.35

N/At | 59.02 | 53.96 | 52.37
4 118.2 | 33.09 | 27.91| 27.07
8 68.69 | 17.38 | 14.10 | 13.69
16 36.39 | 9.120 | 7.289 | 7.102
32 18.93 | 4.610 | 3.898 | 3.392
64 10.94 | 2.610 | 2.040 | 1.653
128 5.884 | 1.318 | 1.092 | 0.843
256 3.260 | 0.628 | 0.595 | 0.476

Table 6.5: Performance of a 13-Queen problem. (unit: seconds)

1 2 4 8 16 32 64 128 256
depth = 3 | 184.0 | 107.8 | 46.78 | 27.33 | 16.89 | 11.97 | 5.604 | 3.369 | 2.577
depth = 4 | 183.7 | 94.05 | 49.43 | 27.01 | 16.68 | 9.944 | 5.765 | 3.194 | 1.864
depth = 5 | 183.8 | 95.66 | 52.06 | 27.94 | 16.50 | 9.091 | 5.797 | 3.028 | 1.738
Random 183.5 | 96.12 | 52.44 | 27.66 | 17.11 | 9.282 | 5.445 | 2.921 | 1.952

Table 6.6: Performance of an adaptive quadrature problem. (unit: seconds)

A parallel version of the algorithm may be implemented using a master-worker configuration.
First, the master creates a worker on each processing node, divides the input interval into equally
spaced subintervals, and assigns one to each worker. Each worker is responsible for computing
the integral estimate and the error estimate on its subinterval. If the error estimate is sufficiently
small, it returns its integral estimate to the master as the result. Otherwise, it refines the integral
estimate by creating child workers, dividing its subinterval, and assigning one to each child. Then,
it waits for results, sums them, and returns the sum to the master. In our experiment, the following
function was integrated over the interval from [0.001,32] using an initial subinterval length of 0.1
and the error bound of 1074,

108 + |106 % sin!0¥5/z!|

The N-Queen example demonstrates that different placement strategies may exhibit different
performance characteristics. This example shows that it is not always the case. In adaptive
quadrature the work assigned to a processing element may dynamically increase as the computation
proceeds. The subtree-to-subcube placement strategies cause more remote actors to be created and
more remote messages to be sent as the cutoff depth increases. Asin the N-Queen problem, versions
which scheduled more computations locally performed better (Table 6.6). However, the difference
is not significant (Figure 6.8).

7

Figure 6.8: Comparison of performance of an adaptive quadrature problem with different place-
ment strategies.

78

Chapter 7

Conclusion

The thesis shows that communication in actor programming which involves both sending and
scheduling messages, can be efficiently and scalably supported on stock-hardware distributed mem-
ory multicomputers. In particular, we have developed a number of run-time implementation tech-
niques and compile-time analyses for flexible actor communication abstractions and applied them
to an actor-based language, THAL.

The language supports flexible high-level communication abstractions, such as concurrent call /return
communication, delegation, local synchronization constraints, and broadcast. The runtime system
implements an efficient message delivery subsystem which supports location transparency, a remote
object creation mechanism which allows remote creation to overlap with local computation, and a
scheduling mechanism which recognizes and exploits the cost difference in local and remote mes-
sage scheduling. In particular, the scheduling mechanism enables the runtime system to implement
dynamic load balancing. The compiler uses global data flow analysis to infer types for expressions.
The inferred type information is used to optimize message scheduling. The compiler also imple-
ments a join continuation transformation to restore concurrency lost in specifications. It compiler
analyzes local data flow in a program to enable multiple threads active on an actor with thread
safety.

Preliminary experiment results are encouraging. Specifically, the performance of primitive op-
erations, such as actor creation and message sending, are comparable to those of other systems.
Although the performance of fine-grained benchmark programs is worse than that of implementa-
tions in less flexible systems, our system yields comparable or better performance, on benchmarks
with sufficiently large granularity.

The implementation techniques of the runtime system and the compile-time analyses devel-
oped in the thesis may serve as a basis on which to implement high-level actor-based systems
efficiently. Such systems include: multi-object synchronization and coordination in distributed en-
vironment [41], meta-level specification of interaction policies between distributed components [114],
synchronization between distributed objects with real-time constraints [105], visualization of coor-
dination patterns in concurrent algorithms [10]. All of these systems are based on asynchronous
objects and thus are modeled with actors. Although the systems support different high-level lin-
guistic abstractions, they share a property that the abstractions may be implemented in terms of
primitive actor operators.

The work addressed in the thesis may be extended in a number of directions. First, the THAL
language need to support more advanced abstractions to further improve programmability and

79

re-usability. Among the abstractions are inheritance, reflection, and exception handling. These
abstractions are necessarily added to the language in ways that maintain efficiency of the language.
Furthermore, the high-level, modular abstraction mechanism for actor placement developed in
[102] may be incorporated in the language. Lastly, the runtime system’s modular design allows
an automatic memory management scheme [128, 129] to be easily plugged in. Automatic memory
management is necessary for the runtime system to guarantee location transparency and execution
security by obviating user-level memory management.

The advent of low-cost off-the-shelf interconnects opens the possibility of networks of worksta-
tions as tomorrow’s economic workhorses. The compilation techniques and the runtime support
are independent of the underlying platforms, and thus, may easily be adapted to such platforms.
Intelligent agents on the world wide web (WWW) for data mining and/or distributed processing
roam from node to node to achieve their goals. By definition, they require migration capability as
well as transparent naming. Inherent location independence of actors and their ability to migrate
may be used to implement the intelligent agents efficiently.

80

Bibliography

[1]
[2]

[3]

G. Agha. Actors: A Model of Concurrent Computation wn Distributed Systems. MIT Press, 1986.

G. Agha. Supporting Multiparadigm Programming on Actor Architectures. In Proceedings of Parallel
Architectures and Languages Europe, Vol. II: Parallel Languages (PARLE ’89), pages 1-19. Espirit,
Springer-Verlag, 1989. LNCS 366.

G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM, 33(9):125-141,
September 1990.

G. Agha, S. Frglund, W. Kim, R. Panwar, A. Patterson, and D. Sturman. Abstraction and Modularity
Mechanisms for Concurrent Computing. IEEE Parallel and Distributed Technology: Systems and
Applications, 1(2):3-14, May 1993.

G. Agha, W. Kim, and R. Panwar. Actor Languages for Specification of Parallel Computations. In G. E.
Blelloch, K. Mani Chandy, and S. Jagannathan, editors, DIMACS. Series in Discrete Mathematics and
Theoretical Computer Science. vol 18. Specification of Parallel Algorithms, pages 239-258. American
Mathematical Society, 1994. Proceedings of DIMACS ’94 Workshop.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison Wesley, 1986.

J. Randy Allen. ”Dependence Analysis for Subscripted Variables and Its Application to Program
Transformations. Ph.D. dissertation, Rice University, Dept. Mathematical Sciences, April 1983. (UMI
83-14916).

T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW team. A Case for NOW (Networks of
Workstations). IEEE Micro, 15(1):54-64, February 1995.

Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. In 4th International DFVLR
Seminar on Foundations of Engineering Sciences, pages 61-88, 1987. LNCS 295.

M. Astley and G. Agha. A Visualization Model for Concurrent Systems. Information Sciences, 93(1-
2):107-132, August 1996.

W. Athas and C. Seitz. Cantor User Report Version 2.0. Technical Report 5232:TR:86, California
Institute of Technology, Pasadena, CA, January 1987.

W. Athas and C. Seitz. Multicomputers: Message-Passing Concurrent Computers. IEEE Computer,
pages 9-23, August 1988.

G. Attardi. Concurrent Strategy Execution in Omega. In A. Yonezawa and M. Tokoro, editors,
Object-Oriented Concurrent Programming, pages 259-276. MIT Press, Cambridge, MA, 1987.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Press, 1988.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic Program Parallelization. Pro-

ceedings of IEEE, 81(2):211-243, February 1993.

B. M. Barry, J. Altoft, D. A. Thomas, and M. Wilson. Using Objects to Design and Build Radar ESM
Systems. In Proceedings of OOPSLA ’87. SIGPLAN, ACM, 1987.

81

[17] F. Baude and G. Vidal-Naquet. Actors as a Parallel Programming Model. In Proceedings of 8th
Symposium on Theoretical Aspects of Computer Science, pages 184-195, 1991. LNCS 480.

[18] M. Ben-Ari. Principles of Concurrent and Distributed Programming. International Series on Computer
Science. Prentice Hall, 1990.

[19] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, A. Shaw, and Y. Zhou.
Cilk: An Efficient Multithreaded Runtime System. In Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming PPOPP, 1994.

[20] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr. Implementing a
Parallel C++ Runtime System for Scalable Parallel Systems. In Supercomputing ’93, pages 588-597,
1993.

[21] Jean-Pierre Briot. Actalk: A Testbed for Classifying and Designing Actor Languages in the
Smalltalk-80 Environment. In S. Cook, editor, European Conference on Object-Oriented Program-
ming (ECOOP’89), pages 109-129, Nottingham, U.K., July 1989. Espirit, Cambridge University Press,
United-Kingdom. British Computer Society Workshop Series.

[22] Kim B. Bruce. Safe Type Checking in a Statically-Typed Object-Oriented Programming Language. In
Twentieth Symposium on Principles of Programming Languages, pages 285—-298. ACM Press, January
1993.

[23] P. A. Buhr, G. Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zaranke. pC++: Concurrency
in the Object-Oriented Language C++. Software — Practice and Ezperience, 22(2):137-172, February
1992.

[24] A. Burns. Concurrent Programming in Ada. Cambridge University Press, 1985.

[25] C. Callsen and G. Agha. Open Heterogeneous Computing in ActorSpace. Journal of Parallel and
Distributed Computing, pages 289-300, 1994.

[26] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the Perplexed. ACM
Computing Surveys, 21(3):323-357, September 1989.

[27] R. Chandra, A. Gupta, and J. L. Hennessy. COOL: An Object-Based Language for Parallel Program-
ming. IEEE Computer, 27(8):13-26, August 1994.

[28] A. Chien, V. Karamcheti, and J. Plevyak. The Concert System - Compiler and Runtime Support for
Efficient Fine-Grained Concurrent Object-Oriented Programs. Technical Report UIUCDCS-R-93-1815,
University of Illinois at Urbana-Champaign, Department of Computer Science, June 1993.

[29] A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel Programs. MIT
Press, 1993.

[30] W. Clinger. Foundations of Actor Semantics. Technical Report AI-TR-633, MIT Artificial Intelligence
Laboratory, May 1981.

[31] Convex Computer Corporation, Richardson, Texas. Convez Ezemplar Architecture, November 1993.
2] Cray Research, Inc. Cray T8D System Architecture Qverview, March 1993.

[33] D.E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel Programming in Split-C. In Proceedings of Supercomputing 93, pages 262-273, 1993.

[34] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain Parallelism with
Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine. In Proceedings of
ASPLOS, pages 166-175, 1991.

[35] O.-J. Dahl and K. Nygaard. SIMULA 67 Common Base Proposal. Technical report, NCC Doc., 1967.
[36] W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Press, 1986.
[37] W. Dally. The J-Machine: System Support for Actors, chapter 16, pages 369-408. M.L.T. Press,

Cambridge, Mass., 1990.

82

[38]

ot Ot

W. J. Dally and A. A. Chien. Object-Oriented Concurrent Programming in CST. In G. Agha,
P. Wegner, and A. Yonezawa, editors, The ACM SIGPLAN Workshop on Object-Based Concurrent
Programming, pages 28-31, San Diego, USA, September 1988. The ACM SIGPLAN, ACM Press.

J. H. Edmondson, P. Rubinfeld, R. Rreston, and V. Rajagopalan. Superscalar instruction Execution
in the 21164 Alpha Microprocessor. IEEE micro, 15(2), April 1995.

S. Frglund. Inheritance of Synchronization Constraints in Concurrent Object-Oriented Programming
Languages. In O. Lehrmann Madsen, editor, ECOOP’92 European Conference on Object-Oriented
Programming, pages 185-196. Springer-Verlag, June 1992. LNCS 615.

Svend Frglund. Coordinating Distributed Objects: An Actor-Based Approach to Synchronization. MIT
Press, 1996.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine. A Users’ Guide and Tutorial for Networked Parallel Computing. The MIT Press, 1994.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison Wesley,
1983.

G. Golub and C. Van Loan. Matriz Computations. The Johns Hopkins University Press, 1983.

J. Gosling and H. McGilton. The Java Language Environment: A White Paper. Technical report, Sun
Microsystems Comptuer Company, 1995.

Justin O. Graver and Ralph E. Johnson. A Type System for Smalltalk. In Seventh Symposium on
Principles of Programming Languages, pages 136-150. ACM Press, January 1990.

A. Grimshaw, W. T. Strayer, and P. Narayan. Dynamic Object-Oriented Parallel Processing. IEEE
Parallel and Distributed Technology: Systems and Applications, 1(2):33-47, May 1993.

L. Gwennap. 620 Fills Out PowerPC Product Line. Microprocessor Report, 8(14), October 1994.

L. Gwennap. UltraSparc Unleashes SPARC Performance. Microprocessor Report, 8(13), October 1994.
L. Gwennap. P6 Underscores Intel’s Lead. Microprocessor Report, 9(2), February 1995.

L. Gwennap. Pentium Is First CPU to Reach 0.35 Micron. Microprocessor Report, 9(4), March 1995.
L. Gwennap. Digital’s 21164 Reaches 500 MHz. Microprocessor Report, 10(9), July 1996.

C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Journal of Artificial Intelli-
gence, 8(3):323-364, 1977.

C. Hewitt and R. Atkinson. Specification and Proof Techniques for Serializers. IEEE Transactions on
Software Engineering, 5(1), January 1979.

C. Hewitt and H. Baker. Laws for Communicating Parallel Processes. In IFIP Conference Proceedings,

1977.

C. Hewitt and P. de Jong. Analyzing the Roles of Descriptions and Actions in Open Systems. In
Proceedings of the national Conference on Artificial Intelligence. AAAI, August 1983.

M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in CSP. International
Series on Software Engineering. McGraw-Hill, 1995.

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666—677,
August 1978.

J. G. Holm, A. Lain, and P. Banerjee. Compilation of Scientific Programs into Multithreaded and
Message Driven Computation. In Proceedings of the 1994 Scalable High Performance Computing
Conference, pages 518-525, Knoxville, TN, May 1994.

M. Homewood and M. McLaren. Meiko CS-2 Interconnect Elan-Elite Design. In Proceedings of Hot
Interconnects, August 1993.

83

[61]
[62]

W. Horwat. Concurrent Smalltalk on the Message Driven Processor. Master’s thesis, MIT, May 1989.

C. Houck. Run-Time System Support for Distributed Actor Programs. Master’s thesis, University of
Illinois at Urbana-Champaign, January 1992.

C. Houck and G. Agha. HAL: A High-level Actor Language and Its Distributed Implementation. In
Proceedings of th 21st International Conference on Parallel Processing (ICPP ’92), volume II, pages
158-165, St. Charles, IL, August 1992.

N. Hutchinson, R. Raj, A. Black, H. Levy, and E. Jul. The Emerald Programming Language REPORT.
Technical Report 87-10-07, University of Washington, October 1987.

Intel Corporation. Paragon User’s Guide, 1993.

H. Ishihata, T. Horie, S. Inano, T. Shimizu, and S. Kato. An Architecture of Highly Parallel Computer
AP1000. In Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, pages 13-16, May 1991.

J. Rees et. al. The T Manual. Technical report, Yale University, 1985.

R. H. Halstead Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM TOPLAS,
7(4):501-538, 1985.

K. Mani Chandy and Carl Kesselman. CC++: A Declarative Concurrent Object-Oriented Program-
ming Notation. In G. Agha and P. Wegner and A. Yonezawa, editor, Research Direction in Concurrent
Object-Oriented Programming, chapter 11, pages 281-313. The MIT press, 1993.

D. Kafura, M. Mukherji, and G. Lavender. ACT++: A Class Library for Concurrent Programming
in C++ Using Actors. Journal of Object-Oriented Programming, 0(0):47-62, October 1993.

D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Prentice Hall, 1989.

K. Kahn. Creation of Computer Animation from Story Descriptions. PhD thesis, Massachusetts
institute of Technology, 1979.

L. V. Kale and S. Krishnan. CHARM—++: A Portable Concurrent Object Oriented System Based On
C++. In Andreas Paepcke, editor, Proceedings of OOPSLA 93’. ACM Press, October 1993. ACM
SIGPLAN Notices 28(10).

V. Karamcheti. Private Communication, 1994.

V. Karamcheti and A. A. Chien. Concert — Efficient Runtime Support for Concurrent Object-Oriented
Programming Languages on Stock Hardware. In Proceedings of Supercomputing ‘93, November 1993.

V. Karamcheti and A.A. Chien. A Comparison of Architectural Support for Messaging on the TMC
CM-5 and the Cray T3D. In Proceedings of International Symposium of Computer Architecture, 1995.

R. Kessler and J. Schwarzmeier. CRAY T3D: A New Dimension for Cray Research. In Proceedings of
COMPCON, pages 176-182, 1993.

W. Kim and G. Agha. Compilation of a Highly Parallel Actor-Based Language. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Workshop on Languages and
Compilers for Parallel Computing, pages 1-15. Springer-Verlag, 1993. LNCS 757.

W. Kim and G. Agha. Efficient Support of Location Transparency in Concurrent Object-Oriented
Programming Languages. In Proceedings of Supercomputing ’95, 1995.

W. Kim, R. Panwar, and G. Agha. Efficient Compilation of Call/Return Communication for Actor-
Based Programming Languages. In Proceedings of HiPC ’96, pages 62-67, 1996.

E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural Support for Single Address Space
Operating Systems. In Proceedings of ASPLOS V ’92, pages 175-186, 1992.

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing: Design and
Analysis of Algorithms. Benjamin/Cummings Publishing Company, Inc., 1994.

84

[83]

V. Kumar, A. Y. Grama, and V. N. Rao. Scalable Load Balancing Techniques for Parallel Com-
puters. Technical Report 91-55, CS Dept., University of Minnesota, 1991. available via ftp
ftp.cs.umn.edu:/users/kumar/1b_MIMD.ps.Z.

T. T. Kwan, B. K. Totty, and D. A. Reed. Communication and Computation Performance of the
CM-5. In Proceedings of Supercomputing ’93, pages 192-201, 1993.

G. Lapalme and P. Sallé. Plasm-II: an Actor Approach to Concurrent Programming. In G. Agha,
P. Wegner, and A. Yonezawa, editors, The ACM SIGPLAN Workshop on Object-Based Concurrent
Programming, pages 81-83, San Diego, USA, September 1988. The ACM SIGPLAN, ACM Press.

J. Larus. C**: A Large-Grain, Object-Oriented, Data Parallel Programming Language. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Workshop on Languages and
Compilers for Parallel Computing, pages 326-340. Springer-Verlag, 1993. LNCS 757.

J. K. Lee and D. Gannon. Object-Oriented Parallel Programming Experiments and Results. In
Proceedings Supercomputing 91, pages 273-282, 1991.

H. Lieberman. Concurrent Object-Oriented Programming in ACT 1. In A. Yonezawa and M. Tokoro,
editors, Object-Oriented Concurrent Programming, chapter 16, pages 9-36. MIT Press, Cambridge,
MA, 1987.

C. Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master’s thesis, MIT,
Artificial Intelligence Laboratory, August 1987.

S. Matsuoka, K. Taura, and A. Yonezawa. Highly Efficiency and Encapsulated Re-ruse of Synchro-
nization Code in Concurrent Object-Oriented Languages. In ACM OOPSLA 93, 1993.

S. Matsuoka and A. Yonezawa. Analysis of Inheritance Anomaly in Object-Oriented Concurrent
Programming Languages. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in
Object-Oriented Programming. MIT Press, 1993.

D. May, R. Shepherd, and C. Keane. Communicating Process Architecture: Transputer and Occam.
In P. Treleaven and M. Vanneschi, editors, Future Parallel Architecture, pages 35—81. Springer-Verlag,
1986. LNCS 272.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge, MA,
1990.

MIPS Technologies, Inc. Product Overview: R10000 Microprocessor, October 1994.

S. Murer, J.A. Feldman, C.-C. Lim, and M.-M. Seidel. pSather: Layered Extensions to an Object-
Oriented Language for Efficient parallel Computation. Technical Report TR-93-028, ISCI, December
1993.

T. Nakajima, Y. Yokote, M. Tokoro, S. Ochiai, and T. Nagamatsu. DistributedConcurrentSmalltalk:
A Language and System for the Interpersonal Environment. In G. Agha, P. Wegner, and A. Yonezawa,
editors, The ACM SIGPLAN Workshop on Object-Based Concurrent Programming, pages 43—45, San
Diego, USA, September 1988. The ACM SIGPLAN, ACM Press.

A Hierarchical O(nlogn) Force-Calculation Algorithm. J. Barnes and P. Hut. Nature, 324(4):446-449,
1986.

Open Systems Lab. University of Illinois at Urbana-Champaign. THAL Programmer’s Manual. Version
1.0, May 1997.

N. Oxhoj, J. Palsberg, and M. I. Schwartzbach. Making Type Inference Practical. In Proc. ECOOP’92,
pages 329-349. Springer-Verlag (LNCS 615), 1992.

J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In Proc. OOPSLA 91, ACM
SIGPLAN Sizth Annual Conference on Object-Oriented Programming Systems, Languages and Appli-
cations, pages 146-161. ACM Press, October 1991.

85

[101] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons, 1994.

[102] R. Panwar. Specification of Resource Management Strategies for Concurrent Objects. PhD thesis,
University of Illinois at Urbana-Champaign, 1997.

[103] R. Panwar, W. Kim, and G. Agha. Parallel Implementations of Irregular Problems using High-level
Actor Language. In Proceedings of IPPS ’96, 1996.

[104] J. Plevyak. Optimization of Object-Oriented and Concurrent Programs. PhD thesis, University of
Ilinois at Urbana-Champaign, August 1996.

[105] S. Ren. Modularization of Time Constraint Specifications in Distributed Real-Time Computing. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

[106] K. E. Schauser and C. J. Scheiman. Experience with Active Messages on the Meiko CS-2. In Proceedings
of IPPS ’95, 1995.

[107] R.Sethi. Programming Languages. Concept & Construct. International Series on Software Engineering.

Addison Wesley, second edition, 1996.

[108] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot. SOS: An Object-Oriented
Operating System — Assessment and Perspectives. Computing Systems, 2(4):287-337, Fall 1989.

[109] O. Shivers. Data-flow Analysis and Type Recovery in Scheme. In P. Lee, editor, Topics in Advance
Language Implementation, pages 47-87. M.I.T. Press, 1991.

[110] Silicon Graphics. POWER CHALLENGEarray Technical Report, 1996.

[111] J. E. Smith and S. Weiss. PowerPC 601 and Alpha 21064: A Tale of Two RISCs. IEEE Micro, 14(3),
June 1994.

[112] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. The
MIT Press, 1996.

[113] L. Steels. An Applicative View of Object Oriented Programming. AI Memo 15, Schlumberger-Doll
Research, March 1982.

[114] D. Sturman. Modular Specification of Interaction Policies in Distributed Computing. PhD thesis,
University of Illionis at Urbana-Champaign, May 1996.

[115] Norihisa Suzuki. Inferring Types in Smalltalk. In Eighth Symposium on Principles of Programming
Languages, pages 187-199. ACM Press, January 1981.

[116] Andrew S. Tanenbaum, M. Frans Kaashoek, and Henri E. Bal. Parallel Programming Using Shared
Objects and Broadcasting. IEEE Computer, 25(8):10-19, August 1992.

[117] K. Taura. Design and Implementation of Concurrent Object-Oriented Programming Languages on
Stock Multicomputers. Master’s thesis, The University of Tokyo, February 1994.

[118] K. Taura. Private Communication, 1995.

[119] K. Taura, S. Matsuoka, and A. Yonezawa. An Efficient Implementation Scheme of Concurrent Object-
Oriented Languages on Stock Multicomputers. In Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming PPOPP, pages 218-228, May 1993.

[120] K. Taura, S. Matsuoka, and A. Yonezawa. ABCL/f: A Future-Based Polymorphic Typed Concurrent
Object-Oriented Language - Its Design and Implementation. In G. E. Blelloch, K. Mani Chandy,
and S. Jagannathan, editors, DIMACS. Series in Discrete Mathematics and Theoretical Computer

Science. vol 18. Specification of Parallel Algorithms, pages 275-291. American Mathematical Society,
1994. Proceedings of DIMACS 94 Workshop.

[121] D. G. Theriault. Issues in the Design and Implementation of ACT2. Technical Report AI-TR-728,
MIT Artificial Intelligence Laboratory, June 1983.

86

[122]

[123]
[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Thinking Machine Corporation. Connection Machine CM-5 Technical Summary, revised edition edi-
tion, November 1992.

Thinking Machine Corporation. CMMD Reference Manual Version 3.0, May 1993.

D. A. Thomas, W. R. LaLonde, J. Duimovich, and M. Wilson. Actra - A Multitasking/Multiprocessing
Smalltalk. In G. Agha, P. Wegner, and A. Yonezawa, editors, The ACM SIGPLAN Workshop on
Object-Based Concurrent Programming, pages 87-90, San Diego, USA, September 1988. The ACM
SIGPLAN, ACM Press.

C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The Extensible Services Switch in Carnot.
IEEE Parallel and Distributed Technology: Systems and Applications, 1(2), May 1993.

C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette: An Object Oriented
Concurrent System Architecture. Sigplan Notices, 24(4):91-93, 1989.

C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOPSLA Pro-
ceedings, 1989.

N. Venkatasubramaniam, G. Agha, and C. Talcott. Scalable Distributed Garbage Collection for Sys-
tems of Active Objects. In Proceedings of the International Workshop on Memory Management, pages
441-451, St. Malo, France, September 1992. ACM SIGPLAN and INRIA, Springer-Verlag. Lecture

Notes in Computer Science.

N. Venkatasubramanian and C. Talcott. A MetaArchitecture for Distributed Resource Management.
In Proceedings of the Hawaii International Conference on System Sciences. IEEE Computer Society
Press, January 1993.

T. von Eicken, A. Basu, and V. Buch. Low-Latency Communication over ATM Networks Using Active
Messages. IEEE Micro, 15(1):46-53, February 1995.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a Mechanism for
Integrated Communication and Computation. In Proceedings of International Symposium of Computer
Architectures, pages 256-266, 1992.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient Software-Based Fault Isolation. In
Proceedings of Fourteenth ACM Symposium on Operating System Principles, pages 203—-216, December
1993.

T. Watanabe and A. Yonezawa. A Actor-Based Metalevel Architecture for Group-Wide Reflection.
In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Foundations of Object-Oriented Lan-
guages, pages 405-425. Springer-Verlag, 1990. LNCS 489.

M. Yasugi, S. Matsuoka, and A. Yonezawa. ABCL/onEM-4: A New Software/Hardware Architecture
for Object-Oriented Concurrent Computing on an Extended Dataflow Supercomputer. In ICS ’92,
pages 93-103, 1992.

A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge, Mass.,
1990.

S. E. Zenith and D. May. Occam 2 Reference Manual. INMOS Ltd and Prentice-Hall, 1988.

87

Vita

WooYoung Kim was born on October 23, 1964, in Pusan, Korea. As being a son of a military officer,
he moved many times in his elementary and middle school days. He graduated from YoungDong
Middle School in February, 1980 and from HwiMoon High School in February, 1983, both in Seoul.

In March, 1983, WooYoung enrolled in the Engineering College of Seoul National University
where he majored in Computer Engineering. He was awarded a scholarship from the Chung-O
Foundation throughout the four years of the study in the school. As a senior, he won a second
place prize with ChaeRyung Park in a student paper contest sponsored by the Korean Information
Science Society in 1987. Upon receiving his Bachelor of Science Degree with Magna Cum Laude
from the Seoul National University in February 1987, he continued his graduate study in the same
department. During his tenure, he served as a Research Assistant in the Programming Language
and Artificial Intelligence Laboratory under the direction of Dr. YoungTaek Kim and a Teaching
Assistant in the same department. He received his Master of Science Degree in February, 1989.

After serving 6 month-long military duty as a trainee officer, WooYoung enrolled in the Ph.D.
program in the Department of Computer Science at the University of Illinois at Urbana-Champaign.
During his tenure at Illinois, he served as a Research Assistant in the Open Systems Laboratory
under the direction of Dr. Gul Agha and a Teaching Assistant in the same department.

88

