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AbstractActors are a model of concurrent objects which unify synchronization and data abstractionboundaries. Because they hide details of parallel execution and present an abstract view of thecomputation, actors provide a promising building block for easy-to-use parallel programming sys-tems. However, the practical success of the concurrent object model requires two conditions besatis�ed. Flexible communication abstractions and their e�cient implementations are the necessaryconditions for the success of actors.This thesis studies how to support communication between actors e�ciently. First, we dis-cuss communication patterns commonly arising in many parallel applications in the context of anexperimental actor-based language, THAL. The language provides as communication abstractionsconcurrent call/return communication, delegation, broadcast, and local synchronization constraints.The thesis shows how the abstractions are e�ciently implemented on stock-hardware distributedmemory multicomputers. Speci�cally, we describe an experimental runtime system and compiler.The THAL runtime system recognizes and exploits the cost di�erence between local and remotemessage scheduling; it transparently supports actor's location independence; and, it implementsnon-blocking remote actor creation to improve utilization of computation resources. The THALcompiler incorporates a number of analysis and transformation techniques which work hand inhand with the runtime system. Among the techniques are: global data 
ow analysis to infertype information { the compiler optimizes code for each message send according to the type ofits receiver expression; concurrency restoration through dependence analysis and source-to-sourcetransformation; concurrency control with dependence analysis which allows multiple threads to beactive on an actor with thread safety, i.e. with no interference between the threads. Experimentson a stock-hardware distributed memory multicomputer (CM-5) show that the compiler and theruntime system yield e�ciency and scalability on applications with su�ciently large granularitywhich are comparable to the performance of other less 
exible systems.
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Chapter 1IntroductionFor the past 25 years the computer industry has witnessed a steady increase in computer perfor-mance: 18% - 35% per year depending on the class of computers. In particular, performance growthof microprocessors is phenomenal [111, 49, 94, 48, 50, 39, 51, 52, 94]; they have grown in performanceby a factor of almost 2 every year. The performance improvement in o�-the-shelf microprocessorstogether with the availability of di�erent kinds of low-latency high-bandwidth interconnects hascaused stock-hardware parallel machines to proliferate [65, 122, 134, 66, 60, 32, 77, 31, 110, 8].Such machines o�er a vast amount of computation capability to an extent that we have neverdreamed of before.Indeed, it has been a challenge from the beginning of the parallel computing era to develop ageneral-purpose programming system which allows users to enjoy the dramatically increased rawperformance. Although a number of concurrent programming models have been proposed andactively investigated both in theory and in practice [17, 58, 18, 57, 1], programmers still writetheir parallel applications in a low-level message passing paradigm [112, 42] or a shared memoryparadigm. By almost any measure, massively parallel MIMD machines remain di�cult to program.Because actors [53, 55, 30, 1] (or, concurrent active objects) hide details of parallel execution andpresent a transparent view of the computation, they provide a promising building block for e�cienteasy-to-use parallel programming systems. In particular, actors extend sequential object modelsby abstracting over threads of control along with data and procedures. The encapsulation of bothcontrol and data in a single actor makes parallelism and synchronization implicit. Actors specifyconcurrent computation using asynchronous communication. Use of unique abstract entities calledmail addresses to name actors makes the communication location-independent. The encapsulationand the location independence simplify exploitation of data locality as well as enable actor relocationat execution time for scalable execution.Since the introduction of the Actor model by Hewitt [53] in late 60's, a number of actor-based programming systems have been developed in software on single processor or multiprocessorplatforms [88, 121, 56, 13, 16, 89, 11, 70] and implemented directly on silicon [12, 37]. With theavailability of low-cost, high-performance microprocessors, it becomes a challenge to implementactor-based programming systems on stock-hardware multicomputers in an e�cient and scalableway [119, 117, 28, 75]. It is challenging because actors are inherently concurrent and �ne-grainedwhile current-generation microprocessors support coarser-grained, sequential execution semantics.Furthermore, the cost di�erence between local and remote access is visible to applications ondistributed memory multicomputers. 1



We argue that a key to a successful implementation is to make communication (i.e. messagesending and scheduling) e�cient while retaining the 
exibility of actor communication. The the-sis experimentally validates the argument by developing compile and run-time techniques on theimplementation of an actor-based language, THAL. The language has been designed by adding
avor of sequentiality to the Actor model in controlled ways. As a result, the programmer is givencomplete control over execution grain size so that she may express the granularity at the moste�cient level. Abstracting computation in terms of messages between actors hides architecturaldetails of underlying platforms, improving programmability and portability.E�cient execution of programs written in the language needs e�cient compilation and runtimesupport. In particular, the extra sequentiality introduced for programmability should be eliminatedfor the sake of e�ciency. In the dissertation we propose implementation techniques for actorprimitives as well as message scheduling. We also propose a suite of compilation techniques toremove the sequentiality and restore concurrency in a pro�table way. Finally, we evaluate thee�ectiveness of these techniques using a number of benchmarks on a stock-hardware multicomputer.1.1 The Actor model of computationActors are autonomous components of a system which operate asynchronously. They encapsulatedata, procedures to manipulate the data, and a reactive process which triggers local proceduresin response to messages received. Because actors are conceptually concurrent and distributed, thesimplest form of message passing between them is asynchronous.A standard way to visualize an actor is to have an active object with a mail queue that isidenti�ed with a unique mail address. An actor may send messages to other actors whose mailaddresses it knows of. Thus, the communication topology of actors is deterministic at any giveninstant in time. At the same time, mail addresses may be included in a message { enabling adynamic communication topology. The uniqueness property of mail addresses provides for a globalactor space: an actor can send another actor a message regardless of its current location as long asit knows the receiver's mail address. It is also the uniqueness property that makes actors locationindependent.Computation in actor systems is message-driven. Messages are bu�ered in the receiver's mailqueue and by default processed �rst-come-�rst-served. Processing a message involves triggering amethod script. The method execution follows the dynamic data 
ow speci�ed by the method scriptwithout unnecessary synchronization. Such synchronization may be necessary in other program-ming models due to potential uncertainty in determining real dependencies in sequential controlconstructs. The model does not enforce any speci�c constraint on the order of message delivery.In particular, two messages sent by an actor to the same actor may arrive in an order di�erentfrom their sending order. By implication the Actor model abstracts over possible dynamic routing.Although message arrival order is nondeterministic, all messages are guaranteed eventual reception.The guarantee of delivery is a useful assumption in reasoning about systems where fault-toleranceneed not be explicitly modeled at the level of an application.In response to a message, an actor may create new actors, send messages to actors, and changeits state with which it responds to the next message (Figure 1.1). These actions are implementedby extending a sequential language with the following operators:2
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Figure 1.1: Primitive operations in the Actor model.� create takes a behavior description and creates an actor. The operator may take additionalinitialization arguments.� send-to takes the receiver's mail address and puts the message into its mail queue.� become and update take state variables and replace their values with new ones. The formerchanges the state collectively while the latter does it individually.State change is atomic. Atomic state change serializes message reception [3], thereby o�ering syn-chronization on the method boundary. Also, state change may �nish before all the other actionsin response to a message have been completed. An actor may process the next message withoutviolating the atomic state change requirement as long as the next state is speci�ed. This allowsmultiple threads to be active on a single actor under a multiple-reader, single-writer constraint [3].Furthermore, mutually independent actions in a method may be executed concurrently (i.e., inter-nal concurrency). Since no state is shared among actors, it is unnecessary to provide hardware orsoftware support for maintaining consistency of shared data.The Actor model is fairly primitive and abstract so that it may be used to model many di�erentconcurrent computing systems. For example, the J-machine [36, 37] is a �ne-grained concurrentcomputer which directly implements the Actor model on its hardware. Moreover, the actor opera-tors form a powerful set upon which to build a wide range of higher-level abstractions [2].1.2 ContributionsThe contributions of the thesis are summarized as follows:� We designed an actor-based language THAL. The language supports a range of high-levelabstractions which help specify frequent interaction patterns in concurrent computation.3



� We designed and implemented a message delivery subsystem which transparently supportsactor's location independence. Mail addresses are de�ned to guarantee location transparencywhile facilitating name translation.� The design of mail address makes unpredictable the time for remote actor creation. Wedeveloped a non-blocking remote actor creation mechanism using locally-allocated globally-unique entities called aliases which overlaps remote creation with other useful computation.� We designed and implemented a message scheduling mechanism using distributed shared mes-sage queue and tail calling which recognizes cost di�erence in scheduling local and remotemessages and exploits it in the scheduling. Part of the implementation is exposed to thecompiler to optimize local message scheduling.� Among the THAL communication abstractions is concurrent call/return communication thatis analogous to a function invocation abstraction in sequential programming. We designed ananalysis technique which identi�es independent CCRCs and implemented a source-to-sourcetransformation technique which maximally retains pro�table concurrency.1.3 HistoryThe precursor of THAL is HAL, a high-level Actor language [62, 63] designed and implemented byChristopher Houck. HAL had Lisp-like syntax and focused on remote execution of actors to providedata locality. Its programs were compiled to C and executed on top of CHARM, an architecture-independent runtime system [73]. The language featured inheritance, limited forms of re
ection,and synchronization constraints. HAL had been used as a test-bed for experimenting with newlanguage constructs and dependability methods.After Houck graduated and left the Open Systems Laboratory, 1 the language underwent aseries of evolution under the same name. First, join continuation transformation was implementedin the compiler and the abstraction for synchronization constraints were extended [78]. Then, anotion of group was introduced to the language and the communication mechanism was extendedwith a broadcast abstraction [5]. At this time, the language syntax was changed from Lisp-likeone to Modula-like one. Finally, we implemented a runtime system with migration capability. Itwas initially operational on a network of DEC workstations which was connected by Ethernet andran ULTRIX V4.2A. Then, the runtime system was ported to the Thinking Machine CorporationCM-5 [79].During the initial period of experimentation on a CM-5, we found that the versatility of HALcaused an intolerable amount of performance overhead on program execution. The �nding led usto drop support for re
ection and inheritance. At this time we changed the name to THAL [103], 2an acronym standing for Tailored High-level Actor Language. Currently, THAL supports multi-dimensional arrays and interface to other conventional sequential languages, such as C. Its compilerfeatures full support for type inference and a number of optimizations including the common con-tinuation region analysis [80].1to work on Mosaic and then Netscape.2THAL should be pronounced as [tal]. It is a Korean term ( ) for masks that are used in a traditional Koreandance-and-play which is loved and enjoyed especially by common folk.4



1.4 Thesis OverviewThe rest of the thesis is organized as follows. We summarize some background on our research inChapter 2. The description of the design and evaluation ofTHAL are given in Chapter 3. Chapter 4presents the design and implementation of the runtime support. Compiler-time optimizations arediscussed in Chapter 5. We report in Chapter 6 on the performance of the runtime primitives andother evaluation results on a stock-hardware multicomputer. Chapter 7 concludes the thesis witha brief summary and a sketch of future work.
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Chapter 2BackgroundThe roots of actor languages extend to functional and object-oriented programming paradigms.Although both paradigms had been �rst developed as early as in the late 50's and early 60's, it wasnot until 70's that the attempt to unify them with a model of concurrency was initiated. Since itsintroduction by Carl Hewitt, interest in actor languages have intensi�ed through the 80's and 90's {leading to the development of dozens of languages and implementations. In this chapter, we surveysome of these programming languages as well as other representative concurrent object-orientedprogramming languages.2.1 Object-Oriented ProgrammingObject-oriented programming paradigm encourages modular design and knowledge sharing (inparticular, code reuse). The concept of object-oriented programming has its root in SIMULA [35].Since then, it has been developed as an important software engineering methodology through aseries of breakthroughs in the �eld of programming language theory and practice.In object-oriented languages, computation is abstracted as communication between a collectionof objects. Each object is an instance of an abstract data type (ADT) (often called class) whichencapsulates instance variables and methods that operate on them. An ADT has an external inter-face and its internals are invisible from the outside; the internals may only be accessed through theinterface. Such encapsulation or information hidingminimizes interdependencies among separately-written ADTs and allows changes to the internals of an ADT to be made safely without a�ectingits users. Since the interface of an ADT captures the \essential" attributes of the ADT, the userof an object need not be concerned with the ADT itself or its instance objects but only with theabstract interface.Computation proceeds as objects invoke procedures in other objects. A procedure identi�ertogether with its arguments is called as a message and the process of invoking procedures knownas passing messages or communication; a message invokes a method (i.e. procedure) at the re-ceiving object. However, the nomenclature of communication is misleading in a sense that themodel of invocation is closer to procedure activation in imperative languages. Unlike actors, thecommunication is inherently synchronous and blocking.In general, which method is to be invoked is not known until the message's dispatch timebecause a method in an object may share the same name with one in another object. Moreover,6



the meaning of a method cannot be determined statically since the method de�nition may be sharedby two or more objects. The semantics of dynamic binding may vary from language to language,depending on how the dynamic method lookup is implemented. The semantics are further a�ectedby the knowledge sharing mechanism a language adopts.Delegation versus Inheritance: a philosophical debateThere are two common mechanisms that people use to represent knowledge about generalizationsthey make from experience with concrete examples. The �rst is based on the idea of abstract sets;the set (or class) abstracts out what one believes is true about all the examples she experienced.The other is to use prototypical objects. One generalizes a concept incrementally as new examplesarise by making new analogies to the previous concept that preserves some aspects of the \defaults"for that concept and ignoring others. The traditional controversy between the two gives rise totwo mechanisms, inheritance and delegation, for sharing behavior between related objects in objectoriented languages.Implementing the set-theoretic approach to sharing knowledge in object-oriented systems istraditionally done by inheritance. An object called class encodes common behavior for a set ofobjects. All instances of a class share the same behavior but can maintain unique values for a set ofstate variables. A class may inherit from other classes. The inheriting class (or subclass) may addmethods and instance variables to the class. When an object of a subclass receives a message, ittries to respond to it using its own methods. If it fails, it climbs up the inheritance tree to respondto the message.Delegation implements the prototype approach to sharing knowledge in object oriented systems.It appears in actor languages [88, 135, 29] and several Lisp-based object oriented systems such asDirector [72], T [67], Orbit [113], and others. An object shares knowledge with a prototype bysimply having the prototype as its acquaintance; the object may also keep its personal behavioridiosyncratic to itself. When it receives a message, it �rst attempts to respond to the message usingthe behavior stored in its personal part. If it fails, it forwards (or delegates) the message onto itsprototypes to see if one can respond to the message.2.2 Concurrent Object-Oriented ProgrammingObject-orientation is a useful methodology to attack program complexity; however, it does not ad-dress issues of concurrency and distribution. Concurrent objects combine concurrency with objectorientation by associating a notion of process or thread with them. They are promising for program-ming on parallel computers because they hide many details related to parallel execution behindabstract interfaces of objects, thereby allowing programmers to concentrate on algorithm design.Increasing deployment of multiple node systems with high-bandwidth, low-latency interconnects inrecent years has been an impetus for active and extensive research on concurrent object-orientedprogramming languages.COOP languages di�er in how processes are associated with objects. In process-based COOPlanguages, process and object are two separate notions. An object with a process is said active. Howmuch a language distinguishes the two notions determines its 
avor. The extent is also re
ectedon synchronization abstractions that the language provides. By contrast, the distinction betweenactive and passive objects is removed in actor languages because actors are active by de�nition.7



Every actor is associated with a thread; however, the thread makes its presence manifest only whena message is scheduled.2.3 Actor-Based LanguagesThe Actor model was �rst introduced by Carl Hewitt [53], re�ned by many others [55, 54, 30, 56]and de�ned in its current standard form by Agha [1]. Particularly, since its introduction manyactor-based languages [121, 13, 88, 16, 11, 85, 135, 89, 70, 29] have been proposed for programmingconcurrent computation.Act1 [88] was an early actor language which was implemented in Lisp. It supported a numberof abstractions which are still found in other contemporary actor-based languages. For example, itused continuations to support bidirectional control structure of sending a request and receiving areply. Delegation was used to share knowledge among actors and implement error handling. Thelanguage also used futures for parallel computation and serializers for synchronization. Anotheractor language with Lisp-based implementation is Acore [89] which even borrowed the syntax ofLisp. Acore was the �rst language based on the Actor model de�ned in [1] so that a mutable actorimplicitly serializes messages it receives and the expressions in a message handler may be evaluatedconcurrently.Cantor [11] is the �rst actor language that was implemented and executed on multicomputers.The \essential cantor" described in [11] preserved message order between pairs of directly com-municating actors. It originally employed dynamic typing which was subsequently replaced withstrong typing through the use of type declaration. Cantor version 2.2 also added vectors along withinternal iteration.Another actor language targeted for parallel execution is Plasma-II [85], a parallel extensionof Plasma which was the �rst actor language de�ned by Carl Hewitt. Plasma-II was designedto be executed on a set of virtual machines distributed on heterogeneous platforms. It allowedprogrammers to specify distribution of actors and supported broadcast communication abstractionfor data parallel style of programming.The most commercially successful actor-based language up to now is Rosette [125] which wasused as a language for the interpreter of the extensible services switch in the Carnot project atMicroelectronics and Computer Technology Corporation (MCC). The language continues to beused to provide heterogeneous interoperability for middleware in intranet and enterprise integrationsoftware. Rosette is prototype-based and supports inherent concurrency, inheritance, and re
ection.Synchronization in Rosette is speci�ed by enabled set which de�nes what methods can be executedunder the current state of an actor.In some ways the Actor model is a very primitivemodel. Thus, many actor languages extended itto improve their programmability. Along these lines is a family of languages [133, 134, 120] rootedat ABCL/1 [135]. 1 Though they di�er from one another in detail, all the languages share thecore computation model proposed in ABCL/1. Message sending order is preserved between pairsof directly communicating actors, as in Cantor. ABCL/1 supports three asynchronous messagesending mechanisms called now, future, and past. The �rst two have blocking semantics whereasthe last is non-blocking. Another actor language, Concurrent Aggregates (CA), extends the Actormodel with inheritance and aggregates. An aggregate is a group of actors of the same kind. All1ABCL stands for Actor-Based Concurrent Language.8



constituent actors share the same name. A message sent to the aggregates is processed by one andonly one constituent but which constituent receives the message is left unspeci�ed (i.e., one-to-one-of-many type of communication). Unlike the Actor model, every message send in CA expectsa reply by default [28, 75].All of the above-mentioned actor languages have been designed and implemented from scratch.A di�erent approach involves extending an existing sequential object-oriented language with theconcurrency semantics of actors. In this approach, actors inherit their actions from a single Actorclass which wraps sequential objects with actor semantics. Two examples following this approachare Actalk [21] and actra [124] which were built upon Smalltalk-80. Actalk implemented actors byaugmenting ordinary Smalltalk objects with asynchronous message passing and message bu�ering.Actra was implemented by modifying the Smalltalk virtual machine. In contrast to the basic Actormodel, communication between actors in Actra was synchronous. Another language following theextension approach is ACT++ [70]; it extended C++ with a class hierarchy which provides theconcurrency abstraction of the Actor model.2.4 Other COOP LanguagesThe desire to leverage the existing compiler technology motivates implementing a COOP languageby extending an existing sequential object-oriented language, such as C++ or Smalltalk, with anotion of process or thread. In particular, given the popularity and portability of C++,a numberof COOP languages based on C++ have proliferated [23, 69, 47, 73, 27, 87, 86, 95]. We describe afew examples below.Compositional C++ (CC++) [69] extends C++ with a number of abstractions for processcreation and synchronization. Synchronization is done via special shared variables. COOL [27]is targeted for shared-memory multiprocessors. Invocation of a parallel function creates a threadwhich executes asynchronously. Threads communicate through shared data and synchronize usingmonitors and condition variables. Mentat [47] and Charm++ [73] are similar in that both distin-guish parallel objects from sequential ones; programmers are required to specify what classes areto be executed in parallel. Mentat objects map one-to-one onto processes in a virtual machine.By contrast, Charm++ requires programmers take the responsibility of mapping of objects ontoprocessing nodes. pC++ [87], C�� [86], and pSather [95] are all C++-based COOP languages whichare designed to support data parallelism. They di�er in how to initiate data parallel execution.CST [61, 38] and DistributedConcurrentSmalltalk (DCS) [96] are two of many COOP languageswhich extended Smalltalk-80 [43]. CST supports concurrency using locks, asynchronous messagepassing, and distributed objects. Distributed objects are similar to aggregates in CA and areequipped with similar communicationmechanisms. DCS is an extension of ConcurrentSmalltalk [96]to a distributed interpersonal environment. Concurrency is supported with asynchronous as wellas synchronous method call as well as synchronous thread manipulation. DCST allows multipleprocesses in a single object. Synchronization of the processes may be may be speci�ed by a methodrelation which de�nes an exclusive relation between two methods or by a guard expression whichde�nes when a method is enabled.Both Emerald [64] and Orca [116] support encapsulated abstract data types but without in-heritance. Furthermore, they have clear distinction of a process and an object. For example,in Emerald, multiple threads of control may be active concurrently within a single object. Syn-chronization is provided by monitors. Unlike other concurrent languages, communication between9



processes is synchronous. Orca implements the shared single address space on distribute memorymulticomputers and maintains the coherency by using shared objects and reliable broadcasting.Parallel execution is accomplished by dynamically creating processes on multiple processors.SOMIW Operating System (SOS) [108] is an object-oriented distributed system which was im-plemented in C++ on top of UNIXTM . It was designed to be language-independent by adopting alibrary approach and providing a language-independent interface. SOS supports a notion of groupscalled Fragmented Objects (FO) and object migration which involves both data and code migra-tion. SOS objects communication with one another using synchronous, asynchronous, or multicastcommunication. Another language that supports code migration is Java [45] which promotes ar-chitectural neutrality, the property of \write-once, run-anywhere." Java is designed as a simpli�edderivative of C++ and supports a limited form of concurrency through lightweight threads andremote method invocation. Although object migration is yet to be supported, a programmer maymimic it by remotely creating an object and explicitly forwarding its associated code.
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Chapter 3THAL: A Tailored High-level ActorLanguageTHAL is a high-level language based on actors; it is a descendant of HAL [63, 5]. THAL allows aprogrammer to create actors, initialize their behaviors, and send them messages. As the computa-tion unfolds, new messages are generated, new actors are created, and existing actors undergo statechange. Data 
ow and control 
ow in a program are concurrent and implicit; a programmer thinksin terms of what an actor does, not about how to thread the execution of di�erent actors to ensurea correct (or e�cient) order of execution. Although communication in actors is point-to-point,non-blocking, asynchronous, and thus bu�ered, THAL simpli�es programming by providing otherforms of communication at the application level.An important goal of THAL is to provide high performance execution on stock-hardware multi-computers. THAL addresses two important problems to achieve this goal. First, processing nodesof stock-hardware multicomputers have large overhead in utilizing �ne-grain concurrency o�eredby actors. Thus, THAL is designed with the understanding that not all available concurrency inan actor program may be exploited in execution. Speci�cally, the execution semantics of THALis de�ned by systematically introducing sequentiality to the Actor model while preserving theconcurrency semantics of actor programs. Second, although naming in actors is location indepen-dent, di�erent actor placement strategies result in signi�cantly varying performance characteristics.Actor placement subsumes what is usually termed partitioning and distribution as well as actormigration. THAL makes actor locality potentially visible to programmers to give them explicitcontrol over actor placement. However, programmers still do not need to keep track of the locationto send a message to an actor.3.1 The Computation ModelTHAL supports a message-driven model of execution. Message reception by an actor creates athread on the actor which executes the speci�ed method with the message as its argument. Thus,thread execution is reactive. Only message reception can initiate thread execution. Furthermore,thread execution is atomic and �nite. Once successfully launched, a thread executes to completionwithout blocking. The atomicity requirement allows at most one thread to be active on an actorat any time. As a direct consequence, an active thread is given exclusive control over an actor'sstate (Figure 3.1). This atomicity is a natural basis upon which a number of synchronization11
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Figure 3.1: The semantic model of THAL. Each bubble represents an actor which encapsulatesa behavior, a mail queue, and a state. A thread is created when an actor processes a messagefrom its mail queue. At most one thread per actor is allowed to be active at any time. Mail queueis not shown in the picture.mechanisms are built. It also simpli�es the task of keeping actors data-consistent. Although athread execution may make incremental state change, the net result is visible to the outside as ifit were done atomically.Thread execution is guaranteed to terminate in a �nite number of steps. An implication ofthe �niteness is that unbounded loops are not allowed. Even if a programmer unintentionallyspeci�es a potentially unbounded loop the compiler should transform it to a �nite one by boundingthe number of iterations. In�nite computation, if ever needed, may be expressed alternatively bysending messages to self. 1 Finally, method execution is sequential : no concurrency inside a methodis exploited. The overhead of exploiting internal concurrency is not justi�ed on current generationstock-hardware multicomputers.The semantics of atomicity and sequentiality allows THAL to support a multi-lingual paradigmto some extent. Speci�cally, concurrency and synchronization constructs may be used to gluetogether and coordinate otherwise independent sequential procedures written in di�erent languages.Component procedures of existing sequential application may even be imported. In this way,THALmay facilitate incremental migration of legacy codes to parallel ones. However, not all sequentialprocedures may be used. To be eligible a procedure must be side e�ect free: its functionalityshould be characterized solely by inputs and an output. Furthermore, it should not contain anyunbounded loop. The latter requirement is rather demanding in that the compiler may not easilydetect the presence of an unbounded loop. Currently, THAL supports C and Fortran interfacedeclarations [98].1Explicit sending of a message to self does not hurt fairness.12



3.2 Essential THAL SyntaxA THAL program consists of a script called main and behavior templates. main signi�es thestarting point of program execution. Behavior templates are similar to classes in other object-oriented programming languages. A behavior template is used to de�ne the behavior of a newactor. Unlike sequential object-oriented languages, neither global variables nor class variables areprovided: actors are encapsulated and they do not share state. This simpli�es distribution of actors.It also allows concurrent access to them without any interference. Another characteristic thatdi�erentiates THAL from other object-oriented languages is that it lacks support for inheritance,although it could easily be incorporated in the language. In the tradition of actor languages, weprefer to use delegation.A behavior template (or, simply behavior) is composed of acquaintance variables and a set ofmethod de�nitions. 2 The method de�nitions together with the values assigned to the acquaintancevariables comprise an actor's state. The former is immutable while the latter is mutable. A behaviormay have an optional init method. An init method is hidden from outside and executed exactlyonce when an actor is created. The method customizes the creation by speci�cally prescribing theactor's initial state. An ordinary method speci�es a response to a message. A method is de�ned byan optional local variable declaration followed by a sequence of operations, such as actor creation,state change, and message send. Figure 3.2 summarizes the syntax of THAL.hprogrami ::= hbehvsi* hmainihbehvsi ::= behv hbehv-idi [hvar-decli] [hiniti] hmethodsi endhiniti ::= init ( hformal-parameter-listi ) hstmti+ endhmethodsi ::= method hmeth-selectori [hvar-decli] hstmti+ endhmeth-selectori ::= hmeth-namei ( hformal-parameter-listi )hvar-decli ::= | hvar-listi |hmaini ::= main [hvar-decli] hstmti+ endFigure 3.2: The essential THAL syntax in BNF.Actors are created and initialized using the new primitive operator. The operator takes abehavior name and a set of arguments to the init method. It may also take an optional locationexpression which speci�es where to create the actor. By default, an actor is created locally. Statechange is incrementally speci�ed with the update primitive operator; an update is nothing morethan an assignment to an acquaintance variable. Thus, updates encountered in a method executioncollectively de�ne the actor's next state with which it responds to the next message.A canonical example of a bank account program is given in Figure 3.3. \%%" starts a commentwhich extends to the end of the line. The program creates a checking account with an initial balanceof $100 owned by Mark. Two messages are then sent to the account to deposit $200 and withdraw$150, respectively. Both acquaintance variables and temporary variables are declared by enclosinga list of identi�ers with a pair of vertical bars. curr bal and owner are acquaintance variablesand checking and mark are temporary variables. Thus, assignments to curr bal represent updateswhile that to checking is a binding.2A behavior may also have function de�nitions. Functions are private methods and may not be invoked fromoutside. 13



behv CheckingAccountj curr bal,owner j %% aquaintance variable declarationinit (ib,io) %% init method definitioncurr bal = ib; %% update to curr balowner = io; %% update to ownerendmethod deposit (id)curr bal = curr bal + id;endmethod withdrawal (iw, teller)if (iw > curr bal) thenteller <- over drawn(iw - curr bal);elsecurr bal = curr bal - iw;teller <- done();endendmethod balance ()owner <- balance(curr bal);endendmain %% main scriptj checking,mark,teller... j %% temporary variable declaration...checking = CheckingAccount.new(100,mark); %% a binding to checkingchecking <- deposit(200); %% asynchronous message sendchecking <- withdrawal(150,teller);endFigure 3.3: A bank account program. Left arrows represent asynchronous message sends. As-signments to curr bal represent updates whereas the assignment to checking is a binding to atemporary variable.
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What makes THAL unique is that it is untyped but strongly type checked at compile time.Indeed, type speci�cation is redundant in variable declaration. Instead, the compiler type-checksa program by analyzing the global data 
ow and scrutizing its type consistency. Type informationfor each variable is inferred as a by-product (Section 5.1).A left arrow speci�ces sending an asynchronous message. It was chosen to signify physicaltransmission of a message; it demarcates a receiver from a message. A method selector and a set ofarguments comprise a message. A method selector is either a method name or a variable. A methodname is the �rst class object and may be assigned to a variable or sent in a message. Having the�rst-class method names allows programmers to manipulate continuations in more 
exible ways.3.3 GroupsA group is a collection of homogeneous actors which have the same method de�nitions but di�erin their states. A group is given a unique name which is shared by all its members. There area number of computations that may be concisely modeled using groups. Data parallel or SPMD(single program multiple data) computations are the most conspicuous examples among others.Using groups a collection of data is partitioned and distributed among members. Data parallelexecution is modeled by broadcasting a message to all the members.Groups in THAL are based on a simple restrictive model; the goal is to simplify their speci�ca-tion and to provide an e�cient implementation of data parallel computations. Two characteristicsare important in this respect. First, groups are 
at: they may not be nested and may not overlap.Second, membership is static: no members may be added to or removed from a group and the sizeof a group is �xed at its creation time.The actor primitives are su�cient to express data parallel computations. Member actors maybe created by repeating actor creation. Broadcasting a message is implemented by sending a copyto each member. Nonetheless, using point-to-point communication to specify a broadcast does notmake perspicuous the homogeneity of group members; it thus complicates reasoning about programbehavior. Besides complicating programmability and reducing readability (refer to Section 3.4.4),an implementation using only actor primitives su�ers from at least three sources of ine�ciency.First, creation of members by repeated actor creation does not exploit homogeneity of the memberactors in memory management. Second, the implementation of the broadcast communication interms of explicit point-to-point communication increases communication cost; the same messageneeds to be marshaled and to traverse the network as many times as the number of remotemembers.Lastly, available network bandwidth may be underutilized because the implementation minimizesinvolvement of other processing elements, eliminating the opportunity of more concurrent sending.A group is created using grpnew or clone. grpnew is similar to new but takes an additionalargument representing the size of the group. clone is a specialized grpnew in that it places exactlyone actor on each processing node. Both operators return a unique group identi�er. Group identi-�ers may be communicated in a message, just like mail addresses. Creation of a group distributesits members across processing nodes; a speci�c placement may be speci�ed by the programmeror determined by the system. From the programmer's point of view, member actors constituteelements of an ordered collection. A member is speci�ed by qualifying its group identi�er with anindex expression.In addition to group identi�ers, four pseudo variables are made available to member actors tofacilitate naming their groups and peer members. Use of these pseudo variables is legitimate only15



when used in member actors; the compiler is responsible for checking their validity. The �rst one ismygrp which refers to the group a member belongs to. mygrpidx and mygrpsize denote a member'srelative position in the group and the group size, respectively. The last one is mygrpcreator whichrefers to the creator of the group. The �rst three pseudo variables may be used to name peer memberactors. Member actors may share information through their creator. They also synchronize andcoordinate computations by naming their creator.ArrayArrays are extensively used in many numerical applications. Speci�cation of computations otherthan numerical ones may also be greatly simpli�ed using arrays. Arrays are provided in THAL as adegenerate group. Semantically, arrays are viewed as an ordered collection of primitive actors whichexport only implicit read/write methods. For convenience, a notation to specify multidimensionalarrays is provided. For example, an (i,j)-th element of a two-dimensional array temp may berepresented by temp[i][j].Before being accessed, an array need be explicitly allocated using the array operator. However,the programmer is not allowed to deallocate any array; deallocation is done automatically throughgarbage collection. The array operator takes a list of constants each of which denotes the size of adimension. The element type need not be speci�ed; it is inferred from the context by the compiler(Section 5.1).Arrays may be sent in a message. Unlike sending an ordinary group, sending an array causesa copy of the whole array to appear in the destination node if the destination is di�erent from thesource. If both nodes are the same, only a handle to the array is sent to the receiver. This ratherawkward semantics has to do with access locality. Local access is much cheaper than remote access.When an array is multi-dimensional, a contiguous sub-dimension of the array may be sent. Forexample, the following message sends are all valid....arr = array (3,4,5); %% allocate 3 dimensional array and%% assign it to arrr1 <- m1 (arr); %% send the entire arrayr2 <- m2 (arr [1][1][1]); %% send the first elementr3 <- m3 (arr [1][1]); %% send the first vector of size 5r4 <- m4 (arr [1]); %% send the first plane of size 4x5r5 <- m5 (arr [1]f1:3g); %% another way to send the entire array3.4 Communication AbstractionsAlthough point-to-point non-blocking asynchronous message passing is e�cient as well as funda-mental, it is inconvenient to use in some cases. In this section, we describe three communicationabstractions which complement the point-to-point non-blocking asynchronous message passing,namely concurrent call/return communication, delegation, and broadcast.16



3.4.1 Concurrent Call/Return CommunicationIn many cases, a method execution may require information from other actors to complete: suchcomputations may be represented by sending a request and waiting for a reply to continue. Wecall this call/return communication. In the Actor model, call/return communication requires ex-plicit manipulation of continuation actors and synchronization because communication in actors ispoint-to-point and non-blocking. Both of these characteristics provide an e�cient execution modelbut are insu�cient as programming abstractions. Like many earlier actor languages [89, 135],THAL provides an abstract way of specifying call/return communication without requiring theprogrammer to necessarily manipulate continuationsCall/return communication may be best expressed in the actor paradigm using the concurrentcall/return communication (CCRC) abstraction; CCRC directly models the call/return commu-nication by having continuation and synchronization implicit in its semantics. Examples of theconcurrent call/return communication abstraction are ask [89], now [135], blocking send [29], andrequest [5].THAL supports CCRC using two constructs, request and reply. They are represented with \."and reply, respectively. Execution of a request blocks the sender until a reply is sent back. Thesender may be context switched to avoid wasting compute cycles. reply is used by the callee tosend a result back to the caller. Reply messages to the nil actor are consumed by the system andnever delivered.Consider an N-Queen problem which computes the number of di�erent ways to place N queenson an N � N chess board such that all queens are placed in a safe position, i.e., no two queensare in a row, a column, or a diagonal. An actor implementation may carry out the computationby dynamically creating actors; each actor creates children, waits for results from them, sumsresults, and sends the sum to its parent actor. With non-blocking asynchronous communication,a programmer need encapsulate into a separate actor both summing the results and sending thesum to its parent and explicitly specify synchronizations. Figure 3.4 illustrates a more succinctalternate implementation [117] using CCRC.The semantics of CCRC allows concurrent execution of mutually independent message sends.A sender continues to execute even after sending a request as long as the continuation does notneed the reply right away. It blocks when it cannot proceed further without the results from theprevious requests. Consider a statement:val = add(r1.m1(), r2.m2());Execution of r2.m2() does not need the result of r1.m1(). As a result, the sender executes thesecond request as soon as it sends the �rst, which allows r1 and r2 to proceed concurrently. Theresult from r2.m2() may be available even before that from r1.m1(). Furthermore, the result ofeach request may depend on the message reception order at the receiving actor if r1 and r2 areindeed the same. The sender blocks before it calls add because it requires the two results from therequests.This is in contrast to remote procedure call (RPC): RPC semantics guarantee that, for any twoRPCs in a method, all computations caused by the �rst RPC are completed before the second callis made (i.e., no concurrency). Thus, execution of the above statement with the RPC semanticscompletes the execution of r1.m1() before that of r2.m2(). RPC transfers control as well as datato ensure sequential execution whereas CCRC ships data o� without sending control.17



method compute (col,diag1,diag2,maxcol,depth)...initialize the array replies.for i = 1, N doif (c1 > maxcol) then break; endif ((col|c1) == maxcol) thensols = sols + 1;elsewhere = random () % #no nodes;replies[i] = (NQueen.new() on where).compute((col|c1),(((diag1|c1)<<1)&maxcol),((diag2|c1)>>1),maxcol,depth+1);c1 = ((c1<<1)+c)&~c;endendsums replies[i] into sumreply (sum+sols);endFigure 3.4: An implementation of the N-Queen problem. The method computes the number ofthe solutions of an N-Queen problem.3.4.2 DelegationTHAL provides delegate (denoted with !) as a separate communication abstraction which realizesdelegation (Section 2.1). When a sender delegates a message the reply address to the continuationis replaced with the sender's reply address. The latter is used by the receiver as its reply address.As a result, a reply is directly sent to the client (Figure 3.5) (cf. tail recursive optimization).Furthermore, delegating actors (e.g., Broker in Figure 3.5) need not block because a reply bypassesthe actors en route to the client. Note that clients are assumed to send messages using eitherasynchronous communication or call/return communication.In addition to delegation, delegate may e�ciently implement certain communication patternswhich frequently arise in many applications. One example is the implementation of exceptionhandling. Exception handlers may be collected and implemented as a system of actors each ofwhich handles a speci�c exception. The mail address of the receptionist of the system may beknown to actors at their creation time or communicated to them in the course of computation.When an exception raises, a message is sent to the receptionist which delegates it to an appropriatehandler actor. Another is implementation of a multi-node web server. Requests may be sent toa gateway node which is known to the outside world. The gateway node distributes requests toserver nodes taking into account balancing the load among the nodes. Replies are sent directly toclients bypassing the gateway node.The tree construction phase in an actor implementation of the Barnes-Hut algorithm [97] illus-trates advantages of delegation over CCRC. The phase begins with each body sending its coordi-nates to the root. The message climbs down the partially constructed tree and the body is added18
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replyFigure 3.5: Message trajectory in delegation. A client sends a request to a broker. It does notmatter whom it receives a reply from. The broker delegates a message to a server. The serversends a reply to the given destination. It does not know the reply goes to the original client.appropriately. For a body to be sure, it must be noti�ed of its addition. Figure 3.6 shows thede�nition of add body which implements the tree construction phase using delegation.CCRC o�ers an easier mechanism for implementing the multi-party communication: CCRCimplements the mutli-party communication in terms of point-to-point communication without re-quiring explicit speci�cation of synchronization and continuation. However, an implementationusing CCRC incurs unnecessary overhead. For example, the inner tree nodes involved are unnec-essarily blocked. Since the root is also blocked it becomes a bottleneck and the tree constructionis completely serialized. Furthermore, replies are unnecessarily passed through inner nodes; theynever use the reply but just forward it (Figure 3.7(a)).These disadvantages translate into advantages of using delegation. First, unnecessary replycommunication is eliminated since a reply is now directly sent to its destination body. Messagetra�c is reduced and bodies are noti�ed much earlier. Second, continuation allocation by treenodes is avoided. Finally and most signi�cantly, the inner tree nodes need no longer be blocked,thereby allowing multiple additions to proceed concurrently (Figure 3.7(b)).3.4.3 Local Synchronization ConstraintsThe sender of a message and its recipient operate asynchronously in actor communication. Thus,the sender may not know if the recipient will be in a consistent state in which it can logicallyrespond to an incoming message. This problem is addressed in some process-oriented languageswith input guards on synchronous communication [24, 92, 136, 57]: the recipient refuses to accepta message from a given sender (or a speci�c channel) until it is in a state in which it can processthat message. Thus, the sender must busy-wait until the recipient is ready to accept the message.The net result is potentially ine�cient execution { both because communication tra�c is increasedand because computation and communication do not overlap. In THAL, a programmer may19



method add body (..., body,...)compute quadrantif (type[quadrant] == nil) thentype[quadrant] = BODY;child[quadrant] = body;elseif (type[quadrant] == BODY) thentemp = child[quadrant];child[quadrant] = Node.new (...);type[quadrant] = NODE;child[quadrant].add body (..., temp,...);child[quadrant] ! add body (..., body,...);elsechild[quadrant] ! add body (..., body,...);endend Figure 3.6: An example using delegation.specify local synchronization constraints; the processing of incoming messages not satisfying theseconstraints is delayed until such time when the state of the actor changes to allow their satisfaction.Proper synchronization is essential for e�cient as well as correct execution of a concurrentprogram. Consider an actor implementation of the Cholesky Decomposition algorithm for densematrices. For a given symmetric positive de�nite matrix A of size n � n the algorithm computesa lower triangular matrix L, of size n � n such that A = LLT [44]. In the implementation, eachrow of a matrix is abstracted as an actor and the matrix itself is represented as a group of actors.Factorization proceeds as row actors send messages to actors representing lower rows. Becauseactors operate and communicate asynchronously, messages corresponding to di�erent iterationsmay be in transit at the same time. As a consequence, an actor i on processor Pi may send anactor r a message mk;i for iteration k after an actor j on processor Pj has sent r a message mk+1;jfor iteration k + 1. Even if mk;i is sent before mk+1;j , mk;i may take a longer path and arrive atr later than mk+1;j . Thus, it is necessary to specify the synchronization on message reception toprocess messages in the correct order.In general, using global synchronization results in suboptimal performance. Table 3.1 supportsthe argument by comparing performance results from a set of C implementations of the CholeskyDecomposition algorithm on the CM-5: implementations using local synchronization exhibit betterperformance than those using global synchronization. The results show that proper synchronizationis essential for e�cient as well as correct execution of concurrent programs.In THAL, synchronization necessary for correct execution is speci�ed using local synchroniza-tion constraints. Synchronization constraints are a language construct to specify a subset of anactor's states under which the speci�ed method of the actor may be invoked [127, 70, 40]. Unlikeinput guards in conventional process oriented languages [58], they do not cause a sender to waituntil such time when the recipient is in a state in which it can process the message. Thus, synchro-nization constraints ensure maximal overlap of computation and communication. Synchronizationconstraints are local if they are speci�ed on a per actor basis. By postponing the processing of20



(a) Tree add implementation with request sends (b) Tree add implementation with delegation

reply

message

Figure 3.7: Tree construction implementations using CCRC and delegation. In (a), gray coloredactors are blocked until they get a reply from their child. In the example, three replies will besent even though one is enough to notify the requesting body. In (b), no actors are blocked exceptfor the one which currently processes a message. Replies are sent directly to the requesting bodyactors.certain messages, local synchronization constraints enforce the correct order on message processingand guarantee data consistency of the receiver.A local synchronization constraint is speci�ed using a restrain expression:restrain msg-expr with ( bool-expr );where msg-expr denotes a message pattern consisting of a method name and formal arguments andbool-expr is a boolean expression over acquaintance variables and the method arguments. Processinga message which matches msg-expr is delayed if bool-expr evaluates to true. Such synchronizationconstraints are called disabling constraints. These constraints may be speci�ed separated fromtheir corresponding method de�nition [91]. Such separation facilitates code reuse [40]. Makingsynchronization constraints a disable condition and having them separated from correspondingmethod de�nitions are to avoid interference with inheritance [40] and a legacy from HAL.Figure 3.8 shows an example illustrating the use of local synchronization constraints. The ex-ample is a THAL implementation of a systolic matrix multiplication algorithm known as Cannon'salgorithm [82]. Systolic algorithms employ synchronized data movement in lock step. However, ourimplementation does not use any global synchronization (e.g., barrier); instead, the correct orderof execution is enforced by using local synchronization constraints only.3.4.4 Group Communication AbstractionsTHAL provides two mechanisms for group communication: broadcast and point-to-point asyn-chronous message passing. Sending a message to a group using a group identi�er or mygrp denotesbroadcasting. Semantically, the message is replicated and a copy is delivered to each member.Point-to-point communication among member actors is expressed by naming individual memberactors. Some systems, such as [29, 25], provides one to one-out-of-many type of communicationmechanism [26] which sends a message to an indeterminate representative member. We found that21



behv SystolicMatrixMultiplicationj result, subright, subbelow, next iter, left, up jrestrain fromright (sm,i) with (i ~= next iter);restrain frombelow (sm,i) with (i ~= next iter);init ()next iter = 1;...endmethod fromright (submatrix, iter)...next iter = next iter + 1;left <- fromright (submatrix, next iter);up <- frombelow (subbelow, next iter);endmethod frombelow (submatrix, iter)...next iter = next iter + 1;left <- fromright (subright, next iter);up <- frombelow (submatrix, next iter);end...endFigure 3.8: An implementation of a systolic matrix multiplication using local synchronizationconstraints. Each message has its intended iteration number which is compared against thereceiver's next iteration number to maintain the correct processing order.
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256� 256 512� 512P Seq BP CP Bcast Seq BP CP Bcast1 2.559 2.567 2.572 2.572 21.597 21.603 21.613 21.5124 1.429 1.430 0.726 1.662 12.192 12.223 5.583 13.38316 0.471 0.422 0.271 0.696 4.016 3.833 1.755 4.98564 0.294 0.211 0.160 0.448 1.602 1.225 0.895 2.217256 0.282 0.135 0.137 0.386 1.230 0.767 0.558 1.569Table 3.1: Timing results of a set of C implementations of the Cholesky decomposition algorithmon a CM-5. The unit is msec. P is the number of processing elements. Columns Seq and Bcastrepresent the implementations which employed global synchronization, thereby completing theexecution of one iteration before starting the execution of the next. The column Seq used barriersynchronization provided in the CM-5 Active Message layer while the column Bcast used globalsynchronization implicit in a CMMD broadcast primitive which was implemented on the CM-5broadcast network. Columns BP and CP have execution times from the implementations whichoverlap the execution of di�erent iterations by using local synchronization. Implementations ofBP and CP are identical except that the former uses block mapping and the latter uses cyclicmapping. Communication between row actors was implemented using a minimum spanning tree-like broadcast mechanism built on top of the CM-5 Active Message (CMAM) layer in Seq, BP, andCP. A vendor-provided CMMD broadcast primitive was used for Bcast.such a communication pattern does not occur in actor computations frequently enough to justifythe cost of its implementation, and thus, did not support it.Figure 3.9 illustrates the use of the group abstractions. The methods iterate and eliminateimplement the i-th iteration of the Gaussian elimination algorithm to solve a linear system Ax = b.The i-th iteration gets started by normalizing the i-th row of A and the i-th element of b. Then,it eliminates the i-th column below the i-th row by broadcasting eliminate message.Some applications, especially a number of matrix applications, have a successive computationstructure; they step through a sequence of computation stages over their data elements. Whenthe data elements in these applications are abstracted in terms of a group of actors, some memberactors become idle in a predictable manner while others actively take part in the computation.For example, in the implementation of the Gaussian elimination algorithm, the i-th row doesnot participate in the computation until the back substitution begins after the i-th normalization.Therefore, copies of eliminatemessages which are broadcast by actors representing i+1-th throughN -th rows are simply discarded if they are received by one of actors representing the �rst throughthe i-th rows.The unnecessary delivery of a broadcast message may be avoided by controlling the scope of themessage. Initially, the scope of a broadcast message is the entire group. A member places itself outof the scope by executing the resign operator. restore is a global operation and resets the scope.By controlling the scope the local scheduling cost on processing node p is reduced from � � Npto � � ANp where �, Np, and ANp are the scheduling cost per broadcast message, the number ofmember actors in p, and the number of active member actors in p, respectively.23



behv Rowj rowidx, rowA, eltB, nextiter jrestrain eliminate (iter,inRow,inB) with (iter==nextiter) ;...method iteration ()j i jfor i = rowidx+1 to N dorowA[i] = rowA[i] / rowA[rowidx] ;endeltB = eltB / rowA[rowidx] ;rowA[rowidx] = 1;if (rowidx == N) thenmygrp.restore () ;mygrp <- backsubst (rowidx, eltB) ;elseresign ();mygrp <- eliminate (rowidx, rowA, eltB) ;endendmethod eliminate (iter, inRow, inB)...if (iter == mygrpidx) thenself <- iteration ();end...endFigure 3.9: An actor implementation of the Gaussian elimination algorithm using the groupabstractions.
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3.5 Dynamic Actor PlacementPerformance of programs on parallel computers depends largely on the time spent in communica-tion. In general, the cost associated with communication is a function of the proximity between asender and a receiver. The cost of a remote message send is much higher than that of a local one.Although communication latency in current generation parallel computers is roughly independentof the distance between a sender and a receiver, sustained bandwidth between two nodes underbusy tra�c may vary considerably as a function of the physical distance between the two nodes.As a consequence, one may favor actor placements resulting in less remote communication. Onthe other hand, over-emphasizing locality may hurt scalability because scalable execution oftenrequires actor placement which balances load across processing nodes. Optimal placement is onethat harmonizes locality and load balance.Such optimal placement is often both application and architecture speci�c. Speci�cally, it maydepend on data structures that an application employs, on how input data are partitioned, and/oron network and processor characteristics in an architecture. Some applications may even havemultiple phases each of which has a di�erent communication pattern, and thus, has a di�erentoptimal data distribution. For those applications, migration of data and computation may resultin a more e�cient and scalable execution.Programmers may specify application-speci�c distribution and placement strategy using anno-tations as well as migration. Placement is speci�ed by annotating a create expression with an on<location> phrase where <location> is an expression that evaluates to a processor identi�er. Werepresent a processor identi�er by a positive integer. For multi-phase applications with di�erentoptimal placement for each phase, programmers may migrate actors before entering a new phase.Migration is triggered by sending an actor a migrate message with a piece of location information.Figure 3.10 illustrates the use of placement. Consider the systolic matrix multiplication C =A � B. Each matrix is divided into small equal-sized square blocks that are distributed over asquare grid of processors. Matrices A;B, and C are implemented as an actor group with a di�erentplacement. The matrix C is simply overlapped onto the processor grid. The matrixA is row-skewedbefore it is overlapped; i.e., sub-blocks in the i-th row are cyclic-shifted to the left i-1 times. Thematrix B is similarly distributed in a column-skewed manner, i.e., sub-blocks in the i-th columnare cyclic-shifted upward i-1 times.Note that placement functions are de�ned outside the behavior de�nitions of matrix actorA and B. In this way, the behaviors may be combined with di�erent placement functions bysimply changing the annotation. Also, the placement functions may be reused with other behaviorde�nitions. However, the separate speci�cation of placement function makes it di�cult to specifymember-speci�c placement. Use of a meta variable @grpidx alleviates the di�culty. The compilerextends the function's interface so that the function can take a member index as a formal parameter.The runtime system instantiates the variable with each group member index at the function'sinvocation time.More often than not, a placement strategy leads to di�erent performance results on di�er-ent architectures. Thus, when an application is migrated from one platform to another, di�erentplacement strategies may be used to improve performance. Note that placement a�ects only per-formance; correctness of an implementation is orthogonal to placement. Thus, in order to reusealgorithm speci�cation in porting an application, placement speci�cation needs to be separatedfrom algorithm speci�cation. Di�erent placement strategies may be speci�ed in a meta languageand kept in a library. A programmer may write her application in an architecture-independent25



function f row skew (gridsize)j r sub 1, c jr sub 1 = (@grpidx-1) / gridsize;c = @grpidx & (gridsize-1);if (c == 0) then c = gridsize; endc = c - r sub 1;if (c <= 0) then c = c + gridsize; endr sub 1 = r sub 1 * gridsize + c;return (r sub 1);endfunction f column skew (gridsize)j r sub 1, c jr sub 1 = (@grpidx - 1) / gridsize;c = @grpidx & (gridsize - 1);if (c == 0) then c = gridsize; endr sub 1 = r sub 1 - (c - 1);if (r sub 1 < 0) thenr sub 1 = r sub 1 + gridsize;endr sub 1 = r sub 1 * gridsize + c;return (r sub 1);endmainj c, sqrt partition size jsqrt partition size = sqrt (#no nodes);c = SystolicMatrixMultiplication.clone ();MatrixLeft.clone (c)on f row skew (sqrt partition size);MatrixRight.clone (c)on f colum skew (sqrt partition size);end
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Figure 3.10: Placement of sub-matrices in a systolic matrix multiplication. Sub-matrices ab-stracted as group members are placed on 4�4 processor grid. Bold face numbers denote processornumbers and numbers in squares represent member actors which are placed in column-skewedmanner. 26



way, and then, choose the best placement strategy for the application on a given architecture fromthe library and combine the two to obtain an e�cient implementation. Such a modular speci�ca-tion methodology for actor placement has been developed in [102] on top of the THAL placementconstructs.3.6 Related workTHAL owes much of its linguistic features to HAL which was, in turn, in
uenced by other actorlanguages, such as Acore [89], ABCL/1 [135], and Rosette [126]. The language featured inheritance,limited forms of re
ection, and synchronization constraints; the �rst two features are not supportedin THAL for the sake of performance. HAL had been used as a test-bed for experimenting withnew language constructs and dependability methods.A general framework for modeling groups may be found in the ActorSpace paradigm [25] whichprovides group abstractions as a key component of its semantics. ActorSpace adopts a pattern-based model of communication. Messages may be sent to groups of actors which are identi�edwith patterns. Groups in THAL are a passive container as in the ActorSpace model, but haveonly 
at structures. Concurrent Aggregates (CA) [29] also supports a notion of groups but with aone-to-one-out-of-many type of communication where a message sent to a group (i.e., an aggregate)is processed by a unspeci�ed member. pC++ [87, 20] has a notion of groups similar to that of CAbut its use is limited to data parallel computation.The communication abstractions supported in THAL are found in other actor languages withdi�erent names. For example, CCRC appears in Acore as ack, in ABCL/1 as now, and in CA asblocking send. Both ABCL/1 and CA support delegation, too. However, broadcasting in THALseems to be a unique feature. In particular, ABCL/1 has no notion of groups. CA does not haveany particular support for broadcasting; they can be explicitly expressed by repeatedly sending amessage to each of the group members. Synchronization constraints in THAL is also unique in thatthey are expressed as a disabling condition. Synchronization constraints in THAL are modeledafter the work in [40]. Synchronization constraints in Rosette [127] are speci�ed by using enabledsets. The ABCL family also has some provision for specifying synchronization constraints [90].THAL is one of a few languages which make object locality visible to programmers. The place-ment primitives have been used as a basis for modular speci�cation of partitioning and distributionstrategy in [102]. The ABCL family provides a way to specify actor placement similar to ours, butdoes not support object migration. CA also supports user-speci�ed object placement to some extentbut the runtime system largely takes responsibility to control over object placement. Charm++ [73]provides programmers with only partial control over object placement. For example, migration ofparallel objects is not allowed. Emerald [64] allows object migration as well as code migration. Inparticular, Emerald objects have �ne-grained mobility. Programmers may use a range of primi-tives to to control object mobility, such as object location, object movement, and object �x/un�x.Currently, THAL supports simpler object mobility; actors may migrate but behavior de�nitionsmust be available in the destination node. Behavior de�nitions of an application are broadcast toall processing elements upon its execution. 27



Chapter 4Runtime SupportIn general e�cient execution of actor programs requires e�cient runtime support. The runtimesupport implements machinery for actor execution as well as the actor primitives (Section 1.1).It also collaborates with a compiler to provide high-level abstractions. This chapter describes thedesign and implementation of such runtime support for THAL. Speci�cally, we describe the designphilosophy of the runtime support and its organization. The description is followed by detaileddiscussion on the implementation of its components. We also present how the runtime supportrealizes high-level communication abstractions as well as how it supports migration.4.1 The Execution ModelActor computation unfolds as actors communicate each other. The communication is asynchronous,which requires a message be bu�ered at the receiver because it may be busy processing anothermessage. The messages in the queue are processed one after another. The scheduling does notassume any particular order to pick up the next message to process though the �rst-come-�rst-served order would be the most natural as well as the easiest-to-implement choice.Processing a message involves method invocation. The invocation creates a light-weight threadwhich carries out the method execution. Threads are guaranteed to execute to the completion with-out blocking. Non-blocking execution is particularly important in stock-hardware multicomputerswhere context switching is an expensive operation. The atomic execution gives a thread exclusivecontrol over the actor state. The exclusiveness, however, does not preclude concurrent execution ofmultiple threads on an actor as long as they do not interfere with each other, i.e., all the changesmade by a thread to an actor can be seen to others as if they were done instantly.Ideally, an actor is allocated its own processing element. In reality, processing elements are ascarce resource even on a massively parallel multicomputer, considering the �ne-granularity andthe resulting multiplicity of actors during typical executions. Thus, it is necessary for the runtimesupport to provide a sharing mechanism. It needs to be fair to keep an actor from monopolizingthe processor, although the semantics does not specially prescribe how to implement the fairness.The decision is left to individual implementations. Now, upon completion of a thread executioncontrol is transfered to the scheduler, which yields the control to the next actor.28



4.2 The Design of the Runtime Support4.2.1 GoalsThe runtime support has been designed with three goals in mind: performance, modularity, andportability. First, the runtime support closely interacts with a compiler to achieve performancegoal. It relies on information inferred by the compiler to avoid redundant computation. Also,it makes �ne-grained access to its internals available to the compiler so that the compiler mayutilize them to generate e�cient code. Secondly, related functions are placed together in modulesin ways that minimize inter-dependence between the modules. The modular design allows easymaintenance and facilitates component-based enhancement where implementation changes to afunction are contained in the enclosing module without a�ecting others. Furthermore, the designnaturally puts machine-dependent functions together in a module and thus makes porting to otherplatforms relatively straight forward.4.2.2 The ArchitectureThe runtime system may be viewed as a network of virtual machines completely connected bysome communication medium (Figure 4.1, which are mapped to physical processing elements, i.e.processor-memory pairs. The virtual machine approach makes opaque architectural di�erence ex-isting in di�erent platforms, thereby providing application portability. It also simpli�es placementspeci�cation of actors.Single Address Space DesignThe runtime support has been designed to concurrently execute multiple programs from di�erentusers. What makes it unique, however, is it makes them share the same address space [81]. Sup-porting a multi-user environment with a single instance of a runtime support precludes the libraryapproach, where a compiled code is linked to a runtime library before execution. In the libraryapproach, an executable is self-contained and does not share any address space with others. Thus,the same runtime support is replicated in each executable and is loaded on each execution, wast-ing resources. Instead, we use dynamic loading. The runtime support runs on the background. Acompiler is assumed to generate executables with load information. Upon execution, an applicationis dynamically loaded and integrated into the runtime support. (From now on, we use the term\runtime system" and runtime support, interchangeably.)The design o�ers several advantages. The most conspicuous one is that it minimizes the sys-tem's idle cycles and maximizes system throughput. The design reduces cycles spent in contextswitching as each thread uses a smaller amount of execution context. The cycles which may bewasted otherwise are productively used to process messages from di�erent programs. Networkthroughput increases because, unlike gang scheduling [123], context switch occurs between light-weight threads, and thus, there is no possibility of packet loss during context switch and no needto 
ush the network. Finally, the design eases the operating system's burden for fair schedulingin an environment where processors may have the dual responsibility of executing sequential andparallel applications, as in networks of workstations.There are, however, two di�culties associated the design. One is possible running out of avail-able address space. It seems unlikely to happen, though, because most current-generation micro-29



Figure 4.1: An abstract view to the THAL runtime system. Each terminal icon stands for avirtual machine. Mapping from virtual machines (VMs) to processing elements (PEs) may di�erfrom one implementation to another, although running a VM on a PE is most common. The PEsmay not be completely connected physically but users see the system as if they are.
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Figure 4.2: The architecture of the THAL virtual machine.processors adopted a 64-bit architecture which provides up to 264 � 1:8 � 1019 bytes of virtualaddress space. 1 The other has to do with security. Exceptions raised by individual actors, whetherthey are benign or malicious, must be caught and handled gracefully; the runtime system mustbe tolerant to them and should not fail. THAL employs strong type checking at compile timeand most type related errors are caught before execution. Furthermore, memory access is strictlycompiler-controlled. Thus, there is only one possible security breach left: assignment to array ele-ments. A compiler may generate a bound check for an array reference or the runtime system mayimplement a fault isolation technique similar to [132]. Either technique is yet to be implemented.4.2.3 Architecture of the Virtual MachineA virtual machine (VM) implements an execution environment for actors and provides supportingmachinery. It mostly serves as a passive substrate for active actors: they don't actively takepart in actor computation. Only functions that a VM performs actively are those related toremote requests, such as delivering messages sent by remote actors and creating actors upon remoterequests. Others are executed as a part of caller's execution. A VM exports a well-de�ned interfaceand restricts access to its internals only through the interface. The encapsulation makes the VMgeneric in that any program written in a language with actor-like semantics may be compiled andrun on the runtime system.The components of the virtual machine and their interaction are shown in Figure 4.2. On thetop level is an actor interface which is exported to the compiler. The communication module andthe program load module together constitute the kernel's interface to the network and are the onlyarchitecture-dependent modules. In between the two layers are the node manager, the dispatcherand the name server.1To our best knowledge, no current-generation implementation supports a full 64-bit address space.31



The communication module and the program load modulemay be built on top of any well-de�nedlow-level messaging layer, such as TCP/IP, Active Messages [130, 106], and Fast Messages [76].They make actors an illusion of the completely connected network. Moreover, the hierarchicalorganization o�ers the runtime system some degree of network independence, and thus, portability.The node manager delivers messages from remote nodes, creates actors in response to remoterequests, and dynamically loads and integrates user executables into the runtime system. Also,the node managers in the virtual machines communicate with each other to maintain the system'sconsistency and to dynamically load-balance the system. A request to a node manager is deliveredin the form of a system-level message. When a request is posted, it steals cycles from the currentlyactive actor, processes the request within the actor's execution environment, and then, resumes theactor's execution (minimal context switch). The node manager is the only active component in avirtual machine.The dispatcher provides only data structures necessary for actor scheduling. Actual schedulingis delegated to individual actors. The delegation allows scheduling to be done on an individualactor's current execution context, making unnecessary context switching between the actor and thenode manager. The name server contains data structures for translating a mail address to physicallocation information and implements location transparency. The following two sections describe inmore detail the implementations of the two components.4.3 Distributed Shared Message QueuesActors are autonomous; each may have its own computation power and process messages with ascheduling policy. In actor implementations on stock-hardware multicomputers, however, processorsare a scarce resource and actors on a processing element are required to share the processor. Thus,most actor systems adopt a hierarchical scheduling mechanism. In the scheduling mechanism, thescheduler in a processing element selects an actor and yields control over the processor to theactor. The actor processes one of its messages and returns the control. Although fair and simpleto implement, scheduling actors to process their messages is redundant, considering that it is notactors but messages that abstract computation.The redundancy may be removed by extending message structure with a reference to a re-ceiver (Figure 4.3) and unifying the two separate schedulings into message-only scheduling. In themessage-only scheduling, all individual mail queues (which either already exist or will exist) arecombined into a single message queue and shared by all actors. The queue is distributed over theprocessing nodes. Messages delivered to an actor are enqueued in the sub-queue in the node (thus,the name distributed shared message queue (DSMQ)). Eliminating actor scheduling simpli�es thescheduler implementation. It also simpli�es actor creation. Table 4.1 compares two schedulingmechanisms, one scheduling both actors and messages and the other scheduling messages only.Figure 4.3 shows the de�nition of the message structure. A message consists of two parts,message header and message arguments. receiver holds a reference to the receiver of a message.To reduce message frame allocation overhead, the runtime system maintains a pool of messageframes. actualsize contains message frame size which is used to allocate/deallocate a messageframe from the pool. msgsize represents e�ective message size i.e. the size of the message headerplus the argument size of a message. The e�ective message size is used to send the message o� thenode. Since messages delivered to an actor are now scattered in the DSMQ, sending them alongwith the actor at its migration time would be overly expensive. Instead, messages are forwarded32



typedef struct actor msg header fstruct actor message *next;Method method;struct actor *receiver;int msgsize;int actualsize;int *locale;int packer;int dummy;g ActorMsgHeader;typedef struct actor message fActorMsgheader hdr;int data [0];g ActorMessage; Figure 4.3: The actor message structure.message-only hierarchical�sec cycle �sec cyclelocal creation 8.04 265 11.52 380remote creation 5.83 (20.83y) 192 (687) 5.83 (23.68) 192 (781)lsend & dispatch 0.45/5.67 15/187 8.10 267rsend & dispatch 9.91 327 15.26 504Table 4.1: Performance comparison of the two di�erent scheduling mechanisms. lsend and rsendstand for local send and remote send, respectively. Local send and dispatch time does not includethe time for locality check. Times obtained for the THAL runtime system are measured on TMCCM-5 by repeatedly sending a message with no argument. Each CM-5 node hosts a 33 MHz Sparcprocessor. y The local execution of remote actor creation in THAL takes 5.83 �sec while the actuallatency is 20.83 �sec.when necessary. The forwarding is enabled by use of locale which points to the actorDefPtr �eldof the receiver's locality descriptor, which is nulli�ed when the actor migrates. When a messageis about to be processed the presence of the receiver is examined by dereferencing locale. If notpresent, the message is forwarded to the receiver. Marshaling and sending arrays in a message posesa problem when forwarding the message. The compiler rearranges message arguments, puts arrayarguments after all simple ones, and store encoded packing information in packer (Section 4.7)/4.3.1 Scheduling with Deferred Message StackRecognizing cost di�erence between remote and local message sending o�ers a substantial amountof performance gain, especially in �ne-grained COOP languages [119, 75]. To exploit the costdi�erence in local message scheduling, the runtime system divides the message queue in a nodeinto two sub-queues, local and remote, and distinguishes scheduling local messages from scheduling33



remote messages. To reduce message frame allocation time, local messages are allocated not fromthe message pool but from a separate LIFO bu�er. Distinguishing local and remote messages andgiving higher scheduling priority to local messages simplify queue management and reduce messagescheduling cost.To reduce overhead further, part of message scheduling is exposed to the compiler. For eachsend statement the compiler inserts a runtime locality check to see if the receiver actor is local i.e.it is on the same node and is ready to execute. Depending on the result, the compiler generates twoversions of message sending code. One is specialized for local message sending and the other is ageneric one that is used when the locality check fails. Furthermore, both message frame allocationand argument marshaling are done in user code to eliminate redundant memory copy of messagearguments from user space to kernel space.Methods execute to completion without blocking. Non-blocking execution precludes the use ofimmediate dispatch of a local message with function invocation [119, 75] because function invocationimplicitly blocks the sender of the message. The message is scheduled in the local message queueand its dispatch is deferred until the sender �nishes its execution. (The local message queue isnamed deferred message stack (DMS) because it holds deferred local messages and behaves like astack.) Upon completion, the sender dispatches the next message with its receiver by tail-callingthe speci�ed method. Since control information need not be stored upon method dispatch, theamount of memory for control information is bounded.Local message scheduling with DMS (SDMS) is a little more expensive compared to that withfunction invocation (SFI) because the former requires explicit message frame allocation and ar-gument marshaling which are implicit in the latter. On the other hand, the SDMS allows moreconcurrent message sending in a method and thus is more scalable. Consider a method which sendstwo messages where the �rst is local and the second is remote. The SDMS defers the dispatch ofthe �rst message so that the second message is sent right after scheduling the �rst one. The twomessages are dispatched concurrently; the second may even be dispatched before the �rst one. Thisis not the case when using the SFI. The scheduling suspends the method execution at the time ofsending the �rst message until the receiver �nishes its computation and returns the control. Theblocking semantics keeps the second message from being sent concurrently.Another advantage of the SDMS has to do with load balancing. Consider the implementationof the Fibonacci number generator in Figure 4.4. The program places a subtree of the compu-tation tree on a processing node. Since the computation tree is lop-sided, the execution of theprogram eventually develops severe load imbalance. Notice that the compute method of the behav-ior Fib Local sends two local messages. The SDMS schedules one in the DMS while the other isbeing processed. The messages in the DMS are available for dynamic load balancing, resulting inmore scalable execution. On the other hand, the SFI may not generate the second message in ad-vance and thus not support dynamic load balance. The SDMS may be thought of as a compromisebetween locality and scalability.The atomic method execution semantics, which allows no more than one active thread on anactor, interferes with the SFI and may cause a deadlock when two actors send messages in a mutuallyrecursive manner. Other systems [119, 75] which employ the SFI avoid deadlock by providing astack unwinding mechanism along with futures.Figure 4.5 shows snapshots of a stack and a message queue when function invocation is used toschedule local messages. Suppose actors S1, R, and S2 are on the same node. Before S2 sends amessage to S1, it examines if S1 is indeed local (Figure 4.5.(3)). The check fails because S1 has yet34



behv Fibmethod compute (n,dist)if (n <= 1) thenreply (1);elseif (dist > 1) thenreply ((Fib.new()).compute(n-1,dist/2) +(Fib.new() on (#myvpn+dist)).compute(n-2,dist/2));elsereply ((Fib Local.new()).compute(n-1) +(Fib Local.new()).compute(n-2));endendendendbehv Fib Localmethod compute (n,dist)if (n <= 1) thenreply (1);elsereply ((Fib.new()).compute(n-1) + (Fib.new()).compute(n-2));endendmainprint ((Fib.new()).compute(33,#no nodes/2));end Figure 4.4: An implementation of the Fibonacci number generator.
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when processing a message. The cost is signi�cant especially in actor languages because theirmethod execution is �ne-grained. The situation gets worse if the language supports inheritanceand the class hierarchy gets deeper.The dynamic method lookup may be bypassed if, at compile time, the type of the receivercan be known to be unique throughout all possible executions. The type information may beobtained through a global data 
ow analysis. We extended the type inference presented in [100,101] (see Section 5.1) to infer types for expressions in a THAL program. The kernels integrateapplication programs into their address space so that each program is located in the identical spacein all the kernels. Thus, a function address has the same meaning wherever it is accessed. If themethod selector in a message send expression has a unique meaning throughout the entire programexecution, we replace the method selector with the corresponding function address.4.3.3 Dynamic Load BalanceEven when programmersmay specify their application-speci�c load balancing policy, load imbalancemay develop as computation unfolds. Multiprogramming supported in the THAL runtime systemshould alleviate the impact of load imbalance on the system throughput. To further improveprocessor e�ciency and scalability, the runtime system supports dynamic load balancing. As avirtual processor runs out of messages to process, it randomly selects a target virtual processor andsteals a message from it (random polling). The target processor looks for a candidate message fromits remote message queue and then its local message queue and sends it to the requesting processor.For a message to be migrated, its target actor should not be engaged in any computation at thatmoment. When the message is migrated, it takes the receiver along with it. Other messages to theactor are subsequently forwarded.4.3.4 FairnessOne problem with the SDMS is that processing certain messages may be inde�nitely postponedin a �nite computation. Figure 4.7 has a non-strict program which terminates even though oneof its subcomputations does not. Fair message scheduling eventually dispatches the done method,making the computation halt and the actor be reclaimed. The halt primitive cannibalizes theactor and reclaims its resources. However, the SDMS inde�nitely postpones the dispatch of thedone method.We use a counter to guarantee the eventual message delivery in the Actor model. Recall that anymethod can only execute �nitely in THAL. At �rst, the counter is set to 0. It is incremented uponeach method dispatch. If the value of the counter exceeds a prede�ned value, the actor yields controland schedules the bottom-most message of the DMS. The counter is then reset to 0. The counteris also reset when the DMS becomes empty. It never decrements, though. Non-strict computationin a CPS transformed method can be similarly handled with an additional overhead for restoringconcurrency. We have assumed that the non-strict computation occurs relatively infrequently.4.4 Distributed Name ServerSending a message requires the receiver's current locality be known to the sender. The actor'swhere-abouts are abstractly represented by its mail address. It is this abstraction that provides37



behv InfiniteFinitemethod send twice ()self <- send twice ();self <- send twice ();endmethod done ()halt;endend mainj inFinite jinFinite = InfiniteFinite.new ();inFinite <- send twice ();inFinite <- done ();inFinite <- send twice ();endFigure 4.7: Inde�nite postpone. With a fair scheduler, the program terminates even though oneof its subcomputations does not terminate. A fair scheduler eventually dispatches done method,making the computation halt and reclaiming the actor. halt cannibalizes the actor and reclaimsits resources. However, the static method dispatch may inde�nitely postpone the dispatch of donemethod.actors with location transparency. However, a receiver's abstract location must be translated to aphysical location before the �rst byte of a message is injected into the network. The name servermanages data structures and exports access routines for name translation. We describe in thissection how a mail address is de�ned to facilitate name translation while guaranteeing locationtransparency. The implementation of the distributed name server in the runtime system is alsodiscussed in the section.4.4.1 Mail AddressAn actor is uniquely identi�ed with a mail address which represents its locality in the computationspace. The entities used to de�ne a mail address determine the e�ciency of name translation as wellas the degree of location transparency. Often, the two are found be con
icting requirements. Onone hand, the use of location-dependent entities tightly coupled with actors o�ers e�cient nametranslation at the expense of location transparency. On the other hand, location-independententities allow location transparency but increase name translation time.To meet both requirements well, we de�ne mail addresses using location-dependent entitieswhich are loosely-coupled with actors. A mail address is composed of two parts. One part is theaddress of a creator node { its actor's birthplace. The location dependency enables e�cient nametranslation. The other is the memory address of a locality descriptor which contains the actor'slocation information. Decoupling of the mail address of an actor from its physical location makesit location independent and relocatable.4.4.2 Locality DescriptorThe name server keeps actors' locality information in locality descriptors. The implementation ofa locality descriptor is shown in Figure 4.8. If an actor is local, the locality descriptor contains thememory address of the actor in the actorDefPtr �eld. Otherwise, the locality descriptor containsthe remote node address (location) and the memory address of the actor's locality descriptor onthe remote node (ALD cache). A locality descriptor is allocated when an actor is created. It is also38



typedef struct actor locality descriptor fstruct actor locality descriptor *fwd;int status;ActorAddress actorAddr; /* 2 words */int location;Actor *actorDefPtr;struct actor locality descriptor *ALD cache;ActorMessage *hold list;struct back prop task *reverse forward chain;int dummy; /* for double word alignment */g ActorLocalityDescriptor;Figure 4.8: The implementation of the locality descriptor.allocated at message sending time if the receiver's locality descriptor is not found at the sendingnode.Using locality descriptors, a generic message send mechanism may be implemented as follows.During a message send, the sender composes a message and consults the name server. If the locationinformation is locally available, the message is sent using the information. Otherwise, a localitydescriptor is allocated and the message is sent to the node where the receiver was created. Notethat the location information is encoded in the mail address. No inter-processor communication isrequired to get the receiver's location information. (For the moment we assume that actors nevermigrate. A more general solution with actor migration is given in Section 4.4.4.) The memoryaddress of the locality descriptor in the receiving node is sent back to the sending node and cachedin the newly allocated locality descriptor while the message is delivered. Subsequent messages tothe same receiver are sent with the cached address, obviating name table lookup at the destinationnode.4.4.3 Distributed Name TableThe name server is consulted every time a message is sent, either locally or remotely. Thus, thename server should be distributed to not be a bottleneck. This is done by having local copies ofthe name server manage their own local name table independently of each other. Each local nametable is implemented as a hash table whose entries are pointers to locality descriptors. To avoidinter-processor communication in the name translation process, each local name table may haveits own copies of actors' locality descriptors. As a result, name translation from mail address tolocation information is performed by consulting only the local name table.Allowing multiple locality descriptors for an actor implies local name servers collaborate inorder to maintain the consistency of the name tables. Note that inconsistency arises only whenactors migrate. The most straight forward mechanism to maintain consistency is broadcasting: avirtual processor involved in the migration broadcasts the actor's new location information. Sincebroadcasting requires participation of all virtual processors, it typically wastes compute cyclesbecause only a few virtual processors will have a locality descriptor for the migrating actor. Toreduce migration cost and give better resource utilization, we relax the consistency requirement39



and update only two name tables: one at the source node and one at the birth place node if thetwo nodes are di�erent.Figure 4.9 illustrates how incorrect location information arises in name tables. In the example,the actor was originally created in node 3 and then migrated to node 1, to node 2, and to node 4.Since only the name tables at the source node and at the birthplace node are updated, when theactor moved to node 4 the location information in the name table in node 2 becomes out of dateand inconsistent.Allowing inconsistency in the name tables makes location information for remote actors only\best guess." A name server cannot tell if information in its local name table is up to date;at best, it believes that an actor is still there when it sends it a message. If migration occursinfrequently the guess may be correct most of the time. Indeed, it is our underlying assumptionfor the implementation that user speci�ed migration is a relatively infrequent, bursty event. Thus,instead of maintaining stringent consistency requirement, we allow inconsistency in the name tableand provide a mechanism to correct the inconsistency.4.4.4 Message Delivery AlgorithmThe message send and delivery algorithm is summarized in Figure 4.10. The algorithm is straight-forward except for the inconsistency correction mechanism. We describes the algorithm in detail.Actors may migrate, and an actor's migration history is kept in its locality descriptors. Sincelocation information for a remote actor is only a best guess, a message may be sent to a node fromwhich the receiver has already migrated. If a node manager is requested to deliver a message but�nds the receiver has already moved, it forwards the message using the history information kept inits local name table.Consider the two examples in Figure 4.11. The top one illustrates a situation where a receiver'slocation information is not found in the local name table upon message send. Even though thereceiver has a migration history of node 5! node 1 ! node 2 ! node 3, the sender has no meansof knowing it. Since no location information is available at all, the message is sent to the receiver'sbirth place, from which it is forwarded to node 3. Recall that an actor's birth-place node alwayshas up-to-date location information.The one at the bottom depicts a more complicated situation. The actor A was �rst created onnode 5. After it moved from node 5 to node 1 and to node 2, another actor in node 4 sent A amessage. Thus, node 4 thinks A is on node 2. Then, A moved again to node 3. Although the nametables on nodes 2 and 5 (A's birth place) are updated, those on nodes 1 and 4 are not. Then anactor on node 4 (it may be the same actor which sent the previous message) sends a message to A.Since the name server guesses that A is on node 2, the message is sent to node 2 and forwarded tonode 3 from the node.The forwarding process consists of three phases. In the �rst phase, the requesting node managersends a special forwarding information request (FIR) message to locate the actor. The FIR messageis relayed until it reaches the receiver. Then, the receiver's locality information, i.e., the nodenumber and the memory address of the receiver's locality descriptor, is back-propagated alongthe forward chain (reverse forward chain in Figure 4.8). Meanwhile, all node managers in theforward chain update their name tables as the message passes by. The shaded arrows in Figure 4.11denotes the information 
ow. Once the receiver's location is known, the original message is sentdirectly to the node. 40
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if mail address is in my local table thenif the actor is local thendeliver the messageelse if it is on a known remote node (note: the actor may not be there) thensend the message to the nodeelse if the location is not known thensend the message to the birthplace of the actorelse if it is on a remote node but a forwarding information request has been sent thenenqueue the message and hold it until the actual location is knownelseerrorelseif its birthplace is me thenerrorelsesend the message to its birthplace(a) Sender Actorif mail address is in my local table thenif the actor is local thendeliver the messageelse if it is on a known remote node (note: the actor may not be there) thenenqueue the message and send a forwarding information requestelse if the location is not known thenit will never happenelse if it is on a remote node but a forwarding information request has been sent thenenqueue the message and hold it until the actual location is knownelseerrorelseerror (b) Receiving Node ManagerFigure 4.10: The message send and delivery algorithm.42
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When a node manager is requested to deliver a message to an actor, it may have already sentan FIR message. Since it is unnecessary for it to send an FIR message again, it simply enqueuesthe message in the hold list (hold list in Figure 4.8) and waits until the receiver's location isknown. When the information is available, it updates the name table, forwards the messages in thehold list to the node, and relays the information back to the virtual processors which wait for theinformation.4.5 Remote Actor CreationA mail address is allocated and assigned to an actor at its creation time. The use of an entity whichis coupled with an actor in de�ning its mail address requires it be allocated at the node where theactor is placed. This implies that an actor requesting remote creation must wait until the mailaddress is returned. In consequence the remote creation time varies unpredictably as tra�c in thenetwork or load at the remote node changes.The unpredictable remote creation time makes split-phase allocation (Figure 4.12.a) desirableon platforms with hardware support for context switch; context switch to another from a threadrequesting remote creation while the latter waits for the mail address to be delivered, e�ectivelyhides the latency and saves idle cycles [9, 34]. However, it is less desirable in stock-hardwaremulticomputers where context switch is very costly (e.g., 52 �sec in the TMC CM-5).We use aliases instead of relying on context switch. An alias is a locally allocated clone of amail address, which is equally capable of uniquely identifying an actor. An actor's alias may beused interchangeably with its mail address. The use of aliases is based on the observation that anactor requesting remote creation may continue with its remaining computation as soon as it gets ahandle that uniquely identi�es the newly created actor. Note that actors created as results of localcreation requests need not have aliases.An alias has the same structure (i.e., <birthplace,address>) as a mail address. However,birthplace now represents not the node where the actor was created, but the node where thecreation request was issued. The address of the node on which the actor is created is also encodedin birthplace. The encoded information may be used when an actor sends a message using analias and the locality descriptor is not found in the name table. The sender sends the messageto the receiver's birthplace node with the assumption that it has not migrated. Having the samestructure allows us to implement message sending with aliases without incurring any additionalcost.When an actor issues a remote creation request it allocates an alias and sends it along with therequest. As soon as the last packet of the request is injected into the network the alias is returnedto the sender which then continues its execution with it. On the receiving end, the node managercreates an actor with an ordinary mail address and registers the actor in its local name server withthe received alias (Figure 4.12.b). Meanwhile, the locality descriptor's memory address is sent backto the requesting node and cached there (on the background). Our measurements show that localexecution of remote creation with no initialization argument completes within 5.83�s whereas theactual creation (i.e., time taken from request sending to completion of the creation at the receivingnode) takes 20.83 �s. 44



Actor 1

Actor 2

Kerne l

creat ion
request

mail
address

actor execution
kernel execution
context switching
kernel call

(a) remote creation using split-phase allocation.
Actor 1

alias

Actor 2

Kerne l

actor execution
kernel execution
context switching
kernel call

creat ion
request

5.83
usec

(b) remote creation using alias.Figure 4.12: Remote actor creation.45



4.6 Implementation of Communication AbstractionsTHAL provides 
exible high-level communication abstractions. These abstractions must be imple-mented e�ciently by the compiler and the runtime system. We describe how the runtime systeminteracts with the compiler to implement the abstractions. Runtime support for CCRC is discussedin Section 5.2 in conjunction with the compile-time transformation.4.6.1 Local Synchronization ConstraintsSynchronization constraints are bound at compile time tomethods that they constrain. The runtimesystem allocates an auxiliary queue called pending queue to an actor upon its creation to enforcelocal synchronization on the actor. When a message is dispatched, the runtime system evaluatesthe synchronization constraints of the target method. If any of them evaluates to true, the methodis disabled for the moment and the message is enqueued in the actor's pending queue. If none ofthem evaluates to true, the method is enabled and the dispatch is granted. Since a synchronizationconstraint is a function of actor state and message arguments, some messages in the pending queuemay become enabled when an actor changes its state. Before dispatching the next message in theDSMQ, the actor re-evaluates synchronization constraints for each pending message and attemptsto consume them.When a message is dequeued for processing, the synchronization constraints of the speci�edmethod are evaluated. A positive evaluation result means the method is disabled under the actor'scurrent state and the message is put into the actor's pending queue [79]. Recall that synchronizationconstraints are a function of actor state and message arguments. When an actor changes its state,some messages in its pending queue may become enabled for processing. Before yielding controlover computation resources, an actor re-evaluates synchronization constraints for each pendingmessage and digests the enabled ones.Synchronization constraints have been used to maintain the correct iteration order in our exper-iments. Our experience is that pending queues are usually short. Few messages are delivered out oforder and the cost associated with re-evaluating synchronization constraints of pending messagesis kept tolerable. However, if a long pending queue may develop in an application, re-evaluatingsynchronization constraints for each pending message every time an actor changes its state wouldbe expensive. In this case, dependencies between state variables and synchronization constraintsshould be analyzed at compile time so that only those pending messages for methods that mightbe enabled are re-examined if they may be processed. The current compiler does not implementsuch an analysis.4.6.2 Groups and Group CommunicationsThe group abstractions in THAL provide additional opportunities for optimization. The 
at struc-ture of a group and the homogeneity of member actors often allow e�cient memory management.The broadcast communication may be implemented more e�ciently than by using point-to-pointmessage passing. The runtime system takes advantage of the opportunities and provides e�cientsupport for the group abstractions.First, the runtime system allocates member actors in a node in a contiguous block. The con-tinuity of member actors in the address space enables the compiler to generate e�cient collective46



scheduling code because the next actor may be accessed via simple pointer arithmetic. Since mem-ber actors belong to the same group, they share common attributes, such as group size and creator.These attributes are collected in a group descriptor and a copy is kept in each node to allow e�cientaccess. To further facilitate the access, each copy is allocated with the same local address in eachmemory . Among the shared attributes is a distribution map which records locations of members.This map contains a pointer to a member actor if it is local; else, the address of a processingelement.Conceptually, a message sent to a group is replicated and a copy is delivered to each member(i.e. broadcast). In consequence, the cost associated with broadcast is O(N) where N is the groupsize. To reduce the cost the runtime system implements broadcast with two phases: explicit andimplicit. In the explicit phase, each processing node is delivered one copy of the message. Theoptimal implementation should be architecture-dependent; it may be directly implemented usinga broadcast facility available in the underlying architecture or it may be simulated using a point-to-point communication. We sketch our implementation of the explicit phase on the TMC CM-5in Section 6.1. It has a binary tree-like communication structure and a cost of O(logP ) where Pis the number of processing nodes in the system. When a broadcast message arrives at a node,the node manager delivers it to the �rst member actor in the node. The compiler puts schedulingcode at the end of the method, which schedules the next member actor with the message. Thus,only the �rst member in a node receives a broadcast message; the others simply reuse the message(i.e.the implicit phase). The compiler ensures that the content is intact.Send-to-member shares the same syntax with ordinary message sending but has a memberactor as a receiver. Since the exact location information for member actors is locally available inthe distribution map, the locality check and the point-to-point message send for a member actorare implemented di�erently from those for ordinary actors to take advantage of the locally availableinformation. A direct consequence of having di�erent implementations is that their interfaces tothe compiler are di�erent. For the compiler to use type-dependent interfaces correctly, it mustdistinguish group communications from ordinary communications. It also should generate methodsinvoked on groups di�erently than those invoked on individual actors. The compiler analyzes theglobal data 
ow of a program and collects type information about methods and receivers. Thistype information is used to translate the program correctly.4.7 MigrationThe communication module supports location transparency. So, the remaining implementationquestion on migration is when and how to migrate actors. During its life, an actor may be in one ofthree states: ready, running, and blocked. To minimize the context that must be transmitted withan actor, the runtime system migrates actors only when they are in the ready state. When an actorreceives a migration request, a 
ag is posted if it is either running or blocked. Actual migration isput o� until the actor completes its processing of the current message.Use of the DSMQ may scatter messages delivered to an actor through the message queue.This complicates migrating messages along with the actor. Instead, only the actor is moved. Themessages are forwarded subsequently as the absence of the receiver is detected when they aredispatched.Supporting migration would be easier if arrays were not available in the language. However,THAL allows arrays to be part of an actor's state, hence migratable. It even allows sending arrays47



in a message. A naive solution would be to make programmers supply a marshaling function foreach actor and message [73]. Unfortunately, the solution may fail to work with dynamic loadbalancing that programmers are not aware of. Our solution is to let the compiler keep su�cientinformation available to the runtime system so that it can easily deduce relevant information forstate and message packing.The compiler rearranges acquaintance variables/message arguments so that it places array argu-ments after all simple arguments. Then, it generates packing information composed of the numberof arguments and the number of simple arguments and puts them in the packer �eld (see Fig-ure 4.3). Each array object is associated with a size information which is accessed by the runtimesystem. For example, consider a message send statementrecv <- m0 (arr0, sim0, arr1, sim1, arr2, sim2);Suppose simi are all simple integers and arri are all arrays of real numbers. The types are supposedto be inferred from the enclosing context. The compiler takes the arguments, shu�es them, andgenerates the following C structure.struct msg0 fint sim0;int sim1;int sim2;float *arr0;float *arr1;float *arr2;g Msg0;Of course, the formal parameters in the corresponding method interface are also reordered followingthe same rule. Then, the compiler generates packing information of (6,3) meaning there are a totalof 6 arguments and the �rst 3 are simple. When the message must be forwarded, the runtime systemsees the packing information in packer and packs the message accordingly. Note that strings aretreated as one-dimensional arrays of characters.4.8 Related WorkAmong other systems the implementations of ABCL/onAP1000 [119, 120] and the Concert sys-tem [28, 75] have in
uenced the design of THAL most.ABCL/onAP1000 adopted an encapsulation approach to implement its runtime system. Forexample, the runtime system determines whether to use the stack-based or the queue-based schedul-ing mechanism for local messages. In consequence, the message scheduling mechanisms are hiddenfrom the compiler, hampering the generation of codes which e�ciently utilize scheduling informa-tion available at execution time. By contrast, our runtime system exposes part of its schedulingmechanism for the compiler to generate executables that use the scheduling information to choosewhere to schedule local messages.Objects in ABCL/onAP1000 are identi�ed with a unique mail address, as in our system. Al-though actor placement is put under programmer control, the use of location-dependent addresses48



to favor fast locality check undermines object mobility. We believe that language support for dy-namic object relocation (i.e., migration) is crucial in load balanced and scalable execution of manydynamic, irregular applications.The runtime support of the Concert system provides the compiler with a 
exible interface,as in our system. Both systems make cost of runtime operations explicit to a compiler, therebyenabling the compiler to perform a range of optimizations. The main di�erence is in the extentof location transparency they support. Aggregates in the Concert system are located at the samememory address on each node [74]. This location dependence limits aggregates' mobility, making itdi�cult to load-balance in dynamic, irregular computation. Concert objects other than aggregatesare allocated in a global space and subject to global name translation. THAL's locality check usesonly locally available information which is made possible by our name management scheme whichworks e�ciently with migration.Threaded Abstract Machine (TAM) supports multithreading at instruction level [34]. It de�nesan extension of a hybrid data
ow model with a multilevel scheduling hierarchy where synchro-nization, scheduling and storage management are explicit and under compiler control. In TAM, athread executes to completion once successfully initiated, like our method execution. Furthermore,quasi-dynamic scheduling allows the compiler to exploit temporal locality existing among logicallyrelated threads. Such temporal locality is utilized in our runtime system with coarser grain bycollectively scheduling messages broadcast to a group of actors.Cilk [19] is a C-based runtime system for multithreaded parallel programming. The Cilk lan-guage is de�ned by extending C with an abstraction of threads in the explicit continuation-passingstyle. A Cilk program is a collection of Cilk procedures, each of which is broken into a sequence ofthreads. As in TAM, each Cilk thread is a nonblocking C function and runs to completion with-out waiting or suspending once invoked. Although the decision to break procedures into separatenonblocking threads simpli�es the runtime system, writing programs in the explicit continuation-passing style is onerous and error-prone. In our system, programmers are allowed to use blockingasynchronous communications and the compiler translates them away into explicit continuation-passing style code (Section 5.2).
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Chapter 5Compiler-time Analysis andOptimizationWe have introduced sequentiality to enhance programmability. However, excessive sequentialityshould be removed from a program for e�ciency before it is executed on parallel computers. Ourcompiler optimizations focus on restoring useful concurrency. First, the compiler infers types foreach expression. The type information is used to reduce message scheduling cost and automaticmemory management. The compiler also transforms request expressions into asynchronous sendswith appropriate synchronization. The constraint of serialization of message processing in the Actormodel requires only one thread be active on an actor. This is enforced by locking/unlocking theactor. Note that multiple threads may be active on actors unless they interfere with each other.The compiler uses data 
ow analysis to unlock actors as early as possible so that multiple threadsmay be concurrently running on an actor.The compiler translates method de�nitions in a user program to a set of C functions. Acquain-tance variables of a behavior are collected in a C structure de�nition to provide the runtime systemwith size information for actor allocation. These are compiled using a C compiler, linked togetherinto an executable, and loaded into the runtime system to execute on parallel computers.5.1 Type InferenceUntyped languages allow rapid prototyping and parametric polymorphism [107]. They have betterprogrammability and encourage code reuse. On the other hand, typed languages have the advantageof type safety. All possible misuses of variables are checked against their type declarations atcompile time and/or execution time. The resulting static type checking removes many run-timetype checks, guaranteeing e�cient execution. Type inference is a compile-time analysis whichprovides untyped languages with the advantages of static typing. By having the THAL compilerinfer types for expressions and verify their consistency, programmers may enjoy untyped languages'programmability and typed languages' reliability and e�ciency at the same time [93, 109, 100].The THAL compiler uses an extension of the constraint-based type inference developed byPalsberg and Schwartzbach [100]. In the algorithm, types are de�ned as a set of classes. A typevariable is assigned to an expression and type relations between expressions are represented as a setinclusion between the corresponding type variables called type constraint. The algorithm derives a50



set of type constraints by examining statements and expressions in each method. It derives anotherset of type constraints from actual/formal parameter relations in message send expressions. Then,the algorithm tries to iteratively solve the two sets of type constraints. Existence of the smallestsolution means the program is type safe. If none exists, the program is rejected as type unsafe.The implementation is similar to that of [99]; it incrementally builds a trace graph and suc-cessively re�nes the solution. A trace graph represents all possible message sends in any programexecution. Incremental construction of a trace graph and successive re�nement of the solutionmake complexity of the implementation polynomial. If a partial solution does not satisfy any singleconstraint, the program is rejected as type unsafe. If the current solution does not improve the pre-vious solution, the solution is the smallest solution and the program is accepted as type safe. Thereconstructed type information is used to bypass the method lookup process in method dispatch.5.2 Transformation of Concurrent Call/Return CommunicationConcurrent call/return communication (CCRC) provides programmers with an easy way to expressremote function invocation. The convenience comes from its blocking semantics, which requires aform of context switch. However, a naive implementation of CCRC which context-switches a senderwhenever it sends a request would make it less attractive on stock-hardware multicomputers becausetheir context switch costs are high (e.g., 52 �sec on CM-5).A technique used in a number of systems [117, 75] to implement CCRC-like abstractions is oneusing futures [68]. Futures are a promise for a value; they are a place holder for a value which isyet to be de�ned. In the future-based implementations, sending a request message creates a futurewhich is immediately returned as the result of the request. Execution continues until the resultis actually used (i.e., the future is touched). If the value is available, execution proceeds with thevalue. Otherwise, it is blocked until the value is available.Although simple to implement, a future-based implementation still makes CCRC a potentialperformance bottleneck because it relies on context switching. Consider an N-Queen implementa-tion in Figure 3.4. Suppose an actor creates N children in response to a compute message. Animplementation using futures would allocate N futures which are assigned to replies[i] for iranging from 1 to N . The next expression to be evaluated is a summation; here the executionblocks on a future whose value is yet to be de�ned. In the worst case, 2N context switchings arerequired to �nish the computation (i.e. 2 for each touch). Furthermore, a separate mechanismis needed which resumes an actor blocked on a future when its value is available. Out-of-orderarrival of replies does not help because futures are touched sequentially conforming to the order ofappearance of the requests in a method.In contrast to the future-based implementations, we employ a compiler-oriented approach [78, 5].The compiler transforms a method containing CCRCs in such a way that a programmer wouldwrite a method with the same semantics if CCRC is not available. The compiler analyzes datadependence among requests in a method to identify those that may be executed concurrently. Itisolates computation simultaneously dependent on the requests (i.e. a join continuation [1]) intoa continuation actor and translates the requests to non-blocking asynchronous message sendingexpressions. A unique reply address represented as a triple is appended to each expression asan additional message argument. Use of non-blocking asynchronous message passing allows us toavoid expensive context switching. Instead, the continuation actor caches only the context neededto execute the join continuation. 51



5.2.1 Join Continuation Transformation: the Base AlgorithmThe transformation exploits functional parallelism existing in evaluation of an expression; subex-pressions of an expression may be evaluated in any order because actor state does not change inbetween their evaluations. In particular, there is no control dependence between argument expres-sions of a function invocation or a message send expression. Note that the control dependence doesnot exist in the Actor model; only data dependence does. It appears in THAL because we introducesequentiality to method execution for execution e�ciency and implementation convenience.Let �m denote the data dependence relation of a method m and �m denote the control depen-dence relation ofm. Each of them de�nes a partial order between evaluations of any two expressionin m. Further, let Rm be a set of all requests in m. We de�ne request send partition (RSP), asubset of Rm, to be a set of requests which are mutually independent. Borrowing the set inclusionnotation, for any ri, rj 2 RSP, (ri, rj) 62 �m, (rj , ri) 62 �m, (ri, rj) 62 �m, and (rj, ri) 62 �m. Thus,an RSP is a set of requests from a statement which are mutually data independent. In the methodmethod twoRsps ()r0 <- m0 (r1.m1 (r2.m2 ()), r3.m3 (r4.m4 ()));endr1.m1 and r3.m3 are in the same RSP and r2.m2 and r4.m4 are in the same RSP. The joincontinuation transformation (JCT) proceeds by recursively isolating a continuation of an RSP intoa separate actor.JCT begins with partitioning Rm into RSPs. Before the compiler begins the partitioning, itpromotes each request to an assignment statement with a fresh temporary variable. After beingmodi�ed, the method twoRsps looks as follows:method twoRsps ()(1) t2 = r2.m2 ();(2) t1 = r1.m1 (t2);(3) t4 = r4.m4 ();(4) t3 = r3.m3 (t4);(5) r0 <- m0 (t1, t3);endWith the transformed method m0, the compiler computes the def-use chain DUCdm [6] for eachde�nition d 1 in m and constructs data dependence relation �m0 . Using �m0 , the compiler shu�esthe requests promoted from the same statement in such a way that requests in the same RSP areplaced together without violating the partial order relation de�ned by �m. Note that requests inthe same statement may be evaluated in any order. After the requests are partitioned into RSPslines (2) and (3) are exchanged:1We use the terms de�nition and assignment interchangeably though de�nition subsumes assignment.52



method twoRsps ()(1) t2 = r2.m2 ();(3) t4 = r4.m4 ();(2) t1 = r1.m1 (t2);(4) t3 = r3.m3 (t4);(5) r0 <- m0 (t1, t3);endAfter the partitioning is done the method is recursively split on each RSP. The input to thisphase is the 
ow graph of a method. It is a directed graph FG = (V;E) where V = fb j b isa basic block in the methodg and E = f(bi; bj) j bj can immediately follow bi in some executionsequenceg [6]. One node is distinguished as the initial node: it is the block whose leader is the �rststatement of the method.The compiler traverses FG in a topological order starting from the initial node. As soon as itencounters an RSP, it splits the enclosing basic block at the point right after the RSP. It pulls outthe portion of the 
ow graph which is dependent on requests in the RSP and encapsulates it intothe behavior of a separate continuation actor. The continuation actor has slots to hold replies untilall are available. It also keeps the execution context at the moment of sending the request messagesin the RSP. The compiler guarantees that only part of the context is cached in the continuationactor, which may actually be accessed during the continuation execution. Thus, it implements thesemantics of context switching with minimal overhead.A statement creating the join continuation actor with the necessary context is placed before theRSP. All request send statements in the RSP are transformed to non-blocking asynchronous sendstatements, each of which is appended with a set of arguments that collectively identify the uniqueentry point to the continuation actor. The arguments consist of the mail address of the continuationactor and a method name. After separating out remaining RSPs in the method the compiler appliesthe split process recursively to each of extracted continuations. The transformation result of themethod twoRsps are shown in Figure 5.1. Figure 5.2 through Figure 5.4 illustrate how to splitmethods with di�erent control structures.5.2.2 Join Continuation ClosureThe behavior of a continuation actor is deterministic: as soon as all the expected replies are received,it executes the speci�ed computation and cannibalizes itself. We exploit the deterministic behaviorand optimize continuation actors using a structure called Join Continuation Closure (JCC) andspecialized reply messages.A JCC consists of four components, namely counter, function, creator, and argument slots(Figure 5.5). Counter contains the number of empty argument slots yet to be �lled. A replymessage �lls the speci�ed slot and decrements the counter. As soon as all slots are �lled, functionimplementing the join continuation is invoked with the JCC as its argument. The argument slotswhich are �lled at the creation time are reserved for the execution context used in the continuationexecution. With JCC, a reply address is de�ned by a triple <processor number,continuationaddress,slot address>. The discussion of the use of creator which represents the actor that sentthe request messages is deferred to Section 5.2.4.53



method twoRsps ()c1 = C1.new (r1,r3,r0);t2 <- r2.m2 (c1, m2t2c1);t4 <- r4.m4 (c1, m4t4c1);endbehv C1| r1c1, r3c1, r0c1, t2c1, t4c1, cnt |init (i1,i2,i3)r1c1 = i1; r3c1 = i2; r0c1 = i3;t2c1 = nil; t4c1 = nil;cnt = 2;endmethod m2t2c1 (r)| c2 |if (cnt == 0) thenc2 = C2.new (r0c1);t1 <- r1c1.m1 (t2c1, c2, m1t1c2);t3 <- r3c1.m3 (t4c1, c2, m3t3c2);elsecnt = cnt - 1;t2c1 = r;endendmethod m4t4c1 () ... endendbehv C2| r0c2, t1c2, t3c2, cnt |init (i)r0c2 = i;t1c2 = nil; t3c2 = nil;cnt = 2;endmethod m1t1c2 (r)if (cnt == 0) thenr0c2 <- m0 (t1c2, t3c2);elsecnt = cnt -1;t1c2 = r;endendmethod m3t3c2 (r) ... endend Figure 5.1: The transformation result of twoRsps using continuation actors.54
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    cont.slot1 <− mB(cont.slot2,cont.slot3,cont.slot4,cont.slot5);
endFigure 5.5: The structure of the join continuation. The code segment pointed by functionrepresents the compiler-generated continuation of a message send. When executed, it sends toactorB a message mB with values in slot2 through slot5 as its arguments.5.2.3 Common Continuation Region AnalysisThe algorithm described above can only exploit functional parallelism which is inherent in the eval-uation of function arguments with the CCRC. Consider a code fragment for the N-body example.The algorithm is not general enough to recognize that request sends in the if blocks are indeedindependent of each other and can be executed concurrently. In this section, we present a moregeneral transformation framework based on a data dependence analysis. The proposed techniqueis su�ciently general so that it can identify a set of request send statements which can share thesame join continuation across statement boundary. The transformation technique is based on asimple observation: any two request sends can be executed concurrently if no data dependenceexists between the two request message sends.As before, the transformation is divided into a partitioning phase and split phase. The input tothe partitioning phase is an abstract syntax tree AST = (AV;AE) of a method. As in the algo-rithm discussed in Section 5.2.1, we assume that all request sends have been lifted to assignmentstatements and there are no expressions containing embedded request sends. Since all relevantinformation is at the statement level, we abstract away expressions in each statement and assumethat AV is a set of all statements in the method. if statement and for statement represents ifconditional and for loop header, respectively.Given an AST for a method, we de�ne a common continuation region at s 2 AV (CCRs) to bea subtree rooted at s such that all request send statements it contains may share the same joincontinuation. A maximal CCR is de�ned to be a CCR which is not contained in any other CCRs inthe AST. Formally, a CCR is the set S = (SV; SE) where SV � AV , SE � AE if for any requestsend statement r in a method m, the cardinality of set f(r; s) 2 �m j s 2 Sg is 1.During the partitioning phase, we partition the request message send statements in a methodinto maximal CCRs. The partitioning algorithm itself can be described as a tree coloring (Fig-ure 5.6). We color subtrees in the AST using three colors, white, grey and black which represent asubtree with no request send statement, a CCR, and a subtree which has at least one requestsend statement but is not a CCR, respectively. First, we color a leaf node grey if it is a requestsend statement; otherwise, we color it white. For each internal node, we color it black if at leastone of its children has request send statement(s) but is not a CCR (i.e., if it has at least one blackchild node). If a subtree has no request send (i.e., all of its children are white), we color it white.If neither case applies, the subtree must have some white children and some grey children. We58



INPUT: the abstract syntax tree AST = (AV;AE) of a method.OUTPUT: the abstract syntax tree with CCRs marked.ALGORITHM:For each s 2 AV , let Childs = fc j (s; c) 2 AEg andlet colors denote a color assigned to s.1. Color each leaf node with white or grey using the de�nition of CCR for leaf nodes.2. For each s 2 AV , color s with� black if 9c 2 Childs, colorc is black.� white if 8c 2 Childs, colorc is white.� Let D = fs j for c 2 Childs, colorc is white ^ r 2 Rc ^ s 2 AVs�AVc ^ r 7! sg where Rcis a set of request send statements in a subtree rooted at c. Color s with grey if D =;. Otherwise, color it with black.Figure 5.6: The coloring algorithm to compute maximal CCRs.determine if there is data dependence from any request send statement to any other statement inthe subtree rooted at the node except one from which the request send is pulled out. If there isno such data dependence, we make it a grey node. Otherwise, we make it a black node. Finally,we merge into a single CCR consecutive maximal CCRs that have the same parent node in theAST and have no data dependence between them. Figure 5.7 illustrates how maximal CCRs aredetermined for a given AST.Split phase is similar to the one described in Section 5.2.1. After all request sends are par-titioned into maximal CCRs, we compute for each maximal CCR the maximum number of replyslots that may be used. If the conservative estimate of the number cannot be determined 2 or if thecompiler �nds that splitting at the CCR is not pro�table, the corresponding subtree is changed tonon CCR and join continuations are extracted for the smaller CCRs in the subtree. The methodis split at the point right after each maximal CCR and a separate object is allocated to encapsu-late the continuation to the CCR. Then, all the request sends are transformed into non-blockingasynchronous sends with an additional statement which counts the number of messages that areactually sent. Finally, a statement is appended to the CCR to adjust the number of replies that thecontinuation object must wait before it executes the speci�ed continuation. If nodes in a maximalCCR are all leaf nodes (i.e., all are request send statements), the overhead associated with CCRsis not justi�ed and we use the algorithm in Section 5.2.1 to separate out the join continuation.5.2.4 Method FissionJCT restores useful concurrency by separating out join continuations from an original computa-tion. However, indiscriminate application of JCT may result in incorrect computation. Consider amethod which sends a request message and de�nes the actor's next state with the result. The nextstate is only partially de�ned; the sender should not process messages until the reply arrives and2E.g., a subtree corresponding to the CCR may represent two branch if statement that contains for loops.59
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(d) After coloring level 3 internal nodes (e) After coloing level 2 internal nodesFigure 5.7: The coloring of an N-Queen implementation. The �gure shows how the abstractsyntax tree of an N-Queen implementation is colored by the algorithm. The implementation has arequestmessage send inside if block which is enclosed in a for loop. There is a data dependencefrom the request send to the statement outside the for loop (represented as a dotted line). Onlythe dependence from a request send is shown. Each white leaf node represents a simple statement.
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execution of the continuation completes. However, applying JCT blindly may cause the actor toprocess the next message in an inconsistent state.For example, the result of a request in Figure 5.8 is used to de�ne the value of acquaintancevariable a. The result of blind application of JCT is shown in Figure 5.8.b. The result from themessage send is erroneously assigned to a compiler-generated temporary variable.For a class of methods which modi�es the actor's next state using a result from a request, westill apply JCT but with more care. As before, the continuation is separated into JCC. But, thistime the actor locks itself right after sending the request (the compiler inserts an additional lockstatement). The continuation is dispatched by the runtime system through the JCC regardlessof the actor's state. Note that the sole purpose of locking the actor is to keep it from processingsubsequent messages prematurely. Execution of continuation unlocks the actor using the creator�eld in JCC.5.2.5 The Deadlock ProblemConsider a program in Figure 5.9. The program generates the Fibonacci sequence. The �gurealso has the expected message trace when n = 3. Suppose a naive implementation is used whichsimply blocks a sender on each request. Under the atomic method execution the program cannotbe executed without causing deadlock. The shaded actor is blocked after sending its very �rstmessage to self and unable to progress because it cannot process the message. A future-basedimplementation is no better than the naive implementation [118].Some systems replace a message send to self with a function call [28, 75]. It may be successful inavoiding deadlock but may not be used with the atomic method execution because the replacementmay alter the meaning of the program incorrectly, as shown in Figure 5.10. Further, it it serializesthe sender's computation eliminating the possibility of dynamic load balancing. In this example,JCT helps avoid deadlock by allowing the sender to continue executing the remaining computationindependent of the result of the request after sending a request (Figure 5.11).Nonetheless, the deadlock problem is a potential di�culty that limits the usefulness of theCCRC abstraction. Although the compiler detects and avoids many spurious deadlocks usingdata dependence analysis and the join continuation transformation, it is in general not feasible toprevent all deadlock situations by using compile-time analysis and source-level transformation. Forexample, Suppose the following code fragment has been executed with behaviors in Figure 5.12:left = DeadLockLeft.new ();right = DeadLockRight.new();left <- setup (right);right <- setup (left);left <- deadlock ();The last message send statement causes a deadlock if the method execution is atomic. The leftactor blocks upon the request send to the right actor and vice versa.Even the JCT could not break a deadlock if it was caused by an indirectly recursive requestsend whose result de�nes the actor's next state. In general, it is impossible to break such deadlockswith compile-time transformation. 61



behv Customerj a, b, c jmethod m1(x,y)%% computation 1a = (Server.new()). m2(x,y);%% computation 2end...end(a) Customer behaviorbehv Customerj a, b, c jmethod m1(x,y)%% computation 1Server.new() <- m2(x,y);end...endfunc 28 (cont)j t jt = cont. slot1;%% computation 2 with t%% having replaced a.end(b) An incorrect transformation resultFigure 5.8: An incorrect �ssion result. The result from the request send m2 de�nes instancevariable a's new value. The application of join continuation transformation alters the meaning ofmethod m1.
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behv Fibmethod compute(n)if (n == 0) then reply(0);elseif (n == 1) then reply(1);else reply(self.compute(n-1) + (Fib.new()).compute(n-2));endendend (a) An implementation
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Creation/Request(b) Message trace graph. Associated numbers denote the argument passed.Figure 5.9: Fibonacci number generator with a recursive message send.
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behv WriteAndSendPlusOnej value j: : :method read and add1()reply (value+1);endmethod write(to,n)to <- send plus one(self.read and add1());value = n;endend(a) Beforebehv WriteAndSendPlusOnej value j: : :method read and add1()reply (value+1);endmethod write(to,n)to <- send plus one(read and add1());value = n;endend(b) AfterFigure 5.10: An incorrect join continuation transformation. The transformation of a messagesend to self to a function call may alter the meaning of the program. (a) Method read and add1is meant to read the new value of value which is to be written in method write. (b) Thetransformation makes method read and add1 read the old value of value incorrectly.
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( ): : :t=continuation(8,2,func 64,0);self<-comp(n-1,#pn, addr(t),addr(t.slot1));Fib.new()<-comp(n-2, #pn,addr(t),addr(t.slot2));: : :Figure 5.11: The transformation result. Each message send is augmented with a reply address.At best, a compiler may conservatively alert programmers of the possible presence of deadlock.The THAL compiler is able to do so by using a form of global 
ow analysis to construct a call graphand checking whether or not the request sends form a (potential) cycle. The compiler constructsa message trace graph [99] for a given program and detects a cycle that contains a request sendwhose result is used to de�ne the next state of the actor. The trace graph can represent only asubset of all possible message trace. Thus, detecting deadlock using a trace graph can be no morethan an approximation. But it is safe: if a program may indeed encounter deadlock, the compilergives a warning.The JCT tends to generate many small methods, especially for those programs that use requestsends extensively. This does not necessarily degrade the execution performance because compiler-generated methods are dispatched only by continuations and need not be included in a methodlookup table.5.3 State Caching and Eager Write-BackIn actor computation a method is given exclusive access to the actor when executed. If an actoris executing a method, the next message is not scheduled until the actor's next behavior is fullyde�ned. The semantics of atomic method execution is realized by making become an instantoperation and by creating an anonymous actor with the same behavior when become is executed.The actor becomes ready to process the next message as soon as it executes become. The anonymousactor carries out the rest of the computation. The use of anonymous actors allows for concurrentexecution of methods belonging to the same actor in the Actor model.THAL implementation creates a thread to carry out a method execution (Chapter 4). In suchimplementations, atomic method execution may be realized by locking the actor and caching intothe thread a subset of the actor's state which may be accessed during the method execution. Nofurther messages are processed while an actor is locked. A method is executed using the local copyof the state in the thread (i.e., state caching). At the end of the method execution the acquaintancevariables that might be modi�ed is written back. Notice that such implementations serialize the65



behv DeadLockLeftj right,result,value jinit ()right = nil; result = 0; value = 0;endmethod setup(a)right = a;endmethod deadlock()result = right.dead();endmethod lock()value = value + 1;reply (value);end: : :endbehv DeadLockRightj left jinit (a)left = nil;endmethod setup(b)left = b;endmethod dead()reply (left.lock() + 1);end: : :end Figure 5.12: A deadlock example involving indirect recursive message sends.
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method executions which may change the actor's state as well as serialize the state changes. Theyallow for only the concurrent execution of read-only methods.Such serialization is unnecessarily stringent and prevent even safe overlap in executions whichmight be pro�table in some cases. Suppose an actor executes a method m1 which modi�es someacquaintance variables and then uses them without further modi�cation. When another actorwants to read some of the actor's acquaintance variables (say the corresponding method is m2),the implementation cannot dispatch m2 until the actor have �nished the execution of m1. This isbecause the new values are written at the end of the method execution. If the values are writtenback as soon as they are de�ned (or, at least as soon as the last value to the modi�cation is de�ned),the actor may be released even before the end of the method. m2 may be dispatched while m1 isexecuting and both actors may proceed concurrently.The input to the analysis is the control 
ow graph of a method whose nodes are a basic block. Abasic block is a sequence of consecutive statements in which 
ow of control enters at the beginningand leaves at the end without halt or possibility of branching except at the end [6]. A basic blockmay have one or two successor blocks, jump-on-true (JOT) and jump-on-false (JOF). JOF is notde�ned for a simple block; only if block and for block have two successor blocks.For each basic block acquaintance variables whose values are newly de�ned in the block arecollected into a set called Updates (UB). The set is upward propagated so that each block has a setof acquaintance variables whose values may be de�ned along an execution path starting from theblock to the end of the method (Reachable Updates (RUB)). More concisely,RUB = UB [ RUJOTB [RUJOFB 3Using these two sets, the compiler generates the write-back statements on the 
y as it generatescodes for a basic block. After the generation of the last update statement 4 in each basic block, thecompiler generates write-back statements for acquaintance variables whose values are �nalized (i.e.UB � (RUJOTB [ RUJOFB )). The rest (i.e. UB \ (RUJOTB [ RUJOFB)) are passed to its successorblocks as leftover (LOJOTB and LOJOFB ).More speci�cally, for a block with two successor blocks, LOB is passed to both of its successorblocks. If the basic block is a single branched if, it is made double branched by adding a ghostblock as its JOF successor before passing LOB down.For a simple basic block which has only one successor block, the compiler generates LOB�RUBbefore generating any statement in the block. After the generation of the last update statement inthe basic block, write-backs for UB�RUJOTB are generated and UB\RUJOTB is passed as leftover.Consider an update statement enclosed in a for loop. If we simply generate write-backs asdescribed thus far, the acquaintance variable will be unnecessarily written for the number of loopiterations. It would be more e�cient to put all the write-backs outside the loop and let theupdates be done on local variables so that the write-back occurs only once, The write-backs forthe acquaintance variables whose values may be de�ned in a for loop body are not generated inthe loop body but the set of variables are passed contained in LO. They are generated in theblock which follows the for loop in the input program. The generation algorithm is summarizedin Figure 5.13.3If JOF is not de�ned, JOFB is an empty set.4An update statement is an assignment statement to an acquaintance variable.67



INPUT: Control 
ow graph of a method whose nodes are basic blocksOUTPUT: Code generation as side e�ectsALGORITHM:for each basic block B, compute UB and RUB.for each basic block in the topological order1. generate leftover write-back statements.2. after generating the last update statement in the basic block,� if the statement is an IF statement{ if enclosed in neither a FOR loop block nor a single branch IF statement, gen-erate write-backs for LOB �RUJOTB{ else, pass its leftover to both jump-on-true and jump-on-false successor blocks� if the statement is a FOR header, pass its leftover to the jump-on-false successorblock� if neither of the above holds and if not enclosed in a FOR loop, generate write-backsfor UB �RUJOTB and let LOJOTB = UB \ RUJOTBFigure 5.13: An algorithm to generate write-back statements for acquaintance variables.5.4 Local Actor CreationAn actor may send a message to any actor as long as it knows the receiver's mail address independentof its physical location. Thus, actor creation in stock-hardware multicomputers should involve morethan simple allocation of a chunk of heap space; it must involve location-transparent mail addressallocation, heap space allocation and possibly actor initialization. Support for location transparencyadds quite an overhead to actor creation. Fortunately, not all actors need such full-
edged creation.For example, functional actors which have no acquaintance variables need not be created at all.Certain local actors will never receive messages from remote actors and need not have locationtransparency. To get better performance, a cheaper implementation may be used when creatingthese actors. The compiler uses the def-use analysis and the constant propagation [6] to identifysuch actors. Speci�cally, the compiler examines each creation expression to see if the followingconditions are to be satis�ed: (i) both the creator and the createe never migrate, (ii) the creatordoes not export the mail address of the createe to the third party actors, and (iii) the createe doesnot export its mail address to third party actors. If the compiler ascertains that the conditions willhold during the execution, it generates the codes that exploit the information.5.5 Related WorkA number of type inference mechanisms for object-oriented programming languages have beenproposed [115, 46, 100, 22]. In particular, the type inference in the THAL compiler is implementedusing a constraint-based type inference algorithm [100]. The implementation is similar to that of[99] but is extended to infer types for groups and member actors. A more detailed discussion onconstraint-based type inference for object-oriented programming languages may be found in [101]. A68



similar constraint-based type inference mechanism was implemented on the Concert system [28, 75]and is presented in [104]. The implementation iteratively traverses a global 
ow graph of a programto re�ne type information it gathers.The discussion of join continuation in the context of the Actor model appears in [1]. Extractingjoin continuation through a source-to-source transformation was attempted in other actor-basedlanguages as well [89, 62]. Also, a similar transformation technique for explicitly message-passingprograms was presented in [59]. The common continuation region analysis extends the base joincontinuation transformation (Section 5.2.1 to restore concurrency across loop boundary by usingdata dependence analysis [7, 14, 15].
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Chapter 6Performance EvaluationThe runtime system has been running on the TMC CM-5 and porting it to other platforms, suchas Cray T3D/T3E, SGI PowerChallenge array, and networks of workstations, is in progress. Thissection presents implementation details and evaluation results of the TMC CM-5 version. Most ofthe runtime system on the CM-5 is written in C and only part of scheduling code that implementstail-call is written in the assembly language. The part written in C was compiled using the GNUC compiler with -O3 option and the assembly part was compiled using the GNU assembler. Thecompiler takes a THAL program and generates C code which is compiled using the GNU C compilerwith -O3 option.6.1 The Runtime System on the TMC CM-5The TMC CM-5 is a distributed memory multicomputer which may be scaled up to 16K processors.The machine may be con�gured in di�erent partitions; a partition has a control processor calledpartition manager and a set of processing elements. Each processing element hosts a 33 MHzSparc processor and a network interface chip. The network chip supports all accesses to theinterconnection network. The CM-5 has three kinds of networks: the data network, the controlnetwork, and the diagnosis network. The data network is responsible for application data motionand connects the processing nodes in the fat tree topology. The other two CM-5 networks havebinary tree topologies. See [122] for additional details on the three CM-5 interconnection networks.Figure 6.1 shows the virtual architecture de�ned on the TMC CM-5. The runtime systemconsists of a front-end which runs on the partition manager and a set of virtual processors whichrun on the processing elements (i.e., nodes). Kernels are implemented as ordinary UNIX processes.Users are provided with a simple command interpreter which communicates with the front-end toload the executables. In addition to dynamic loading, the front-end processes all I/O requests fromthe kernels.The communication module is implemented with a veneer layer on top of CMAM [131]. AllTHAL messages have a destination actor address and a method selector. The layer exploits theseproperties to minimize communication overhead. The broadcast primitive is implemented in termsof point-to-point communication on the CM-5 data network, using a hypercube-like minimumspanning tree communication structure (Figure 6.2). Although the CM-5 has a broadcast facilityusing the separate control network, it is not available in the CMAM layer. Moreover, simulating70
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THAL ABCL Concert�sec cycle �sec cycle �sec cycleplatforms CM-5 (33 MHz) AP1000 (25 MHz) CM-5 (33 MHz)local creation 8.04 265 2.1 69 N/A N/Aremote creation 5.83 (20.83) 192 (687) N/A N/A N/A N/Alocality check 1.00 33 0.12 3 11.70 390lsend & dispatch 0.45/5.67 15/187 2.18/9.6 55/240 0.12/8.44 4/277rsend & dispatch 9.91 327 8.9 223 7.67 252Table 6.1: Execution times of runtime primitives. Local send and dispatch time does not includethe locality check time. Times are measured by repeatedly sending a message with no argument.Others are cited from the previously published papers. yThe local execution of remote actor creationin HAL takes 5.83 �sec while the actual latency is 20.83 �sec.6.2 Performance of the Runtime PrimitivesTable 6.1 summarizes execution time of the THAL runtime primitives. As mentioned earlier, theuse of aliases makes it possible to complete a local execution of remote creation in 5.83 �sec wherethe actual latency is 20.83 �sec. A locality check is done using only locally available informationand completes within 1 �sec for locally created actors. The performance of the runtime primitivesis comparable to that of other systems [119, 75]. The runtime system also supports two primitivesto implement the call/return communication abstraction: continuation creation and reply. Con-tinuation creation with two slots, one empty and one �lled, takes 2.27 �sec and deallocation takes0.75 �sec. Sending a reply locally takes 2.76 �sec and sending it remotely takes 9.26 �sec.Below we present performance results of �ve benchmarks: namely the Fibonacci number gen-erator, a systolic matrix multiplication, a bitonic sorting problem, an N -Queen problem, and anadaptive quadrature problem. The Fibonacci number generator is used to examine overhead ofthe message layer of the runtime system as well as e�ectiveness of dynamic load balancing. Thesystolic matrix multiplication example shows that the THAL system delivers performance compa-rable to less 
exible systems when execution granularity is su�ciently large. The bitonic sortingproblem also shows that the runtime system supports scalable execution. The last two examplesare presented to demonstrate the e�ects of di�erent placement strategies. For each application, weput a brief problem statement, evaluation results, and analysis.6.3 Fibonacci Number GeneratorThe Fibonacci number generator computes the n-th number in the Fibonacci sequence using therecurrence relation, Fib(0) = 1; F ib(1) = 1; F ib(n) = Fib(n�1)+Fib(n�2) (Figure 4.4). Althoughit is a very simple program, it can be used to measure overhead of the messaging layer in the runtimesystem takes because each Fibonacci actor's thread length is quite small. Figure 6.4 comparesperformance of THAL versions computing Fibonacci of 33 on a single node of TMC CM-5 withthat of an optimized C version on a single Sparc processor. The C version completes in 8.49 seconds.As a point of comparison, computing Fib(33) in the Cilk system [19] on a single Sparc processortakes 73.16 seconds. 72



Number of Processors 1 2 4 8 16 32Without DLB 55.5 32.3 20.8 12.9 7.94 4.96With DLB 60.7 37.9 24.1 8.98 3.84 1.87Table 6.2: Execution times of the Fibonacci number generator. The table has two sets of numbersmeasured with and without dynamic load balancing. (unit: seconds)
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Figure 6.3: Comparison of performance of Fibonacci implementations with and without dynamicload balancing.The Fibonacci program is extremely concurrent: naively computing Fib(33) creates 11,405,773actors. However, the THAL compiler optimizes away actor creations since Fibonacci actors arepurely functional. The computation tree of the Fibonacci program has a great deal of load im-balance. Table 6.2 and Figure 6.3 compare two execution results with and without dynamic loadbalancing (DLB). A receiver-initiated random polling scheme [83] is used for dynamic load balanc-ing. As Figure 6.3 shows, the version with DLB performs worse on partitions of a small size due tothe overhead for extra book-keeping. However, it eventually outperforms the version without DLBas the size increases.6.4 Systolic Matrix MultiplicationThe systolic matrix multiplication algorithm, also known as Cannon's algorithm [82], uses N2processors where N is a natural number. To compute C = A� B, each matrix is divided into N2square blocks and matrix A is row-skewed and matrix B is column-skewed. Then, A, B, and C areplaced on the square processor grid (Figure 3.10). At each step of the execution, node Pij performs73
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Figure 6.4: Comparison of performance of Fibonacci implementations on a single Sparc proces-sor. P 2 4 8 16M256 1.06 0.31 0.12 0.05512 8.40 2.37 0.69 0.231024 72.78 12.51 4.94 1.46Table 6.3: Execution times of a systolic matrix multiplication problem. (unit: seconds). Allresults were obtained by executing the program with a M �M matrix on a P �P processor array.local matrix multiplication with blocks APij and BPij . Then, APij s are cyclicly shifted to the left,and BPij s to the upward. After N iterations, the result is in matrix C.Unlike usual systolic implementations, no global synchronization is used to make computationmarch in lock-step fashion. Rather, per-actor-basis local synchronization is used to simulate thebarrier synchronization. Local block matrix multiplication is implemented using the same assemblyroutine used in [33]. Table 6.3 shows the execution times of a THAL implementation on TMCCM-5. Results are comparable to those given in [33] (Figure 6.5). For example, the performancepeaks at 434 MFlops for a 1024 by 1024 matrix on a 64 node partition of a CM-5. The results showthat, despite its 
exibility, our implementation is as e�cient as other more restrictive low-level oneswhen granularity is su�ciently large.6.5 Bitonic SortA bitonic sequence is a sequence of elements ha0; a1; : : : ; an�1i with the property that either (1)there exists an index i, 0 � i � n � 1, such that ha0; : : : ; aii is monotonically increasing and74
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PEs Random D = 7 D = 6 D = 51 105.4 91.23 90.70 90.352 N/Ay 59.02 53.96 52.374 118.2 33.09 27.91 27.078 68.69 17.38 14.10 13.6916 36.39 9.120 7.289 7.10232 18.93 4.610 3.898 3.39264 10.94 2.610 2.040 1.653128 5.884 1.318 1.092 0.843256 3.260 0.628 0.595 0.476Table 6.5: Performance of a 13-Queen problem. (unit: seconds)1 2 4 8 16 32 64 128 256depth = 3 184.0 107.8 46.78 27.33 16.89 11.97 5.604 3.369 2.577depth = 4 183.7 94.05 49.43 27.01 16.68 9.944 5.765 3.194 1.864depth = 5 183.8 95.66 52.06 27.94 16.50 9.091 5.797 3.028 1.738Random 183.5 96.12 52.44 27.66 17.11 9.282 5.445 2.921 1.952Table 6.6: Performance of an adaptive quadrature problem. (unit: seconds)A parallel version of the algorithm may be implemented using a master-worker con�guration.First, the master creates a worker on each processing node, divides the input interval into equallyspaced subintervals, and assigns one to each worker. Each worker is responsible for computingthe integral estimate and the error estimate on its subinterval. If the error estimate is su�cientlysmall, it returns its integral estimate to the master as the result. Otherwise, it re�nes the integralestimate by creating child workers, dividing its subinterval, and assigning one to each child. Then,it waits for results, sums them, and returns the sum to the master. In our experiment, the followingfunction was integrated over the interval from [0:001,32] using an initial subinterval length of 0:1and the error bound of 10�4.106 + j106 � sin(0:5=x)x jThe N -Queen example demonstrates that di�erent placement strategies may exhibit di�erentperformance characteristics. This example shows that it is not always the case. In adaptivequadrature the work assigned to a processing element may dynamically increase as the computationproceeds. The subtree-to-subcube placement strategies cause more remote actors to be created andmore remotemessages to be sent as the cuto� depth increases. As in the N -Queen problem, versionswhich scheduled more computations locally performed better (Table 6.6). However, the di�erenceis not signi�cant (Figure 6.8). 77



0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256

PEs

Time
(sec)

Figure 6.7: Comparison of performance of a 13-queen problem with di�erent placement strate-gies.
0

20
40
60
80

100
120
140
160
180
200

1 2 4 8 16 32 64 128 256

PEs

Time
(sec)

Figure 6.8: Comparison of performance of an adaptive quadrature problem with di�erent place-ment strategies. 78



Chapter 7ConclusionThe thesis shows that communication in actor programming which involves both sending andscheduling messages, can be e�ciently and scalably supported on stock-hardware distributed mem-ory multicomputers. In particular, we have developed a number of run-time implementation tech-niques and compile-time analyses for 
exible actor communication abstractions and applied themto an actor-based language, THAL.The language supports 
exible high-level communication abstractions, such as concurrent call/returncommunication, delegation, local synchronization constraints, and broadcast. The runtime systemimplements an e�cient message delivery subsystem which supports location transparency, a remoteobject creation mechanism which allows remote creation to overlap with local computation, and ascheduling mechanism which recognizes and exploits the cost di�erence in local and remote mes-sage scheduling. In particular, the scheduling mechanism enables the runtime system to implementdynamic load balancing. The compiler uses global data 
ow analysis to infer types for expressions.The inferred type information is used to optimize message scheduling. The compiler also imple-ments a join continuation transformation to restore concurrency lost in speci�cations. It compileranalyzes local data 
ow in a program to enable multiple threads active on an actor with threadsafety.Preliminary experiment results are encouraging. Speci�cally, the performance of primitive op-erations, such as actor creation and message sending, are comparable to those of other systems.Although the performance of �ne-grained benchmark programs is worse than that of implementa-tions in less 
exible systems, our system yields comparable or better performance, on benchmarkswith su�ciently large granularity.The implementation techniques of the runtime system and the compile-time analyses devel-oped in the thesis may serve as a basis on which to implement high-level actor-based systemse�ciently. Such systems include: multi-object synchronization and coordination in distributed en-vironment [41], meta-level speci�cation of interaction policies between distributed components [114],synchronization between distributed objects with real-time constraints [105], visualization of coor-dination patterns in concurrent algorithms [10]. All of these systems are based on asynchronousobjects and thus are modeled with actors. Although the systems support di�erent high-level lin-guistic abstractions, they share a property that the abstractions may be implemented in terms ofprimitive actor operators.The work addressed in the thesis may be extended in a number of directions. First, the THALlanguage need to support more advanced abstractions to further improve programmability and79



re-usability. Among the abstractions are inheritance, re
ection, and exception handling. Theseabstractions are necessarily added to the language in ways that maintain e�ciency of the language.Furthermore, the high-level, modular abstraction mechanism for actor placement developed in[102] may be incorporated in the language. Lastly, the runtime system's modular design allowsan automatic memory management scheme [128, 129] to be easily plugged in. Automatic memorymanagement is necessary for the runtime system to guarantee location transparency and executionsecurity by obviating user-level memory management.The advent of low-cost o�-the-shelf interconnects opens the possibility of networks of worksta-tions as tomorrow's economic workhorses. The compilation techniques and the runtime supportare independent of the underlying platforms, and thus, may easily be adapted to such platforms.Intelligent agents on the world wide web (WWW) for data mining and/or distributed processingroam from node to node to achieve their goals. By de�nition, they require migration capability aswell as transparent naming. Inherent location independence of actors and their ability to migratemay be used to implement the intelligent agents e�ciently.
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