
A SNMP-based Virtual Machines Management
Interface

Ricardo Hillbrecht, Luis Carlos E. de Bona
Federal University of Paraná, Dept. Informatics

P.O.Box 19.081 - 81.531-980 - Curitiba, PR Brazil

{ricardoh, bona}@inf.ufpr.br

Abstract—This paper presents Virtual-Machines-MIB, a MIB
(Management Information Base) directed to virtual machines
management through SNMP (Simple Network Management Pro-
tocol). Virtual-Machines-MIB aims to define a standard interface
for virtual machines management, allowing the management of
several virtual machines monitors, like Xen, KVM and VMWare,
with a common SNMP management tool. Different from previous
virtual machines management MIBs, which allows the manager
to perform only monitoring operations, Virtual-Machines-MIB
allows to perform control operations, like create, delete, restart,
turn on, pause and shut down virtual machines. It is also possible
to use the proposed solution to change a virtual machine’s
name, amount of RAM, virtual CPU’s and virtual storage
drives. Practical results are presented using ordinary SNMP
management tools performing KVM and Xen management. To
do this, SNMP agents which support Virtual-Machines-MIB were
developed and installed on KVM and Xen hosts. These SNMP
agents are based on NET-SNMP public domain’s agent, that was
extended to support Virtual-Machines-MIB using libvirt API.

I. INTRODUCTION

Virtualization is a technology that allows more than one

operating system instance to run on the same machine at the

same time. A virtualization layer provides low-level support

for creating multiple virtual machines (or VMs), which are

independent and isolated from each other. This virtualization

layer is called virtual machine monitor (or VMM) [1]. The

operating system of the virtual machine is called guest OS, and

the operating system of the physical machine is called host OS.

The use of virtual machines simpliflies data centers physical

management, increase resource efficiency and services relia-

bility [2].

Recently there was the the rise and popularization of cloud

computing, a new paradigm of organization and delivery of

services through the Internet. Virtualization is the foundation

of cloud computing, since it offers the ability to aggregate

computing resources of several clusters of physical machines

and dynamically assign virtual resources to applications based

on demand [3]. In cloud computing, the processing of cus-

tomer applications takes place in centralized facilities oper-

ated by a service provider such as Amazon EC2, Google

App Engine, Microsoft Windows Azure, Salesforce.com and

Rackspace, among others. Due to the widespread use of cloud

computing and the growing amount of VMs, new challenges

rised for the management of computing environment [4], [2],

as well as for the management of VMs.

The main VMM’s on the market, such as Xen [5], VMWare

[6] and Hyper-V [7], provide their own management ap-

plications. As examples of management applications, it is

possible to list Citrix Xen Center, VMWare Virtual Center and

Microsoft Virtual Machine Manager. These applications are

able to manage only the corresponding VMM. There are few

management systems able to support more than one VMM,

because the manufacturers keep the management of VMs

restricted to their own management systems for commercial

reasons [4]. Also, there are open source projects directed

to management of cloud computing infrastrucure which can

manage more than one VMM, like oVirt [8], Eucalyptus [9]

and OpenNebula [10]. The main obstacle in implementing a

system capable to manage more than one VMM is the lack of

standardized management interfaces or protocols.

Network management systems include tools that allow

effective network monitoring and control [11]. The Simple

Network Management Protocol (SNMP) is the most used

architecture of networks management systems. An SNMP

system is composed of managers and agents which communi-

cate using the management protocol. Managed nodes contain

an agent, which is a management entity that has access to

management instrumentation. The SNMP architecture defines

a Management Information Base (MIB) as a collection of

related management objects which are kept in order to allow

management applications to monitor and control the managed

nodes [12]. The MIB provides an uniform management inter-

face between the manager and the agent, allowing the manager

to discover, read and write the management objects available

in the MIB of a given node.

The paper in [13] presents an evaluation of SNMP as a

virtual networks management interface. In [4] it is stated that

the definition of a MIB for the management of VMs would

be an advance. In [14], is proposed to use SNMP as a moni-

toring and control protocol in a virtual machines management

system. The work in [15] proposes a MIB to monitor the use

of hardware resources of VMs. The VMM’s manufacturers,

such as VMWare and Citrix, include interfaces for SNMP

monitoring in their products. Recent works also make use

of SNMP management framework, like a GRID infrastrucure

monitoring system [16], a virtual router management system

[13] and a distributed architecture of software-based routers

[17]. Currently there are a number of management systems

that uses SNMP as the management protocol, taking advantage

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.31

255

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.31

279

of the existing set of standardized MIBs, which are quite

widespread, thus allowing management systems to manage a

variety of devices.

This paper proposes the use of SNMP for monitoring and

controlling VMs. The use of SNMP is an adequate solution

for managing virtual machines since it allows a uniform man-

agement interface between the manager and the virtualization

host, a standardized and well known communication protocol

and the integration of VMs management with existing man-

agement systems. In order to allow a centralized monitoring

and controlling, it presents a MIB called Virtual-Machines-
MIB, which defines a standard interface for the management

of VMs. Through this standardized interface, it is possible to

manage different VMMs using the SNMP protocol.

Practical results are presented using ordinary SNMP man-

agement tools performing KVM and Xen management op-

erations. To obtain these results, SNMP agents that support

Virtual-Machines-MIB were developed and installed on KVM

and Xen hosts. These SNMP agents are based on NET-SNMP

public domain’s agent [18] and support Virtual-Machines-MIB
using libvirt API [19].

The rest of the paper is organized as follows. Section II

presents the existing MIBs and other approaches of virtual

machines management. Section III presents Virtual-Machines-
MIB. Section IV presents the architecture of a Virtual-
Machines-MIB implementation. Practical results follow in

section V. Section VI concludes the paper.

II. RELATED WORK

The VMM’s manufacturers, such as VMWare and Citrix,

include interfaces for SNMP monitoring in their products.

VMWare ESX Server includes a number of MIB definitions

forming vmware subtree with OID “.iso.org.dod.internet. pri-

vate.enterprises.vmware” (1.3.6.1.4.1.6876).

VMWare MIB separates physical machine’s data of VM’s

data placing them in separate groups. Physical machine’s data

are placed in vmwSystem group, that contains VMWare prod-

uct name and version, and vmwResources group, that contains

data about physical CPUs, memory and storage devices.

Data about virtual machines are placed in the group

vmwVirtMachines, which contains the vmwVmTable that stores

the VM’s list. This table stores data about each VM, as its

name, configuration file path, guest OS name, RAM size, state,

guest OS state and number of CPUs.

Additional tables contains more information about each

VM. There are tables with host bus adapters, virtual disks,

virtual network, floppy and CD-ROM informations. Each entry

of these additional tables refers to the VMs of vmwVmTable
by the VM identifier field.

A research group at the University of Braunschweig, Ger-

many, developed a MIB for Xen managing [20]. XenMIB
also has separate groups for data about the physical machine

and data about the virtual machines. The physical machine’s

groups contains the Xen version, physical RAM and the

number and frequency of physical CPUs.

The xenDomainTable contains VM’s data, like its name,

state, used and total RAM. Two additional tables contain data

about VM’s CPUs and networks.

Both VMWare and Xen MIBs separates physical machine’s

and VMM’s data of virtual machine’s data placing them on

distinct groups. Both MIBs have a table with the list of existing

virtual machines and their key attributes, such as name, state

and amount of memory. Other data, such as information about

CPU’s, HBA’s, virtual disks, virtual network interfaces, floppy

and CD-ROM, can be found in separated tables, where each

entry contains the identifier of the corresponding VM.

The MIBs of VMWare and Xen have only objects for

monitoring the resources of physical and virtual machines.

Thus, they not allow to change the values of management

objects, what would be required to perform the control of

virtual machines. Furthermore, the presented MIBs does not

follow a common model for VMs management.

The work in [15] stresses the importance of a standardized

interface for monitoring virtual machines on multiple virtual-

ization platforms like VMware, Xen, KVM and VirtualBox,

due to the coexistence of these platforms in cloud computing

providers. Suggests that such a standardized interface should

be SNMP based, using the MIB-II and Host Resources MIB
to monitor the physical machine and proposing a new MIB to

virtual machines monitoring, named NCNU-VM-MIB.

An implementation of NCNU-VM-MIB is presented, where

libvirt is used to get information about the VMs. An exper-

iment is performed by monitoring virtual machines in three

different VMM’s: VMWare, KVM and Xen. NCNU-VM-MIB
allows only monitoring operations, so it doesn’t allow control

operations such as creating and deleting VMs or change its

state. Due to the small number of objects present in NCNU-
VM-MIB, is not possible to obtain informations such as the

guest operating system and virtual storage drives.

Besides the works presented above, there is libvirt-snmp
[21], a subproject of libvirt that provides SNMP functionality

for libvirt. With libvirt-snmp, is possible to monitor virtual

domains as well as set domain’s attributes over SNMP. Libvirt-
snmp allows to obtain informations about domain, control

domain status and be informed about certain events.

Libvirt-snmp provides a simple table of domains. Each row

contains domain’s name, state, number of CPUs, RAM, RAM

limit and CPU time. Libvirt-snmp defines a MIB with objects

that allow to set domain’s state and to delete domains, others

are read-only. The libvirt-snmp project relies only on libvirt
functionality, and do not intend to perform operations beyond

the ones offered by libvirt.
Other management approach, different from SNMP, is the

Web-Based Enterprise Management (WBEM), defined by the

Distributed Management Task Force (DMTF) and supported

by numerous hardware, software and services vendors. WBEM

is a set of management and internet standard technologies

developed to unify the management of distributed computing

environments, facilitating the exchange of management data

across technologies and platforms.

The data that is transported via the encoding and transport

256280

definitions of WBEM are defined in the Common Information

Model (CIM). CIM is a conceptual information model for

describing the management of a given entity, that is not bound

to a particular implementation. This allows the interchange

of management information between management systems

and applications, either ”agent to manager” or ”manager to

manager”. DMTF defines a CIM schema to represent and

manage a generic virtual system, emphasizing the demand

for a standardized interface of virtual machines management.

A comparison of WBEM, SNMP and other management

frameworks can be found in [22].

The work in [23] proposes a virtual machines management

architecture based on REST (Representational State Transfer),

what also is a management approach different from WBEM

and SNMP. The work suggests that REST can replace both

the communication protocols between the management station

and the human manager, as well as between the manage-

ment station and managed components. According to [23],

the adoption of REST as a single interface for management

data transfer reduces the difficulties in sharing data between

multiple applications, increasing interoperability between dif-

ferent management applications. The Open Cloud Computing

Interface (OCCI) [24] also is a RESTful Protocol and API for

clouds management. OCCI was originally initiated to create a

remote management API for IaaS model-based services, after

evolving to serve other models as PaaS and SaaS.

III. Virtual-Machines-MIB

The Virtual-Machines-MIB defines a standardized manage-

ment interface including the set of functions that are com-

mon between current VMMs. Different from existing MIBs,

Virtual-Machines-MIB includes not only read-only, but also

read-write objects, permitting in addition of monitoring also

to control managed entities.

The control objects of Virtual-Machines-MIB includes state

control of VMs and functions related to the configuration

of virtual hardware (RAM, CPU’s and virtual disks). The

basic VM’s state control objects follow what suggests the

Distributed Management Task Force (DMTF) in [25], which

are as follows: define, start, stop, pause, shutdown and shutoff.

Is also possible to change a VM’s Name, create and delete

VM’s and create, delete and modify VM’s templates.

In addition to the control objects, Virtual-Machines-MIB
also provides monitoring objects. The main monitoring infor-

mations about VM’s are: (1) unique identifier (UUID), (2)

name and version of the guest operating system, (3) name

and version of VMM, (4) frequency and architecture of each

virtual CPU (5) milliseconds used by each virtual CPU (6)

free RAM (7) RAM in use, (8) total capacity of each storage

device (9) used and available capacity of each storage device

(10) CD-ROM and floppy drives, (11) kernel used by the

guest operating system, (12) additional parameters of the guest

kernel, (13) network settings, (14) network traffic and (15)

HBA’s information.

A. Virtual-Machines-MIB Organization

The Virtual-Machines-MIB organization defines a subtree

contained by the group VirtualMachines. This group contains,

in the first level, nine tables and two subgroups, that are shown

in Figure 1(a).

The VMs are listed in VirtualMachinesTable (Figure 1(b)),

which contains more informations about each VM. VmUUID
contains a unique identifier of the VM. The UUID was chosen

as the VM’s identifier because it can uniquely identify a given

VM even when managing a great number of VMs on several

physical machines.

The object VMName allows reading and changing the name

of the VM. VmOsIndex points to one entry in Supporte-
dOsTable (Figure 2(a)), that contains more data about the

guest operating system. VmState allows reading and changing

the state of the VM. VmConfFile contains the configuration

file name of the VM, which can be a file with domain’s

XML description [19] or a text file specifically formatted for

each VMM. VmKernelIndex points to one entry in KernelTable
(Figure 2(b)), that contains more data about guest OS kernel.

VmRowStatus contains the status of each conceptual row of the

table. This object is responsible by the creation and exclusion

of VMs.

DiskImagesTable contains disk images files that can be used

by virtual machines as storage devices. The Figure 1(c) shows

the objects of DiskImagesTable.

StorageTable contains the disk images currently allocated to

the VMs as storage devices. Each entry in this table builds a

relationship between one virtual machine and one disk image,

since disk images are the backend of storage devices. This

table allows to connect and disconnect disk images of VMs, as

well as replace an already connected disk image. The objects

of StorageTable can be seen in Figure 1(d).

MemoryTable and CpuTable contains information about

RAM and CPU usage at each VM. Figure 2(c) shows Memo-
ryTable objects, and Figure 2(d) shows CpuTable objects. The

objects memoryVmUUID and cpuVmUUID relates each entry

of MemoryTable and CpuTable with one particular VM by its

UUID.

The group VirtualMachineMonitor contains the name

(VMMName) and version (VMMVersion) of VMM. HbaTable
contains information about the virtualized host bus adapters

connected to the VMs. NetworkTable contains information

about the network connections of each VM such as IP and

MAC addresses, interface throughput and others.

B. Use of Templates

The operations of creating a new VM and connecting a

virtual disk on a VM are performed including new lines in

certain tables. When adding a new line into a table, the values

for each field of the new line should be informed. As it is

not possible to inform the values of each field in the same

SNMP message responsible for the inclusion of the new line,

the fields initially receive the values stored in a template.

The operation of creating a new VM consists in changing

the value of vmRowStatus of a virtualMachinesTable entry

257281

(a) The VirtualMachines group. (b) VirtualMachinesTable (c) DiskImagesTable. (d) StorageTable.

Fig. 1. Virtual-Machines-MIB: VirtualMachines group, VirtualMachinesTable, DiskImagesTable and StorageTable.

(a) SupportedOsTable (b) KernelTable (c) MemoryTable. (d) CpuTable.

Fig. 2. Virtual-Machines-MIB: SuportedOsTable, KernelTable and MemoryTable and CpuTable.

to the integer “5”, which corresponds to the operation cre-
ateAndWait [26], what creates a new line in the table. The

operation of connecting a virtual disk on a VM consists in

changing the value of storageTable field storageRowStatus on

the line corresponding to the desired VM to the integer “4”,

corresponding to the operation createAndGo. These operations

include one more line on their tables, however do not inform

the values for all fields of the new line.

Thus, once the operation to create a new VM has been

triggered, a line is added to the VMs table and fields like name,

amount of memory, amount of CPUs and other are obtained

from template. Likewise, when the operation of connecting a

virtual disk on a VM has been triggered, a line is included in

storageTable and the virtual disk name to be connected to the

VM is obtained from the template.

Virtual-Machines-MIB stores templates in virtualMa-

chinesMibTemplates group. The table virtualMachineTem-
plateTable stores the templates for creating new VMs, the

object virtualMachineTemplate stores which template for cre-

ating VM is currently in use, and the object storageTemplate
stores the disk template to be connected to a VM.

Many entries can be inserted in virtualMachineTem-
plateTable, and the object virtualMachineTemplate will indi-

cate what entry of VirtualMachineTemplateTable is currently

being used as new VMs template. Also, is possible to create

new and modify existing templates. Once the new VM is

created based on the current template, Virtual-Machines-MIB
allows the manager to edit the configuration of the newly

created VM in further operations, by changing the VM’s name,

amount of memory, CPU’s and virtual storage units.

The object storageTemplate stores an integer that corre-

sponds to the diskImageIndex field of diskImagesTable. This

258282

Fig. 3. Virtual-Machines-MIB implementation architecture.

field identifies an entry of diskImagesTable that is the template

disk image currently in use, which will be initially connected

to the VMs when a new storage device is created. Once the

new storage device is created and connected to the template

disk image, the manager can edit this entry using Virtual-
Machines-MIB, making it point to the desired disk image that

will be used by the VM.

IV. ARCHITECTURE TO IMPLEMENT

VIRTUAL-MACHINES-MIB

This section describes the architecture to implement Virtual-
Machines-MIB. The implementation architecture of is based

on a SNMP agent, responsible of obtaining information and

perform the operations. The external management station must

communicate with the agent through the SNMP protocol. The

SNMP agent must obtain the information described in the

Virtual-Machines-MIB from various sources, such as the host

OS API and the VMM API, the libvirt, and the XML files with

the templates for creation of VMs. The architecture described

is shown in Figure 3.

The libvirt programming library [19] is an application

programming interface to create virtual machines management

tools compatible with various VMM’s. Libvirt was used in this

work to implement the interactions between Virtual-Machines-
MIB objects and the virtual machines monitor.

Libvirt currently supports multiple virtual machine monitors

such as KVM, Xen, QEMU, Virtual Box and VMWare. It

introduces a middleware that interacts with each supported

VMM and provide a standardized interface for virtual ma-

chines management applications. Libvirt is divided into two

parts: one is independent of the VMM, and other is VMM

specific. The VMM specific part is composed by drivers.

Thus, for each managed VMM, there must be in libvirt the

corresponding driver. The applications use the libvirt public

API , which internally maps to the appropriate driver.

The libvirt’s goal is to provide a common layer, stable

enough to safely manage virtual machines and, if possible,

remotely [19]. Libvirt contains the management functions

offered by each supported VMM, such as provisioning (instal-

lation of guest operating system), starting, stopping, creating,

modifying, monitoring and migrating of virtual machines.

Libvirt API is used to obtain the most part of Virtual-
Machines-MIB data, but some tables doesn’t rely on libvirt.
The data of SupportedOsTable, that contains information about

guest OSs, and KernelTable, which contains kernel data of

each guest OS, must be obtained from other sources, such as

the VMM API.

The tables NetworkTable and HbaTable also have objects

that can not be obtained by libvirt, being necessary to obtain

them from other sources that vary according to the VMM in

use, such as VMM or host OS API.

Other Virtual-Machines-MIB features also does not have an

equivalent libvirt function. For example, the VMName object,

of virtualMachinesTable, allows to change the name of a VM,

and libvirt doesn’t have a function to change a VM’s name,

but it has functions that assists this task. To implement this

feature, the VM’s XML description must be obtained using the

libvirt function virDomainGetXMLDesc. Libvirt defines

the XML format that describes a VM in [19]. After obtaining

the XML, it must be parsed and the VM’s name changed, so

the VM must be redefined with the new XML description.

The redefinition of a VM with a new XML is done using

the function virDomainDefineXML with the new XML as

parameter. With this method, the name change will only take

effect at the next boot of the VM.

Libvirt also does not offer a function to list the existing

virtual disks of a VM, a required information to obtain the

storageTable entries. The method used to obtain this infor-

mation is to get the XML description of each VM using the

function virDomainGetXMLDesc and use a XML parser

to obtain the storage devices from XML data.

The templates for creation of VMs, stored in table virtual-
MachineTemplateTable, are derived from XML files stored in

the host. These XML files describe a virtual domain in the

XML format specified by libvirt. Virtual-Machines-MIB parses

the XML files and inserts one template in virtualMachineTem-
plateTable, which can be edited by SNMP “SET” operations.

V. EXPERIMENTAL RESULTS

Virtual-Machines-MIB was experimented by installing the

extended SNMP agents in two machines capable of hosting

VMs, one with KVM and another with Xen. Both VMM’s

were managed from the management station using traditional

unmodified SNMP tools of the NET-SNMP package. The

architecture used for the experiment is shown in Figure 4.

To demonstrate the management methodology to be adopted

when using SNMP and Virtual-Machines-MIB, the following

experiments were performed: (1) get the name and version of

VMM, (2) list the VMs on a physical machine, (3) create a

259283

Fig. 4. Experiment architecture.

KVM Output

vmmName.0 = STRING: QEMU

vmmVersion.0 = STRING: 12005

Xen Output

vmmName.0 = STRING: Xen

vmmVersion.0 = STRING: 4000000

TABLE I
OBTAINING NAME AND VERSION OF VMM.

new VM, (4) change the name of the newly created VM, (5)

change the amount of RAM of the newly created VM, (6)

connect a given virtual disk in the newly created VM (7) start

the newly created VM, (8) insert another virtual CPU in the

newly created VM, (9) delete the newly created VM.

The first experiment is to obtain the name and version of

VMM. Table I displays the results in KVM and Xen.

The second experiment is to list the VMs on a physical

machine. VirtualMachinesTable lists the existing VMs on a

given host, its content is shown on Table II. A new VM can

be created by changing the value of vmRowStatus object in

any line of the virtualMachinesTable to the integer value “5”

(createAndWait). Thus, a new VM is created based on the

template settings (virtualMachineTemplateTable).

After the new VMs were created, the next experiment is

to change the name of the newly created VM. Initially, they

are named as defined in the field domainTemplateName of vir-
tualMachineTemplateTable. Next, this name will be changed

to “vm-debian-1000” on KVM and “hvm-xen-1000” on Xen.

Table II shows virtualMachinesTable with the highlighted

lines corresponding to the newly created VMs after the name

change.

The next experiment is to change the amount of RAM of the

newly created VM. The memoryTable content is listed on Table

III, where the entries corresponding to the newly created VMs

KVM Output

index memoryVm-
UUID

memoryTotalMbmemoryUsedKBmemoryFreeKB

1 f4d32541 . . . 128 131072 0

2 7cae0a2c . . . 128 131072 0

3 a0216fad . . . 64 65536 0

4 5c6bfe1 . . . 128 131072 0

5 945c6a0e . . . 128 131072 0

6 ff74ed37 . . . 128 131072 0
7 0be03b74

. . .
128 131072 0

Xen Output

index memoryVm-
UUID

memoryTotalMbmemoryUsedKBmemoryFreeKB

1 0-0-0-0-0 2944 3014656 0

2 8f915a94 . . . 1027 1052636 0

3 738f9343. . . 128 131072 0
4 e875600 . . . 512 524288 0

TABLE III
CONTENT OF MEMORYTABLE ON KVM AND XEN.

are highlighted. To change the amount of RAM, the object

memoryTotalMb of the corresponding memoryTable entry must

be set to the desired amount of RAM in megabytes.

After changing the amount of RAM, the next experiment

is to connect a given virtual disk in the newly created VM.

This activity is done through storageTable, that lists all VM’s

storage volumes. Initially the newly created VM is connected

to the disk image indicated by the template. It must be replaced

by the disk image that really should stay connected. The

content of storageTable is shown in table IV, where the entries

corresponding to the newly created VMs are highlighted. To

replace their disks, the value of the column storageDiskIm-
ageIndex must be replaced by the value of diskImageIndex of

the desired entry of diskImagesTable.

The next experiment is to start the newly created VM. To

change the state of a given VM, the value of the object vmState
of virtualMachinesTable must be changed to the desired state.

The vmState object supports the following values: 1 (defined),

2 (running), 3 (blocked), 4 (paused), 5 (shutdown), 6 (shutoff)

and 7 (crashed). To start the newly created VMs, the vmState
column values in Table II must be set to 2 (running) in the

corresponding entries.

The next experiment is to insert another virtual CPU in

the newly created VM. The CPUs of all VMs are listed in

cpuTable. The newly created VM contain initially one virtual

CPU, as indicated by the template. To insert one more virtual

CPU in the newly created VM, the value of cpuRowStatus
of the corresponding cpuTable entry must be changed to the

value 4 (createAndGo). The table V shows the content of

cpuTable with the entries corresponding to the newly created

VM’s highlighted after inserting one additional CPU on each

VM.

The last activity is to delete the newly created VM. To delete

a VM, the corresponding row of virtualMachinesTable (Table

260284

KVM Output

vmId vmUUID vmName vmOsIndex vmState vmConfFile vmKernelIndex vmRowStatus

1 7cae0a2c . . . vm-debian-4 1 running /var/lib/libvirt/vm-debian-4.xml 1 active

2 a0216fad . . . vm-debian-1 1 running /var/lib/libvirt/vm-debian-1.xml 1 active

3 05c6bfe1 . . . vm-debian-2 1 paused /var/lib/libvirt/vm-debian-2.xml 1 notInService

4 945c6a0e . . . vm-debian-3 1 running /var/lib/libvirt/vm-debian-3.xml 1 active

5 0be03b74 . . . vm-debian-6 1 shutoff /var/lib/libvirt/vm-debian-6.xml 1 notInService

6 f4d32541 . . . vm-debian-5 1 running /var/lib/libvirt/vm-debian-5.xml 1 notInService

7 ff74ed37. . . vm-debian-1000 1 shutoff /var/lib/libvirt/vm-debian-1000.xml 1 notInService
Xen Output

vmId vmUUID vmName vmOsIndex vmState vmConfFile vmKernelIndex vmRowStatus

1 0-0-0-0-0 Domain-0 0 running /var/lib/libvirt/Domain-0.xml 0 active

2 8f915a94 . . . hvm-xen-1 0 running /var/lib/libvirt/hvm-xen-1.xml 0 notReady

3 e875600 . . . vmxen-debian-1 0 shutoff /var/lib/libvirt/vmxen-d. . . 0 notInService

4 738f9343. . . hvm-xen-1000 0 shutoff /var/lib/libvirt/hvm-xen-1000.xml 0 notInService

TABLE II
CONTENT OF VIRTUALMACHINESTABLE ON KVM AND XEN, WITH THE NEWLY CREATED VMS AFTER NAME CHANGE.

KVM Output

index cpuVmUUID cpuArch cpuMhz cpuMilliseconds cpuRowStatus

1 ff74ed37 . . . x86 64 1197 2957518208 active
2 ff74ed37 . . . x86 64 1197 2957518208 active
3 a0216fad . . . x86 64 1197 3910261632 active

4 0be03b74 . . . x86 64 1197 0 active

5 f4d32541 . . . x86 64 1197 0 active

6 7cae0a2c . . . x86 64 1197 0 active

7 5c6bfe1 . . . x86 64 1197 0 active

8 945c6a0e . . . x86 64 1197 0 active

Xen Output

index cpuVmUUID cpuArch cpuMhz cpuMilliseconds cpuRowStatus

1 0-0-0-0-0 x86 64 2494 3646051738 active

2 0-0-0-0-0 x86 64 2494 3646051738 active

3 0-0-0-0-0 x86 64 2494 3646051738 active

4 0-0-0-0-0 x86 64 2494 3646051738 active

5 8f915a94 . . . x86 64 2494 3733954217 active

6 738f9343 . . . x86 64 2494 3047660344 active
7 738f9343 . . . x86 64 2494 3047660344 active
8 0e875600 . . . x86 64 2494 48852610 active

TABLE V
CONTENT OF CPUTABLE ON KVM AND XEN.

II) must be destroyed. This operation is performed by changing

the value of the object vmRowStatus on the corresponding

entry to the integer “6” (destroy), therewith the VM are deleted

and its resources are freed.

VI. CONCLUSIONS

This work presented a strategy to centralize the management

of multiple virtual machines monitors. Virtualization is a tech-

nology that allows more than one operating system instance

to run on the same machine at the same time. Recently the

cloud computing, a new paradigm of organization and delivery

of services, rised in the Internet. Virtualization is the founda-

tion of cloud computing. The adoption of cloud computing

increases the interest in integrating virtual infrastructures, that

often are built on different virtual machine monitors.

The main VMMs on the market provide their own manage-

ment applications that are specific tailored manage only their

own VMM. Another problem is that the VMMs do not offer a

common and standardized management protocol or interface.

The solution presented in this paper uses the SNMP to

perform the management of VMs, including monitoring and

controlling. In order to allow a centralized monitoring and

controlling, it presents a MIB called Virtual-Machines-MIB,

which defines a standard interface for the management of

VMs. The proposed MIB was implemented based on the NET-

SNMP agent and on the libvirt API. Finally, experiments were

261285

KVM Output

storageId storageVm
UUID

storage
Device

storageDisk
Image
Index

storage Row-
Status

1 f4d32541 . . . disk 6 active

2 f4d32541 . . . cdRom 0 active

3 7cae0a2c . . . disk 5 active

4 7cae0a2c . . . cdRom 0 active

5 a0216fad . . . disk 1 active

6 a0216fad . . . disk 2 active

7 a0216fad . . . cdRom 0 active

8 5c6bfe1 . . . disk 3 active

9 5c6bfe1 . . . cdRom 0 active

10 945c6a0e . . . disk 4 active

11 945c6a0e . . . cdRom 0 active

12 ff74ed37 . . . disk 2 active
13 ff74ed37 . . . cdRom 0 active

14 be03b74 . . . disk 7 active

15 be03b74 . . . cdRom 0 active

Xen Output

storageId storageVm
UUID

storage
Device

storageDisk
Image
Index

storage Row-
Status

1 8f915a94 . . . disk 2 active

2 8f915a94 . . . cdRom 0 active

3 738f9343. . . disk 4 active
4 738f9343 . . . cdRom 0 active

5 e875600 . . . disk 3 active

TABLE IV
CONTENT OF STORAGETABLE ON KVM AND XEN.

performed which consists in managing virtual machines hosted

by KVM and Xen with ordinary SNMP management tools.

Future work includes the addition of new management

features to the MIB, for instance disk images creation and

management, boot order change and virtual networks manage-

ment. The support of other VMMs also must be performed.

REFERENCES

[1] S. Nanda and T. cker Chiueh, “A Survey on Virtualization Technologies,”
Stony Brook Univ., Tech. Rep. TR-179, Feb. 2005.

[2] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, and A. Brinkmann,
“Non-Intrusive Virtualization Management Using Libvirt,” Proc. of the
Design, Automation and Test in Europe Conf. and Exhibition (DATE’10),
pp. 574–579, Mar. 2010.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and Research Challenges,” Journal of Internet Services and Applications,
vol. 1, pp. 7–18, 2010.

[4] V. A. Danciu, “Host Virtualization: a Taxonomy of Management Chal-
lenges,” Proc. of the 2nd Workshop on Services, Platforms, Inno-
vations and Research for new Infrastructures in Telecommunications
(SPIRIT’09), Oct. 2009.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, and I. Pratt,
“Xen and the Art of Virtualization,” Proc. of the 19th ACM Symp. on
Operating Systems Principles, pp. 164–177, Oct. 2003.

[6] “VMWare,” http://www.vmware.com, Accessed in Jun. 2012.
[7] “Microsoft Hyper-V Server,” http://www.microsoft.com/hyper-v-server/,

Accessed in Jun. 2012.
[8] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual In-

frastructure Management on Private and Hybrid Clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, 2009.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source Cloud-
Computing System,” Proc. of the 9th IEEE/ACM International Symp.
on Cluster Computing and the Grid (CCGRID’09), pp. 124–131, May
2009.

[10] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity
Leasing in Cloud Systems Using the Opennebula Engine,” Proc. of the
Workshop on Cloud Computing and its Applications (CCA’08), 2008.

[11] W. Stallings, Snmp, Snmpv2 and Rmon, 2nd ed. Reading, MA: Addison-
Wesley, 1996.

[12] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for De-
scribing SNMP Management Frameworks,” RFC 2271, Jan. 1998.

[13] F. Daitx, F. Daitx, R. P. Esteves, and L. Z. Granville, “On the Use of
SNMP as a Management Interface for Virtual Networks,” Proc. of the
IFIP/IEEE Intl. Symp. on Integrated Network Management (IM’11), pp.
177–184, May 2011.

[14] S. Graupner, R. König, V. Machiraju, J. Pruyne, A. Sahai, and A. van
Moorsel, “Impact of Virtualization on Management Systems,” Hewlett-
Packard, Tech. Rep. HPL-2003-125, 2003.

[15] Y. Peng and Y. Chen, “SNMP-based Monitoring of Heterogeneous
Virtual Infrastructure in Clouds,” Proc. of the 13th Asia-Pacific Network
Operations and Management Symp. (APNOMS’11), pp. 1–6, Sep. 2011.

[16] M. Savic, S. Gajin, and M. Bozic, “SNMP-based Grid Infrastructure
Monitoring System,” Proc. of the 34th International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO’11), pp. 231–235, May 2011.

[17] A. Bianco, R. Birke, F. Debele, and L. Giraudo, “SNMP Management
in a Distributed Software Router Architecture,” Proc of the IEEE Intl.
Conference on Communications (ICC’11), pp. 1–5, Jun. 2011.

[18] “The NET-SNMP Home Page,” http://www.net-snmp.org/, Accessed in
Jun. 2012.

[19] “Libvirt, the Virtualization API,” http://libvirt.org/, Accessed in Jun.
2012.

[20] “TUBS-IBR-XEN-MIB DEFINITIONS,” http://www.ibr.cs.tu-
bs.de/svn/libsmi/trunk/mibs/tubs/TUBS-IBR-XEN-MIB, Accessed in
Jun. 2012.

[21] “libvirt: Wiki: Libvirt-snmp,” http://wiki.libvirt.org/page/Libvirt-snmp,
Accessed in Jun. 2012.

[22] P. Goncalves, J. Oliveira, and R. Aguiar, “An evaluation of network
management protocols,” Proc. of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM’09), pp. 537–544, Jun.
2009.

[23] H. Han, S. Kim, H. Jung, H. Yeom, C. Yoon, J. Park, and Y. Lee, “A
RESTful Approach to the Management of Cloud Infrastructure,” Proc.
of the IEEE Intl. Conf. on Cloud Computing (CLOUD’09), pp. 139–142,
Sep. 2009.

[24] “Open Cloud Computing Interface,” http://occi-wg.org/, Accessed in
Jun. 2012.

[25] “Virtual System Profile, DMTF profile DSP1057 v. 1.0.0,”
http://dmtf.org/sites/default/files/standards/documents/DSP1057 1.0.0 0
.pdf, Accessed in Jun. 2012.

[26] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of Man-
agement Information Version 2 (SMIv2),” RFC 2578, Apr. 1999.

262286

