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Abstract 

Parallel simulation is expected to speed up simula- 
tion run time in a significant way. This paper describes 
a framework that is used to evaluate the performance of 
parallel simulation algorithms. The framework’s core 
is DVSIM, a parallel event-driven VHDL simulator. 
The framework provides several mechanisms to calcu- 
late sensible bases for speed-up calculation. Monitoring 
tools are employed to observe and to improve the algo- 
rithmic performance. 

A first implementation of DVSIM used a conserv- 
ative synchronization method, but a Time Warp pro- 
tocol has recently been completed. Influencing factors 
for speed-up such as partitioning and mapping methods 
are discussed. Experience shows that even with conser- 
vative synchronization schemes moderate speed-ups can 
be obtained for larger circuits. The speed-up values are 
compared to theoretically possible acceleration factors, 
and the reasons why these ideal maximum speed-up val- 
ues can in general not be reached are explained. 

Keywords: Distributed Simulation, Load Balancing, 
Parallel Logic Simulation, Partitioning and Mapping, 
Speed-up, VLSI Design 

1 Introduction 

Simulation of VLSI circuits has become one of the 
major subtasks in the VLSI design process. It is used to 
detect or to avoid design errors and to verify functional 
correctness before the production of a chip starts. As 
designs increase in size and powerful parallel computers 
became generally available in recent years, the question 
naturally arose whether parallel simulation of VLSI cir- 
cuits can effectively speed-up the simulation process. 
More specifically, one is also interested whether parallel 
simulation scales well and under which circumstances 
a significant decrease in simulation run time can be 
reached. One expects that the influencing factors are 
mainly the simulation principles and algorithms, the 

partitioning and mapping strategies, and design 
cific characteristics of the simulated circuits. 

spe- 

Although much work has already been done in the 
field of parallel logic simulation (Bailey et al. give a 
detailed overview and analysis [4]), the basic question 
whether reasonable speed-up of logic simulation using 
parallel machines is possible under general conditions 
has not yet been answered in a satisfying way. Until 
now, only techniques have been shown that are promis- 
ing for some types of synchronization strategies and 
disappointing for others [lo, 2, 22, 301. On the other 
side, however, no statements were made that reason- 
able speed-up is generally impossible. 

The published work, however, often examines single 
algorithms or specific details. Our framework allows to 
apply a variety of methods and investigates this issue 
on a broad basis. Even though only some representa- 
tive algorithms can be examined in a single project, our 
selection should cover the whole spectrum of parallel 
discrete event simulation. Furthermore, the framework 
supports easy integration and implementation of new 
methods. 

For logic simulation, two main simulation meth- 
ods are in use: synchronous time-driven simulation 
[33, 3, 21 and asynchronous event-driven simulation 
[12, 24, 141. Th e o b served low activity rate’ within 
synchronous time-driven simulation has led to the con- 
clusion that the use of this simulation principle should 
in general be restricted to hardware supported simula- 
tions using special simulation processors (e.g., YSE [25] 
or MuSiC [15]). The second simulation method obeys 
the asynchronous event-driven paradigm. Here, spe- 
cific events are associated with pertinent actions in the 
simulated system such as the change of a signal’s value. 
While in the synchronous model all processors always 
operate at the same simulation time, in asynchronous 
event-driven simulation events for differing time steps 

‘The activity rate signifies the number of events that are 
scheduled for simultaneous evaluation, averaged over all points 
in simulation time. 
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(i.e., different points in simulation time) can in princi- 
ple be evaluated independently by concurrently oper- 
ating submodel simulators. These simulators, however, 
must be synchronized among each other to yield deter- 
ministic results and to maintain the correct execution 
order of the events. 

mented are compared and results from measurements 
are presented. We also present some conclusions com- 
prising the current state of work and the findings from 
the results obtained from our experimental measure- 
ments. Some planned and currently implemented en- 
hancements will be detailed and described in Section 5. 

Two main classes of synchronization strategies and 
protocols for parallel event-driven simulation have been 
reported in the literature: the conservative schemes [24] 
and the optimistic approaches [19]. 

2 System overview 

The first class of strategies ate somewhat overcau- 
tious. They avoid errors in the order of event execution 
by waiting for guarantees which permit them to be al- 
ways on the safe side. Strategies from the second class 
(e.g., Time Warp) risk sequencing errors in order to be 
able to process events as soon as possible. In the case of 
an erroneous computation, the state of the simulated 
system is rolled back to a former state, and the exe- 
cution order of the events is corrected. This requires 
periodically saved checkpoints of the state of the sim- 
ulator. Beside these two basic categories, there exist a 
large number of variations, specific optimizations, and 
combinations of the basic strategies. 

Our framework consists of the parallel and distrib- 
uted logic simulator DVSIM, several sequential logic 
simulators which are instrumented for different speed- 
up calculations, and some trace and monitoring tools 
for the observation of DVSIM’s behavior and perfor- 
mance. 

The usefulness of the basic schemes and the more 
specific variants has not yet been thoroughly examined 
and described in the context of parallel logic simula- 
tion. A general discussion of this issue can be found in 
[26]. Since it is not reasonable to assess each specific 
variant and to measure its potential for accelerating 
typical simulations, one has to resort to a faithful com- 
parison of the main strategies in order to determine 
influencing factors. To our knowledge, such a broad 
and systematic comparison under realistic conditions 
has not yet been undertaken. 

DVSIM (Distributed VHDL SIMulator) evolved 
from the sequential version VSIM developed at the Uni- 
versity of Pittsburgh [21]. VSIM and DVSIM support 
a substantial subset of VHDL. VSIM was chosen be- 
cause of its publicly available sources and to save us 
the need of a completely new and time-consuming de- 
velopment of a sequential simulator. Such a sequential 
simulator is necessary for the verification of the results 
of the parallel simulator and for faithful performance 
comparisons. 

Our work is an approach to this problem. We imple- 
mented a parallel VLSI simulator that operates with 
the hardware description language VHDL [32] which 
became a de-facto standard in the last few years. The 
goal of the project is to examine the performance of dif- 
ferent parallel simulation algorithms and to investigate 
whether in practice reasonable and scalable speed-up 
values are obtainable for parallel logic simulation. 

The parallel simulator was originally designed and 
developed on top of the message passing kernel MMK 
(Multiprocessor Multitasking Kernel) from the TOP- 
SYS programming environment [9]. Recently, DVSIM 
was ported to the message passing library PVM [6]. 
The prototype simulator runs on both, a network of 
workstations and an Intel iPSC/860 hypercube [l’?]. 
In order to apply the asynchronous event-driven sim- 
ulation technique, the whole circuit description is par- 
titioned into disjoint parts. Each part is simulated by 
a dedicated so-called logical process (LP) [12]. Several 
LPs may be mapped onto one processor, however. 

The framework for the research work is sketched in 
the next section. In Section 3, the environment and 
the basic components of the parallel simulator are de- 
scribed in more detail. A rather important problem 
in parallel simulation is the mapping strategy. As in 
general there are less processors available than sim- 
ulated objects, several objects must be mapped onto 
one processor. Measurements showed that the map- 
ping strategy is of great importance for the perfor- 
mance of a parallel logic simulator (see also [4]). In Sec- 
tion 4, some mapping algorithms that we have imple- 

The goal of the development of DVSIM is twofold: 
firstly, to evaluate the scalability of parallel simulation 
on different hardware architectures and secondly to ex- 
amine the behavior of different simulation synchroniza- 
tion algorithms. In addition to the basic simulation 
synchronization strategies, also adaptive and hybrid 
schemes will be investigated in the future. Adaptive 
algorithms may use application specific knowledge to 
improve the dynamic behavior of simulations. Hybrid 
schemes try to combine the benefits of conservative and 
optimistic methods. 

To compare the scalability of parallel logic simula- 
tion on different hardware platforms, the MMK sys- 
tem and PVM were chosen because they run on several 
hardware types. The examination of different synchro- 
nization strategies and protocols is supported by using 
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the filter concept originally proposed by Reynolds [27]. 
It consists in encapsulating all protocol specific parts 
within a small number of functions. The exchange 
of one strategy against another is simply done by ex- 
changing the corresponding functions. The protocol- 
independent code remains almost unchanged. This 
results in a modular system with easily maintainable 
code. 

3 Implementation details 

3.1 Programming environments 

The MMK system. MMK is a flexible distributed 
programming system that allows the definition of dif- 
ferent cooperating tasks, their mapping onto the nodes 
of a specified multiprocessor platform (workstations or 
hypercube), and the description of the communication 
structure between the tasks. 

The different tasks of a distributed program are de- 
scribed in MMK in a function-like manner. The func- 
tion parameters of such a description specify the inter- 
face for communication with other tasks. The body is 
either C or Fortran code and specifies the runtime be- 
havior of the task. A preprocessor replaces each task 
header by C-code which controls the initialization and 
communication set-up of the tasks. All tasks of one ap- 
plication are compiled and linked into one executable 
binary that may be loaded onto a network of proces- 
sors. A mapping file specifies for each processor which 
tasks will be activated. 

Communication is performed through mailboxes 
that may be accessed via blocking and nonblocking 
primitives. Additionally, several MMK tasks may be 
loaded onto one processor. In the workstation envi- 
ronment, this is realized through a number of daemon 
processes that are running on each machine. They also 
control task creation and act as routers and managers 
for the communication layer. On the iPSC/SSO hy- 
percube, whose operating system only permits single- 
tasking, this daemon is compiled into the application 
code where it also acts as a scheduler for the MMK 
tasks on the processor. 

PVM. As an effort to evaluate performance of par- 
allel simulation on various other hardware platforms, 
DVSIM was ported to PVM. PVM provides basic fa- 
cilities for task control and communication and became 
a de-facto standard for parallel programming in the last 
two years. The availability of PVM for many different 
architectures and also for parallel machines eases the 
problem of keeping software for a variety of such ma- 
chines consistent and up to date. PVM increases the 

portability of code and allows fast and simple compari- 
son of the suitability of different hardware architectures 
for parallel applications (such as parallel logic simula- 
tion). 

While DVSIM has originally been developed under 
MMK, we switched to PVM as our preferred program- 
ming environment. MMK is, however, still supported 
to be able to compare the two environments. MMK has 
been very thoroughly tuned. Although both systems 
show the same qualitative behavior in measurements, 
the PVM version has approximately between 10 and 20 
percent overhead compared to MMK. The main results 
presented in this paper were obtained using MMK. 

Figure 1: DVSIM system components. 

3.2 DVSIM - basic features 

The parallel and distributed logic simulator DVSIM 
consists of two main parts: a central task and one or 
several simulator tasks which provide the functionality 
of LPs (Figure 1). DVSIM uses an intermediate VHDL 
file (ivf) derived from a VHDL specification by com- 
piling it with VCOMP [21]. VCOMP can only produce 
flat descriptions of the specified circuits at the gate 
level. This is a restriction of full VHDL which allows 
also hierarchical simulation of designs. In the following 
paragraphs, we will describe how DVSIM works. 

Initialization. At the beginning of the simulation 
run, the programming environment (PVM or MMK) 
loads the central task and the simulator tasks onto the 
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specified configuration. Then, the central task reads 
the ivf-file and prompts for interactive input. 

Partitioning. DVSIM provides several algorithms 
to map the circuit onto the available simulator tasks. 
Currently, we have implemented four methods: 

l Round-robin partitioning distributes the gates 
in a circular way onto the available processors. 

l Acyclic partitioning avoids feedback loops that 
cross partition borders. The circuit is viewed as a 
directed graph. The algorithm iteratively takes an 
output of the circuit and calculates its input cone 
(i.e., the transitive closure of preceding gates). 
The resulting gates form a cluster and are removed 
from the circuit. This procedure is repeated until 
all gates are assigned to a cluster. It ensures that 
cycles are contained in only one cluster. A clus- 
ter is entirely mapped onto one processor. The 
clusters are sorted according to their topological 
ordering. Then, the sorted clusters are assigned 
to the processors. The algorithm tries to keep the 
partition sizes (i.e., number of gates) equally bal- 
anced . 

Acyclic partitioning is important for conservative 
simulation strategies since it avoids communica- 
tion deadlocks. Similar experiences are reported 
by Bagrodia et al. [l]. However, this method will 
produce poor results if a single or a few large cycles 
are contained in the circuit. Refinements which 
may avoid this disadvantage are described in [13]. 

l Kernighan-Lin partitioning is a modified bi- 
partitioning algorithm which reduces mainly the 
communication costs by iteratively exchanging 
pairs of elements between the partitions [20]. Each 
connection between two gates is assigned the ini- 
tial cost ‘I’. The total costs are the sum of the 
costs from all connections that cross partition bor- 
ders. Starting with a random partitioning, the al- 
gorithm picks sets of one or more elements from 
two partitions and exchanges the sets. If the mod- 
ification reduces the total costs, the change be- 
comes permanent. Otherwise, the original parti- 
tions are restored and the same procedure is re- 
peated with other sets until no further improve- 
ment is found. 

l Soccer partitioning [28] first builds a graph with 
one seed element for each LP. The elements of this 
graph are chosen in a way that the distance to 
all other elements is maximal concerning commu- 
nication costs (using a modification of Dijkstra’s 

Shortest Path Algorithm). Then additional ele- 
ments are integrated into the basic partitions by 
assigning them to the partition to which they have 
the closest affinity (in terms of communication 
costs). 

According to the chosen strategy, the central task 
determines the partitions and distributes the subsets 
of the circuit to the appropriate simulator tasks. Then 
the user may specify the simulation actions to be per- 
formed, such as setting of input signals, definition of 
output signals to be displayed, and starting the simu- 
lation for a predefined time interval. 

For each interactive command, the central task de- 
termines the affected simulator tasks and sends an ap- 
propriate message to each of them. Upon completion 
of the simulation interval, a simulator task informs the 
central task about its termination. After the central 
task received such a confirmation from each simulator 
task, the input is returned to the interactive session. 

Synchronization. Our first synchronization strat- 
egy for the simulator tasks followed a conservative ap- 
proach [12]. The simulators execute only those events 
that are safe (i.e., where the corresponding guarantees 
are large enough to ensure that an event is executed 
in correct simulation time order). As is well-known, 
this behavior may result in global deadlocks which are 
caused by cyclic dependencies. In the case of a dead- 
lock, a detection and resolution algorithm is initiated 
to continue simulation [24]. Recently, a synchroniza- 
tion strategy based on Time Warp [18, 191 has been 
implemented. 

Monitoring. As we want to examine the behav- 
ior of different simulation algorithms, a monitoring 
component was included within the DVSIM simula- 
tor. This unit collects trace-data that describe the 
message-passing and event-execution related informa- 
tion as well as information concerning deadlock detec- 
tion and global virtual t ime2 [23] calculation. Trace- 
data is stored in event records. Each record comprises 
the type of the event, its simulation time stamp, and 
its physical execution time stamp. Of course, the probe 
effect from collecting trace-data must be minimized 
to prevent the instrumented system from showing a 
largely different behavior. For this reason, the data is 
first put into a local buffer and written to the file sys- 
tem only if either the simulator is blocked because of a 
deadlock, or if the buffer overflows (which is assumed 

2Global virtual t ime (GVT) is a function of physical t ime 
which yields the min imum time stamp of all unprocessed events 
and messages in a simulation. 
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to be a rare event), or at the end of the simulation. 
Each LP writes its data to a dedicated trace-file. 

3.3 Evaluation environment 

The monitoring component allows the observation 
and tuning of parallel synchronization algorithms. As 
mentioned in Section 2, the synchronization strategies 
are encapsulated within filters which make them easily 
exchangeable. Together with the monitoring compo- 
nent this mechanism provides a framework to examine 
the suitability of different synchronization algorithms 
for parallel logic simulation. The generated trace-data 
is first preprocessed for the correction of the physical 
t ime stamps contained within the different trace-files. 
This is necessary because the local hardware clocks on 
the processors usually deviate and the recorded values 
have to be adapted. After this, the trace-files are sorted 
in physical t ime stamp order and merged into one sin- 
gle file. The resulting data serves as input to either 
the standard visualization package ParaGraph [16] or 
to a dedicated statistical event evaluator termed YES. 
While ParaGraph provides general views for parallel 
program visualization, YES allows viewing of different 
simulation specific aspects as event queue length, num- 
ber of deadlocks, or depth of rollbacks. 

These tools may help the user to understand the be- 
havior of distributed simulation, to detect bottlenecks 
in the algorithms’ implementations, and also to im- 
prove the overall performance. 

3.4 Theoretical aspects of speed-up mea- 
surements 

Speed-up measurement requires a base for compar- 
ison. Acceleration can be described only relative to 
such a base. An intuitive base is the run time of an op- 
timized sequential program. Speed-up is the ratio be- 
tween the run times of a sequential and a parallel sim- 
ulation. This comparison, however, cannot tell enough 
about the efficiency of the examined parallel simula- 
tor. Efficiency denotes the ratio between the run times 
of an ideal parallel program and the parallel program 
under examination, for a given number of processors. 
Theoretically, an ideal parallel simulator which runs on 
n processors and which has no additional overhead for 
parallel execution should yield a speed-up of n and an 
efficiency value of 100 percent. In this section, three 
methods that deal with this issue are presented. 

Critical path analysis on an ideal multiproces- 
sor. Berry and Jefferson describe a technique to cal- 
culate the achievable speed-up of an ideal parallel sim- 
ulation run [7]. Th e authors propose to measure the 

physical t imes needed for each event evaluation (in- 
cluding event-queue operations) in a sequential simu- 
lator. Using these measurements, the speed-up of an 
ideal parallel simulation compared to a sequential one 
is calculated. In the following, the term real t ime will 
be used as an equivalent to physical time. 

The basic idea is to map each simulated object (the 
gates in our case) onto a dedicated processor which 
simulates only this object. Furthermore, it is assumed 
that each event is executed as early as possible (i.e., 
an event is evaluated if it is known and if all events for 
the corresponding gate with smaller time stamps have 
been executed). The communication latency for the 
propagation of events to remote gates (on other virtual 
processors) is assumed to be zero. 

Figure 2: Speed-up calculation with CPA. 
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Berry and Jefferson’s algorithm accumulates the 
time needed to evaluate each event on a per processor 
base. The simulation starts at t ime 0 for all processors. 
Each event carries a real t ime stamp. This stamp in- 
dicates the first point in physical time, the start-time, 
at which the event can be executed. After an event 
has been executed, its evaluation time is added to the 
value of the accumulated processor time. If new events 
are created by the current event, their start-time is 
set to the maximum value of the accumulated time of 
the creating processor and the accumulated time of the 
processor for which the event was created. The start- 
t ime is the first point at which the new event can be 
evaluated in an ideal parallel simulation. If a remote 
event for an idle processor is created, the processor 
time is artificially raised to the start-time of this event 
before it is executed (Figure 2). 

Additionally, the LxeEution’times for all events are 
summed up, yielding the value tJeq. At the end of 
the simulation run, the maximum of all accumulated 
processor times, tpar, represents a lower bound on the 
run time needed by any (conservatively controlled) par- 
allel simulator. This value is the end point of the crit- 
ical path that leads through the space-time diagram 
of the simulation run. Note that all calculations are 

401 

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29) 
1060-3425/96 $10.00 © 1996 IEEE 



performed on the fly by a sequential simulator. The 
ratio 

tp.g speed-upcpa = tpar 

is a measure for the obtainable speed-up. In the simple 
example of Figure 2, tJep is 19 and t,,, is 17 yielding 
a speed-up of 1.12. Because of the use of the critical 
path, this method is called ctiticalpath analysis (CPA). 
However, using an unlimited number of processors for 
the approximation is merely of theoretical interest be- 
cause of the restricted number of processors of parallel 
machines. 

CPA on a multiprocessor with limited re- 
sources. Because of the limited number of processors, 
a variant of the algorithm where multiple gates are as- 
signed to one processor according to a given mapping 
is more sensible. Here, the accumulated processor time 
is increased by the execution times of all events that 
are simulated by one processor. The realization of this 
algorithm is straightforward. The speed-up measure- 
ment is calculated as before and yields a statement on 
the speed-up with limited resources for a given map- 
ping strategy. 

Oracle log. To get a more realistic estimate on the 
obtainable speed-up, the communication overhead and 
message latencies should be taken into consideration. 
This problem is focused by Swope and Fujimoto [31]. 
They propose a method called oracle log. 

The oracle log is produced (for a given mapping) by 
a conventional sequential or parallel simulator. When- 
ever a signal that crosses partitions changes its value, 
it will be registered and a log is written to the logfile. 
Each log consists of the simulation time stamp of the 
event, the new value and the identifier of the signal. 

In a second (parallel) run, the modified synchroniza- 
tion algorithm simply asks the oracle whether the simu- 
lation may proceed or not instead of waiting for guaran- 
tees as conservative simulation strategies usually have 
to. The simulator only blocks if the oracle tells that 
there are outstanding events from another LP. 

While CPA is based on a pure sequential simulation, 
the oracle log method runs as parallel simulator. The 
ratio between the time needed by the sequential sim- 
ulation and by the parallel oracle log simulation is a 
measure for the obtainable speed-up under considera- 
tion of communication overhead but assuming an ideal 
synchronization protocol. 

Because an additional simulation run is necessary to 
produce the oracle, oracle log is of course not a practi- 
cal simulation scheme, which may be used by a circuit 
developer. Instead, CPA and oracle log are used during 
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development of parallel synchronization algorithms to 
assess the quality of the new strategies and to deter- 
mine the effect of message overheads and synchroniza- 
tion costs of hardware platforms. 

4 Measurement results 

4.1 The impact of partitioning and map- 
pw 

DVSIM is realized on top of message passing archi- 
tectures. However, the exchange of a message is often 
rather expensive - during one send or receive oper- 
ation, multiple event evaluations can usually be per- 
formed (at least at the gate level). One major aspect 
of partitioning is to keep communication cost low (i.e., 
the need to send messages to other processors should 
be reduced). Another aspect that poses problems (at 
least for many conservative synchronization strategies) 
is the existence of feedback loops within circuits. For 
conservative synchronization schemes, guarantees grow 
very slowly within a cycle. Only few simulators have 
sufficient information to execute events safely. If the 
lookahead [14] is zero, deadlocks will occur frequently 
within the system. This becomes even worse if the ob- 
jects (e.g., gates) in such a cycle are located on different 
processors. 

Figure 3: Environment for speed-up measurements. 

Placing whole cycles on one processor increases the 
local knowledge on causal dependencies and conse- 
quently more events of the involved objects may be 
safely processed. Expensive messages that are needed 
to resolve deadlocks are thus avoided. 

We implemented four mapping algorithms. Two 
of them try to minimize communication costs: Ker- 
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nighan-Lin and Soccer. Feedback loops are avoided by 
the third method, an acyclic partitioning scheme. Fi- 
nally, the round robin method serves as a lower bound 
for the quality of any other partitioning scheme. 

Measuremensts which emphasize the impact of par- 
titioning and mapping on the obtainable speed-up will 
be shown in the next subsections. 

4.2 Conservative simulation using differ- 
ent partitioning met hods 

Using a conservative synchronization strategy, we 
simulated three different sequential circuits from the 
well-known ISCAS89 benchmark suite [5]: ~1196, 
~13207, and s35932. In the VHDL specification where 
the D-flipflops are converted to the corresponding gate 
representation, they consist of 892, 15709, and 40685 
gates. Figure 3 shows the environment for the mea- 
surements. 

As input, we supplied random stimuli vectors of 32 
bit length to each external input of the circuits. The 
resolution of simulation time was 0.1 ns, and stim- 
uli values were assigned to the input signals every 
microsecond3. DVSIM was executed under MMK on 
1, 2, 4, 8, 12, and 16 processors of an Intel iPSC/860 
hypercube. 

Figure 4: Speed-up of benchmark s1196. 

Figures 4 to 6 show the speed-up that results from 
the experiments. The ratio between sequential and par- 
allel run time yields the speed-up values displayed in 
the figures. It should be noted that the small circuit 
s1196 (Figure 4) has no speed-up at all. A speed-up 
value less than 1 for DVSIM on only one processor indi- 
cates that the distributed simulator contains some in- 
herent overhead due to more complex algorithms com- 
pared to the sequential case. The overhead is, however, 
small enough to allow a fair comparison between the 
sequential and parallel simulator. 

The graphs show that the performance of distributed 
simulation not only depends on the specific circuit. It is 
also strongly influenced by the mapping scheme that is 

30f course, two successive assignments may have the same 
value. 
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Figure 5: Speed-up of benchmark ~13207. 

used. Obviously, the acyclic partitioning scheme pro- 
vides very good results compared to the other ones. 
The reasons for this are: 

l Usage of an acyclic partitioning scheme avoids 
deadlocks that may appear in a conservatively syn- 
chronized simulation. For this reason, less work 
has to be done within the deadlock resolution algo- 
rithm and less messages must be sent to propagate 
information on safe events. 

l An acyclic partitioning scheme keeps neighboring 
elements together on one processor (at least if they 
belong to the same loop). This again reduces the 
number of messages that will be sent during simu- 
lation. As posting messages is expensive on many 
distributed system platforms, this again speeds up 
simulation. 

Another important observation is that there is no 
speed-up at all for smaller simulation models. As 
shown in Figure 4, the sequential simulator outper- 
forms the distributed simulator by far. For the larger 
benchmark ~13207 (Figure 5) already some true speed- 
up is observed for the acyclic mapping strategy. For 
s35932 (Figure 6), which has more than twice the size 
of ~13207, the speed-up factors further increase. 
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Figure 6: Speed-up of benchmark s35932. 

For the larger benchmark circuits, one also observes 
saturation for an increasing number of processors. Al- 
though more processors are used, speed-up stagnates 
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or even decreases. This is caused by the fact that in- 
creasing the number of processors also reduces the sizes 
of the partitions for a given circuit. If the number of 
objects per simulator is lower than a certain level, there 
is simply not enough work and run time is dominated 
by communication and overhead for the parallel algo- 
rithms. Our investigations show that it is not sensible 
to have partition sizes less than four or five thousand 
gates. 

4.3 Measuring the potential parallelism 

The results of the previous subsetion do not show the 
naively expected linearly increasing speed-up curves, 
but they let one hope that for larger models the per- 
formance could be further improved. This is also sup- 
ported by the measurements from critical path analy- 
sis (Figure 7) which show that there is still more ex- 
ploitable parallelism available from the benchmark cir- 
cuits. Therefore, if one can improve the ratio between 
computation and communication (e.g., by using better 
partitioning strategies or other synchronization mech- 
anisms), the simulation is likely to run faster than our 
preliminary experiments indicate. 

Acyclic - 
B  1% 
g lo- 

Kern.-Lin -- - - 
Soccer - - - 

,.+- eoT.‘. 
RoundRobin -1--.. 

-.:.* _ I -&:-- 
8- 

-/.- ,-.p,,--------. 
,$-z.-’ /H 

6- pC.- )H es- __/ 
4- 

..+:-- /d- - 

Figure 7: CPA speed-up of benchmark ~13207. 

Interestingly, the curve for acyclic partitioning in 
Figure 7 remains nearly constant for an increasing 
number of processors. During acyclic partitioning, the 
mapping algorithm tries to keep the number of gates 
balanced among all processors. As circuit ~13207 con- 
tains a very large cycle, this strategy fails for a larger 
number of processors. The run time of the whole 
simulation is dominated by the time needed to sim- 
ulate this cycle. This example shows that simple parti- 
tioning schemes sometimes produce inadequate results. 
Schemes which consider the structure of circuits might 
be promising. 

Figure 8 compares the performance of the conserv- 
ative and of the oracle log method for circuit ~13207. 
The differences between the speed-up values of the OP- 
acle log and the conservative simulation are a mea- 
sure for the overhead that is produced by unnecessar- 
ily blocking in conservative simulation. The differences 
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Figure 8: Speed-up of ~13207: oracle vs. conservative. 

for the acyclic partitioning scheme are small because 
blocking is infrequent. 

Using soccer partitioning, the differences are much 
larger. Although oracle log performs sometimes bet- 
ter with soccer than with acyclic partitioning, this is 
not true for the conservative simulation method. The 
reasons are as following. Firstly, soccer partitioning 
generally yields better load balance than the acyclic 
method in terms of the number of gates. Since unnec- 
essary blocking is avoided with the oracle log method, 
this will result in shorter run times. Secondly, the num- 
ber of messages that are sent increases under soccer, 
and cycles that cross partition borders are not avoided. 
This causes additional deadlocks and blockings for the 
conservative strategy. 

4.4 Preliminary results using Time Warp 

Figure 9 depicts preliminary results using the op- 
timistic Time Warp strategy for circuit ~13207. The 
measurements were performed on a network of worksta- 
tions under PVM. It shows that for larger numbers of 
processors, Time Warp with soccer partitioning yields 
shorter execution times (i.e., better speed-up values) 
than the conservative simulation. 
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Figure 9: Time Warp vs. conservative run time of 
~13207 on workstations. 

Interestingly, the acyclic partitioning scheme which 
is well suited for conservative simulation performs 
poorly with Time Warp. This can be explained as fol- 
lows: When four or more processors are used for Time 
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Warp, circuit ~13207 is badly balanced by the acyclic 
method and the LPs operate almost independently of 
each other. They proceed very fast in simulation time 
and are penalized for their optimism with frequent roll- 
backs. With the soccer method the causal dependen- 
cies among the LPs increase, and the local clocks are 
prevented from drifting too far. Rollback costs are re- 
duced resulting in better performance. This shows that 
Time Warp offers many possibilities for variants (such 
as time windows) and optimizations. 

5 Conclusions and future work 

The overall goal of our project is to investigate the 
conditions that lead to reasonable speed-up of logic 
simulation using parallel architectures. 

As the previous section revealed, partitioning plays 
an important role in parallel logic simulation’s perfor- 
mance. With a good mapping scheme, already with 
conservative synchronization algorithms speed-up over 
sequential simulation can be achieved for larger cir- 
cuits. For optimistic strategies, we observed encour- 
aging tendencies. Similar results are reported in the 
literature [8, 221. 

We presented results for three real benchmark cir- 
cuits. Of course, the investigations will have to be ex- 
tended to other benchmarks. Also the stability of the 
behavior with respect to the provided stimuli must be 
further examined. 

The comparison of the obtained speed-up values 
from parallel simulation to the results of CPA revealed 
that although some speed-up was observed in the ex- 
periments, the maximum CPA values are not reached. 
One main reason is the large overhead caused by com- 
munication which must not be neglected. 

Our current work focuses on the optimization of 
Time Warp, the application of the oracle log method 
to examine and to improve the conservative algorithms, 
and the integration of additional partitioning schemes 
that use application specific knowledge (e.g., strings 
and cone partitioning) [29]. Additionally, conservative 
and optimistic methods will be combined to hybrid 
schemes, compared, and tuned using our trace-based 
analysis and visualization tools. 

Finally, we are implementing a dynamic load bal- 
ancing scheme. This makes sense because in static 
partitioning schemes the criteria for placement of sin- 
gle gates have to be estimated before the actual be- 
havior during the simulation is known. Our current 
approach to this problem is to run the simulator for 
a short time, accumulate data on the number of event 
evaluations and data on the signal activities, and to 
use this data for another iteration of partitioning (so- 

called pre-simulation) [ll]. This method may improve 
the performance. However, for long running simula- 
tions the estimates from the initial phase might not be 
sufficient. One could repeat the partitioning scheme 
several t imes during the simulation for further improve- 
ment. This, however, might be expensive, especially for 
large circuits. Therefore, we expect further gains from 
dynamic load balancing if it is realized efficiently. 

As a final remark, it should be noted that the results 
presented in Section 4 contained only the plain simu- 
lation times. If one considers the speed-up of a sim- 
ulation session, the costs for running the partitioning 
algorithm, for initialization of the parallel simulator, 
and for the distribution of the gates onto the proces- 
sors have also to be accounted. These factors severely 
limit the overall performance of parallel simulation in 
general. They must still be improved in the current 
prototype version of DVSIM. 
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