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Abstract

This paper describes a novel method of achieving load balancing in telecommunica-
tions networks. A simulated network models a typical distribution of calls between
nodes; nodes carrying an excess of traffic can become congested, causing calls to be
lost. In addition to calls, the network also supports a population of simple mobile agents
with behaviours modelled on the trail laying abilities of ants. The ants move across the
network between randomly chosen pairs of nodes; as they move they deposit simulated
pheromones as a function of their distance from their source node, and the congestion
encountered on their journey. They select their path at each intermediate node accord-
ing the distribution of simulated pheromones at each node. Calls between nodes are
routed as a function of the pheromone distributions at each intermediate node. The per-
formance of the network is measured by the proportion of calls which are lost. The
results of using the ant-based control (ABC) are compared with those achieved by using
fixed shortest-path routes, and also by using an alternative algorithmically-based type of
mobile agent previously proposed for use in network management. The ABC system is
shown to result in fewer call failures than the other methods, while exhibiting many
attractive features of distributed control.
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1 Introduction

The notion of complex collective behaviour emerging from the behaviour of many relatively
simple units, and the interactions between them, is fundamental to the field of artificial life.
The growing understanding of such systems offers the prospect of creating artificial systems
which are controlled by such emergent collective behaviour; in particular, we believe that the
exploitation of this concept might lead to completely new approaches for the  management of
distributed systems, such as load balancing in telecommunications networks.

What is load balancing? For economic and commercial reasons, such networks are
equipped not with a level of equipment which will guarantee successful call connection under
all possible circumstances, but with some lower level which will give acceptable performance
under most conditions of use. If there is some significant change in the conditions - for exam-
ple, if the total call volume at any time is unusually high, or if some particular location is sud-
denly the origin or destination of an unusually large volume of calls - then these capacity
limitations might lead to the system failing with calls unable to be connected.

Calls between two points are typically routed through a number of intermediate switching
stations, or nodes; in a large network, there are many possible routes for each such call. It is
thus possible to relieve actual or potential local congestion by routing calls via parts of the net-
work which have spare capacity. Load balancing is essentially the construction of call-routing
schemes which successfully distribute the changing load over the system and minimise lost
calls. Of course it is possible to determine the shortest routes from every node to every other
node of the network. In this way the average utilisation of nodes will be minimised, but this is
not necessarily the ideal way to avoid node congestion, as this has to do with how the traffic on
the network is distributed.

Controlling distributed systems like these by means of a single central controller has several
disadvantages. The controller usually needs current knowledge about the entire system, neces-
sitating communication links from every part of the system to the controller. These central con-
trol mechanisms scale badly, due to the rapid increase of processing and communication
overheads with system size. Failure of the controller will often lead to failure of the complete
system. There is the additional practical commercial requirement that centrally controlled sys-
tems may need to be owned by one single authority. Further, the nature of distributed systems
like these is highly dynamic, complex and stochastic, and their behaviour can neither be pre-
dicted nor explained by reducing it to a single central controllable factor.

A good decentralized control mechanism will not have the problems mentioned above. The
field of artificial life has given us inspiration for such a mechanism that will be completely dis-
tributed, and highly adaptive to changes in the network and traffic patterns. This solution
makes use of the distributed processing capability already inherently present in the network in
the form of network nodes. The distributed nature of such an approach may make the system
very robust against failures of individual control entities.

Our approach is inspired by the work of biologists studying social insects, who have uncov-
ered the mechanisms controlling the foraging behaviours of ants (Beckers, Deneubourg &
Goss, 1992; Deneubourg & Goss, 1989; Goss et.al., 1990; Franks, 1989). The most important
method is the laying and sensing of trails of pheromones - specialised chemical substances
which are laid in amounts determined by local circumstances, and which by their local concen-
tration subsequently directly influence an ant's choice of route.

In this paper we present a network model which is populated by artificial ants that make use
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of the trail laying principle; at each node an ant encounters on the journey to its destination, it
leaves an amount of simulated pheromone which is a function of the congestion of the node,
and of the distance the ant has travelled from its source node; the ant then selects the next node
on its journey on the basis of the local pheromone distribution. The routing of calls is then
based on these pheromone distributions.

We compare this method with another decentralised network control mechanism, which is
based on previous work carried out by British Telecom (Appleby & Steward, 1994). It makes
use of mobile agents - computational processes moving from node to node, gathering informa-
tion, and making decisions for rerouting on the basis of a minimum cost function.

Both approaches are compared to an approach which uses fixed, non-adaptive routing tables
algorithmically optimised to yield the shortest paths.

2 A Network Simulation to investigate distributed control
mechanisms

An application has been written to simulate traffic patterns on a model of a switch-based tel-
ecommunications network. Such a network is most naturally represented by an undirected
graph. Each node in the graph corresponds to a switching station; the links between nodes cor-
respond to communication channels. A given node will usually only be linked to a subset of
other nodes, usually its geographical neighbours; links are intrinsically bidirectional. The net-
work model used is a graph of n nodes, each of which has several attributes:

• A node identifier.

• A capacity. This is the number of simultaneous calls that the node can handle.

• A routing table with(n-1) entries, one for each node in the network. Each entry tells us
which node is the next node on the route to the destination node concerned.

• A probability of being the end node (either source or destination) of a call.

• A spare capacity. This is the percentage of the capacity that is still available on the node.

The links between the nodes are assumed to have infinite capacity, so that the geographical
distance between linked nodes is of no account. The node capacities will therefore be the only
bottlenecks in the network.

2.1  The simulation

 Every time step of the simulation proceeds as follows. First, calls that have expired are
removed, releasing capacity at the nodes. Next, calls are generated by a traffic generator. These
generated calls involve a source node, a destination node and a duration, measured in time
steps. When a call is generated, its route is determined by the current routing tables, and the
call is placed on the network, reducing the spare capacity of each node on the route. If there is
no spare capacity available on a node on the route of the call, this call will fail. The expected
number of calls generated in one time step follows a Poisson distribution, and the duration of
each call an exponential distribution. The source and destination nodes are randomly chosen as
a function of each node’s probability of being an end node; this is both convenient and reason-
able.

2.2  Test details

The 30-node network topology of Figure1 was chosen because this is a realistic intercon-



4

nection structure of a possible switch-based network. It is also the same topology as was used
in (Appleby & Steward, 1994), and is in fact the structure of the British Synchronous Digital
Hierarchy (SDH) network. The interconnection structure is an irregular mesh that is interesting
because it makes traffic management a complex and difficult task.

FIGURE 1. This network topology is the same as the interconnection structure of the SDH network of
British Telecom and provides a realistic network topology.

The number of parameters that can vary in this network model is large. This implies that
some arbitrary choices have to be made for testing:

• When a call is set up, each node in the model of Figure1 has a certain probability of being
an end point of the call. These probabilities are generated by selection from a suitable distri-
bution at the start of every run, and lie between 0.01 and 0.07. After generation these proba-
bilities are normalised to sum to 1.

• The capacity of each node is 40 calls, so that every call using a node increases the utilisation
(or decreases the spare capacity) of that node by 2.5%.

• During every time step of the simulation, an average of 1 call is generated with an average
duration of 170 time steps. This means that the average number of calls on the network will
be 170, once the traffic pattern has built up.

• The average length (total number of nodes) of the shortest route between two nodes is 4.07.
With fixed shortest-path routing tables, each of the 170 calls will use 2.5% of the capacity of
an average of 4.07 nodes. As there are 30 (number of nodes) times 40 = 1200 ‘capacity
units’, the average utilisation of the nodes will be 170 x 4.07 / 1200 = 57.7%.

To facilitate seeing exactly what is going on in the network simulation, the traffic in the net-
work is represented visually during run-time by changing the colour of the nodes to indicate
their spare capacities. A large number of features to support visualisation and usability have
been added to the program, such as displaying the changes with time of one particular route,
running the simulation step-by-step, and inspecting every part of the network during the simu-
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lation. The software was written in Smalltalk, running in the VisualWorks™1 environment on a
Hewlett-Packard 9000 Series 700 workstation.

3 Ants in nature

Individual ants are behaviourally very unsophisticated insects. They have a very limited
memory and exhibit individual behaviour that appears to have a large random component. Act-
ing as a collective however, ants manage to perform a variety of complicated tasks with great
reliability and consistency. A few examples of collective behaviour that have been observed in
several species of ants are (Hölldobler & Wilson, 1994; Franks, 1989):

• regulating nest temperature within limits of 1ºC;

• forming bridges;

• raiding particular areas for food;

• building and protecting their nest;

• sorting brood and food items;

• cooperating in carrying large items;

• emigration of a colony;

• complex patterns of egg and brood care;

• finding the shortest routes from the nest to a food source;

• preferentially exploiting the richest available food source.

These behaviours emerge from the interactions between large numbers of individual ants
and their environment. In many cases, the principle of stigmergy (Grassé, 1959) is used. Stig-
mergy is a form of indirect communication through the environment. Like other insects, ants
typically produce specific actions in response to specific local environmental stimuli, rather
than as part of the execution of some central plan. If an ant's action changes the local environ-
ment in a way that affects one of these specific stimuli, this will influence the subsequent
actions of ants at that location. The environmental change may take either of two distinct
forms. In the first, the physical characteristics may be changed as a result of carrying out some
task-related action, such as digging a hole, or adding a ball of mud to a growing structure. The
subsequent perception of the changed environment may cause the next ant to enlarge the hole,
or deposit its ball of mud on top of the previous ball. In this type of stigmergy, the cumulative
effects of these local task-related changes can guide the growth of a complex structure. This
type of influence has been called sematectonic (Wilson, 1975). In the second form, the envi-
ronment is changed by depositing something which makes no direct contribution to the task,
but is used solely to influence subsequent behaviour which is task related. This sign-based stig-
mergy has been highly developed by ants and other exclusively social insects, which use a vari-
ety of highly specific volatile hormones, or pheromones, to provide a sophisticated signalling
system.  Some of the above behaviours have been successfully simulated with computer mod-
els, using both sematectonic stigmergy (Theraulaz & Bonabeau, 1995), and sign-based stig-
mergy (Stickland, Tofts & Franks, 1992) and also on robots (Beckers, Holland & Deneubourg,
1994; Russell 1995; Deveza et.al., 1994).

A type of sign-based stigmergy is used in our network model. It is based on the way ants
find short routes from their nest to a food source, and also on the way they select between food

1. VisualWorks is a trademark of ParcPlace Systems, Inc.
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sources of different value. The way ants organise these routes has inspired us to investigate a
new approach for congestion avoidance in telecommunications networks.

3.1  Basic principles of trail laying

Depending on the species, ants may lay pheromone trails when travelling from the nest to
food, or from food to the nest, or when travelling in either direction. They also follow these
trails with a fidelity which is a function of the trail strength, among other variables. Ants drop
pheromones as they walk by stopping briefly and touching their gaster, which carries the phe-
romone secreting gland, on the ground. The strength of the trail they lay is a function of the
rate at which they make deposits, and the amount per deposit. Since pheromones evaporate and
diffuse away, the strength of the trail when it is encountered by another ant is a function of the
original strength, and the time since the trail was laid. Most trails consist of several superim-
posed trails from many different ants, which may have been laid at different times; it is the
composite trail strength which is sensed by the ants. The principles applied by ants in their
search for food are best explained by an example as given in (Beckers, 1992):

FIGURE 2. Ants have a decision to make

Figure2 illustrates two possible routes between nest and food-source. Initially, an ant arriv-
ing at a T-crossing (choice point), makes a random decision with a probability of 0.5 of turning
left or right. Now suppose there are two ants leaving the nest, looking for food, and two ants
returning from the food source to the nest. Let the ants be of a type such asLasius Niger which
deposits pheromones when travelling both to and from the nest. If one ant from each pair turns
left, and the other turns right, after a while a situation occurs like that in Figure3. The lines on
the paths represent the pheromone trails. The ants that chose the shorter branch have arrived at
their destination, while the ones that chose the longer branch are still on their way. Ants ini-
tially select their way with a 0.5 probability for both branches, as there is no pheromone on the
paths yet. If there is pheromone present, there is a higher probability of an ant choosing the
path with the higher pheromone concentration, i.e. the path where more ants have travelled
recently. If at the moment of the situation in Figure3 other ants arrive and have to choose
between the two paths, they are more likely to choose the shorter path, because that is where
the concentration of pheromone is higher. This means that the amount of pheromone on the
shorter path is more likely to be reinforced again. In this way, a stronger pheromone trail will
arise on the shorter path, and so the path will be selected by an increasing proportion of ants As
fewer ants choose the longer path, and the existing pheromone slowly evaporates, the trail on
the longer path will weaken and eventually disappear.

? ?nest food source
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FIGURE 3. Situation several moments later

Although this is essentially self-organisation rather than learning, ants have to cope with a
phenomenon that looks very much like overtraining in reinforcement learning techniques.
There are two main issues: the blocking problem and the shortcut problem (Sutton, 1990). The
blocking problem occurs when a route previously found by the ants is no longer available. It
can then take a relatively long time for the ants to find a new route. The shortcut problem
occurs when a new, shorter route suddenly becomes available. In this case the new route will
not easily be found, because the old trails are so strong that almost all the ants choose them.

4 Ant-Based Control (ABC) for network management

How could this trail laying and following behaviour be applied to something like a telecom-
munications network? And can we overcome the blocking problem and the shortcut problem?
This section describes how we implemented an artificial ant population on the network model.
Further details may be found in (Schoonderwoerd, 1996).

4.1  Pheromone tables

We replaced the routing tables in the network nodes by tables of probabilities, which we
will call ‘pheromone tables’, as the pheromone strengths are represented by these probabilities.
Every node has a pheromone table for every possible destination in the network, and each table
has an entry for every neighbour. For example, a node with four neighbours in a 30-node net-
work has 29 pheromone tables with four entries each. One could say that ann-node network
usesn different kinds of pheromones. The entries in the tables are the probabilities which influ-
ence the ants’ selection of the next node on the way to their destination node. Figure4 shows a
possible network configuration and a pheromone table. For example, ants travelling from node
1 to node 3 have a 0.49  probability of choosing node 2 as their next node, and 0.51 of choosing
node 4. ‘Pheromone laying’ is represented by ‘updating probabilities’.

food sourcenest
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FIGURE 4. Using ants for network management

At every time step during the simulation, ants can be launched from any node in the net-
work. Each ant has a random destination node. Ants move from node to node, selecting the
next node to move to according to the probabilities in the pheromone tables for their destina-
tion node. Arriving at a node, they update the probabilities of that node’s pheromone table
entries corresponding to theirsource node i.e. ants lay the kind of pheromone associated with
the node they were launched from. They alter the table to increase the probability pointing to
their previous node. When ants have reached their destination, they die.

Take as an example an ant in the network of Figure4 that is launched at node 3 with desti-
nation node 2, and has just travelled from node 4 to node 1. This ant will first alter node 1’s
table corresponding to node 3 (its source node) by increasing the probability of selection of
node 4; it will then select its next node randomly according to the probabilities in the table cor-
responding to its destination node, node 2. (Note that just for the purpose of illustration this
particular ant travelled an ineffective route.)

In this way, ants moving away from their source node can only directly affect those ants for
which it is the destination node. This is unlike the trails of bidirectional trail laying ants, in
which a trail laid in one direction can directly affect ants travelling in either direction. How-
ever, the ants which can be directly influenced by an ant travelling from a source node S to a
destination node D will include those travelling from D to S; these are the very ants which
could be expected to have most influence on ants travelling from S to D, and so ants travelling
from S to D may have a strong influence on ants subsequently travelling that route via their
effect on the ants travelling on the opposite route. The system may thus achieve similar effects
to the biological bidirectional trail layers, but through an indirect form of interaction.

This way of directly updating probabilities differs from the way ants lay pheromones, but is
functionally equivalent. We feel that using probabilities instead of absolute pheromone quanti-
ties helps us to understand the behaviour of the artificial ants better. The tables we use give the
probabilities of alternative choices between paths directly, whereas the pheromones of real ants
are basically a code that is effectively converted into probabilities by the ant’s nervous system.

The method used to update the probabilities is quite simple: when an ant arrives at a node,
the entry in the pheromone table corresponding to the node from which the ant has just come is
increased according to the formula:

1

2

4

3

0.49

0.51

The three pheromone tables for node 1:

destination node

next node

2
3
4

0.95
0.49
0.05

0.05
0.51
0.95

2 4
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Herep is the new probability and∆p is the probability (or pheromone) increase. The other
entries in the table of this node are decreased according to:

Since the new values sum to 1, they can again be interpreted as probabilities. Note that a
probability can be reduced only by the operation of normalisation following an increase in
another cell in the table; since the reduction is achieved by multiplying by a factor less than
one, the probability can approach zero if the other cell or cells are increased many times, but
will never reach it. For a given value of ∆p the absolute and relative increase in probability is
much greater for initially small probabilities than for those which are larger. This has the effect
of weighting information from ants coming from nodes which are not on the currently pre-
ferred route, a feature which may assist in the rapid solution of the shortcut problem.

4.2  Ageing and delaying ants

A primary requirement of this work was to find some simple methods of encouraging the
ants to find routes which are relatively short, yet which avoid nodes which are heavily con-
gested. Two methods are used. The first is to make∆p, the value used to change the pheromone
tables, reduce progressively with the age of the ant. When the ant moves at one node per time
step, the age of the ant corresponds to the path length it has traced; this biases the system to
respond more strongly to those ants which have moved along shorter trails. The second
method, which depends on the first, is to delay ants at nodes that are congested with calls to a
degree which increases with the degree of congestion. This delay has two complementary
effects:

• it temporarily reduces the flow rate of ants from the congested node to its neighbours,
thereby preventing those ants from affecting the pheromone tables which are routing ants to
the congested node, and allowing the probabilities for alternative choices to increase rap-
idly.

• since the ants are older than they otherwise would have been when they finally reach the
neighbouring nodes, they have less effect on the pheromone tables.

It is of course possible to achieve the second effect alone by increasing the parameter repre-
senting the age of the ant without actually delaying the ant; this essentially reduces the effect
on pheromone tables of an ant which has passed through a congested node. This has a biologi-
cal parallel: in some species of ants, those returning from a richer food source tend to drop
more pheromone than those from a poor source (Beckers, 1993). In the case of our network
simulation, however, the combination of delay and age-related penalty seems to be particularly
effective. An added advantage of this formulation is that the manipulation of the parameter
relating delay to the degree of congestion can be used to control the relative weighting which
the system gives to preferring the shortest route (which maximises spare capacity), as against
preferring the least congested route.

4.3  How calls are routed

Having explained how ants ‘choose’ their routes through the network, let us consider the
calls. Calls operate independently of the ants. To determine the route for a call from a particu-

p
pold ∆p+

1 ∆p+
-----------------------=

p
pold

1 ∆p+
----------------=
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lar node to a destination, the largest probability in the pheromone table for this destination is
looked up. The neighbour node corresponding to this probability will be the next node on the
route to this destination. The route is valid if the destination is reached, and the call is then
placed on the network, unless one of the nodes on the route is congested; in that case the call
fails to be placed on the network.

In this way, calls and ants dynamically interact with each other. Newly arriving calls influ-
ence the load on nodes, which will influence the ants by means of the delay mechanism. Ants
influence the routes represented by the pheromone tables, which in their turn determine the
routing of new calls. These relationships are illustrated in Figure5. One needs to realise that
the pheromone table by which an individual ant is influenced, is a different table than the phe-
romone table that will be updated by this ant. The load on the network at any given time influ-
ences which calls can subsequently be placed on the network and which calls will fail; which
of course determines the load at a later stage.

FIGURE 5. Relationship between calls, node utilisation, pheromone tables and ants. An arrow indicates
the direction of influence

4.4  Initialisation

A network initialised with random or uniform entries in the pheromone tables will not ini-
tially contain any useful information about consistent (i.e. non-circular) call routes, let alone
good routes. It therefore makes little sense to examine network performance during this phase.
However, even in the absence of calls on the network, the ants will bias towards shortest paths.
There are three mechanisms contributing to this:

• The shortest routes will be completed first, and will subsequently direct other ants to their
sourcing nodes first.

• Shorter routes involve less branching, so the number of ants travelling over these routes and
laying pheromones will be larger than on longer and more branched routes.

• Ants travelling over shorter routes will be younger when they arrive, and will therefore
exercise more influence on the pheromone tables.

After a short time the highest probabilities in the pheromone tables of each node will define
relatively short routes, and circular routes will have been eliminated (for example after 500
time steps the average route length is typically 4.10, where 4.07 is the minimum possible), and
when the routes are sufficiently short, calls can safely be put on the network; subsequent adap-
tation will then be influenced by any congestion caused by calls. All ant networks were there-
fore initialised with equal probabilities for neighbour nodes in each pheromone table, and
allowed to run for a fixed period before calls were applied.

routes of individual new calls load on nodes pheromone tables routes of ants

new calls arriving old calls expiring

new calls failing

new ants being launched
old ants dying

due to congestion
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4.5  Noise

So far, we have not considered the blocking problem and the shortcut problem. We need to
avoid ‘freezing’ of the routes in situations that remain static for a long time and then suddenly
change. One way of doing this is by adding an exploration probability, or noise, to the random
walk of the ants; this will ensure that even apparently useless routes are used occasionally, so
that at least some information about them is present in the system to give a head start when a
route is blocked (e.g. by extreme node congestion or node failure). Noise might also encourage
the more rapid discovery of a better route which suddenly appears.

A convenient implementation is to arrange that a noise factor off means that at every time
step an ant has probabilityf of choosing a purely random path, and probability (1-f) of choos-
ing its path according to the pheromone tables on the nodes. The possibly beneficial effects of
the addition of noise to ant-based algorithms were noted in (Deneubourg, 1990): ‘Rather than
simply tolerating a certain degree of error, it can even be desirable to deliberately add error
where none or little exists.’

4.6  General framework for ant-based control systems

The basic principles for ant-based control (ABC) systems are applicable to a wide variety of
problems, and can be characterised as follows:

• Ants are regularly launched with random destinations on every part of the system.

• Ants walk randomly according to probabilities in pheromone tables for their particular des-
tination.

• Ants update the probabilities in the pheromone table for the location they were launched
from, by increasing the probability of selection of their previous location by subsequent
ants.

• The increase in these probabilities is a decreasing function of the age of the ant, and of the
original probability.

• This probability increase could also be a function of penalties or rewards the ant has gath-
ered on its way.

• The ants get delayed on parts of the system that are heavily used.

• The ants could eventually be penalised or rewarded as a function of local system utilisation.

• To avoid overtraining through freezing of pheromone trails, some noise can be added to the
behaviour of the ants.

4.7  Parameters

There is a large number of parameters to tune for this system - choices are based on experi-
ence with a variety of previous simulations:

• The speed of the ants is one node per simulation time step (unless they are delayed on a par-
ticular node).

• We chose to let every node launch an ant with a random destination on every time step of
the simulation.

• The probabilities are updated as explained in Section4.1, and according to the following
formula, whereage stands for the number of time steps that passed since the launch of the
ant:
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• The delay in time steps that is given to the ant is a function of the spare capacitys of the
node:

• The initialisation period, that is the period during which the ants initialise the routes on the
network without traffic, is between 250 (no noise) and 500 (5% noise) time steps.

Before we give some results of our simulations, we will describe briefly another distributed
network management approach based on work by researchers from British Telecom. We com-
pared the ABC method with this method and with a fixed routing scheme.

5 Mobile Software Agents

A different approach for a distributed control mechanism is provided by the mobile agents
developed by researchers from British Telecom in (Appleby & Steward 1994). In addition,
these agents are an example of a routing scheme that optimises routes in the network according
to a least cost criterion. We implemented two modified versions of their scheme on our net-
work simulation model. Further details may be found in (Schoonderwoerd, 1996).

In this mobile agents approach, there are two ‘species’ of agents: load management agents
and parent agents. The lowest level of control is provided by the load management agent. Each
such agent is launched from a particular node, and then searches algorithmically for better
routes from nodes in the network to the node where it was launched. Parent agents provide the
second level of control. According to heuristics and information gathered on the network, a
parent agent can decide that network management at certain locations is needed to relieve con-
gestion, and therefore launches load agents at those locations.

5.1  The Load management agent

A load agent is launched on a particular node and optimises the routes from all other nodes
to that source node. It does this by visiting every node in the network, recording the current
spare capacity, and amending the routing tables. We investigated two methods, each with a dif-
ferent kind of load agent. In the first, we made load agents find the route with a minimum bot-
tleneck i.e. they maximise the minimum spare capacity on the route, as in the BT work. In the
second we implemented a version in which they minimise the sum of squared node utilisations.
The reason for this will become clear later.

The algorithm that is used to find the new routes is a version of Dijkstra's shortest path algo-
rithm (Dijkstra, 1959). As a criterion for ‘shortest path’ the minimum spare capacity on the
route is used in the original algorithm; and the sum of squared node utilisations for our version
of the load agent.

5.1.1  The algorithm of the Load agent

The load agent using the minimum spare capacity on the route as a shortest path criterion
works as follows:

Travelling over the network the load agent makes a distinction between two kinds of nodes:
permanent and temporary labelled nodes. The agent maintains lists with records of both kinds
of nodes, with the following data-fields:

∆p
0.08
age
---------- 0.005+=

delay 80 e
0.075– s⋅⋅=
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• The identifier of the node

• The largest spare capacity of the route from that node to the agent's source node. This is the
route where the minimum spare capacity is maximal.

• the neighbour of the node on this route.

The goal of the load agent is to update the routes from every other node in the network to
the agent's source node. Having done that, the agent is finished and terminates. The algorithm
is as follows:

1. When a load agent is launched on a node, the node sets a flag ‘load agent working’. The
agent starts by creating a permanent label for its source node, with spare capacity infinity
and no contributor to the best route. The agent does not have records yet for any other
nodes. Hereafter it visits all neighbour nodes, to create temporary records for each neigh-
bour. In this first step the spare capacities in these records are equal to the spare capacities
of the nodes themselves. The entries in the routing tables of the nodes will then be updated.
This part of the initial step is also trivial: the next node in the route to the source node is the
source node itself.

2. The next step is to promote one node from temporary to permanent. This will be the tempo-
rary node with the largest spare capacity in the agent's records. The agent goes to this node
and moves the record for it to the list of permanent nodes. The agent then visits all of this
node’s neighbour nodes that it does not have records for, and creates temporary records for
them. For each of these records the contributing neighbour is the newly promoted node, and
the spare capacity is the least of the neighbour nodes' own spare capacity and that recorded
for the newly promoted node. Here the routing tables are updated again: the next node in the
route to the source node is the new permanent node. At this stage the list of temporary
records now consists of temporary records from this step, and from the earlier steps.

3. Again the temporary node with the largest spare capacity on its route to the source node is
visited and made permanent. Its neighbours become temporary, their routing tables are
updated, so that the agent is ready to promote another node. Steps 2 and 3 are repeated until
the agent has visited all nodes in the network. At this point all routing tables have been
updated, so the agent goes back to its starting node to undo the flag ‘load agent working’,
and dies in peace.
The new routes that are found by a load agent are the optimal routes given the information

gathered by the agents: the route from every node on the network to the agents’ starting node
has a maximised minimum spare capacity. However, traffic patterns change while the agent is
working, and so the information gathered by the agent need not accurately reflect the situation
at a given moment - i.e. the routes are not guaranteed to be optimal. Note further that the agent
only looks at the minimum spare capacities on the routes, and does not take the spare capaci-
ties of other nodes in the route into account. (When two temporary nodes are labelled with the
same spare capacity available, the load agent makes an arbitrary choice which of these nodes to
promote.)

5.1.2  Difference from the original approach

There is a major difference from the approach in the BT work: we changed the direction in
which routing tables were updated. In (Appleby & Steward, 1994) load agents did not update
the routing tables in the direction of their source node, but in the direction of the newly visited
nodes, and from all nodes on the route between this node and the source node. In this way two
load agents may at the same time do updates of routes to the same node. As these agents might
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have different data, because of constant network changes, we suspected that circular routes
might occur in the network. In early simulations we observed such circular routes.  By chang-
ing the direction in which updating occurs we avoided this problem. However, we lose the pos-
sibly beneficial effect that load agents also update routes to nodes in the network other than
their own source node.

5.1.3  Another criterion f or ‘shor test r oute’

We made an improvement to the load agent by storing the total sum of squared utilisations
of all nodes on the route from that node to the agent’s source node, instead of the largest spare
capacity of the route. (The node utilisation is the percentage of the node’s capacity that is occu-
pied by calls.) The load agent then promotes temporary nodes with the smallest sum of squared
node utilisations in its records. In this case the routing tables can only be updated when the
node is being promoted, because when a node is still temporary it may be possible to find a
better solution for that node later. The agent finishes as soon as all nodes have been promoted.

The reason why we chose a different criterion for ‘shortest route’ was that we observed rel-
atively long routes in simulations where load agents maximise the minimum spare capacity. A
call on such a long route occupies more nodes and this additional demand on network
resources may cause subsequent calls to fail; other load agents may then amend the route to
follow an even longer path. Our improved algorithm counteracts this by taking the spare capac-
ities of all nodes in the route into account, and leads to shorter routes (routes with fewer
nodes). Note further that by squaring the utilisation, the relative influence of heavily utilised
nodes is increased.

5.2  The Parent Ag ent

The next level of control in the network is provided by parent agents. They travel around the
network and launch load agents where network management is needed. The decision to launch
a load agent is made on the basis of information gathered, and a set of heuristic rules.

The parent agent travels randomly around the network to gather information about the
nodes. At each node the agent visits, it records the following data fields:

• The traffic destination rate. This is the number of calls that have the node as their destina-
tion

• The utilisation of the node.

• The destination-rate history, which is the average destination rate of the lastd visits to the
node.

Further it records the following global information, when stepping around the network:

• The utilisation history, which is the average of node utilisations of the lastm visited nodes.

• The number of nodes it has visited so far.

• A destination rate ranking table. This table contains a ranking of nodes according to their
destination rate history.

When the agent encounters a node with a higher utilisation value than the agent's utilisation
history, it assumes that traffic management is needed. The ranking table tells the agent which
node is most used as a destination node of calls. The traffic to this node is likely to be the cause
of some network overload. The agent then goes to this node and launches a load agent, unless
the node has already got a load agent working for it. After reaching this node and launching a
load agent, the parent agent continues its cycle of gathering information, and detecting where
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new traffic management is needed. Note further that our parent agents look at the destination
rate, whereas the original mobile agents looked at the sourcing rate of nodes. This is due to the
difference of direction in which our load agents update the routing tables.

In real networks, the parent agent could also be programmed to solve problems like crashed
load agents. This is not modelled in our simulation.

5.3  Parameters

As with the ants, the space of possible parameter settings is large; the values used in the
simulations reported here Section2.2 were those found to be best according to our experience
with previous experiments:

• The speed of the agents is basically the same as the speed of the ants: every time step of the
simulation an agent performs its task on its current node and moves to the next node.

• The parent agent takes the last 4 visits to each node into account to calculate the destination
rate history.

• The global utilisation history is 60; the last 60 visits count in the calculation of the average
utilisation.

• The destination ranking table has size 15. This means that if this table is smaller than 15, the
parent agent will gather more information around the network

• The number of parent agents is 2.

The routing tables are initialised so that the length of every route, i.e. the number of nodes
on the route, is minimal.

6 Results of the simulations

The simulation presented us with some practical problems. Because of the initial random
selection of call probabilities, the random generation of calls, and the random lengths of calls,
the variability between runs was very high. In order to overcome this, many runs would have to
be averaged; since each run was very time consuming, an adequate number of runs would take
a prohibitively long time. We therefore decided to use a repeated measurements experimental
design, in which each condition is tested on the same dataset; because of the reduction in vari-
ablility, pairwise comparisons between conditions can then yield good information from a rela-
tively small total number of runs. We proceeded as follows:

• 10 sets of call probabilities were generated using the method of Section2.2.

• Each set of call probabilities was used to generate a call sequence lasting 15000 time steps.

• Each call sequence was split into two blocks A + B, each of 7500 time steps.

TABLE 1. Generation of call sequences for adaptation and test

call
probability

set
adaptation

(0-7500)
test

(7500-15000)

1 1A 1B

2 2A 2B

: : :

10 10A 10B
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• Each run consisted of an adaptation period (block A) and a test period (block B). During the
adaptation period the load balancing system was allowed to adapt to the call statistics. We
have found that any adaptation which takes place is subsantially complete after 7500 time
periods.

• During the test period (time steps 7500 to 15000) we recorded the network performance in
terms of call failures. The experiments have been performed for: a fixed routing scheme
without load balancing; the mobile agents; improved mobile agents as explained in
Section5.1.3; ants without noise; and ants with 5% noise. The experimental design is illus-
trated by Table2 and the results in Table3.

In order to find out the extent to which the results are due to the dynamic actions of the load
balancing system, rather than to the convergence to a good set of routing tables specific to a
particular set of call probabilities, we repeated some of these experiments, but this time we
froze the routing tables for each method after the adaptation period; i.e. we stopped launching
mobile agents or ants. The results are shown in Table4.

We were also interested in how well the load balancing systems will deal with a sudden
change in call probabilities. We examined this by allowing the system to adapt to an adaptation
block from one set of call probabilities, and then testing it with a test block from a different set
of call probabilities.

TABLE 2. Experimental design 1

adaptation
(0-7500)

test
(7500-15000)

1A 1B

2A 2B

: :

10A 10B

TABLE 3. The mean percentages (ten experiments each) and standard deviations of call
failures for unchanging call probabilities

Mean Standard dev.

Without load balancing (fixed, shortest routes) 12.57% 2.16%

Original mobile agents 9.19% 0.78%

Improved mobile agents 4.22% 0.77%

Ants (0% noise) 1.79% 0.54%

Ants (5% noise) 1.99% 0.54%

TABLE 4. The mean percentages and standard deviations of call failures after stopping
load balancing for unchanging call probabilities

Mean Standard dev.

No improved mobile agents after 7500 6.43% 2.17%

No ants (0% noise) after 7500 2.11% 0.60%

No ants (5% noise) after 7500 2.48% 0.69%
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The experiments as presented above were repeated, but now at time step 7500 the call prob-
abilities and call patterns of runx changed to the call probabilities and call patterns of runx+1
in the former experiments; for example, after adaptation on block 1A, the system would be
tested not on block 1B, but on block 2B. The experimental design is illustrated in Table5.

The mean percentages of call failures in these experiments were:

And the same experiments where agents and ants were no longer launched after time step
7500 (see Table7):

We performed the Student t-test (2-tailed) for related samples on the call failure data; we
were able to pair observations derived from the same call sequences in the test period. 1B was
paired with 1B, 2B with 2B, and so on. The following differences were found at the 0.01 sig-
nificance level.

• Under all conditions the improved mobile agents gave significantly better results than the
original mobile agents.

• All ant experiments gave significant better results than the corresponding experiments with
the improved mobile agents.

• In the case of unchanging call probabilities, ants without noise gave better results than ants
with 5% noise.

TABLE 5. Experimental design 2

adaptation
(0-7500)

test
(7500-15000)

1A 2B

2A 3B

: :

10A 1B

TABLE 6. The mean percentages (ten experiments each) and standard deviations of call
failures for changed call probabilities

Mean Standard dev.

Without load balancing (fixed, shortest routes) 12.53% 2.04%

Original mobile agents 9.24% 0.80%

Improved mobile agents 4.41% 0.85%

Ants (0% noise) 2.72% 1.24%

Ants (5% noise) 2.56% 1.05%

TABLE 7. The mean percentages and standard deviations of call failures after stopping
load balancing and changing call probabilities

Mean Standard dev.

No improved mobile agents after 7500 8.03% 2.88%

No ants (0% noise) after 7500 4.29% 2.06%

No ants (5% noise) after 7500 4.37% 2.27%
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• All experiments with ants gave significantly better results in the simulations without chang-
ing call probabilities than in the simulations with changing call probabilities.

• All experiments with ants and agents were significantly better than the experiments where
there was no dynamic load balancing.

• When the parent agents stopped launching load agents when the monitoring of call failures
started (time step 7500), the results of the simulations were that significantly more calls fail
in the experiments with and without changing call probabilities.

• Stopping the ants causes more call failures than leaving the ants working.

• In the situations with unchanging call probabilities, stopping the ants produces better per-
formance than leaving both kinds of mobile agents working.

• We can not tell with sufficient significance whether noise is helping the ABC system to
quickly adapt to the new sets of call probabilities.

To illustrate the performances of the different algorithms we also measured the number of
call failures during every 500 time steps of each run for both the adaptation and test periods for
the unchanging probability conditions. The averages over the ten runs under each condition are
shown in the graph of Figure6. Three of the graphs represent the situations where there is con-
tinuous load balancing, the fourth represents no load balancing. The graph for the ants with 5%
noise is not depicted as it is very similar to that for the ants with 0% noise.
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FIGURE 6. Performances of four load balancing techniques, with unchanging call probabilities.
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6.1  Static solution or dynamic adaptation

One of the most interesting questions raised during the simulations on the 30-node network
was whether the control systems were converging to a good static set of routing tables that was
‘learned’ from the statistics of the network, or whether they were constantly adapting to chang-
ing situations. A good static set of routing tables would combine information about the net-
work topology and the call distribution statistics; routes would be sufficiently short, but would
avoid the nodes likely to become congested with those particular call statistics. We think that
three different forms of adaptation are possible:

• Adaptation to the network topology

• Adaptation to the call probabilities of the nodes

• Adaptation to temporary situations caused by the randomness of the call patterns

Adaptation to network topology. When we speak about adaptation to the network topology,
we mean how well the control system adapts to the distribution of loads on the nodes that
arises as a consequence of the specific topology. For the ABC system, the system converges to
short paths during initialisation; for the mobile agents the system is initialised with the shortest
paths. Due to the topology alone (and independent of a particular set of call probabilities) rout-
ing calls over these paths will already lead to congestion at certain nodes. The system will
adapt to this congestion by changing its pheromone tables. Although adaptation to the distribu-
tion of network loads is a response to both the topology and the call probabilities, it is possible
to get some insight into how well the system with an arbitrary set of call probabilities adapts to
the topology alone. This insight can be obtained by inspecting the results of the experiments
where dynamic load balancing is stopped at the same time as the call probabilities are changed.
Any useful adaptation of the control system can then only be in relation to the topology, which
is the only factor left unchanged.

For both the agents and the ants, the performance under these conditions is better than the
experiments with fixed shortest path routing tables and no load balancing at all. Further one
can clearly see that the ABC system performs better than the mobile agents (8.03% call fail-
ures for the improved agents versus 4.29% and 4.37% for the two ant experiments); this indi-
cates that the ABC system adapts better to the the load distribution caused by the topology
alone.

Adaptation to call probabilities. To see how well a method performs when adapting to a
combination of topology and call statistics, one can consider the results where the launching of
agents or ants is suddenly stopped, but the call probabilities remain the same. Here the ABC
system performs better than the mobile agents (6.43% call failures for the agents versus 2.11%
and 2.48% for both ant systems). The results are also better than those discussed above, involv-
ing only adaptation to the network topology. The size of the difference gives an indication of
the influence of the call probabilities.

Adaptation to temporary situations. The performance of ants and agents on adapting to tem-
porary situations is indicated by the differences in performance under unchanging call proba-
bilities of the conditions where load balancing is either continued or stopped. The situations
where ants are launched after 7500 time steps perform better than those in which launching is
stopped. Although the ABC system has adapted to call probabilities and to the topology, routes
are still changed frequently in response to temporary situations. Because this results in
improved performance, we can take this to indicate that ants are dynamically adapting the
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routes on the network to temporary situations as well. The same can be said about the agents,
which seem in fact to be more sensitive to these temporary situations than the ants, as the dif-
ference in performance between the two agent experiments is relatively larger. Close observa-
tion of the network while running the simulation also confirmed our impression of useful
reaction to temporary situations for both the ants and the agents.

Both type of systems thus appear capable of all three types of adaptation. The operation of
the different components of adaptation for the ABC system may be seen in Figure7, which
shows the performance of ants with 5% noise (the graph for 0% noise looks similar and is
shown in Figure6). The corresponding graphs for the mobile agents are shown in Figure8. All
graphs are on the same scale.

• By comparing the figures with the upper graph of Figure6, one can see that even if the call
probabilities are changed and load balancing stopped, in both types of control system there
is on average a better set of routing tables than with the fixed shortest paths determined
without load balancing technique. This illustrates the adaptation to the network topology.

• It is obvious that as soon as the call probabilities are changed, the ABC system starts pro-
ducing an increased number of call failures, after which the system adapts to the new set of
call probabilities. The reaction of the mobile agent system to changing call probabilities is
much faster.

• In both types of control system, the graph of the situation when there is continuous load bal-
ancing with no change in call probabilities lies lower than the one where load balancing is
stopped. This indicates that some advantage of the systems comes from continuous dynamic
adaptation to temporary situations.

FIGURE 7. Performance of ants with 5% noise. The average number of call failures during every 500
time steps are plotted.
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FIGURE 8. Performance of the improved mobile agents. The average number of call failures during
every 500 time steps of the simulations are plotted

We note that the standard deviations are quite high for the situations when call patterns are
changed and load balancing is stopped. We think this is due to the fact that the routing or phe-
romone tables at the moment of stopping agents or ants are partly adapted to the situation of
that instant. This might be a temporary situation that is relatively exceptional, so that freezing
the tables does not yield good static routing information. On the other hand it also might be a
temporary situation more representative of an average situation, producing acceptable results
when the tables are frozen.

In the ABC system, the balance between dynamic adaptation to temporary situations and
finding good static routes could clearly be adjusted by manipulating the delay function and the
pheromone update function. In our experiments we fixed these parameters on an empirical
basis at levels which appeared to give low levels of call failures when adaptation was complete;
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we did not systematically explore their effects on the dynamics of adaptation.

We believe that some of the power of ABC comes from the fact that the system stores infor-
mation not only about good current routes, but also about good current and recentalternative
routes. The mobile agents do not have a representation for alternative possibilities, and base
their routing decisions only on temporary situations, which limits their capability to adapt to a
more general, average pattern of node utilisations. We also suspect that with the mobile agents
a particular problem occurs which has been recognised in the field of network routing before
(Kelly, 1995): Making a new routing decision based on a temporary situation might result in a
longer route that is only beneficial for a short period. Calls over this route put a higher demand
on network resources and may cause a number of subsequent calls to be lost. As the demand
for node capacity increases, more traffic has to be rerouted. This leads to a kind of cascade
effect. In this way short term benefits are outweighed by the longer term costs. The ABC sys-
tem naturally seems to find a good balance between adaptation over short and long time peri-
ods.

7 Ants versus mobile software agents

As well as the performance advantages presented in Section6 and Section6.1, ants have a
number of other qualitative and quantitative advantages over mobile agents, as well as some
disadvantages.

Consuming network resources. An ant hardly requires any bandwidth on the network: It only
holds its age, and its source and destination identifiers (together with the fact ‘I am an ant’).
The mobile agents hold a number of relatively large tables and therefore require much more
bandwidth than ants.

A property of the mobile agents from BT is that more load agents tend to get launched as
the load on the network increases, to do re-routing. This might be just the moment when you
do not want any more agents on the network, as it is already congested with calls. In contrast,
congestion-dependent delay of the ants temporarily reduces ant traffic at congested locations.
Having said that, fewer mobile agents are required than ants. The numbers of mobile agents
used is of the order of tens, whereas ants are used in hundreds.

Limits to the number of agents. In principle, there is no limit to the number of ants that can
be used in a network, because ants do not interfere with each other. The number of load agents
on a network is much more limited. Once a load agent is launched on a particular node, another
one can not be launched until the first agent finishes its job, because otherwise they would
interfere with each other.

Robustness. Malfunctioning in the system might cause a mobile process such as an ant or
agent to crash. If an ant crashes, this will not have a significant effect on the performance of the
algorithm at all. However, if a load agent or parent agent crashes, this affects the future launch-
ing of load agents. This therefore has to be detected, and special measures have to be taken to
restore the damage.

Ants can be considered as simple mobile data elements being processed upon by the node,
rather than mobile computational processes, and so no problems will occur due to corruptly
programmed ants. As an individual ant has a small influence on the system, damage caused by
a corrupt ant will be limited. However, a load agent on its own can change all the routes to its
source node, and can therefore cause much more damage if its state is corrupted.
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Computational issues. Ants are likely to require more computation on the nodes of the net-
work than the mobile agents, due to the extensive use of random generators. Further, with ant-
based control, nodes need to allocate more space for their pheromone tables than is needed
when normal routing tables are used. However, these issues do not affect bandwidth or switch-
ing capacity, which is our main concern.

Bidirectional routes. During the simulations of the ant controlled system, the route from one
node to another tends most of the time to be the same that in the opposite direction. This is
probably due to our mechanism of trail laying, where ants from complementary source and
destination nodes mutually reinforce one anothers’ trails. The mobile agents do not have this
property. At first sight, this property might seem to be disadvantageous for good load balanc-
ing, but we believe that this will only make a significant difference in small networks.

Circular routes. In principle, ABC systems have the potential to yield circular routes. How-
ever, this situation was not observed, except when the noise was extremely high, or the initiali-
sation period much too short. The mobile agents as implemented here are guaranteed not to
result in circular routes.

8 Conclusions and future work

We implemented a completely decentralized adaptive control system for telecommunica-
tions networks which made use of emergent collective behaviour arising from the interactions
between mobile objects modelled on ants, and tables on network nodes.

The principles of the algorithm are simple and general. We believe that the general frame-
work for ant-based solutions presented here is capable of solving load balancing problems in
large networks, both circuit switched and packet switched. We do not yet know exactly how
the statistical and topological properties of the network influence the ideal parameter settings.
But as shown here, even tuning parameters by hand can lead to a well balanced system.

The balance obtained is a good example of emergent organisation. The individual ants are
remarkably simple, but the resulting structures enable very efficient use of a resource like a tel-
ecommunications network. We have identified three possible types of adaptation to the charac-
teristics of such networks, and ABC systems show themselves capable of good performance on
all three types.

We believe that ABC systems can be used to solve a large variety of optimisation problems,
eg:

• distributing loads of interconnected processors on parallel machines and managing inter-
processor communication for complex programs;

• material flow in production environments;

• optimal routing on integrated circuit-boards;

• organising public transport schemes.

Much investigation of the basic principles of the ant algorithm remains to be done. So far,
our experiments have not yet enabled us to make statements that are sufficiently supported by
statistics about the influence of the number of ants used in the simulations. We also do not
know exactly how variations in the ants’ influence on the pheromones affect the system, or
about the effects of the size of the delays imposed on the ants. Most choices in this work are
based on a relatively small number of experiments.

It would also be useful to investigate the performance of the algorithm on extremely large or
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very small networks; the large networks will tell us about scaling, and the small neworks might
assist our understanding of the basic processes which make the algorithm work. Another
intriguing possibility is to use ‘probabilistic routing’ of calls. Here routes of calls, or perhaps a
proportion of calls, would not be chosen according to the largest probabilities in the pherom-
one tables, but randomly according to these probabilities. A mechanism that is assumed not to
be used by natural ants, but could be useful here, is laying ‘anti-pheromone’. One could let ants
directly decrease probabilities in the pheromone tables in particular circumstances, rather than
increase them.

The pheromone tables do not only represent the best routes, but also contain information
about the relative merits of alternative possibilities if something goes wrong. Our simulations
have so far been confined to examining the use of this information in dealing with node con-
gestion; sudden node (or link) failure and restoration also needs to be simulated to examine the
abilities of the ants to deal with these contingencies. The ability to cope with the insertion of
new nodes and links during network extension is also a topic of interest.

Extending ant-like algorithms to situations like telecoms networks which are not found in
nature will also increase our understanding of the abstract and general abilities of such algo-
rithms over and above those applications found in nature. We hope that this increase of knowl-
edge will in turn assist and inform biologists studying social insects.
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