
 

Abstract:

 

    The paper motivates the facilities provided by
Description Logics in an object-oriented programming sce-
nario. It presents a unification approach of Description
Logics and object-oriented programming that allows both
views to be conveniently used for different subproblems in
a modern software-engineering environment. The main
thesis of this paper is that in order to use Description Log-
ics in practical applications, a seamless integration with
object-oriented system development methodologies must
be realized. 

 

1. Introduction

 

Object-oriented modeling is now a standard technique
for application development (see the discussions in
[8] and [9]). In addition to object-oriented modeling,
Description Logics (DL) have been proven to be a
useful formalism for modeling knowledge in a spe-
cific domain (see e.g. [33] for a commercial example
application). A DL provides a relational rather than an
object-oriented way of modeling ([4], [32]). The main
advantages of the DL perspective are that (i) infer-
ences about domain objects can be formally modeled
and (ii) A DL can deal with incomplete “conceptual”
information about objects.

Although the logical semantics of DL modeling con-
structs is a big plus, to ensure decidability of the sub-
sumption problem, the expressiveness of the logical
language must be limited ([23], [32]). The conse-
quence is that in a real application without toy prob-
lems, currently not all aspects can be formally

modeled. This means that programming is still neces-
sary. The question is, how this should be treated. One
approach is to emphasize the logical model and to
avoid talking about the additional procedural pro-
gramming parts. This can be called the Dr. Jekyll and
Mr. Hyde approach. In my opinion, from a software
engineering perspective, it is more advantageous to
make the best of the two worlds. When a subproblem
of a complex application can be adequately solved
with Description Logics, this formalism should be
used. However, the DL solution must be integrated
into the whole system development approach which,
at the current state of the art, uses object-oriented
modeling. Object-oriented modeling (or program-
ming) is intimately related with incremental develop-
ment and reuse. When a DL is to be integrated into
such an environment, the “OO-mechanisms” should
also be applicable to the DL part. In this paper, it is
shown how both representation and modeling
approaches, logical modeling and object-oriented
programming, can complement each other. The paper
presents a unification approach that allows both
views to be conveniently used for different subprob-
lems in a software-engineering environment.

Object-oriented programming is only a very vague
term for a variety of approaches to software structur-
ing and system development ([8], [9]). In this paper,
the Common Lisp perspective will be used [30]. The
document is written for readers with an object-ori-
ented programming background. It assumes basic
knowledge about CLOS ([14], [15], [24]). A short
introduction to the main ideas behind Description
Logics is given with several examples. “Description
Logic” is also a very general name for different theo-
ries and practical systems [32]. One implementation
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of a DL is the CLASSIC system ([1], [3], [25], [29])
which will be used for the examples presented in this
paper.
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The integration of CLASSIC and CLOS requires that
generic functions and methods can be written for
CLASSIC objects (called individuals for historical
reasons). The procedural parts of an application
should be able to use CLASSIC individuals just like
CLOS instances. The “services” of an object are
accessed only by the use of functions. This means that
the relational part of CLASSIC should be hidden
behind a functional layer because, from a software
engineering point of view, dealing with individuals
and relations can be quite cumbersome for at least
two reasons: First of all, from a functional program-
ming point of view it is irrelevant whether a result of
a function call is defined by merely looking up a set of
instances in a relation table or by actually computing
instances with complex algorithms and auxiliary data
structures.
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 Second, using generic accessor functions
for retrieving the objects that are directly set into rela-
tion to a specific individual allows a lot of error
checking code to be automatically generated. A uni-
fied interface for accessing the services that an object
provides hides many representation details which are
irrelevant from a more abstract perspective. 

The advantages of a logical representation system like
CLASSIC, i.e. its ability to deduce implicit informa-
tion, will be presented with a small object-oriented
software-engineering scenario. Using three common
programming problems (also called design patterns
[10]) it will be shown that a Description Logic pro-
vides solutions 

 

within

 

 the language itself, i.e. there is
no need to find specific implementation tricks or pro-
gramming conventions to adequately implement the

 

1.  CLASSIC can be licensed from AT&T Bell Labs. The code 
for the extensions presented in this paper is available from the 
author [19].

2.  Sometimes so-called “virtual relations” (or virtual slots) are 
used whose fillers are computed by functions that access the fill-
ers of other relations (or slots). However, conceptual assertions 
about virtual relations are not supported (see also Section 2.6) and 
therefore, these relations are somewhat asymmetric.

 

design patterns. We will discuss the following pat-
terns: 

 

•

 

Define an interface for creating objects but let
subclasses specify which classes should actually
be used to instantiate objects and the correspond-
ing subobjects (design pattern “Factory Method”
in [10]). This problem is also called the “Make
isn’t Generic Problem” (the term has been coined
by Kiczales [17]).

 

•

 

Automatically change (or adapt) the class of an
object to a certain subclass when the object is
associated with another object.

 

•

 

Deal with conceptual assertions for individual
objects at runtime (e.g. the “type” of associated
objects, or the number of objects associated with
an object using a certain relation).

 

2. The Use of DL in an OOP Scenario

 

Let us assume, that in a press office, information
about an unknown ship is gathered because of an
SOS signal being received. The kind of the ship
determines the importance of the SOS signal. For
instance, for the next newspaper issue, there will be
last minute changes to the banner headline whenever
a 

 

passenger

 

 ship is found to be in distress. Thus, ini-
tially, there is a ship instance and step by step addi-
tional information about this ship will be added. The
information that a certain ship is a passenger ship
might not be given explicitly. The information source
for the press office might not know that “passenger
ship”, which serves as a trigger for additional pro-
cesses here, is an important piece of information.

 

2.1. Example Domain: Modeling Ships

 

The world model for this example domain consists of
a few concepts and roles which will be presented
using the KRSS syntax for CLASSIC [26]. Concepts
can be compared to classes and can be described with
superconcepts and restrictions for role fillers (neces-
sary and sufficient conditions). A primitive concept
(declared with 

 

define-primitive-concept

 

) is
only partially described with necessary conditions. If
also sufficient conditions are given, a “defined” con-
cept is described (declared with 

 

define-concept

 

).



 

The complete set of concept definitions is called
TBox. The root of the concept hierarchy is 

 

classic-

thing

 

 (compare this to 

 

standard-object

 

 in
CLOS). Our initial TBox is defined as follows:

 

(define-primitive-concept person classic-thing)
(define-primitive-concept cargo-object 
  classic-thing)
(define-primitive-concept container
  cargo-object)
(define-primitive-concept passenger 
  (and person cargo-object))

 

Roles to relate individuals must be declared as well
(for the term “role”, the term “relation” is often used
as a synonym). In a similar way as concepts, roles can
be hierarchically related as well (

 

nil

 

 is used for “no
parent”).
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 The inverse of a role can be declared as
well.

 

(define-primitive-role has-ship nil)
(define-primitive-concept captain person)

(define-primitive-role has-cargo-object nil)
(define-primitive-role has-captain nil
   :inverse has-ship)
(define-primitive-role has-position nil)

(define-primitive-concept pos classic-thing)
(define-primitive-role has-x-coordinate nil)
(define-primitive-role has-y-coordinate nil)

(define-primitive-concept ship
  (and (all has-cargo-object cargo-object)
       (at-least 1 has-position)
       (at-most 1 has-position)
       (all has-position pos)
       (at-most 1 has-captain)
       (all has-captain captain)))

 

The concept 

 

ship

 

 will be explained in detail. The
declaration specifies that all cargo objects (relation

 

has-cargo-object

 

) must be instances of 

 

cargo-

object

 

, i.e., in DL terminology, they must be sub-
sumed by 

 

cargo-object

 

. All fillers of the role 

 

has-

captain

 

 must be captains. For each 

 

ship

 

, there will
be exactly one filler for the role 

 

has-position

 

(which must be subsumed by the concept 

 

pos

 

) and at
most one filler for 

 

has-captain

 

 (which must be
subsumed by 

 

captain

 

).

 

3.  A subrole (or subrelation) identifies a subset of the relation 
tuples defined by the superrole.

 

From a data representation point of view, this small
domain model could also be represented with CLOS
(or any other object-oriented representation mecha-
nism). So, what are the advantages of Description
Logics? The answer is that a DL can be used to

 

deduce implicit information

 

. In the following sec-
tions, we will discuss three simple examples which
indicate why deductive capabilities of Description
Logics go far beyond object-oriented programming.
Before we discuss the examples, I would like give a
brief overview on the semantics of description logics.

 

2.2. Semantics of Description Logics

 

Concept terms are mapped onto logical formulas. For
instance, 

 

(all 

 

r

 

 

 

C

 

)

 

 is mapped onto the formula:

where 

 

D

 

 is the domain (universe of discourse), 

 

r

 

 is a
relation and 

 

C

 

 is a concept term. Cardinality restric-
tions like 

 

(at-least 1 

 

r

 

)

 

 are mapped onto formu-
las with existantial quantifiers.

The 

 

and

 

 concept term constructor is mapped onto a
logical conjunction etc. Statements with 

 

(define-

primitive-concept 

 

C term

 

)

 

 and 

 

(define-

concept

 

 C term

 

)

 

 are mapped onto the following
logical axioms, respectively.

The first declaration defines only necessary condi-
tions for a concept 

 

C

 

 (implication) while the second
defines also sufficient conditions (bi-implication). A
concept 

 

C

 

 is a superconcept 

 

D

 

 iff 

 

C(x)

 

 

 

=>

 

 

 

D(x)

 

. The
superconcept-subconcept relationship is also called
the 

 

subsumption

 

 relationship. A detailed description
of the semantics of the CLASSIC representation lan-
guage is beyond the scope of this paper (see [2]).

The logical axioms provide the basis for logical
deductions to derive implicit information. A DL rea-
soner can be interpreted as a sound and complete
inference engine for a subset of First-Order Predicate
Logic. Thus, in contrast to the semantics of program-
ming languages, the semantics of the DL language

λx y D∈ r x y,( ) C y( )⇒⋅( )∀⋅

λx y D∈ r x y,( )⋅( )∃⋅

x D∈ C x( ) term x( )⇒⋅( )∀

x D∈ C x( ) term x( )⇔⋅( )∀



 

also defines what has to be computed by a DL rea-
soner given a set of input formulas (i.e. there is no
need to define an operational semantics). For
instance, the set of concept and relation definitions
(TBox) can be checked for consistency. 

Furthermore, implicit subsumption relations between
defined concepts are automatically detected. For
example, the TBox could be extended by the follow-
ing concept definitions:

 

(define-concept ship-with-captain
  (and ship
       (at-least 1 has-captain)))

(define-concept ship-with-cargo
  (and ship
       (at-least 1 has-cargo-object)
       (at-least 1 has-captain)))

 

Though not explicitly stated, it is evident that 

 

ship-

with-cargo

 

 is also a subconcept of 

 

ship-with-

captain

 

 and the TBox reasoner adds 

 

ship-with-

captain

 

 as a superconcept of 

 

ship-with-cargo

 

.
However, in general, finding these implicit subsump-
tion relations in the TBox can be very difficult (see
[23], [32]).

 

2.3. Dynamic Classification

 

Computing the subsumption relation and doing con-
sistency checking in the TBox is one kind of service a
DL reasoner offers. Consistency checking is also
done for individuals in the ABox. For example, only
one 

 

captain

 

 can be set into relation to a 

 

ship

 

 via
the 

 

has-captain

 

 relation. More interesting than
consistency checking is the “dynamic classification
service” for ABox individuals. The ABox incremen-
tally derives the concepts of an individual from its
relations to other individuals (forward reasoning).
This is possible for “defined” concepts which are
described with necessary 

 

and sufficient

 

 conditions
(see above). Concrete individuals are created in the
ABox with the following statements:

 

(define-distinct-individual s1)
(state (instance s1 ship))
(define-distinct-individual c1)
(state (instance c1 captain))

Instances can be related to each other by an addi-
tional ABox statement:

(state (related s1 c1 has-captain))

After this statement has been asserted, the ABox of
CLASSIC will deduce that s1 is not only a ship but
must also be a ship-with-captain. Note that the
additional concept ship-with-captain is not
explicitly stated for s1. It is automatically derived
from the relation of s1 to other individuals (in this
case c1). If c1 were not known to be a captain, this
would also be inferred as a by-product (see the
restriction (all has-captain captain) in the
definition of ship). 

Why is this an important service which an object sys-
tem definitely should provide? The answer is that the
first design pattern of the introduction (Factory
Method) can be elegantly implemented using the DL
facilities. In other words, it solves the “Make isn’t
Generic Problem”. This problem will become appar-
ent a larger software development scenario. I will
explain it using our ship domain.

2.4. Dynamic Classification as a 
Solution to the “Make Isn’t Generic 
Problem”

At the heart of object-oriented system design is the
notion of reuse. Therefore, let us assume a large soft-
ware package for handling ships has been developed
by a software company Seasoft. A shipping firm
Ocean-Trade will buy the product if the local soft-
ware development team of Ocean-Trade can adapt
the software library to the needs of the firm. Obvi-
ously, Seasoft will not give away the source code and
Ocean-Trade gets an object-oriented software library
with classes and methods in binary format only.

Surprisingly, object-oriented development alone does
not guarantee enough flexibility even for simple pro-
gramming problems. A simple example shows where
standard OO techniques fail or where they are more
complicated than necessary. The software system of
Seasoft contains classes (or, as we will see, even bet-
ter: concepts) that are used for modeling ships, posi-
tions, persons, passengers, captains etc. However, the



need to represent a ship-with-captain has not
been anticipated (ship-with-captain serves as a
placeholder for something to be incrementally added
by Ocean-Trade here). Like many large software sys-
tems, the Seasoft library generates objects internally.
For instance, for planning purposes, additional ships
might be created by the Seasoft logistics module
which consists of a set of ship classes. We assume that
a set of generic functions have been defined to solve a
logistics planning problem. For the predefined Seasoft
ship classes, methods are written as usual. The out-
put of the planning system might be a report to pro-
pose further investments etc.

Let us return to Ocean-Trade now. In our scenario, the
planning module must be adapted to match the needs
of Ocean-Trade. In the spirit of object-oriented pro-
gramming, subclasses of predefined classes will be
created and methods might be “overwritten”. Due to
an object-oriented system design, there should be no
problems. For example, for ships with captains,
Ocean-Trade would like to add additional functional-
ity to the Seasoft planning module. Let us assume, the
Seasoft system uses a certain generic function for
which a method will be added that dispatches on
ship-with-captain (the subconcept of ship

defined above). This method is more specific than the
predefined method dispatching on ship. In this case,
the problem is that instances are created in the body
of “old” methods written by Seasoft. Seasoft methods
create instances of ship rather than instances of
ship-with-captain. The instantiation functions
called in the inherited methods do not use the
intended subclass ship-with-captain, i.e. the
code is not easily extensible (hence the term “make is
not generic”). In the example discussed above, the
class of a new instance depends on some other
instances being related to it (or, as Kiczales puts it,
which give rise to the creation of the instance [17]).

A first attempt to find a solution for Seasoft would be
to insert a function which is used compute the class of
internally created instances. This solution has been
proposed by Gamma et al. as the “Factory Method”
design pattern [10]. Seasoft must anticipate the desire
for extensions here and should add an additional

generic function to their protocol which is used to
dynamically compute the classes used by their plan-
ning module. The idea might be to let customers (i.e.
Ocean-Trade) write more specific methods for this
function. But, on which object(s) should this function
dispatch? It must be an object that Ocean-Trade will
have to provide in order to avoid an infinite recursion
of the problem!

The software system of Seasoft will become clumsy
if too many of these unwieldy “extension hooks” are
provided.4 This is where Description Logics come
into play. If CLASSIC were used for the develop-
ment of the Seasoft system, the concept ship-
with-captain could have been defined by the
Ocean-Trade software team. Instead of using a primi-
tive concept, Ocean-Trade can define a concept with
sufficient conditions just as in the example presented
above. With the extended generic functions presented
in this paper, it is possible for Seasoft to write meth-
ods that dispatch on CLASSIC individuals. Ocean-
Trade can “specialize” a certain generic function pro-
vided by Seasoft. Now, when other methods defined
by Seasoft create an individual which is subsumed by
ship and which is related to a captain, this indi-
vidual will be automatically classified as a ship-
with-captain. There is no need to use a procedure
to compute the class at instance creation time. When-
ever generic functions are applied to this ship-
with-captain in old methods defined by Seasoft,
the intended behavior (which is defined by Ocean-
Trade) is automatically available.

The small example presented above is no “con-
structed problem”. Kiczales presents several other
problems of the same category [17] and proposes a
solution that uses an extension to instance creation.
In his solution, the creation of an instance (e.g. a
ship) can depend on other instance (e.g. a captain).
The main idea is to let the software customer (Ocean-
Trade) define dependencies in terms of class paths
(called “traces”). By “traces” new superclasses can
be “inserted” at instance creation time. Thus, Seasoft
provides default classes and Ocean-Trade can force

4.  Other approaches like “delegation” also fail in this scenario.



subclasses to be used. However, Seasoft must antici-
pate a possible “trace” and has to use a more generic
make function for instance creation. The solution of
Kiczales only works when the relation of a ship to a
captain is known at instance creation time (i.e. the
captain must be an initialization argument to the
ship). But, what happens when the captain is not
known at instance creation time? With Description
Logics, this is no problem either. Reclassification will
occur even if the ship individual is created first and a
captain will be added afterwards! It is even possible
to define a concept ship-without-captain.

(define-concept ship-without-captain
  (and ship
       (at-most 0 has-captain)))

Specific methods can be written for this concept, too.
In this example, the “dependency” solution of Kicza-
les with “traces” at instance creation time also fails
because, in this case, there is no “dependency” at all.

The declarative way of specifying defined concepts
can be of great importance in modern software engi-
neering scenarios. It can help to open up implementa-
tions (see the notions of open implementations [16] or
glass-boxes [28]) and supports encapsulation at the
same time (no hooks for class computations). The
examples presented in this section indicate that rea-
soning about concepts with necessary and sufficient
conditions is more powerful than object-oriented pro-
gramming techniques provided by CLOS (and other
OO systems). ABox reasoning also goes beyond the
capabilities of standard frame systems which only
support consistency checking as an inference service.
But DL reasoning offers even more.

2.5. Dynamic Classification as a 
Solution to the 
Concept-by-Relation Problem

Continuing our ship example, I would like to add new
concepts and relations. 

(define-primitive-concept ship-in-shipyard 
  ship)

(define-primitive-role has-ship-in-repair-dock 
  nil)

(define-primitive-concept shipyard
  (all has-ship-in-repair-dock 
       ship-in-shipyard))

For ships which are subsumed ship-in-shipyard,
changing the position might be forbidden. This might
be achieved by the definition of specific methods. 

In some circumstances a concept should only be a
superconcept of an instance when the instance is set
into relation to another instance. Thus, a ship should
only be subsumed by this concept when it is set into
relation to a shipyard. However, it would be very
inconvenient to directly create an individual of
ship-in-shipyard or to explicitly change the
class of the individual. A similar situation occurs
when “persons” become “customers” when they are
set into relation to a “bank”. This dynamic classifica-
tion is no problem when DL concepts are used. The
ship example is continued with the following asser-
tions.

(define-distinct-individual s1)
(state (instance s1 ship))
(define-distinct-individual yard1)
(state (instance yard1 shipyard))
(state (related yard1 s1 
                has-ship-in-repair-dock))

Even though s1 is created as a ship, the dynamic
reclassification mechanism of the ABox forces s1 to
be also an instance of ship-in-shipyard just
because s1 is set into relation has-ship-in-
repair-dock to yard1. The classification is
dynamic because s1 will no longer be a ship-in-
shipyard when the related statement is retracted.

It should be noted that in dynamic OOP languages
the class of an instance might be changed (e.g. in
CLOS: (change-class a-ship 'ship-with-

captain)). However, the new class itself has to be
determined in beforehand (possibly with procedural
code) and will not be determined automatically by
considering relations to other objects. The so-called
Concept-by-Relation problem is not adequately
solved in object-oriented programming languages.
Another important topic is the treatment of general-
ized conceptual assertions for individuals. 



2.6. Beyond OOP: Generalized 
Conceptual Assertions for 
Individuals

Object classification can also depend on conceptual
assertions about role fillers (concept restrictions, car-
dinality restrictions). This will be illustrated with the
example from the press office. The individual s1
known from above serves as a representative for the
ship in distress in this example. Let us further assume,
a few other concepts for ships are declared in the
TBox. Concepts for passenger ships as well as con-
tainer ships will be defined with sufficient conditions.

(define-concept passenger-ship
  (and ship
       (all has-cargo-object passenger)))

(define-concept container-ship
  (and ship
       (all has-cargo-object container)))

Let us further assume, that in our example domain,
incomplete information about s1 is announced to the
press office (e.g. by an incoming fax). As time passes
it turns out that there are passengers on the ship.
Although there might also be some containers on the
ship, this is unimportant for the press office and, as an
additional assumption, it is asserted that all cargo
objects are passengers. In formal terms, this is
expressed as follows.

(state (instance s1 
           (all has-cargo-object passenger)))

Together with the given TBox, implicit information
can be inferred by ABox reasoning. The individual s1
is reclassified (or “subclassified”) as a passenger-
ship. In this case, the inference step is justified by
the conceptual assertion (all has-cargo-object

passenger). Together with the concept ship the con-
ditions for passenger-ship are satisfied (see the
concept definition for passenger-ship). In contrast
to the ship-in-shipyard example in the previous
section, no concrete passenger instances are known.
Conceptual information about the cargo objects suf-
fices to deduce that s1 is a passenger-ship.
Knowing the fact that s1 is a passenger-ship
might trigger processes which change the newspaper
headline etc. 

Reasoning about concepts is required when concrete
objects are not known, i.e. when the information
available about objects is incomplete. Dealing with
incomplete, conceptual information at runtime is cur-
rently not supported by OOP languages. In strongly
typed Functional Programming languages (e.g.
Haskell [27]) and strongly typed OOP languages (see
e.g. [6]), at compile-time a type inference mechanism
may be used but, at runtime, inferences like those
presented above are not supported.

There are other examples where the concept of an
individual is important. For example, in a graphical
user interface, the drawing function for a ship might
depend on the ship’s concepts. User interface pro-
gramming is one of the best examples for the applica-
tion of object-oriented programming techniques. For
rapid user interface development however, an exist-
ing UIMS must be reused (for Common Lisp, this
can be CLIM [7], [22]). UIMSs like CLIM provide
powerful programming abstractions which are mod-
eled with the object-oriented representation tech-
niques of CLOS (e.g. different classes for gadgets
and output streams etc.). There is no way to rebuild
these software libraries with CLASSIC or any other
DL in a reasonable time. So what can be done? Copy-
ing information associated with a DL object into a
CLOS object which is used for UI part of an applica-
tion is inadequate as well. Unfortunately, managing
multiple “copies” of the same object is a direct con-
tradiction to the principles of object-oriented pro-
gramming. Thus, for rapid application development,
object-oriented programming techniques must be
made available to CLASSIC individuals. The next
chapter discusses an approach that demonstrates how
this can be achieved with an extension to CLASSIC
that uses CLOS-like generic functions to access
information about an individual.

3. Integrating OOP and DL

The main features of object-oriented programming
are: 

• defining the structure of instances (in terms of
slots or “instance variables” and inheritance), 



• defining object behavior (partial function defini-
tions with methods and inheritance),

• realizing encapsulation by hiding the structural
layer behind the behavioral layer.

CLOS separates the structure definition (slots) from
the behavioral definition (generic functions and meth-
ods). Encapsulation is realized by the module mecha-
nism of Common Lisp (packages). The separation of
these software-engineering dimensions has many
advantages. One of the advantages is that it is possible
to define a behavioral layer for an existing structural
layer. In our case, the internal object structure can be
handled by CLASSIC and will be hidden behind the
behavioral layer of generic accessor functions as is
usual in CLOS.

3.1. Accessors: A Functional Interface 
to a Knowledge Base

CLASSIC itself provides a relational interface for
retrieving and adding role fillers. Assume, there exists
a ship s1 with captain c1. Given the ship, the captain
can be retrieved: (cl-fillers @s1 @has-cap-

tain).5 In our example, this will a return a set of fill-
ers (@c1). For all ships, at most one captain will be
returned (see the definition of the concept ship).
However, the result will always be a set (actually a
list) and the function first must be applied to get
the list element itself. To hide the repeating access to
the first element, an additional function will have to
be written. Furthermore, in some circumstances, it
will be considered as an error if the filler is not
known. Unfortunately, additional code must be writ-
ten to check this. If nil (the empty set) is returned, an
error is likely to occur in subsequent function calls
when a captain individual is expected. Again, code
must be written to avoid this. Instead of writing this
code manually, a more general mechanism is advanta-
geous. The way to access individuals should be
declaratively defined using generic functions and cor-
responding low-level code for methods should be
automatically generated. The declaration form

5.  @ is read as “individual quote” and is used to get the individ-
ual with name s1 as an object.

define-accessors has been introduced to specify
the access to individuals in that way.

(define-accessors <concept-name>
  (<role-name> <accessor-name> 
               [ :single-value-p <boolean> ]
               [ :error-if-null <boolean> ] )
  ...)

For each role description mentioned after the concept
name, a reader method and a setf writer method for
the generic function <accessor-name> is gener-
ated. If they do not already exist, corresponding
generic functions are automatically generated.6

The first role option :single-value-p specifies
whether a single value or a set of values should be
returned by the role reader function. The other option
:error-if-null is used to insert code for error
checking to avoid an empty set to be returned.7

In our example, the following definitions are used.

(define-accessors captain
  (has-ship captains-ship :single-value-p t))

(define-accessors ship
  (has-cargo-object ship-cargo-objects)
  (has-position ship-position
                :single-value-p t
                :error-if-null t)
  (has-captain ship-captain
               :single-value-p t
               :error-if-null t))

(define-accessors pos
  (has-x-coordinate position-x
                    :single-value-p t
                    :error-if-null t)
  (has-y-coordinate position-y
                    :single-value-p t
                    :error-if-null t))

6.  The explicit declaration of a generic accessor function is nec-
essary, for instance, when a special method combination that dif-
fers from the standard method combination is to be used [30].

7.  Default values for role options could be inferred from concept 
definitions. For instance, in a define-accessors defini-
tion for a concept c, “:single-value-p t” might be 
automatically inserted as a role option for a role r if the concept 
c was subsumed by (at-most 1 r). On the other hand, if 
c was subsumed by (at-least 1 r) the option 
“:error-if-null t” could be used. In my opinion it is 
better to define the options explicitly (for readability reasons). 
Furthermore, in some cases it is convenient to use a set in subse-
quent function calls even if its cardinality is one.



One of the main advantages of dispatched access to
information about individuals via methods is error
checking. When, by accident, position-x is applied
to a person, the condition no-applicable-

method will be signalled. An error is indicated right
at the wrong function call. If CLASSIC’s retrieval
functions for role fillers were used, possibly nil
would be returned. Though not being inconsistent, a
person might never intended to be (directly) related to
a number via the role has-x-coordinate. It would
be very inconvenient to restrict this on the logical side
(e.g. by forcing an inconsistency). Even if this were
done, CLASSIC would happily return the empty set
(nil) as the set of role fillers for has-x-coordi-
nate. From a logical point of view, such a query for a
role filler is well defined. On the procedural side, the
return value nil might cause an error. If ever, the
error might be detected in subsequent function calls
which do not expect nil to be a valid return value.
With generic functions and methods, the missing
information (on the logical side) that persons are not
intended to be related to numbers via has-x-coor-
dinate can be added.

The functional access layer has been deliberately sep-
arated from the concept definitions (TBox). These
mechanisms can be considered as completely inde-
pendent layers. As in CLOS, for accessing informa-
tion of an object, define-accessors defines
methods for generic functions. Additional methods
might be written by the programmer (e.g. around
methods or after and before methods).

CLASSIC individuals require another dispatch mech-
anism which is realized by extended generic functions
which will be explained in the next section.

3.2. Generic Functions and Methods

The extended generic functions presented in this
paper can dispatch on CLASSIC concepts or CLOS
classes or both. An example for a generic function
that indirectly accesses information stored for an
object is given below. The form define-generic-
function is used to define a generic function with
dispatching extended to CLASSIC individuals.

(define-generic-function ship-position-xy
  ((ship :classic)))

(define-method ship-position-xy ((ind ship))
  (let ((pos (ship-position ind)))
    (values (position-x pos)
            (position-y pos)))

When the function ship-position-xy is applied,
the internal role structure used for representing posi-
tion information is transparent. (ship-position-
xy s1) just returns two values. Hiding the internal
role structure is quite important because the role
structure might be subject to change. Generic func-
tions realize important encapsulation principles. The
relational interface of CLASSIC is weak in this
respect.

The argument list of define-generic-function
indicates which arguments expect CLASSIC dispatch
and which arguments use standard CLOS dispatch.

(define-generic-function <function-name>
  (<dispatched-argument-description> ...
   [ <other-argument> ... ] )
  [ <option> ...] )

A description for a dispatching argument is a list con-
sisting of an argument name and a dispatch indicator
(either :clos or :classic). Just as defgeneric
from CLOS, define-generic-function also
supports ordinary arguments without specializer
(called other-arguments). The options for
define-generic-function are the same as for
defgeneric. Note that method combinations are
also supported.8

Methods can be defined with the form define-
method.

(define-method <function-name> [ <qualifier> ]
    ( <dispatched-argument> ...
     [ <other-argument> ... ] )
  ... )

The syntax of a dispatched argument in a method
parameter list is identical to the syntax of arguments

8.  In CLOS, a generic function is automatically generated when 
the first method definition is evaluated and the generic function is 
not yet known. This is currently not supported by define-
method.



for defmethod of CLOS. The <qualifier> indi-
cates the kind of method combination. In addition to
names for CLOS classes, CLASSIC concept names
can be used as specializers.

In our ship domain, we will use a generic function for
printing information about ships on a certain output
stream. As usual, multimethods should be defined that
dispatch on the kind of ship and on the kind of output
stream (e.g. textual-output-stream, graphi-
cal-map-output-stream). The example empha-
sizes the requirement that both, CLASSIC and CLOS
arguments must be dealt with during method dispatch.
Nobody would try to reinvent the wheel and represent
streams with CLASSIC concepts.

(define-generic-function print-ship-info 
    ((ship :classic)
     (stream :clos))
  (:documentation "Demonstration function for ~
                   method dispatch."))

The generic function print-ship-info might be
used by the Seasoft software. Methods are defined for
ship and its subconcepts and a CLOS class tex-
tual-output-stream.

(define-method print-ship-info 
    ((ship ship)
     (stream textual-output-stream))
  (format stream "~%Ship ~S." ship)
  ...)

(define-method print-ship-info :after
    ((ship container-ship)
     (stream textual-output-stream))
  (format stream 
          "~%~S is even a CONTAINER ship."
          ship)
  ...)

(define-method print-ship-info :after 
    ((ship passenger-ship)
     (stream textual-output-stream))
  (format stream 
          "~%~S is even a PASSENGER ship."
          ship)
  ...)

(print-ship-info s1 *text-output-stream*)

When the function print-ship-info is applied to a
ship individual and a stream instance, the composition
of the effective method depends on the ship’s con-

cepts and the stream’s class. Initially, for s1 only the
first method will be applied because s1 is classified
as a ship. 

The main advantage of CLASSIC is the feature of
dynamic object classification by ABox reasoning. Let
us assume, that in our example domain, the following
is asserted (see above).

(state (instance s1 
           (all has-cargo-object passenger)))

By ABox reasoning s1 is classified as a passen-
ger-ship. A call to print-ship-info will result
in different output after the assertion has been added.
An additional :after method will be added to the
effective method for subconcepts of ship (standard
method combination).

Methods can also be written for generic accessor
functions that are created with define-accessors.
For instance, the position of a captain can be directly
associated with the position of his ship.

(define-method position-x ((c captain))
  (let ((ship (captains-ship c)))
    (if ship 
        (position-x ship)
      nil)))

(define-method position-y ((c captain))
  (let ((ship (captains-ship c)))
    (if ship
        (position-y ship)
      nil)))

In this context, the liberal use of dynamic OOP sys-
tems like CLOS should be emphasized. There is no
need to define a method within the scope of a class
definition. Why not writing a separate method for
print-ship-info that dispatches on captains?

(define-method print-ship-info ((c captain) 
                                (s stream))
  (let ((ship (captains-ship c)))
    (unless (null ship)
      (print-ship-info ship s))))

These methods for existing generic functions might
be written by another programmer who has no access
to the source code for the definition of captain. In
languages like C++ a subclass of captain has to be
created to add such a method. Additional subclasses



even increase the need for design patterns like “Fac-
tory Method”. In CLOS this can be avoided because a
method is associated with a generic function and not
with a class.9 The service of printing information
about a ship can very well be reached via a captain
object.

A common pitfall is illustrated with the following
example. In order to avoid the test whether the call to
captains-ship returns nil in the method pre-
sented above, it might be a good idea to define an
additional concept.

(define-concept captain-with-ship
  (and captain
       (at-least 1 has-ship)
       (at-most 1 has-ship)))

According to the definition of has-captain as the
inverse of has-ship, the statement

(state (related s1 c1 has-captain))

implies that (related c1 s1 has-ship) also
holds. Therefore, the ABox also concludes that c1 is a
captain-with-ship because there is at least one
ship (s1) set into relation to c1.

A “simplified” method might be defined for the
generic function print-ship-info.

(define-method print-ship-info 
    ((c captain-with-ship) 
     (s stream))
  (print-ship-info (captains-ship c) s)))

The accessor function captains-ship can also be
used for an instance of captain-with-ship

because this is a subconcept of ship. It seems to be
that the test whether captains-ship returns nil
can be omitted because there should be exactly one
filler for the role has-ship. Everything runs fine as
long as captain-with-ship is inferred via ABox
reasoning about the role fillers of has-ship (and the
inverse has-captain). But, what happens when a
captain-with-ship is created directly?

(define-distinct-individual c2)
(state (instance c2 captain-with-ship))

9.  Associating a method with a specific class is impossible when 
multiargument dispatch is supported (“multimethods”).

The instance c2 is an instance of captain-with-
ship by definition. However, there is no filler known
for has-ship. The logical semantics of (at-least
1 has-ship) merely says that it is consistent that a
captain-with-ship is associated with a ship and
iff there is a filler for has-ship, the captain will also
be a captain-with-ship. There is no need to
actually create a filler when an instance is a cap-
tain-with-ship by definition. Thus, a runtime
error (no applicable method) is likely to occur when
the method defined above is executed because there
is no print-ship-info method for nil (and a
stream).

3.3. Individual Creation and Initialization

Creating individuals using the primitives supplied by
CLASSIC (or KRSS) is somewhat crude. From a
software engineering point of view, a protocol for
individual initialization is needed. For individual cre-
ation, a function create-individual with param-
eters (concept-name &optional (ind-name

(gensym)) &rest initargs) has been supplied.

An example would be 

(setf c2 (create-individual 'captain-with-ship
                            'c2)). 

When an individual is created with create-indi-
vidual, the generic function initialize-indi-
vidual is automatically called. A method for this
function can be defined as follows (compare this to
initialize-instance from CLOS).

(define-method initialize-individual :after 
      ((ind captain-with-ship) &rest initargs)
  (unless (captains-ship ind)
    (setf (captains-ship ind)
          (create-individual ‘captain))))

Initialization arguments can also be given to cre-
ate-individual. The list of “initargs” is a
sequence of role names and corresponding sets of ini-
tial fillers.10

(setf s1 (create-individual 'ship 's1 
            'has-captain c1))

10.  The set of initial fillers for a role is represented by a list. If a 
non-list is used, a singleton list is automatically created.



For ship another initialization method might be
defined.

(define-method initialize-individual :after 
      ((ind ship) &rest initargs)
  (let ((captain (ship-captain ind)))
    (setf (captains-ship captain) ind)
    (unless (ship-position ind 
                           :error-if-null nil)
      (setf (ship-position ind)
        (create-individual 
           'pos (gensym "POS")
           'has-x-coordinate 0
           'has-y-coordinate 0)))))

A CLASSIC individual can be used just like a CLOS
object. For instance, (ship-position s1) returns
a single value: a position individual. As the body of
the method indicates, defaults for options given in the
define-accessors definition can be overridden for
a specific accessor call.

3.4. A Functional View on Conceptual 
ABox Assertions?

So far we have seen that a functional layer with
extended generic functions, methods and automati-
cally generated accessors can be smoothly integrated
with a relational DL system. In this context, it is inter-
esting to consider whether conceptual assertions (see
the example in Section 2.6) can also be stated from a
functional point of view. 

In our example, the ship s1 will be used as an argu-
ment to ship-cargo-objects. The individual s1 is
subsumed by ship. When applied to s1, the function
ship-cargo-objects is expected to return a list of
passengers and therefore, s1 must be an instance of
passenger-ship. The assertion presented above
could be denoted using a functional syntax, for
instance, the following declaration could be used:

(assert-result-type (ship-cargo-objects s1)
                    (passenger))

The effect of this assertion would be a reclassification
of s1 as a passenger-ship. From a Functional Pro-
gramming perspective, it turns out that the ABox (of a
DL system) allows reasoning about types of specific
instances based on information about function calls.
Note that this kind of reasoning happens at runtime

rather than at compile-time. However, type restric-
tions on function calls could only be defined for
accessor functions because for generic functions with
general Common Lisp methods no type calculus
exists. In order to avoid a mismatch between accessor
functions and general functions, only the relational
syntax for conceptual assertions is supported.

3.5. Computation of the Concept 
Precedence List

The TBox defines a partial order relation between
concepts (subsumption relation). In order to define
how method dispatch is handled, the multiple inherit-
ance lattice must be serialized by a concept prece-
dence list which represents a total order between
concepts. A concept precedence list is used for the
same purposes as a CLOS class precedence list, it
defines how an effective method for a specific func-
tion call is computed (see the detailed introduction in
[15]). A valid concept precedence list is any total
ordering that obeys all partial orders defined by the
TBox. However, by this requirement only a small set
of constraints are defined. There are still several dif-
ferent approaches to serialize a concept lattice. In
CLOS the notational order of superclasses in a class
definition defines a set of additional order constraints.
However, from the viewpoint of Description Logics,
the direct superconcepts (the least general subsu-
mers) are unordered. Therefore, in the approach pre-
sented in this paper, the relation of parents with
respect to method dispatch is left undefined. Proce-
dural code must not depend on any notational order
between concept parents.

4. Implementation of Method Dispatch

To allow experiments with the functional layer to
CLASSIC, a straightforward implementation for
method dispatch with individuals has been provided.
CLASSIC dispatch is reduced to CLOS dispatch.

4.1. Reducing CLASSIC dispatch to 
CLOS dispatch

The implementation of generic functions and method
dispatch for CLASSIC is quite simple.11 The form



define-generic-function is used to declare
which parameters are handled as ordinary CLOS
instances and which parameters are CLASSIC indi-
viduals. As a side effect of this declaration, a new
function is created (a simple Common Lisp function).
This “wrapper” function calls another function with
the same name concatenated with the suffix METHOD.
This function internally represents the generic func-
tion and implements the method dispatch. For
instance, the macro form:

(define-generic-function print-ship-info 
     ((ship :classic) (stream :clos)))

expands into

(PROGN
  (SETF (GET 'PRINT-SHIP-INFO
             :ARGUMENT-SIGNATURE)
        '(:CLASSIC :CLOS))
  (DEFGENERIC PRINT-SHIP-INFO-METHOD 
        (IND #:TYPE6806 STREAM))
  (DEFUN PRINT-SHIP-INFO (IND STREAM)
    (FUNCALL (FUNCTION PRINT-SHIP-INFO-METHOD)
             IND
             (COMPUTE-TYPE-ARG IND)
             STREAM)))

The internal function print-ship-info-METHOD is
applied to the same arguments as the wrapper func-
tion, but for each parameter which uses CLASSIC
dispatch, an additional parameter is inserted (for ind
this will be #:type6806). For each CLASSIC indi-
vidual, an associated CLOS instance is computed
with compute-type-arg. In a method definition,
the additional arguments are used for the “real dis-
patching”. Note that normal CLOS arguments are
treated as usual. The method definition

(define-method print-ship-info 
    ((ship ship) 
     (stream textual-output-stream))
  (format stream "~%Ship ~S." ship)
  ...)

expands into

11.  The main idea is inspired by the implementation of presenta-
tion type dispatch in CLIM (define-presentation-
generic-function and define-presentation-
method).

(DEFMETHOD PRINT-SHIP-INFO-METHOD 
    ((IND T)
     (#:TYPE6807 SHIP)
     (STREAM TEXTUAL-OUTPUT-STREAM))
  (FORMAT STREAM "~%Ship ~S." IND)
  ...)

The method is defined for the “real” generic function
with suffix METHOD. In the example, the specializer
ship has been “moved” to the second parameter. For
the original parameter no specializer is defined. It
specializes on t, the most general type in Common
Lisp, and therefore, this parameter has no “discrimi-
nating power”. Nevertheless, the original instance
must be passed as an argument. In the body of the
method, the CLASSIC individual must be bound to
IND. The corresponding additional parameter is used
only for dispatching (its system-generated name is
uninterned). Since the substitute specializer must be a
CLOS class (here the class ship is used), for every
named CLASSIC concept (either defined by
define-concept or define-primitive-con-
cept) a corresponding CLOS class is automatically
created. The set of superclasses of such a class is
computed on the basis of the TBox classification pro-
cess. Note that the list of superclasses of a class
might dynamically change when a defined concept is
automatically inserted into the subsumption hierar-
chy by TBox classification.

The function compute-type-arg (see the expan-
sion of define-generic-function) computes a
CLOS placeholder for a CLASSIC individual. The
idea behind compute-type-arg is to get the con-
cept of a CLASSIC individual (classic:cl-ind-
parents), to derive a corresponding CLOS class,
and to use the class prototype of this class. One prob-
lem is that a CLASSIC individual may be subsumed
by more than one named concept, i.e. classic:cl-
ind-parents returns a list of concepts. When this
happens, a new anonymous CLOS class with corre-
sponding superclasses must be created on the fly. The
prototype object of this class will then be used. A
memoization scheme (with a hash-table *class-
table*) is used to avoid inflationary class creation.



(defun compute-type-arg (ind)
  (or (classic::di-clos-instance ind)
   (let ((class-names 
           (mapcar #'classic:cl-name
                (classic:cl-ind-parents ind))))
     (if (null (rest class-names))
         (find-class-prototype 
           (find-class (first class-names)))
       (let ((class (gethash class-names
                             *class-table*)))
         (if class
             (find-class-prototype class)
           (let* ((class-name (gensym))
                  (class (find-class 
                            class-name)))
             (ensure-clos-class 
               :name class-name
               :superclasses class-names)
             (setf (classic::di-clos-instance 
                      ind)
                   (find-class-prototype 
                      (find-class type-name)))
             (setf (gethash class-names 
                            *class-table*)
                   class)
             (find-class-prototype class)))))))

With access to the internal data structures of CLAS-
SIC (classic::di-clos-instance), an individ-
ual can be directly associated with its CLOS
counterpart, i.e. the procedure compute-type-arg
is used only when the individual is reclassified.
CLASSIC has been extended to reset the association
between an individual and its CLOS representative
when the individual is reclassified.

In the following, we have a look at the performance of
the current implementation for CLASSIC dispatch.

4.2. Performance considerations

The definition of compute-type-arg indicates that
the straightforward implementation of CLASSIC dis-
patch comes at a certain cost. In addition to static
costs for the definition of CLOS classes for named
CLASSIC concepts, there are some initial dynamic
costs:

• some calls to retrieval functions (classic:cl-
name, classic:cl-ind-parents), 

• a complex hashing operation over a list of sym-
bols,

• possibly a dynamic creation of a CLOS class,

• the access to the CLOS class prototype,

• and an additional CLOS dispatch step for the sub-
stitute argument.

Furthermore, a lot of garbage is created (mapcar).
Measurements on a Symbolics MacIvory-Model-3
indicate that a dispatched access to a relation with a
generic function created by define-accessors
takes less than one millisecond. This is approxi-
mately three times slower than directly using CLAS-
SIC’s retrieval functions on the same processor. Note
that accessing a slot of a CLOS instance takes less
than a microsecond, i.e. CLASSIC itself is inevitably
slow compared to CLOS. Thus further optimization
of CLASSIC (we used Version 2.2) is required.

5. Related Work

Generic functions for Description Logics have also
been developed in the Loom System [5]. Loom offers
a more powerful Description Logic than CLASSIC
though it is incomplete. Method dispatch for individ-
uals is provided by specific generic functions which
dispatch on ABOX object but not on CLOS objects.
Loom also supports CLOS classes for the implemen-
tation of ABox individuals but only a limited sort of
reasoning is implemented on these instances (no
dynamic reclassification by forward inferences).

With the substitution scheme presented in this paper,
method dispatch will be handled by the CLOS sys-
tem. From the viewpoint of CLOS, extending the
object-oriented system can be considered as pro-
gramming at the metalevel. CLOS itself can be
extended using a predefined set of classes and
generic functions. The facilities are known as the
CLOS Metaobject Protocol [15]. Though some fea-
tures of the MOP have been used (e.g. ensure-
clos-class creates a new class at runtime and
find-class-prototype accesses the prototype
instance of a class), the whole system architecture
has not been defined in the spirit of the MOP. Using
the MOP it might have been possible to avoid the
definition of new macros like define-generic-
function or define-method. The MOP idea



enforces an “open system implementation” that
avoids the introduction of additional (possibly incom-
patible) layers for software specification [16]. The
original mechanisms provided by CLOS (defge-
neric, defmethod) would have been extended
rather than “shadowed”. For several reasons, the
MOP has not been used for implementing the exten-
sions defined in this paper. The first reason is simplic-
ity. It is not very easy to find the right entry points into
the MOP for a specific implementation problem (but
see [12] and [13] for several examples). The other
reason is that the MOP is not standardized and is not
coherently supported by all Common Lisp systems.
The MOP however, might help to find a more opti-
mized implementation. The solution presented in this
paper with new macro form definitions is straightfor-
ward and the main points of the implementation are
easy to understand.

Starting from a different background, the dynamic
reclassification or subclassification of objects as a
software modeling principle has also been considered
by Wieringa et al. [31]. They use a more general
order-sorted dynamic logic with equality in the con-
text of “class migration”. See also the extensive work
of Goguen and Meseguer (e.g. in [11]). The program-
ming problems presented in this paper can also be
solved using the simpler Description Logic approach.

6. Summary and Conclusion

The examples have demonstrated that the facilities of
Description Logics allow a system designer to tackle
programming problems that cannot easily be solved
with object-oriented programming alone. Neverthe-
less, the main thesis of this paper is that in order to
use Description Logics in practical applications, a
seamless integration with object-oriented system
development methodologies must be realized.
Extended generic functions and multimethods with
CLASSIC dispatch not only allow an incremental
way of software definition. In addition to this, they
can even been seen as a form of defining assertions
that enforce a safer system architecture also for the
procedural parts (the same holds for CLOS [18]).

The paper has presented an approach that demon-
strates how the integration of CLOS and CLASSIC
can be achieved. The notion of generic functions and
methods have been extended to define how CLAS-
SIC individuals can be incorporated into the dispatch
mechanism of CLOS. We have discussed a prototype
implementation that is easy to understand and allows
the integration to be tested in larger applications.
With the extended dispatch mechanism for CLASSIC
instances, a large system for generating interfaces has
been implemented [20], [21].
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