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L18: Speech synthesis (back end) 

• Articulatory synthesis 

• Formant synthesis 

• Concatenative synthesis (fixed inventory) 

• Unit-selection synthesis 

• HMM-based synthesis 

[This lecture is based on Schroeter, 2008, in Benesty et al., (Eds);  
Dutoit, 2008, in Benesty et al., (Eds) ] 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2 

Introduction 

• TTS front end 
– Back-ends and front-ends are fairly independent components in TTS 

• This gives the designer flexibility, having to worry only about the interface 

– A TTS back-end uses information provided by the front-end to 
synthesize speech using a specific method 

– Traditionally, two types of synthesis methods can be distinguished 

• Rule-based methods, such as articulatory and formant synthesis 

• Corpus-based methods, such as concatenative systems 

– This distinction is no longer clear, as there are hybrid methods that 
employ characteristics from both approaches 

 

– In this lecture, we will focus on corpus based methods, but will also 
provide an overview of rule-based methods 
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Rule-based methods 

• Articulatory synthesis 
– Articulatory synthesis uses mechanical and acoustic models of the 

speech apparatus to synthesize speech 

• Rather than describing the speech signal itself, these models employ 
control parameters that are meaningful for speech production 

• Parameters may include geometry and dynamics of the articulators (jaw, 
tongue, lips, velum) and the glottis, as well as forces and timings of all 
relevant groups of articulatory muscles 

– Therefore, these models can be as simple as the straight tube model 
we saw in an earlier lecture, or as intricate as solving the Navier-
Stokes PDE 
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[Schroeter, 2008, in Benesty et al., (Eds) ] 
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– Performance 

• Articulatory synthesis produces intelligible speech, but its output is far 
from natural sounding 

• The reason is that each of the various models needs to be extremely 
accurate in reproducing the characteristics of a given speaker 

– Most of these models, however, depend largely on expert guesses (rules) and 
not enough on observed data  

– Collecting articulatory data is an costly and fairly invasive process 

• Thus, while articulatory synthesis are appealing for scientific purposes and 
may one day provide completely “tunable” high-quality speech, their use 
remains fairly specialized 
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• Formant synthesis 
– In contrast, formant synthesis treats the vocal tract as a black-box, and 

aims to reproduce only its I/O characteristics 

• The goal is to approximate all VT resonances by a network of second-
order filter, either in series or in parallel 

– Series representation  

• Only requires frequency and bandwidth of each resonance plus a 
common gain 

• Approximates non-nasal sounds fairly well, but is not suited for nasals, 
fricatives or mixed-voicing sounds 

– Parallel representation 

• Can approximate any speech spectrum 

• However, it requires individual gains for each filter 

• In addition, they introduce spectral zeros between the resonances 
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[Schroeter, 2005 ] 
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– Characteristics 

• Formant synthesizers have moderate computational requirements, which 
make them practical for embedded applications  

• Voice quality can be controlled, but it is very difficult to match the voice of 
a target speaker 

• Intelligibility is generally very high 

• Formant synthesizers are highly appreciated in speech perception 
research, as they provide a high-level of control of the stimuli 

– The main problem of formant synthesizers is deriving rules  

• Rules are needed to specify timing of the source and the dynamic values 
of all filter parameters 

• This is difficult enough for simple words, let alone for complete utterances 

• These rules, however, may be derived through analysis-by-synthesis 
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Hybrid serial/parallel synthesizer of Klatt (19 parameters) 

[Schroeter, 2008, in Benesty et al., (Eds) ] 
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Concatenative speech synthesis 

• Basic concept 
– Concatenative synthesis techniques work by “gluing” together speech 

chunks that have been previously recorded 

• Concatenation is done to carefully to preserve the natural coarticulation, 
shimmer, jitter and inharmonic content of speech 

• Transients in speech are more important for intelligibility than stable 
segments, while modifying stable segments can easily affect naturalness 

• Types of concatenative synthesis 
– Concatenative synthesis with a fixed inventory 

• These approaches generally contain one sample for each unit, and 
perform prosodic modification to match the required prosody 

• As a result of processing, some signal degradation is unavoidable 

– Unit-selection-based synthesis 

• These approaches store several instances of each unit, thus improving the 
chances of finding a well-matched unit 
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• Concatenative synthesis with fixed inventory 
– These approaches generally use the diphone as the speech unit 

• A diphone starts in the middle of the stable part (if any) of a phone, and 
ends in the middle part of the next phone 

• Diphones reduce distortions since units are joined at their stable part 

• They also preserve coarticulation, since units contain the transition 
between phones 

• Inventory size 

– For a language with 𝑁 phonemes, up to 𝑁2 diphones may be needed 

• In practice, the number is somewhat smaller since not all diphones are 
encountered in natural languages 

– In the case of English, a typical diphone database contains 1,500 units 

• This represents about 3 minutes of speech ~ 5MB at 16kHz/16 bits 
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• Building the synthesizer 
– Set up a list of required diphones 

– Create a list of words such that each diphone appears at least once 
(two is better for security) 

– Exclude diphones in unfavorable positions (strongly stressed syllables 
or strongly reduced contexts) 

– Collect corpus as read by a professional speaker (avoid variations, even 
large pitch variations) 

– Identify the elected segments, manually with the help of visualization 
tools, or with segmentation algorithms 

– Collect segment waveforms into a diphone inventory  

 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13 

• Running the synthesizer 
– Receive phonetic input (phonemes, duration, pitch) from front end 

– Perform prosodic modification 

• Diphones in the inventory will rarely match specs from the front end 

– Smooth individual pairs of successive diphones 

• The end of one diphone and beginning of the next will not match in 
amplitude or in spectral envelope 
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[Schroeter, 2008, in Benesty et al., (Eds) ] 
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• Prosody modification 
– Amplitude modification is straightforward 

– Pitch or duration are non trivial: slowing down playback to increase 
duration will simultaneously decrease pitch 

– Two types of prosody modification are common 

• Time-domain (TD-PSOLA) 

• Frequency domain (HNM) 

 

– These techniques will be discussed in the next lecture 
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[Schroeter, 2008, in Benesty et al., (Eds) ] 
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• Smoothing 
– Concatenating units from different words or phonetic contexts is not 

straightforward, and leads to audible clicks if not done carefully 

– This is due to at least three types of mismatches between units: 
phase, pitch, and spectral envelope mismatches 

• Phase mismatches 
– Occurs when OLA frames are not centered at the same place 

– Several solutions are possible 

• Accurately pitch-mark all boundary frames  (as needed with TD-PSOLA) 

• Adjust the position of OLA frames to maximize cross-correlation (WSOLA) 

• Measure and correct phase mismatches (MBROLA, HNS) 
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• Pitch mismatches 
– Occurs when overlapped frames have very different 𝐹0 

– This issue is difficult to resolve 

• May require recruiting a professional speaker to read the corpus with a 
fairly constant pitch 

• Alternatively, it may be possible to redistribute the large pitch difference 
across multiple frames 

• Spectral envelope mismatch 
– Occurs whenever overlapped frames have been extracted from rather 

different contexts 

– Also difficult to resolve; potential partial solutions may be 

• Linearly interpolating the two spectral envelopes (HNS does this)  

• Adjusting the unit boundaries on the fly to find a smoother join 
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• Performance 
– Results from concatenative synthesis with a fixed inventory are clearly 

intelligible 

– Unfortunately, their speech output is far from natural sounding 

– This issue can be traced back to two causes 

• Storing only one units biases the recording stage towards over-articulated 
speech, one that fit in most contexts and improve intelligibility 

• Signal processing tricks are needed to adjust prosody, and these invariably 
cause some degree of signal degradation 
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Unit-selection-based synthesis 

• Basic idea 
– In unit-selection, one stores several instances of each unit, and selects 

(at run time) which instance to use 

– For every target unit 𝑡𝑖  required (as specified by the front-end) 

• The selection algorithm proposes a list of candidate units 

– Each unit has a different context (generally not exactly that of 𝑡𝑖) 

• The final choice is based on minimizing the sum of two cost functions 

– A target cost 𝐶𝑡 𝑡𝑖 , 𝑢𝑖 , which estimates differences between 𝑡𝑖  and 𝑢𝑖 

– A concatenation cost 𝑐𝑐 𝑢𝑖−1, 𝑢𝑖 , which estimates the quality of the  
joint between candidate units 𝑢𝑖−1 and 𝑢𝑖 

[Schroeter, 2008, in Benesty et al., (Eds) ] 
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– The best sequence of 𝑛 units 𝑢1
𝑛 for a given sequence of 𝑛 targets 𝑡1

𝑛 is 
chosen so as to minimize the total cost 

𝐶 𝑡1
𝑛, 𝑢1
𝑛 = 𝐶𝑡 𝑡𝑖 , 𝑢𝑖

𝑛

𝑖=1
+ 𝐶𝑐 𝑢𝑖−1, 𝑢𝑖

𝑛

𝑖=2
 

+𝐶𝑐 𝑆, 𝑢1 + 𝐶
𝑐 𝑢𝑛, 𝑆  

• where 𝑆 denotes the target for a silence, and the optimal sequence is 
found through a Viterbi search 

– Prosodic modification is not needed, unless good candidate units 
cannot be found with the correct pitch and duration 

– Some smoothing can be applied since candidate units generally do not 
concatenate smoothly 

• Challenges in unit-selection synthesis 
– Efficient target and concatenation costs  

– Definition of optimal speech corpus 

– Efficient search algorithms 
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• Target costs 
– The optimal target cost should estimate the perceptual distance 

between the candidate unit 𝑢𝑖  and the target unit 𝑡𝑖  

• Each candidate unit is characterized by a feature vector, and  

• feature values for the target are predicted by the front-end  

– The target cost is the weighted sum of sub-costs 

𝐶𝑡 𝑡𝑖 , 𝑢𝑖 = 𝑤𝑗
𝑡𝐶𝑗
𝑡 𝑡𝑖 , 𝑢𝑖

𝑝

𝑗=1
 

• Feature weights 𝑤𝑗
𝑡 are trained during construction of each TTS  voice to 

optimize the mapping from feature space to perceptual space 

– The feature vector contains a variety of information 

• Symbolic/phonological features (phonetic context, stress) 

• Numerical features (pitch, duration) 
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• Concatenation cost 
– The ideal concatenation cost should reflect the perceived discontinuity 

between successive units 

– As with the target cost, the concatenation cost is a weighted sum 

𝐶𝑐 𝑢𝑖−1, 𝑢𝑖 = 𝑤𝑗
𝑐𝐶𝑗
𝑐 𝑢𝑖−1, 𝑢𝑖

𝑗=1𝑞
 

– Features for the subcosts 𝐶𝑗
𝑐 𝑢𝑖−1, 𝑢𝑖  are based on spectral 

representations (formant values, LP spectra, LSFs, MFCCs…) 

– Distance measures include Euclidean distance, weighted Euclidean 
distance (shown in the equation), Mahalanobis distance 

– Concatenation costs are assigned to zero for originally consecutive 
units in the speech corpus 

• This allows the synthesizer to use the longest sequence of naturally 
occurring units in the corpus 

• The challenge is to make sure this does not happen at the expense of 
intelligibility (if as a result the target costs become high) 
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• Speech corpus 
– Speech obeys some sort of Zipf’s law 

• In a corpus of natural language utterances, the frequency of any word is 
roughly proportional to its rank in the frequency table 

• In other words, speech is composed of a large number of rare events 

• The order for a diphone database to cover a randomly selected sentence 
in English with 𝑝 = 0.75 is estimated to be around 150,000 (5 hours) 

• Most commercial systems to date use about 1-10h (150-1500MB) and 
achieve high quality most of the time 

– One of the major problems with unit selection is data sparsity 

• For this reason, it is common to include a set of safety units, generally a 
complete set of diphones 

• This provides  a fall-back strategy and guarantees that performance is no 
worse than that of fixed inventory systems 

 

– For limited-domain TTS, unit selection is currently the best option 
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HMM-based synthesis 

• HMM-based synthesis borrows techniques from ASR 
– HMM are used as pattern generators rather than as recognizers 

– HMMs are trained with spectral vectors as well as with phonetic, 
stress and syntactic information (to be provided by the front-end) 

– By using parameter tying (context clustering trees), HMM synthesis 
can generalize to unseen data (something unit-selection cannot do) 

• Each unit (a phoneme) is modeled by a three-state HMM 
– Each state emits spectral feature vectors (MFCCs) according to a GMM 

associated with the leaves of a context clustering tree 

– Pitch and duration are also generated by the HMM through separate 
clustering trees and GMMs  
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[Zen, Tokuda and Black, Speech Comm. 2009] 
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• Generating speech 
– The front-end provides a target sequence of phonemes, augmented 

with stress and syntactic information 

– A sentence HMM is formed by concatenating context-dependent 
phoneme HMMs 

– State durations of the phoneme HMMs are determined so as to 
maximize their output probability given phonetic and syntactic context 

– Spectral parameters are found in a slightly different fashion 

• Spectral vectors produced by the HMM states contain static (MFCC) and 
dynamic (Δ, Δ2) features 

• However, the ML solution (i.e., the mean of each Gaussian) does not 
guarantee that the dynamic constraints will be met 

• Remarkably, a closed form solution to this problem (maximizing ML 
subject to dynamic constraints) is available and leads to what is known as 
a trajectory HMM 
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• Performance 
– Current HMM-based synthesizers produce speech that is smooth but 

of poor voice quality (depending on the excitation model used) 

– HMM-synthesis, however, has several advantages over unit selection 

• More flexibility, due to context clustering 

• Better coverage of the acoustic space, due to the HMM/GMMs 

• Fairly small footprint (1MB) 

• When combined with adaptation techniques, new voices can be 
generated with very small training sets (5-10 min) 

• Also provides a natural framework for voice conversion and modification 
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ex18p1.m 
Demonstrate a simple MATLAB-based TTS system for “Genglish” 

(available at http://tcts.fpms.ac.be/projects/ttsbox)  

http://tcts.fpms.ac.be/projects/ttsbox
http://tcts.fpms.ac.be/projects/ttsbox

