
Methodology report

FOA-R--96-00386-505--SE
April 1997

ISSN 1104-9154

Div. of Command and Control Warfare Technology
SE-581 11 LINKÖPING, SWEDEN

Alexander Wahlstedt, Jesper Fredriksson,
Karsten Jöred and Per Svensson

Submarine Tracking by
Means of Passive Sonobuoys

I. Design of a simulation model and
system

2

Distribution: FMV:Span, FMV:MML, KTH/NADA

FOA: MTC/OA, 64, 65, 73

Alexander Wahlstedt, Jesper Fredriksson,
Karsten Jöred and Per Svensson

Submarine Tracking by
Means of Passive

Sonobuoys

I. Design of a simulation model and system

FOA-R--96-00386-505--SE
April 1997

ISSN 1104-9154

Defence Research Establishment
Division of Command and Control Warfare Technology
P. O. Box 1165
SE-581 11 LINKÖPING
SWEDEN

0

Dokumentets utgivare Dokumentnamn och dokumentbeteckning

Försvarets Forskningsanstalt FOA-R--96-00386-505--SE

Avdelningen för Ledningssystemteknik Dokumentets datum Projektnummer

Box 1165 April 1997 E 1434

581 11 LINKÖPING Projektnamn (ev förkortat)

Datafusion av data från undervattenssensorer

Upphovsman(män) Uppdragsgivare

Alexander Wahlstedt, Jesper Fredriksson,
Karsten Jöred och Per Svensson

FM

Projektansvarig

Per Svensson

Fackansvarig

Per Svensson

Dokumentets titel

Följning av ubåt med hjälp av passiva hydrofonbojar
I. Konstruktion av en simuleringsmodell och ett spelprogram
Denna rapport innehåller lösningsförslag till delar av problemet att simulera upptäckt och följning
av en fientlig ubåt med hjälp av sonobojar i en grund skärgårdsmiljö. De metoder som används
för att beräkna ubåtens position - hyperboliska positionsbestämningsmetoden och sonarekvation-
en - finns beskrivna i denna rapport, såväl som några alternativa metoder. Vidare innehåller rap-
porten en beskrivning av simuleringssystemets målsättning. Delar av simuleringsprogrammet - i
huvudsak baneditor, bojutläggning och positionsbestämning - har hittills implementerats i det ob-
jektorienterade språket Eiffel. Baneditorn PathEd används till att interaktivt definiera ubåtens ba-
na. Bojutläggning och positionsbestämning görs i grafisk dialog med programmet SubTrack,
version 1. Systemarkitekturen för PathEd och SubTrack version 1 finns beskriven i rapporten.

Nyckelord

Ubåtsdetektion, hydrofonbojar, hyperboliska positionsbestämningsmetoden, sonarekvationen,
datafusion
Övriga bibliografiska uppgifter Språk

Engelska

ISSN 1104-9154 ISBN

Omfång Pris

47 sidor

() Begränsad distribution

Distributör (om annan än ovan)

1

Issuing organization Document name and doc.ref.no.

Defence Research Establishment FOA-R--96-00386-505--SE

Division of Command and Control Date of issue Project No.

Warfare Technology April 1997 E 1434

P.O. Box 1165 Project name (abbrev. if necessary)

SE-581 11 LINKÖPING SWEDEN Fusion of underwater sensor data

Author(s) Initiator or sponsoring organization

Kristian Johansson and Per Svensson FM

Project manager

Per Svensson

Scient. and techn. responsible

Per Svensson

Document title

Submarine Tracking by Means of Passive Sonobuoys.
I. Design of a simulation model and system

Abstract
This report treats part of the problem of optimal placement of sonobuoys with the purpose of
detecting and tracking hostile submarines in a shallow water, archipelagic scenario. The methods
- the Hyperbolic Fix Method and the Sonar Equation - used to estimate the position of a subma-
rine and its stochastic variance using (simulated) passive sonobuoys are described. Finally, the
function and architecture of the currently completed programs PathEd and SubTrack version 1,
are described.

Key words

Submarine detection, Sonobuoys, Hyperbolic Fix Method, Sonar equation, Data fusion

Further bibliographic information Language

English

ISSN 1104-9154 ISBN

Pages Price

47 pages

() restricted distribution

2

1

2

3

TABLE OF CONTENTS

1.0 Introduction..5

2.0 Summary..5

3.0 Overview of Sonobuoy Use ...6

4.0 The Goal ..7
4.1 Optimization Algorithm...7

4.2 Relevance of the Model ...8

5.0 Simulation Model Version 1 ..9
5.1 Submarine ..9

5.2 Sonobuoys..10

6.0 Position Estimating Methods ...10
6.1 The Hyperbolic Fix Method ..10

6.2 The Doppler Fix Method ...13

6.3 The Cross Bearing Method ..15

7.0 Uncertainty Ellipse Computation...15

8.0 The Sonar Equation ...17
8.1 Derivation of the Sonar Equation ..19

8.2 Usage of the Sonar Equation in the Simulation Model ...20

8.3 Transmission Loss ...21
8.3.1 Spreading...21
8.3.2 Absorption ...22

9.0 The Path Editor ..23
9.1 Functionality ..23

9.2 Architecture ...24
9.2.1 The root_cluster cluster ...24
9.2.2 The widget cluster ...26
9.2.3 The command cluster ..26
9.2.4 The path_classes cluster ..26

10.0 The Sonobuoy Tracking Simulator version 1 ..27
10.1 Functionality ..27

10.2 Contents ...27

10.3 Basic Design ..27

10.4 Architecture ...28
10.4.1 The root_cluster cluster ...28
10.4.2 The sim_management cluster ..29
10.4.3 The target cluster ...29
10.4.4 The buoy_management cluster..29
10.4.5 The measurement cluster...30
10.4.6 The app_commands cluster ...30
10.4.7 The app_widgets cluster ..32

10.5 External Code ..32
10.5.1 The modules ..32

10.6 Comments to the diagrams ..33

10.7 Known Bugs ..34

4

11.0 Future work..37

12.0 References..38

Appendix A. On the multivariate normal distribution and error ellipses.39
A.1 The normal distribution ...39

A.2 Multivariate normal distributions ..39

A.3 The covariance matrix C..40

A.4 The mapping X-->Y...40

A.5 Example of corresponding values of R and probability levels ..41

A.6 Error propagation...41

A.7 The error ellipse equation ..43

Appendix B. Size and orientation of error ellipse. ..45
B.1 Introduction..45

B.2 Connection between the matrix K and the ellipse ...45

B.2.1 Determination of length and direction of the major semiaxis ...46
B.2.1.1 Length of the major semiaxis ..46
B.2.1.2 The direction of the major semiaxis ..46

5

1.0 Introduction

This report is an extended and edited version of Alexander Wahlstedt’s Master of Science
thesis, which was written for the Department of Numerical Analysis and Computing Sci-
ence (NADA), KTH, Stockholm in March, 1996. Thesis supervisors were Per Svensson,
Director of Research in Computer Science at FOA and Stefan Arnborg, Professor in Com-
puter Science at NADA.

Per Svensson has been project leader and initiator of the study which deals with the opti-
mal placement of passive sonobuoys in order to detect and track a hostile submarine. The
study requires the development of a simulation model and system capable of simulating a
submarine hunt using passive sonobuoys and of computing their optimal placement.

During the spring and summer of 1996, continued development of the simulation system
took place. In this phase, the design and implementation of a first version of the system
was completed. Involved in this work were initially Karsten Jöred and later Göran Neider,
FOA. During the summer months, Jesper Fredriksson, an M Sc student in Engineering
Physics at KTH, completed most of the implementation work of the first version of the
system, called SubTrack Version 1. This version simulates a submarine moving in a two-
dimensional area, and by use of simulated sonobuoys, estimates its position.

This report contains:

• a statement of the final goal of the study

• a study of methods and mathematical algorithms that could be used to (1) estimate the
position of the submarine and (2) calculate the signal-to-noise ratio at the positions of
the sonobuoys

• architecture and overall design of the Path Editor, used to interactively create the path
of the target

• architecture and overall design of SubTrack version 1.

2.0 Summary

The final goal of the study is to determine possible benefits (if any) of using reactive plan-
ning and multi-sensor data fusion in the problem of determining and tracking the position
of a submarine in archipelagic anti-submarine warfare (AASW). A computer program has
been developed, which can simulate a submarine hunt using passive sonobuoys. The final
version of the model is planned to include a mathematical optimization algorithm which
calculates the optimal positions of the sonobuoys.

The first version of this program simulates a submarine that follows a predefined polygo-
nal path contained in a two-dimensional gaming area. During the game, the user places
sonobuoys at arbitrary locations within the area. The information acquired from the
sonobuoys is used to calculate the position of the sub. This is done by use of the Hyper-

6

bolic Fix Method, and the signal-to-noise ratios at the positions of the sonobuoys is calcu-
lated by use of the Sonar Equation. The sonobuoy-position uncertainty and the sonobuoy-
information uncertainty is taken into account, thus the area of an ellipse depicts the proba-
ble location of the sub.

Ongoing work includes development of a mathematical optimization algorithm that esti-
mates the optimal positions of the sonobuoys. This requires that a method for predicting
the (near) future position of the target is also developed.

3.0 Overview of Sonobuoy Use

The term sonobuoy [1] refers to a microphone that is deployed from a platform to become
submerged in the water and that provides information about the local sound amplitude, as
a function of frequency and time. In AASW, the buoys are usually anchored on the sea-
floor, whereas in deep ocean ASW, the buoys are free-floating. Sonobuoys are used to
estimate and track the position of underwater objects that emit sounds, in this case subma-
rines. The platforms that carry this equipment are usually helicopters or airplanes, but they
can also be surface ships. Here, we have studied passive sonobuoys; an advantage of these
compared to active sonobuoys, which emit a sound signal, is that they do not reveal their
presence. On the other hand, to measure the position of a target using passive buoys, one
needs at least three buoys which hear the target simultaneously, and the position must be
calculated from these signals using some kind of data fusion algorithm.

A sonobuoy registers not only the sound from a possible target, but all sounds above a cer-
tain level. Other sound sources could, for example, be boats, animals, waves or wind. The
sound from such sources is called background noise and makes the signal of interest
uncertain and hard to distinguish. To reduce background noise, the sonobuoy system needs
so-called integration time. Up to a limit, the longer the integration time, the more accurate
is the information from the system. However, there is always a possibility that the
sonobuoy system will make a wrong decision; it may decide that there is a signal though
there is none (false alarm), or it may decide that there is no signal when in fact there is one
(no-detection possibility). Distinguishing the signal of interest from background noise has
become increasingly difficult in recent years due to development of extremely quiet subs.
In addition to this, in some environmental conditions a submarine could hide between lay-
ers of different temperatures or different salt concentrations which greatly influence the
sound propagation and make the target even harder to detect. In a shallow-water archipel-
ago, these problems are further compounded by strong reverberation effects, caused by
sound reflection from the sea-floor, the surface, and islands, which leads to subsequent
interference phenomena.

It may be difficult to decide where to horizontally and vertically place the sonobuoys
because the volume where the sub could be located is usually far too large to be com-
pletely covered by the detection range of the buoys. In addition to this, the information
provided by a single sonobuoy is - as mentioned above - not sufficient to estimate the
position of a possible sub. It should be made clear that a single buoy cannot even deter-

7

mine a certain distance range for the sub. The reasons for this are (1) that the source level
is usually not known and (2) that the sound propagation circumstances could significantly
differ between positions that may be located only some hundred meters apart. For exam-
ple, in good conditions, a 100 dB source level could be heard over a distance of several
kilometers while the same source level may only be heard over a distance of a few hun-
dred meters at a position where the conditions are poor.

The placement problem is a matter of timing as well. To have a chance to detect a subma-
rine, the buoys must be dropped into the water soon after the first alarm of the presence of
a possible sub. This, together with the fact that only a limited number of sonobuoys are
available, suggests that the commander should devise and use a sonobuoy placement stra-
tegy. Other timing factors are the deployment time (the amount of time required to deploy
and activate a buoy at a certain position) and the lifetime of a particular sonobuoy.

4.0 The Goal

The final goal of this study is to determine the applicability of reactive planning and multi-
sensor data fusion in a Swedish archipelagic anti-submarine warfare scenario (AASW).
Reactive planning means in this case that recent sensor information is used in the place-
ment of further sonobuoys, and multi-sensor data fusion means that information from se-
veral buoys is combined in such a way that the combined information is more specific and
therefore more useful than the unprocessed collection of separate pieces of sonobuoy
information.

The study is intended to provide at least partial answers to the following questions:

1. Can the application of reactive planning and multi sensor data fusion contribute in solv-
ing the problem of submarine detection and tracking in shallow water, archipelagic sce-
narios?

2. If the study supports this concept, can we demonstrate convincingly and quantitatively
what difference it could make, including showing that these methods can outperform a
human decision maker?

4.1 Optimization Algorithm
To achieve this goal FOA has developed an algorithm that computes the optimal place-
ment of the sonobuoys. By optimal we mean that for a given number of available buoys
and a given minimum tracking accuracy, tracking time is as long as possible. The tracking
problem would be trivial if one had sonobuoys enough to cover the entire possible area
(even volume in cases where a two-dimensional view of the problem is inadequate) with a
sufficiently dense grid of sensors, but granted that there are too few sonobuoys to do that,
when and where should they be placed ? The answer is not necessarily to drop all buoys at
one time; a better way would probably be to drop some of them first, then wait a while to
be able to take into consideration the information received from the first drop, then apply
that information to the placement of another (batch of) sonobuoy(s), and so on. Such an

8

approach is often called adaptive planning.

This optimization algorithm is part of a computer model, capable of simulating sonobuoys
in a search for a submarine. The purpose is not to build a complete model which can
immediately be used for real situations. Instead, the model is to be used for deciding if
there are good reasons to develop a complete system, or if humans make more competent
decisions than the optimization algorithm can make. The answer to this question might be
found by simulating several submarine-hunt situations and comparing the results of
human decisions with those of the optimization algorithm. If the conclusion is that the
computer makes better decisions, then one should continue by developing a more realistic
model. If the case is the opposite, the model might still be used to train sonobuoy opera-
tors. In the future, the model might also be used to train a submarine captain. For this, one
would replace the fixed submarine path in Version 1 by a submarine navigation simulator.

As mentioned above, the first model is in many ways simplified as compared to a real sit-
uation. However, our hypothesis is that if an optimization approach works in an idealized
model, then it is not unlikely that it could be made to work in a more complex and realistic
model as well.

4.2 Relevance of the Model
To make the model relevant to the solution of the stated practical problem, it is necessary
that realistic values for problem parameters be used. Such parameters include the follow-
ing: the minimum time from first detection to first effective buoy deployment; the sensor
detection ranges; the relation between speed and sound emission from the sub; the mini-
mum signal integration time to achieve acceptable signal-to-noise ratios; the uncertainty
values for buoy locations and time differences of arrivals; etc.

It is also important that the goal of having a passive, non-detectable system can be satis-
fied (at least to a working degree) and that the principle can still be used in disturbed con-
ditions such as presence of intense surface traffic, multiple targets, bad weather
conditions, etc.

In the model, the submarine’s path is predefined, which means that the sub is modelled
either as if it does not know that it is hunted, or at least, does not make any reactive
maneuvers to avoid being followed. The question whether the sub could make use of
information about the position of sonobuoys to plan effective evasive maneuvers is
beyond the scope of this report.

This model does not attempt to attack all these problems, nor are we proposing or analy-
sing a design for a future underwater surveillance system. Our goal is the more modest one
to clarify, or at least illustrate, the possible effects of using multisensor data fusion and
optimal sensor allocation in a simplified gaming scenario: a single target which moves
along a predetermined path is to be followed as long as possible, given a limited number
of available sonobuoys and prespecified tracking performance, i.e., a minimum position
estimation error and a threshold tracking probability are given gaming conditions.

9

An open question to us is whether future submarines will be at all detectable by passive
sonobuoys even within the short ranges we envision, a few hundred meters.

Apart from the issue of detectability, even with current submarine designs there is the fol-
lowing technical flaw in the concept: the lifetime of existing sonobuoys is limited because
(1) the energy storage capacity versus consumption is low and (2) sonobuoys are preset to
sink to the ocean floor after a predefined time, maximum a few hours. In AASW, this is
not an ideal situation since the sub may stay silent and lay still on the seafloor for several
days if necessary. Thus, with current sonobuoy design, the operator has to expend, say,
three buoys every third hour, just to keep the silent submarine from escaping.

5.0 Simulation Model Version 1

Version 1 of the simulation model is designed to simulate a moving submarine in a two-
dimensional, rectangular area. Using information from simulated passive sonobuoys, it
estimates the probable position of the sub and represents this estimate conceptually and
visually by an elliptical area. The Hyperbolic Fix Method (See Section 6.1 on page 10) is
used for estimating the position of the sub, and the Sonar Equation (See Section 8.0 on
page 17) is used to estimate the signal-to-noise ratio at the positions of the sonobuoys. The
sound will reach the sonobuoys by a straight-line route, in other words, neither sound
refraction nor reflections from features in the environment will be considered. Although
this is a strong simplification of real conditions, we think it can be defended not only by
referring to the model’s limited ambitions, but also to the fact that we study a concept
where the distance between target and sensor is typically much shorter than is usually
assumed in sonar detection models.

In the model, time is discretized. For each time step the signal-to-noise ratio at the loca-
tions of the sonobuoys is computed; if the ratio is considered to be sufficiently high, and if
the integration time is reached, the information from that sonobuoy is taken into account.
Next, the time differences of arrivals (TDOA) for the sound reaching the sonobuoys is
measured. Using this information, the most likely position together with its statistical error
(its variance) will be estimated.

5.1 Submarine
The sub follows a predefined polygonal path (cf. Section 4.2 on page 8) with a predefined
speed associated with each path segment. There is also an option to pause for a predefined
time interval at a given point. The path of the sub will usually start and end at the border of
the gaming area. Entry into the area is followed by a first detection which is being
announced to the decision maker, thereby starting up the game.

The sound level of the sub is dependent on its speed (Figure 1), and the level decreases,
as described by the Sonar Equation, on its way to the sonobuoys (Figure 2).

10

5.2 Sonobuoys
The user decides the arbitrary locations of the sonobuoys during run-time. Sonobuoys can
not be retrieved for reuse during a game and only a limited number, which is set by the
user, of buoys are available. The integration time is modelled by disregarding the informa-
tion from a particular buoy during a certain number of time steps, and the signal level must
be above a given fraction of the noise level to be detected (Figure 2). The noise level will
be set by the game leader. The deployment time is modelled as the sum of the activation
time and the delivery time. The activation time is a constant and the delivery time is
dependent on the distance between the current position of the buoy delivery platform and
the intended position for the sonobuoy. (Figure 3).

6.0 Position Estimating Methods

In investigating methods for position estimation, we considered a few different
approaches, which we discussed with experts in the field. We concluded that the Hyper-
bolic Fix Method would best fit our study. This and two other conceivable methods are
explained in the following sections.

6.1 The Hyperbolic Fix Method
The Hyperbolic Fix Method is a method commonly used to calculate the positions of

sound level

speed

FIGURE 1. The sound level of the sub is
dependent on its speed.

Noise Level

received signal

Distance

FIGURE 2. To be detected, a signal
received by a sonar must be above a certain
fraction of the noise level.

Deployment time

Distance

Source Level

Activation time

FIGURE 3. Deployment time = Delivery
time + Activation time

11

underwater targets. It is based on measurements of the time differences between arrivals of
the sound travelling from the target to each sonobuoy. This time difference can be esti-
mated by computing the time difference which maximizes the cross-correlation between a
time-domain sound pattern window for each pair of buoys. Using this, a system of equa-
tions can be set up whose solution is an estimate of the unknown position of the sub. To
use this method, it is necessary that at least three sonobuoys hear the sub simultaneously.

When exactly three sonobuoys hear the sub, the target position can be found by solving a
non-linear system of equations. This system of equations may be derived from the obser-
vation that to each pair of buoys corresponds a half-hyperbolic point set containing the
position of the target (since a half-hyperbola is precisely the set of points whose distance
to two given points have a given, constant signed difference). The system of equations
expresses the requirement that the target position must coincide with the intersection of
any pair of these half-hyperbolas.

When more than three sonobuoys hear the sub, a non-linear, overdetermined system of n
equations can be formed. This system can be transformed into a linear system of n equa-
tions, plus one equation of the original type [2]. The linear system can be solved using a
standard least squares method.

Figure 4 below illustrates the problem setup.

FIGURE 4. Problem setup

The problem setup will be the following:
The sonobuoys are numbered as i=1,2,...n.

= The position of the i:th sonobuoy

= The time of arrival for the sound reaching the i:th sonobuoy

= The unknown position of the target

xi yi,()

ti

x0 y0,()

X

Sonobuoy

xi yi,()

Target

x0 y0,()

Y

12

= The unknown time when the sound was transmitted

= The speed of sound

By expressing the distances in two ways, the following system of equations is obtained:

(EQ 1)

By subtracting the sum of all equations from all the others, a linear system results. By
choosing as origin of the coordinate system the arithmetical mean of all sonobuoy posi-
tions, the equations are simplified. Below all coordinates are assumed to be expressed in
this average system, as it will henceforth be called. A least-squares solution to this system
is (see [2]):

 (EQ 2)

where

The (n x 3) -matrix A and the (n x 1) -column vector b are defined by:

Note the obvious fact that the average system will change whenever a buoy is added to or
removed from the system of equations.

t0

c

x1 x0–()2
y1 y0–()2

+ c
2

t1 t0–()2
=

.

.

.

xn x0–()2
yn y0–()2

+ c
2

tn t0–()2
=

x
1
2
--- A

T
A()

1–
A

T
b⋅()⋅ ⋅=

x

x0

y0

ct0

=

A

x1 y1 c t1⋅()–

x2 y2 c t2⋅()–

...

xn yn c tn⋅()–

= b

x1
2

y1
2

c
2
t1
2

–+

x2
2

y2
2

c
2
t2
2

–+

...

xn
2

yn
2

c
2
tn
2

–+

=

13

6.2 The Doppler Fix Method
Another method for estimating the position of the target is the Doppler Fix Method. As the
name reveals, it is based on the doppler effect. Figure 5 depicts the measurement situation.

What frequency will the buoy register?

Assume that a wave crest is transmitted from the target at time t=0. This wave crest will
reach the buoy at time:

 (EQ 3)

T seconds later, the next wave crest is transmitted. It will reach the buoy at time:

y

x

= target’s position at t=0

= buoy position

= target’s x-velocity

= target’s y-velocity

= target’s position at t=T

= distance between target and buoy at t=0

= distance between target and buoy at t=T

= frequency of transmitted sound

= frequency of received sound

= speed of sound

x0 y0(,)

x1 y1(,)

x·

y·

x0 x· T⋅+ y0 y· T⋅+(,)

r0

r1

f

f´

c

x0 y0(,)
x0 x· T⋅+ y0 y· T⋅+(,)

r0 r1

x1 y1(,)

FIGURE 5. The Doppler Fix Method

t1

r0

c
----=

14

 (EQ 4)

(assuming that the target’s velocity vector is constant during the period time).

The period time registered by the buoy will therefore be:

(EQ 5)

which yields the frequency:

(EQ 6)

where

(EQ 7)

and

(EQ 8)

There are five unknown variables, , which means that five buoys must hear

the target simultaneously. A system of equations can then be stated, one equation of the
same kind as EQ 7 for each buoy.

The problem with using the Doppler Fix Method in this context is that the frequency dif-
ferences are too small to be reliably detected. The following example illustrates this:

v = 3 m/s
f = 100 Hz
c = 1500 m/s

Assume, for highest possible doppler shift, that the target is moving directly towards the
buoy. This gives:

(EQ 9)

The difference between f and f’ is so small that it will drown in measurement errors.
Therefore, the Doppler Fix Method cannot be used for passive sonobuoys and slow, low-
frequency noise targets. For active sonobuoys, on the other hand, it is quite possible to use
it.

t2

r1

c
---- T+=

T ′ t2 t1–=

f′ 1
t2 t1–

1

T
r1 r0–

c
---------------+

-------------------------= =

r0 x1 x0–()2
y1 y0–()2

+=

r1 x1 x0 x· T⋅+()–()2
y1 y0 y· T⋅+()–()2

+=

x0 y0 x· y f,·, , ,

f′ 1

T
v T⋅

c
----------+

1

T 1
v
c
--+

f

1
v
c
--+

f

1
1

500
---------+

------------------ f≈= = = =

15

6.3 The Cross Bearing Method
This technique is based on the combination of two or more direction, or bearing, measure-
ments. Each bearing measurement can be accomplished by a cluster of two (or preferably
three) passive sonobuoys which are placed relatively close to each other. The phase differ-
ence between the received signals is measured. From that information, the bearing to the
target can be calculated. By combining bearing information from at least two such clus-
ters, the position of the sub can be estimated. Thus, the computations are separated into
two phases with different objectives, in contrast to the hyperbolic fix case. Used in a con-
figuration where the sensors in a cluster are rigidly fixed with respect to each other, this
technique has been reported to give good results, but such is not the case in our scenario.
We have not analysed further the usefulness of this technique for our tracking problem.

7.0 Uncertainty Ellipse Computation

The least squares solution for the position of the target provides an estimate of the mean
value of the statistical distribution for the submarine’s position. To model also the vari-
ance, or mean square error, of the position, the uncertainty for (1) the position of the
sonobuoys and (2) the time differences of arrivals need to be represented as stochastic
variables. The uncertainty is modelled by assuming that these variables are Gaussian-dis-
tributed with zero mean:

 = the ith buoy’s x-position

= the ith buoy’s y-position

= the arrival time of the transient to the ith buoy

The positions of the sonobuoys and the arrival times are now considered as normal distrib-
uted stochastic variables. From this follows that , the position of the target, is a

two-dimensional stochastic variable, whose distribution is approximately normal (for a
detailed derivation, see Appendix A):

where

xi xi where dxi N 0 s1
2,()∈d+

yi yi where dyi N 0 s1
2,()∈d+

ti ti where dti N 0 s2
2,()∈d+

x
0

y
0

,()

f z() 1

2π detK
-----------------------e

0,5zTK 1– z–
=

z x y
T

=

K
σ11

2 σ12

σ21 σ22
2

=

16

= the variance for

= the covariance between and

= the variance for

 and can be approximately computed through their Taylor expansions:

 where are given from EQ 2. (EQ 10)

The position of the submarine will be depicted by an ellipse whose centre will be the com-

puted position . The equation of the ellipse is:

This particular ellipse is chosen because there is no smaller area that contains the target
with the same (or greater) probability. From the normal distribution assumption follows
that this target containment probability p equals:

(EQ 11)

or equivalently:

The half-axes of the ellipse are (see Appendix B):

where are the eigenvalues of the matrix .

When the rotation angle relative to the x-axis is calculated from:

(EQ 12)

To compute the covariance matrix K from measured data, we use the relation:

(EQ 13)

σ11
2

dx0

σ12 σ21= dx0 dy0

σ22
2

dy0

dx0 dy0

dx0 x1∂
∂x0 dx1 …

tn∂
∂x0dtn+ +≈

dy0 x1∂
∂y0 dx1 …

tn∂
∂y0dtn+ +≈

x0 and y0

x0 y0,() dx0 dy0,()K
1–

dx0 dy0,()T
R

2<

p f z() zd

ellipse

∫ 1 e

R2

2
-----–

–= =

R 2 1 p–()log–=

a R λ1 and b=R λ2 =

λ1,λ2 K

σ
12

0≠ α

αtan
λ

1
σ

1
–

σ
12

-----------------=

K G C G
T⋅ ⋅=

17

Here C is the known diagonal covariance matrix for , and G is the Jacobian

matrix of (EQ 11), which is computed using formulae given in reference [2] (although
unfortunately there are misprints in some of the equations).

8.0 The Sonar Equation

The Sonar Equation [3,4] states the relationship between the emitted sound level, the
received sound level, the environment conditions, and the sonar equipment. It has been
used for calculations of the maximum range of sonar equipment since the World War II,
and has thus been well tested in a large number of real situations. As will become obvious
shortly, the sonar equation can only provide a rough estimate of the sonar range unless a
number of environment dependent parameters can be determined with required accuracy.
This is not always feasible.

In the simulation model, it is used to calculate the signal-to-noise ratio at the positions of
the different sonobuoys. Information for a particular sonobuoy will be taken into account
if the signal level is high enough compared to the background noise at its position. The
equation is:

(EQ 14)

where

= Source Level. This is the sound level of the source, for example from a sub-
marine.
= Transmission Loss. This is the loss of the sound level while it travels from
the source to the sonobuoy.
= Noise Level. This is the level of the background noise at the position of the
sonobuoy.
= Directivity Index. This denotes the noise reduction capabilities of a particu-
lar sonobuoy.
= Detection Level. This is the minimum level of the sound at the buoy posi-
tion required to detect the sub.

The table below includes the definitions of each parameter.

dx dy, dt(,)

SL TL–() NL DI–()– DT=

SL

TL

NL

DI

DT

18

The sound intensity is defined by power per unit area, that is:

(EQ 15)

The sonar parameters are expressed in decibels, which is convenient when the intensity

fluctuations are high. The number of decibels for a sound with intensity I is ,

where is the reference intensity.

DT stands for detection threshold, given as a signal-to-noise ratio at the position of the
receiver. The detection threshold is the minimum signal-to-noise ratio required to detect
the target.

Figure 6 shows where the different parameters appear.

TABLE 1. Definitions of the Sonar Parameters

Parameter Symbol Explanation Definition

Source Level SL at target position

Transmission

Loss

TL one meter from
source and at
receiver

Noise Level NL at receiver posi-
tion

Directivity
Index

DI at receiver posi-
tion

Detection
Threshold

DT at receiver posi-
tion

10 source intensity
reference intensity
--log⋅

10 signal intensity at source
signal intensity at receiver
---log⋅

10 noise intensity
reference intensity
--log⋅

10 noise intensity
reduced noise intensity
---log⋅

10 source intensity
noise intensity

---------------------------------------log⋅

I
P
A
--- W m⁄ 2[]=

10
I
I0
----dBlog

I0 0,67 10
18–

W m
2⁄⋅=

19

Imagine, as the figure shows, a source (for example a submarine) that emits a sound with a
certain level (SL dB). This sound travels through the water to the sonobuoy. On its way,
the sound level decreases due to transmission loss (TL dB). The transmission loss mainly
comes from the spreading of the intensity, but also from absorption. At the sonobuoy posi-
tion, there is a certain noise level (NL dB). If this noise level is too high, it will be impos-
sible to distinguish the source signal from the background noise. However, some sonar
systems have noise reduction capabilities that lower the background noise by (DI dB).
When the signal finally reaches the sonar operator, he has to make the decision whether
there is a target or not. In some cases, the signal-to-noise ratio, DT, is so high that there is
no doubt, but mostly that is a hard decision.

8.1 Derivation of the Sonar Equation
The source-to-noise ratio, in terms of decibels, can be expressed as:

This can be shown by:

Noise Level NL
Source
Level SL

Transmission
Loss TL

Receiver screen

Detection Threshold DT

Directivity Index DI

Source

Sonobuoy

Operator

FIGURE 6. Sonar Parameters

SL TL–() NL DI–()–

20

 (EQ 16)

where and denote the noise intensity before and after the reduction,

respectively.

This gives the Sonar Equation:

(EQ 17)

8.2 Usage of the Sonar Equation in the Simulation Model
To calculate the sound level at the buoy positions, SL, NL, and DI will be input parame-
ters. TL will be computed through a relationship between TL and the distance r between
the sonobuoy and the target (this relationship will be derived in the following chapter).
The Sonar Equation will finally be solved for DT. If DT is “high enough”, the information
from the buoy will be taken into account. What is high enough is determined by how sure
one wants to be that there is a signal. If the sonar operator chooses a low detection level,
then all targets will probably be detected, but the likelihood for false alarm is also high in
that case. A high detection level, on the other hand, gives a small likelihood for false
alarms, but some targets may also go undetected. This relationship is usually illustrated by
receiver-operating-characteristic curves (ROC-curves). See Figure 7 .

SL TL–() NL DI–()– =

 10
Itarget

I0
------------ 10

Itarget

Ireceiver
---------------- 10

Inoise1

I0
------------- 10

Inoise1

Inoise2

-------------log+log–log–log = =

= 10
Itarget

I0

Ireceiver

Itarget

I0

Inoise1

Inoise1

Inoise2

-------------⋅ ⋅ ⋅

log 10
Ireceiver

Inoise2

----------------log DT= =

noise1 noise2

SL TL–() NL DI–()– DT=

FIGURE 7. An ROC-curve

decreasing threshold

False-alarm probability
1.0

1.0

0

D
et

ec
tio

n
pr

ob
ab

ili
ty

21

8.3 Transmission Loss
The transmission loss consists of two parts, loss due to spreading and loss due to absorp-
tion. These are discussed below.

8.3.1 Spreading
To calculate the spreading loss, assumptions must be made about how the sound is spread.
The two most common models are spherical spreading and cylindrical spreading. In the
Swedish archipelago, the conditions are usually somewhere in between, but sometimes
even worse than spherical spreading.

8.3.1.1 Spherical Spreading
If the water is deep, allowing the sound to spread in all directions, spherical spreading can
be assumed. This means that the sound power - which remains constant - is spread over a
spherical surface. See Figure 8 .

The fact that the sound power remains constant gives the following equation:

(EQ 18)

The transmission loss due to spherical spreading between the distances and is there-

fore:

(EQ 19)

TL is the transmission loss in the case of spherical spreading between the distances and

.

FIGURE 8. Spherical Spreading

r1

r2

P 4πr1
2
I1 4πr2

2
I2 …= = =

r1 r2

TL 10
I1

I2
----log 10

r2
2

r1
2

----log 20
r2

r1
----log= = =

r1

r2

22

8.3.1.2 Cylindrical Spreading
On the other hand, if the water is shallow, the spreading is limited by the surface and the
bottom. The area over which the intensity is spread is then the area of a cylinder with
increasing radius.

Figure 9 gives the following expression for the transmission loss:

(EQ 20)

The fact that the power P remains constant is used here as well.

8.3.2 Absorption
When the sound travels through the water, some of its energy is transformed to heat. This
kind of transmission loss is called absorption. The intensity loss due to absorption can be
modelled by the differential equation:

 (EQ 21)

where denotes the change when the sound travels the distance . Integration between

 and gives:

(EQ 22)

The logarithmic absorption coefficient is defined by:

which gives the following relationship between and :

FIGURE 9. Cylindrical Spreading

d

r1 r20

surface

bottom

P 2πr1dI1 2πr2dI2 … TL⇒ 10
I1

I2
----log 10

r2

r1
----log= = = = =

dI βIdr–=

dI dr

r1 r2

I2 I1e
β r2 r1–()–

=

α

α
10 I1 10 I2log–log

r2 r1–
--=

β α

23

(EQ 23)

This can be seen through the logarithm of EQ 23.

 is strongly frequency dependent. The relationship is [5]:

(EQ 24)

To summarize all of above, the total transmission loss can be stated as:

 (EQ 25)

where is the part of the transmission loss due to absorption (this part is very small

and is usually omitted). The other part, , comes from the fact that the sound inten-
sity spreads over a larger and larger area while the sound travels through the water. K is a
constant dependent upon how the sound spreads. In shallow water it can be assumed that
the sound spreads over a cylindrical surface, giving a K equal to 10. On the other hand, if
the water is deep, it can be assumed that the sound spreads over a spherical surface, giving
a K equal to 20. In a shallow-water scenario, an empirical value K would lie somewhere
between 10 and 20. To find the value of K in practice, experiments must be performed in
which a sound with a known level is transmitted and measured at a known distance, using
a hydrophone. In the simulation program, K is an input parameter.

9.0 The Path Editor

The Path Editor is an independent part of the submarine tracking simulator, which like the
other components of the system, was implemented in the object-oriented language Eiffel
3. It provides a graphical interface for creating and editing the path of the submarine. The
path has a polygonal shape, and is represented in the program as a list of point vertices and
line segments.

9.1 Functionality
The user adds nodes to the path by left-clicking on a certain position on the game area. A
node created in that manner will be added as the last node of the path. One may also add a
new node before a node that already exists. In doing so, the user middle-click on the node
that is to be followed by the new node. A right-click on a particular node removes it, and
new segments are drawn appropriately. The user may also change the position of a node
by keeping the left-mouse-button down over the node and drag it to the desired position.

α 10β elog=

α

α f() 0,1f
2

1 f
2

+

40f
2

4100 f
2

+
---------------------- 2,75 10

4–
f
2⋅+ +=

TL K r r α f()⋅+log⋅=

α f()
K rlog⋅

24

A click on the Open button gives the user the opportunity to retrieve a path that was cre-
ated during a former session. When the button is clicked, a window (the FILE_BOX)
appears for selecting a file.

The Save button stores the path to a file. The data written to the file includes the follow-
ing:

• the (x,y)-position of each node (upper left corner is the origin)

• the arrival time of the submarine at each node

• the hold time of the submarine at each node

• the departure time of the submarine from each node

• the speed of the submarine at each segment

These values can also be displayed on the screen during run-time by left-clicking on the
node. To set the hold time and the speed, one just enters the values in the corresponding
text fields (a keystroke is not necessary). The succeeding nodes and segments will get the
chosen values.

The Quit button, of course, ends the session.

9.2 Architecture
Eiffel 3 is a modern language that supports all features - such as inheritance (multiple
inheritance as well), dynamic binding, information hiding, templates and assertions - that
are characterizing an object-oriented language. The architecture of the program includes
six clusters, each containing architecturally related classes. These are state, windows,
root_cluster, widgets, path_classes, and commands. Figure 10, “The architecture of the
PathEditor,” on page 25 depicts the system design using the BON notation [6].

9.2.1 The root_cluster cluster
includes three classes, CONTROL, SHARED_CONTROL, and APPLICATION,the latter
being the root class. The first thing that happens when the system is started is that an
object of the root class is created, and that its make routine is executed. This routine sets
the first state, state one, which is the only state in this application. Thereafter, it calls the
init_windowing routine in the class WINDOWS, which, in turn, creates the main window,
PERM_WIND1, through a “once function”. The once function guarantees that there will
only be one instance of the class PERM_WIND1 during the session. A once function also
provides a good way of sharing an instance of a class between multiple objects.

25

FIGURE 10. The architecture of the PathEditor

STATES

APPLICATION

SHARED_CONTROL

ROOT_CLUSTER

WIDGETS

WINDOWSSTATE

PATH_CLASSES

COMMANDS

FILE_BOX

OPEN

SAVE

DELETE_NODE ADD_NODE

CHANGE_POS ADD_NODE_BEFORE_PREV SET_HOLD_TIME

WIDGET

TEXT_FIELD

DRAWING_AREA

LABEL

PERM_WIND1

NODE SEGMENT

SUB_PATH

PUSH_B

previous / next

once function

once function

callbacks

COMMAND

+ +

+

+ +

+

+

+

*

*

+

+

+ +

+

+

++

+

++

+

+

+

+

+

REDRAW DISPLAY

QUIT

SET_SPEED

+

1

1

1
2

2

3

1

10

open / save / quit

WINDOWS

CONTROL

callbacks

once function

SHARED_PATH

26

9.2.2 The widget cluster
 includes four classes, PERM_WIND1, TEXT_FIELD, DRAWING_AREA and LABEL. All
of these are descendants of the class WIDGET. A widget is a graphical object where differ-
ent kinds of events occur. Such events could for example be a click on a mouse button, a
key stroke, or a pointer motion. TEXT_FIELD, DRAWING_AREA and LABEL are children
of PERM_WIND1, which means that PERM_WIND1 creates instances of these classes,
and that PERM_WIND1 is responsible for redrawing and resizing these objects when an
expose event has occurred. They also have equal life times.

9.2.3 The command cluster
includes the different command classes. All of these are descendants of the deferred class
COMMAND, which defines a deferred routine execute. The command classes are clients
of the widget classes. When a certain event occurs on a widget, a callback is sent to the
execute routine of the appropriate command class. For example, when the left mouse but-
ton is clicked on the DRAWING_AREA, a callback is sent to the execute routine of the
ADD_NODE class. The object of this class, in turn, calls the add_node routine of the
unique instance of the SUB_PATH class. The command classes that needs access (not all
of them) to the sub_path inherit from the class SHARED_PATH, which merely has a once
function that creates the SUB_PATH instance. The SHARED_PATH class will, therefore,
ensure that all the command classes refer to the same instance of the SUB_PATH.

9.2.4 The path_classes cluster
consists of three different classes, SUB_PATH, NODE and SHARED_PATH. The
SUB_PATH class is an abstract data type (ADT). It provides an interface for operating on
the different nodes of the path, and manages a linked list of NODE objects. The clients of
the SUB_PATH class do not know how the path is implemented because that is hidden
from them; only the SUB_PATH class has access to the features of the NODE class (with a
few exceptions). The NODE class inherits from the PUSH_B class, which is a kind of a
widget that is used for push buttons. This implies the possibilities for deleting and chang-
ing a node´s position by clicking/dragging it. The COMMAND classes (not all of them)
that deal with those events are clients of the NODE class.

The NODE class is also a client of the SEGMENT class. The SEGMENT represents the
edges between the nodes.

Finally, the class CONTROL together with the class STATES manages the states of the sys-
tem. In this program, there is only one state. But there could be several states in a system.
For different states, the same event may have different meanings. For example, a second
state could be useful for this system if one wants to prohibit that a second path is retrieved
if there already is a path defined for the gaming area. As soon as the user creates a node,
the system would transit to the second state that removed the action for the open button.
The CONTROL class also manages the Quit request.

27

10.0 The Sonobuoy Tracking Simulator version 1

(This documentation refers to version 1.30, unless otherwise stated, compiled
96-08-22)

The purpose of the program, called SubTrack, is to simulate the interaction between a tar-
get (submarine) and a number of passive sonobuoys in a Swedish archipelagic scenario.
A predefined path of the submarine is loaded (visibility can be switched on/off) and then
the user is to find the location of the submarine at each time-step by means of deploying
sonobuoys into the sea.

10.1 Functionality
The user loads an unknown target path from a file (generated by PathEd, Section 9.0, “The
Path Editor,” on page 23). When the user has started the simulation, the approximate ini-
tial position of the target is displayed in the shape of a circle. The user may then deploy
either single buoys or buoy clusters in various patterns, at times and positions of his
choice. For every time step, the program determines whether each buoy has detected
(“heard”) the target or not. If at least four buoys hear the target, an area is displayed which
represents the smallest area within which the probability of finding the target is 95 %.
Unless this area is too large, it is presented as an ellipse whose size, shape, and attitude
gives information about the uncertainty associated with the measurement of the target’s
position.

To study in more detail the factors which influence the detection of the target, the user can
request that the target and/or its path be displayed. The user may also change the game’s
starting time, or freeze the time to make the position and noise of the sub constant. Using
these features, the operator may try out different buoy patterns.

10.2 Contents
The documentation is structured around the clusters of the program, which are described
in Section 10.4 on page 28.

A simplified diagram (Figure 11, “SubTrack clusters and classes,” on page 35) showing
the basic design is included, as well as a somewhat more complex one (Figure 12, “Appli-
cation clusters and classes,” on page 36).

The simplified diagram is discussed in Section 10.3, “Basic Design,” on page 27, while
the more complex one is an illustration to Section 10.4, “Architecture,” on page 28.
It should be noted that not all classes are shown in fig 2. This is discussed in Section 10.6,
“Comments to the diagrams,” on page 33.

10.3 Basic Design
When the path has been loaded it is read into the class PATH_DATA of cluster target. The
path consists of segments between pairs of nodes (class NODE, also in cluster target).

28

At each time step 1 the target’s position (kept in class TARGET_DATA of cluster target)
and the status of deployed buoys (kept in class BUOY_DATA of cluster
buoy_management) are updated, and then class SIGNAL_RECEIVER of cluster measure-
ment performs an estimation of the target’s position from the data of the sonobuoys that
are hearing the submarine (provided by class BUOY_CLUSTER).

This information is visualized on the screen by an elliptical area containing the target with
a predefined probability.

If all measurements performed were exact then the estimate of the target’s position would
be exact as well (the area would shrink into a point). Uncertainty in positioning the buoys
and in measurements of sound arrival times is taken into account in the class OBSERVA-
TIONS, depicting the smallest area maximizing the probability of containing the target,
that is, an ellipse.

In order to estimate a position at least three buoys have to “hear” the the target. In version
1.30 at least four buoys are required, since a different algorithm has to be used in this case.

10.4 Architecture
The architecture of the program includes seven clusters. These are the root_cluster, which
initializes the program, sim_management, which contains the simulation time and the
logger, target, which contains all classes that has to do with the target,
buoy_management, which controls the deployment of buoys, measurement, which per-
forms calculations on the information from the buoys, app_commands, containing com-
mands that are invoked by callback from windows, and app_widgets, which contains the
X11 graphics widgets that are to be used (mostly windows).

10.4.1 The root_cluster cluster
Contains only two classes, APP and SHARED_CONTROL.

In APP, the initial state and all possible states are defined. Even if only one state is used in
the program, it is useful to use a state transition to accomplish a quit program command.
That is the purpose of the statement control.put (state1, exit_from_application, “Quit”);
Further on, game-parameters are read from a file (subtrack.ini), and then the windowing
environment is started, and thereby the whole simulation.

The purpose of the class SHARED_CONTROL is to create a shared object to manage state
transitions. No states other than Quit are used, but everything is dependent on the clock,
where states are defined by boolean variables (as in Stopped, Initialized etc).

1.This updating takes place in the class START in cluster app_commands, explained
below, Section 10.4.6 on page 30.

29

10.4.2 The sim_management cluster
The classes of this “miscellaneous-cluster” are CLOCK, TIME_DATA, LOGGER,
PARAMETERS, SETUP_DATA, DICTIONARY, PAIR_OF_DOUBLES, and PAIR.
CLOCK implements a simple stop-watch, using system time acquired from the external C-
function My_time. TIME_DATA contains one object of type CLOCK, that can be shared by
all the other classes through the Eiffel-specific once-function.

LOGGER creates and keeps a log for the target and the buoys. The data is saved in two
files : target.log and buoys.log.

PARAMETERS loads game parameters from the setup-file subtrack.ini. The loading of
parameters are divided into three categories: colors, sonar_eq and buoy_parameters. The
first and last are read into arrays and lists, and features like std_dev_1_ are then defined as
items in the list/array.

SETUP_DATA contains one object of type PARAMETERS, that can be shared by all the
other classes through the Eiffel-specific once-function.

DICTIONARY is used for keeping tables of functions (x,f(x)), where f might be, for exam-
ple, velocity_to_noise.

PAIR_DOUBLE contains a concretization of the generic ADT PAIR.

PAIR contains a simple Scheme-like implementation of the generic ADT PAIR.

10.4.3 The target cluster
This cluster contains the target, its path and the nodes that make up the path.

Its classes are TARGET, SUBPATH, NODE, and TARGET_DATA.

TARGET contains the target, a descendant of SCREEN_OBJ. Here all sorts of features of
the target is defined, such as the representation on-screen, and routines for updating it’s
position.

SUBPATH handles reading and storage of a target track (path) consisting of a number of
points (nodes) connected by straight lines.

NODE describes the nodes which (pairwise together) define the segments of a subpath.

TARGET_DATA contains one object of type TARGET, that can be shared by all the
other classes through the Eiffel-specific once-function. It also contains one object of type
SUBPATH, that was previously placed in a separate class.

10.4.4 The buoy_management cluster
This cluster contains various classes concerned with the buoys, their deployement and
such.

30

Its classes are BUOY, BUOY_INVENTORY, BUOY_DEPLOYER, BUOY_REVOKER,
BUOY_SCHEDULER, BUOY_MENU, and BUOY_DATA.

A buoy is a descendant of SCREEN_OBJ, and the class BUOY contains its specific fea-
tures.

The class BUOY_INVENTORY keeps track of the buoys that have been deployed.

BUOY_DEPLOYER is used (by callback) to deploy a buoy.

BUOY_REVOKER is used (by callback) to remove a buoy.

BUOY_SCHEDULER handles deployment of buoys from the BUOY_MENU.

BUOY_MENU defines a menu showing information about a specific buoy.

The class BUOY_DATA contains one object of type BUOY_INVENTORY, that can be
shared by all the other classes through the Eiffel-specific once-function.

10.4.5 The measurement cluster
The position of the target is estimated here, from the information in “hearing” buoys. The
actual calculations are performed in external C-modules, using a freeware library of
matrix functions.

Its classes are SIGNAL_RECEIVER, OBSERVATIONS, QR_SOLVER, and
BUOY_CLUSTER.

SIGNAL_RECEIVER contains the position_estimator, which uses QR_SOLVER to esti-
mate the position of the target.

OBSERVATIONS contains features for simulating the uncertainty of measurements per-
formed on the target. Uncertainty is modelled by assuming measurement errors to be
Gaussian-distributed with zero mean (this is simulated in the class BUOY when position-
ing the sonobuoy).

QR_SOLVER is the Eiffel encapsulation of the meschach-routines, available from Netlib,
for matrix operations. solve1 returns a least-squares approximation of the solution to the
overdetermined system of equations Ax=b-r, using QR-factorisation, and solve2
solves the exact equation Ax=b.

BUOY_CLUSTER is the same as get_cluster in BUOY_INVENTORY, but it is performed
on the shared object contained in the class BUOY_DATA.

10.4.6 The app_commands cluster
These are commands that are mostly used by callbacks from the widgets, that is, the win-
dows. All of these are descendants of (exactly) one of the following: COMMAND, CMD,
or POPUP_CMD.

31

The classes of this cluster are START, STOP, CONT, LOAD, SAVEG, RUN, QUIT, EXIT,
REDRAW, GET_CLICK, TIME_ENTRY, SHOW_STATUS, SHOW_PATH, and
SHOW_TARGET.

START is the heart of the simulation, where a kind of ‘main loop’ is kept by constantly set-
ting new TIMER-based callbacks to the same routine (execute). A lot of checking has to be
done here, perhaps this can be made more readable later on, for example by some sort of
status-flag.

Signals to execute :

• 0 = (re-)start (sent by callback from PERM_WIND1 or from BUOY_SCHEDULER)

• 1 = continue until restarted (sent recursively by START)

This is needed because of the recursive nature of the routine.

All the updating is performed from here, every time-step. The time-steps are defined by
the delay time of each TIMER-based callback to this routine (set recursively by the same
routine).

In contrast to class START, the class STOP is really simple; it just stops the simulation
time.

Similar to class STOP, the class CONT resumes the simulation time.

LOAD describes the loading of a path (created by PathEd) from disk.

SAVEG defines the saving of a simulation to disk (not a path - that is performed by the
PathEd). To perform this it takes a snapshot of the simulation and saves the buoys in file
buoys.data, which is a non-editable file, and the rest of the data in an ascii-file
subtrack001.sav. This should perhaps be changed so that the user can specify a save-file
(and thus can have multiple savegames stored).

RUN - the naming might be confusing - is the dual of class SAVEG. It should retrieve a
previously saved game from disk. This has not yet been implemented.

QUIT - as the name indicates, contains the code needed to quit the program.

EXIT - to quit the program, giving the user an opportunity to save the simulation.
This has not been implemented, and is probably unnecessary.

REDRAW - to redraw the target track at expose events (hidden or moved window).

GET_CLICK sets the active text_field to be the one that is clicked. Needed for the
BUOY_SCHEDULER to register the buoy coordinates in a menu.

The TIME_ENTRY command acquires information from TEMP_WIND2, and sets the

32

simulation time accordingly.

SHOW_STATUS - when the time menu is shown this command sets the status label to
either Stopped or Running. Now in color!

SHOW_PATH - command to switch path display on/off.

SHOW_TARGET - command to switch target display on/off.

10.4.7 The app_widgets cluster
This cluster contains widgets, mainly windows, that have been designed for this program.
The classes of this cluster are PERM_WIND1, TEMP_WIND1, TEMP_WIND2,
TEMP_WIND3, TEMP_WIND4, and TEMP_WIND5.

PERM_WIND1 is the main window, containing the gaming area, tracking display and
menus.

TEMP_WIND1 is used to Show/Hide the Target/Track -window.

TEMP_WIND2 defines the window for time-data display.

TEMP_WIND3 defines the window for buoy data display.

TEMP_WIND4 defines the window for message display.

TEMP_WIND5 defines the window for buoy deployment.

10.5 External Code
To perform some of the mathematical operations (read: matrix algebra) it was necessary to
incorporate some external code. This code is written in C, and utilizes a freeware linear
algebra library called Meschach, available from Netlib on Internet.

The classes QR_SOLVER and OBSERVATIONS both interface to the C-module
Eq_solver.c, where these operations are performed.

In addition, there is no system time to be acquired from the Eiffel libraries, therefore we
used a very simple C-function to do this. The class CLOCK benefits from this C-function,
named My_time.c.

10.5.1 The modules
Comments to the modules are copied from the source code and edited.

10.5.1.1 Module My_time.c
This one is very simple. It #includes time.h, where the function ctime, which gets the sys-
tem time, can be found.

33

10.5.1.2 Module Eq_solver.c
This module is meant to include external functions called from Eiffel.

• qr_solver solves the Ax=b eq, using QR-factorisation and least-squares.

• create_c_data allocates space for the static variables, and

• destroy_c_data deallocates the same space.

• A_set_mn sets the contents of the matrix A,

• b_set_m sets contents of b, while

• x_get_m gets the results of the calculation performed.

If these functions are declared as external “C” routines in Eiffel they should work okay,
although somewhat crude. The crudeness comes from the fact that one cannot pass matri-
ces directly as arguments from Eiffel to C and vice versa.

There ought to be a check for memory leaks on these procedures. Or will they be taken
care of by the Eiffel/C compiler?

One might argue that there should be two different modules to take care of (1) the solution
of the equation system, and (2) the computation of the covariance matrix, but it was
decided that it would be easier, under the circumstances, to keep them in the same bowl,
so that there wouldn’t be so much sending parameters back and forth.

10.6 Comments to the diagrams
The diagrams were made in BON-notation, using the EiffelCase development environ-
ment.

Not every class (or even every cluster) is shown even in Figure 12, “Application clusters
and classes,” on page 36, and this is because those classes are mainly concerned with
either the window-system (all windows are “globalized” by once-functions and put in the
class WINDOWS of cluster app_windows - which is not visible on the diagrams), or with
the startup-parameters set in a class SETUP_DATA in the cluster sim_management.

These “globalized” objects are added to those needed for the simulation (eg. PATH_DATA,
TARGET_DATA, BUOY_DATA, and TIME_DATA). The classes containing these objects
are then inherited into every class that needs data from them, and while this makes things
easy for the programmer, it tends to clutter images showing relations between classes and
between clusters. Therefore it was decided not to incorporate all of these “globalized”
objects into the diagrams, since the way the window management works and setup-param-
eters are distributed really isn’t the issue here.

34

(The other “globalized” objects are there though, each of them named with _DATA-
suffixes.)

10.7 Known Bugs
If, when choosing the path, a non-PathEd-file is chosen, a precondition exception will
occur.

After a path is fully traversed by the target, it should not be asked to continue (with the
cont command). That will cause a precondition exception.

If, for some reason, the input data to qr_solver.c is degenerate, singular matrices may be
generated, and the system will crash. There should be some check in the C-module to
avoid this.

35

FIGURE 11. SubTrack clusters and classes

SIM_MANAGEMENT

TARGET

APP_COMMANDS
BUOY_MANAGEMENT

MEASUREMENT

CLASSES

TIME_DATA

SUB_PATH NODE

TARGET

TARGET_DATASHOW_TARGET

PATH_DATASHOW_PATH

BUOY

BUOY_DEPLOYER

BUOY_DATA

SIGNAL_RECEIVER

OBSERVATIONS

BUOY_CLUSTER

QR_SOLVER

BUOY_REVOKER

CLOCK

INIT_CLUSTER

BUOY_MENUBUOY_SCHEDULER

APP_WIDGETS

LOGGER

BUOY_INVENTORY

36

FIGURE 12. Application clusters and classes

T
A

R
G

E
T

M
E

A
S

U
R

E
M

E
N

T
B

U
O

Y
_M

A
N

A
G

E
M

E
N

T

SI
G

N
A

L
_R

E
C

E
IV

E
R

O
B

S
E

R
V

A
T

IO
N

S

Q
R

_S
O

L
V

E
R

B
U

O
Y

_C
L

U
S

T
E

R

SU
B

PA
T

H

T
A

R
G

E
T

N
O

D
E

T
A

R
G

E
T

_D
A

T
A

B
U

O
Y

_D
E

P
L

O
Y

E
R

B
U

O
Y

B
U

O
Y

_S
C

H
E

D
U

L
E

R
B

U
O

Y
_I

N
V

E
N

T
O

R
Y

B
U

O
Y

_R
E

V
O

K
E

R
B

U
O

Y
_D

A
T

A

P
A

T
H

_D
A

T
A

S
IM

_M
A

N
A

G
E

M
E

N
T

T
IM

E
_D

A
T

A

C
L

O
C

K

*

*

+

+

+

+

+
+ +

+

37

11.0 Future work

A second version of the submarine tracking simulator is now in an advanced development
stage. It includes a buoy deployment optimization algorithm. Methods for predicting the
future position of the target, based on Kalman filtering, have been implemented and are
used to support the buoy deployment algorithm. The computational methods developed
for the second version will be described in a forthcoming report.

A detailed model would simulate the sound propagation in a three-dimensional archipe-
lago environment including sea-bottom topography, islands, reverberation effects, multi-
ple targets, etc. Such a model is, however, seemingly not within the current state-of-the-
art, and if it were to be developed, would certainly be an extremely complex piece of soft-
ware.

Other, more easily achievable extensions are:

The path of the sub could be changed during run time, or the program could be connected
to a submarine vehicle simulator. False alarms as well as no-detection possibilities would
be modelled by generating randomly false alarms and no-detection occasions. Other kinds
of detection equipment, such as active sonobuoys and magnetic sensors, could conceiv-
ably also be added to the model.

38

12.0 References

1. NAVY INTERNATIONAL, September 1990, 307-312.

2. C. BLIXT, FOA RAPPORT C 20814-2.2 (1991).

3. R.J. URICK, Principles of Underwater Sound. McGraw-Hill Book Company (1983).

4. W.S. BURDIC, Underwater Acoustic System Analysis. Prentice Hall (1991).

5. R. NIELSEN, Sonar Signal Processing. Artech House (1991).

6. K. WALDEN and J. NERSON, Seamless Object-Oriented Software Architecture.
Prentice Hall (1995).

39

Appendix A. On the multivariate normal distribution and error
ellipses.

A.1 The normal distribution
A one-dimensional random variable with normal distribution with mean µ and variance =

σ2, is usually denoted:

A.2 Multivariate normal distributions
If x1,... xn are n independent N(0,1) random variables, these can be combined into a n-
dimensional stochastic vector X.

An n-dimensional multivariate normal distribution can be defined as an affine linear non-
singular transformation of such a vector X consisting of n independent, equally distributed
normal random variables, all with a N(0,1)-distribution, i.e:

Here:

and A is a constant non-singular (n x n)-matrix.

The so-called joint density functions for X and Y are, respectively:

and:

N µ σ2,)(

Y=AX+µ

X=

x1

x2

…
xn

; µ

µ1

µ2

…
µn

; Y=

y1

y2

…
yn

=

fx=
1

2π()n 2/
------------------ e

1
2
---– XTX()

fY=
det C

1–()
2π()n 2/

------------------------- e
1
2
---– Y-µ()TC 1– (Y-µ)

40

where T stands for transpose.

(See for example: Howard G. Tucker, An introduction to Probability and Mathematical
Statistics, Academic Press 1963, or any elementary textbook on the subject).

A.3 The covariance matrix C
In the density function for Y the matrix C is the so called covariance matrix of Y:
C = E[(Y-E[Y])*(Y-E[Y])T], i.e. it contains at position (i,j) the number
E[(yi - µi)*(yj - µj)] (here E[.] means expectation).

For C we have the relation C= A*AT, which is evident from X= A-1 *(Y-µ);

XT*X= (Y - µ)T *(A-1)T *A-1*(Y - µ)= (Y - µ)T *(A*AT)-1 *(Y - µ).

A.4 The mapping X-->Y
Let SR denote the sphere with radius r around the origin in (x1, x2, … xn)-space.
This sphere is mapped by Y=AX+µ onto an ellipsoid ER.

The equation for the volume contained in the sphere in X-space can be written:
XT*X ≤ R2

Which ellipsoid in Y-space corresponds to this sphere? From Y= A*X+µ one gets
 X = A-1(Y-µ).

This is substituted into the equation of the sphere:
XT*X = [A-1(Y-µ)]T*[A-1(Y-µ)] ≤ R2

which can be simplified to:
(Y-µ)T*(AAT)-1(Y-µ) ≤ R2 (since (A-1)TA-1 = (AT)-1A-1 = (AAT)-1)

or, expressed in more detail:
ER= {Y (Y-µ)T C-1 (Y-µ) ≤ R2} , where C= AAT is Y’s covariance matrix.

The probability that the stochastic vector X belongs to the set SR equals the probability for
Y being situated within ER. For the case when X is two-dimensional, the probability p that

X belongs to SR in the xy-plane is : p = 1- exp(-R2/2).

This follows from:

41

This means that a two-dimensional normally distributed random variable which has a
density function like that of fY above satisfies that its values lie within the ellipse ER with

probability precisely 1- exp(-R2/2).

A.5 Example of corresponding values of R and probability levels
Some values of the relation p = 1-exp(-R2/2):

A.6 Error propagation
Now suppose that the variables x0 and y0 are given by continuously differentiable functions
f1and f2 of the independent variables x1,…xn, y1,…yn, t1,…tn,

x0 = f1(x1, …xn, y1,…yn, t1,…, tn)
y0 = f2(x1, …xn, y1,…yn, t1,…, tn)

Assume further that these variables are impaired by errors that can be regarded as
independent random variables with zero means.

Assume also that they all have a normal distribution and that the variances of the errors in
x1, … yn are = σ1

2 , and for t1,…tn = σ2
2

By a Taylor expansion of:
x0 + δx0 = f1(x1+δx1, …, xn +δxn, y1+δy1,…, yn+δyn, t1+δt1,…, tn+δtn)

we get expressions of the form:

Table 2:

p R
0.80 1.79
0.90 2.15
0.99 3.03

p P[X SR]∈ 1
2π
------ e 1 2⁄ x1

2 x2
2+()–

SR

∫ dx1 x2d
1

2π
------ e

r2

2
----–

r rd ϕd

ϕ=0

2π

∫
r=0

R

∫= = =

p re
r2

2
----–

0

R

∫ rd e
r2

2
----–

–
0

R

1 e

R2

2
-----–

–= = =

42

and correspondingly for y0.

From this linearization one realizes that the error in the computed position (x0,y0) is
(approximately) a linear combination of the normally distributed errors in xi, yi and ti. The
errors in x0 and y0 therefore become (approximately) normally distributed, but not
independent. The relation can be written:

where the matrix A = (aij) is made up of the partial derivatives from the Taylor expansion.
(See Appendix C for derivative values).

Introduce the variables ξ1,…ξ3n through the normalization:
ξ1=δx1/σ1,… ξn=δxn/σ1; ξn+1=δy1/σ1,… ξ2n=δyn/σ1; ξ2n+1=δt1/σ2,… ξ3n=δtn/σ2;

These variables then all have a N(0,1) distribution.

Set further: η1= δx0, η2= δy0, Y
T =(η1,η2), XT= (ξ1,…ξ3n),

and let the matrix G describe the transformation from X to Y.

G will then implicitly contain the standard deviations σ1and σ2 as shown by:
G = A*B,
where B is a diagonal matrix, whose 3n elements consist of 2n σ1, followed by
n σ2, (σ1,…σ1, σ2,…σ2).

The matrix C = B*BT is the covariance matrix for (δx1,…, δy1,…, δt1,…,δtn).

It is a diagonal matrix with variances σi
2 in the diagonal.

The transformation Y= G*X will map a sphere SR in the 3n-dimensional X-space onto an
ellipse Er in the two-dimensional Y-space, with r ≠ R in general.

This is recognized by the fact that matrix G, which we assume has rank 2, can be augmented
to a non-singular mapping. The ellipse Er is then seen to be a projection to two dimensions
of that ellipsoid which is the image of the sphere SR (that the projection of an ellipsoid is

x0 δx0+ f1(x1…xn,y1…yn,t1…tn) +=

δx1*
x1∂
∂

f1 δx2*
x2∂
∂

f1 …+δtn*
tn∂
∂

f1+ +
 +

+ residual terms of higher order

δx0

δy0

a11 a12 … a13n

a22 a22 … a23n

=

δx1

δx2

…
δtn

43

an ellipse is regarded a well known fact).

Define the probability p through:

p= P[Y∈ ER]= P[X∈ SR]= P[ξ1
2 +…+ ξ3n

2 <= R2]

Under the given assumptions this probability is given by the distribution function of a
variable with a Chi-square distribution with 3n degrees of freedom.

If for simplicity we assume that all variances are equal, Var(xi)= Var(yi)=Var(ti)=σ2 , and

if Fm(x) is the distribution function of a χ2− distributed variable with 3n degrees of
freedom, the value of p can be expressed in terms of Fm(.):

p = P[(δx1 / σ)2+ …+(δtn / σ)2 ≤ R2]= F3n(R2)

Some examples of p-levels and corresponding limits (not used in the sequel though):

Here n equals the number of sonar buoys, and 3n is the number of space- and time
coordinates which are input to the position computation.

However, it is difficult to calculate in this way the dimensions of the error ellipse
corresponding to a given level of probability. Below another method is given to accomplish
this.

A.7 The error ellipse equation
As already mentioned the sphere SR is mapped onto the ellipse Er, where R and r are in
general different. To determine the image Er by purely geometrical means is difficult, and

a simpler way is to use directly that YT= (δx0, δy0), which as being a linear combination of
independent normal stochastic variables itself becomes normally distributed.

Since the X-variables all have zero mean, the same holds for Y, i.e., E[η1] = E[η2] = 0.

The covariance matrix K for (δx0, δy0) = (η1,η2) = YT becomes:

K = Cov[η1,η2] = E[Y*YT] = E[(ABX)*(ABX)T] =

Table 3: Probabilities of chi-square variable

n m p R2 R

4 12 0.90 18.5 4.30

4 12 0.99 26.2 5.12

10 30 0.90 40.3 6.35

10 30 0.99 50.9 7.13

44

= E[ABXXTBTAT]=AB*E[XXT]*BTAT

= A(BBT)AT = ACAT

because E[X*XT] is the unit matrix, due to the fact that the covariances are = 0 and the
variances are = 1 for the variables in X.

Thus the covariance matrix K for Y is known:

where σ11
2 = Var[δx0] ;

σ22
2= Var[δy0] ;

σ12 = σ21= E[δx0*δy0] ;

Finally the error ellipse is given by the expression:

Note: To determine the dimensions of the error ellipse it is thus not necessary to
worry about the relations between input data and the size of R in the equation above.
R is instead computed directly from the probability level p.

K
σ11 σ12

σ21 σ22

=

η1 η2 K
1– η1

η2

R2≤

45

Appendix B. Size and orientation of error ellipse.

B.1 Introduction
Suppose that an ellipse is given by a positive definite quadratic form defined by the
inverse of a symmetric matrix K:

This situation occurs in connection with stochastic error ellipses, where x and y are inde-
pendent normal random variables.

Here σ11 > 0, σ22 > 0, σ12 = σ21 and:

The equation to determine the eigenvalues of K are:

The roots are λ1 och λ2, where λ1 is the larger eigenvalue,
and as p(0)=σ11∗σ 22−σ12∗σ 21 > 0 and λ1+λ2 = (σ11 + σ22)/2 > 0, we have λ1 > λ2 > 0.

B.2 Connection between the matrix K and the ellipse
Let x designate a two-dimensional vector.

Let Q be the symmetric operator defined by matrix K-1.
The quadratic form can then be written as an inner product: (x,Qx),

and the ellipse is given by the expression (x, Qx) = R2, where R defines the size.
The eigenvalues of Q are the inverted eigenvalues of K, and as Q(x)= λ*x =>

x, y K 1– x

y
R2=

K
σ11 σ12

σ21 σ22

=

σ11 σ22× σ12 σ21×– 0>

p λ() det K λE–() 0= =

p λ()
σ11 λ– σ12

σ21 σ22 λ–
σ11 λ–() σ22 λ–() σ2

12–= =

46

Q -1 (x)= λ -1 *x, we see that Q has the same eigenvectors as K.
The eigenvector (ξ1, η1) which belongs to eigenvalue λ1 is given by equation:

(σ1 −λ1)∗ξ 1 + σ2∗η 1 = 0
which can be written as the inner product:

(σ1 −λ1, σ2) *(ξ1, η1) = 0
From this follows that the eigenvector for λ1 is parallel to: (σ2, λ1-σ1).

B.2.1 Determination of length and direction of the major semiaxis

B.2.1.1 Length of the major semiaxis
Assume x to be a unit vector (length= 1).
The point on the ellipse corresponding to that direction will equal t*x for some positive
number t. In the direction of the major axis t attains its maximum value (=a).

Thus we have: (tx, Qtx) = R2.
Now it is a well known fact (see e.g. Shilov, Linear Algebra) that (x, Qx) attains its smallest
and largest values for the eigenvectors. Since as already shown, if x is an eigenvector for
the eigenvalue λ of K, then x is also an eigenvector with the eigenvalue 1/λ for Q and we
get:
.

From this follows: (tx, Qtx)= t2 * (x,Qx) = t2 /λ = R2, which shows that the greatest eigen-
value (λ1) of K gives maximum t-value and thus the length of the major semi-axis is given
by the expression:

B.2.1.2 The direction of the major semiaxis
According to what has been said above, the eigenvector belonging to the eigenvalue λ1

-1
of Q points in the direction of the major axis. This vector is also the eigenvector belonging
to the eigenvalue λ1 of the operator with matrix K.
The direction of that vector has been determined to be: (σ2, λ1-σ1).
We get the following formulae for the determination of major axis direction α,
which can be assumed to lie in the interval -90° < a <= 90°:

B.2.1.2.1 Case σ12 /= 0(-90° < a < 90°)

x, Q x() x, λ 1– x() λ 1–= =

a R λ1=

αtan
λ1 σ11–

σ22
--------------------=

47

B.2.1.2.2 Case: σ12 = 0:

• If σ11 > σ22:α = 0°

• If σ11 < σ22:α = 90°

