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Chapter 1IntroductionThis article reviews the limitations of the standard computing paradigm and sketches theconcept of quantum neural computing. Implications of this idea for the understanding of bio-logical information processing and design of new kinds of computing machines are described.Arguments are presented in support of the thesis that brains are to be viewed as quantumsystems with their neural structures representing the classical measurement hardware. Froma performance point of view, a quantum neural computer may be viewed as a collectionof many conventional computers that are designed to solve di�erent problems. A quantumneural computer is a single machine that reorganizes itself, in response to a stimulus, toperform a useful computation. Selectivity o�ered by such a reorganization appears to be atthe basis of the gestalt style of biological information processing. Clearly, a quantum neuralcomputer is more versatile than the conventional computing machine.Paradigms of science and technology draw on each other. Thus Newton's conception ofthe universe was based on the clockworks of the day; thermodynamics followed the heatengines of the 19th century; and computers followed the development of telegraph and tele-phone. From another point of view, modern computers are based on classical physics. Sinceclassical physics has been superseded by quantum mechanics in the microworld and animalbehavior is being seen in terms of information processing by neural networks, one mightask the question if a new paradigm of computing based on quantum mechanics and neuralnetworks can be constructed.In recent years proposals have been made by Beniof (1982), Deutsch (1985, 1989), Feyn-man (1986) and others for the development of computers based on quantum mechanics. Inthese schemes the quantum mechanical basis states are the logic states of the computer andthe computation is a unitary mapping of these states into each other. Hermitian Hamilto-nians are speci�ed that de�ne the interactions. From another perspective, these computerslet the computation of several problems proceed simultaneously as in the evolution of asuperimposition of states. By itself that is no better than several computers running inparallel. However, if one were to imagine a problem where the partially evolved compu-tations of some of these superimposed states are used to �nd the solution then it mightbe that such a machine o�ers improved speed in the sense of complexity theory. The ideaof a quantum computer has not yet been shown to be practical (Landauer 1991, Gramss1994). Furthermore, these proposals only deal with the question of the physics underlying3



4 S.C. Kakbasic computation; they do not consider the question of how a computation process leads tointelligence.The proposal for a quantum neural computer is based not only on an explicit represen-tation of the unity of the computation process, but also an attempt at de�ning computationas a behavior in relation to other systems. In other words, we wish to introduce computa-tion in relative terms, a perspective that appears to be appropriate for computation relatedto Arti�cial Intelligence (AI) problems. This shift in perspective is like the shift urged byMach in his criticism of the notion of absolute space that had been assumed by Newton.According to Mach, space should be eliminated as an active cause in a system of mechanics;a particle moves not relative to space but rather to the center of all the other masses in theuniverse. Likewise, one says that intelligent computation can only be de�ned in terms of thecomputational behavior related to other such systems.1.1 The Mind-Body ProblemIn order to be able to design machines that are equal to the capabilities of brains, it isessential to understand the nature of brain behavior. Our �rst hurdle is the mind-brainproblem. The brain is de�ned by its physical and chemical properties, and it is assumedto function in ways that can be predicted by physics and chemistry. In contrast, the mindis an abstract entity that consists of sensations, beliefs, desires, and intentions. How is thephysiochemical body related to a nonphysical mind?In identity theories, the mind is a part of the physical properties of the brain, as istrue of the electrical recordings from the brain. Mental states then should be seen as brainstates and statements about cognition can be reduced into statements about behavior ora disposition to behave. But the identity theory does not explain how the activity in thebrain assumes a unity which constitutes an awareness of the self. If stable brain states areidenti�ed as memories, as is done in many current models, can the problem of self be reducedto the problem of a bundling of these memories? Experiments with split-brain patients haveshown that memory does not require consciousness. The converse, that consciousness doesnot require memory, has been known for a longer time. The split-brain subject appearsto experience consciousness via the dominant cerebral hemisphere. By contrast, the minorcerebral hemisphere does not enable the subject to have conscious experience, althoughit subserves memory, nonverbal intelligence, and concepts of spatial relations. We knowourselves as unique indivisible minds, and not as a unique brain.In dualist theory, the mind has a reality independent of the body. Dualists cite intro-spection by which knowledge of things such as pleasure, pain, happiness, emotions and soon is gained as proof of the existence of mind. The argument against dualism is that therecognition of the color green can be reduced to photons of a certain frequency striking theretina. Another objection is that a nonphysical entity cannot inuence a material objectwithout violating conservation laws.



Advances in Imaging and Electron Physics, 1995 51.2 Emergent BehaviorMind, with its concomitant intelligence, is often taken to be an emergent property of thecomplexity and the organization of the interconnections between the neurons. The conceptof emergent property comes from chemistry, where the properties of water are taken tobe \emerging" from the properties of hydrogen and oxygen. Although the properties ofwater could not originally be predicted from the properties of hydrogen and oxygen, it isassumed that in future, given the properties of atoms and the rules of their combinations, theproperties of water would be completely explainable from the properties of its constituents.The notion of emergent behavior is a consequence of a reductionist approach to phenomena.Such an approach is a reasonable foundation for scienti�c theories. But the workings of themind appear to be so much di�erent from the substratum of theories about the brain, thatdoubts have been expressed about it being an emergent phenomenon.Neuroscience is also based on a reductionist agenda. It is believed that once the physio-chemical basis of the activity and the interactions of the nerve cells are understood, mentalevents will be explained in terms of physiochemical events taking place in the nerve cells. Buthow awareness can emerge from principles of physics or chemistry has not been understood.Neither does current theory explain how awareness could arise from complexity alone.The idea of emergent behavior does not rule out the need to add new laws at the higherlevel. Does the mind have unique properties that are not reducible to physical laws? Ingoing to higher levels related to brain behavior, we confront the tyranny of complexity: theexplosion of combinatorial possibilities may make it impossible to answer whether the higherlevel behavior is reducible to that of lower levels.1.3 Indivisibility and Quantum ModelsReductionist approaches to brain function do not capture the richness of biological informa-tion processing. According to the complementarity interpretation of quantum theory anyindivisible phenomenon must be described by a wavefunction. This is why \elementary" par-ticles, which in turn have \sub-particles" as constituents, are described by wavefunctions.One can even speak of a wavefunction for a macro-object and indeed for the entire universe.If consciousness is taken to be indivisible, one has no choice but to model it in a quantummechanical fashion.Evidence for the unity of self-awareness or consciousness is provided by many neuropsy-chological experiments. These include split-brain research as well experiments on dissocia-tion of behavior from its awareness as in prosopagnosia, amnesia, and blindsight (Weiskrantz1986). Schr�odinger (1965), Penrose (1989) and other scientists have argued that, as a unity,consciousness should be described by a quantum mechanical type wavefunction. No repre-sentation in terms of networking of classical objects, such as threshold neurons, can modela wavefunction. Therefore, current computing machines, which are based on mechanisticlaws of information processing, are unlikely to lead to machines that would match humanintelligence.It is sometimes argued that since quantum mechanics is not needed to describe neuralprocesses, therefore it should not enter into any higher level descriptions of cognitive processes



6 S.C. Kakor of consciousness. The noisy environment characterizing nerve impulse ow should drownout any quantum mechanical behavior. On the other hand, it has been experimentallydetermined (See Schnapf and Baylor (1987)) that the retina does respond to single photonsalthough the process that leads to such response is not understood. This was determined bydirecting dim ashes of light into one eye of a subject sitting in total darkness. The subjectperceived a ash when only seven photons were absorbed. Since a population of about 500rods in the eye absorbed the photons in a random spatial pattern, there was no likelihoodthat any single rod had absorbed more than one photon. The response itself is a macroscopicnerve signal.Now consider social computing (Kak 1988), that is processing that takes place in asociety of individuals without a conscious notion of a collective self. Current machines arenot capable of matching such performance. Social computing appears to be less powerfulthan computing that is accompanied with awareness, therefore current computing modelsseem to fall considerably short of the capabilities of biological systems.There also exist speculations regarding consciousness in quantum physics. It has beenargued that the collapse of the wavefunction occurs owing to its interaction with conscious-ness. On the other hand, physicists like Wigner have argued that science, as it stands now,is incomplete since it does not include consciousness. In a variant of the Schr�odinger catexperiment, Wigner (1967) visualized two conscious agents, one inside the box and anotheroutside. If the inside agent makes an observation that leads to the collapse of the wavefunc-tion, then how is the linear superposition of the states for the outside observer to be viewed?Wigner argued that in such a situation, with a conscious observer as a part of the system,linear superposition must not apply. Clearly, these questions are a restatement of the ancientdebate regarding the notion of free will in a deterministic or causal universe. Regardless ofits origin, consciousness appears to bring entirely new, and paradoxical, aspects into the na-ture of physical reality. Thus in Chapter 5.3.1 we describe a scenario dealing with quantummechanics, due to John Archibald Wheeler, that admits the possibility of current actionsinuencing the past if common-sensical, mechanistic interpretations are sought. Wheeler haslikened the physical universe to a gigantic information system whose unfolding depends onhow we question it.1.4 A Historical NoteThe ancient Vedic science of cognition, based primarily on consciousness examining itself,that has been traced in India to at least 2000 B.C. (Kak 1994c) led to a rich conceptualstructure for the mind. The individual was seen as a system with the body, the energy�eld, mind, intellect, and emotion as di�erent hierarchical levels. The mind itself was seenas a system consisting of the sense organs, an emergent characteristic of I-ness, associativememory, logic, and an underlying universal principle of consciousness. The whole conceptionwas sometimes viewed as a dualistic system of matter and consciousness, but more often asa unitary (monistic) system where a universal consciousness is the ground-stu� of reality,but individual awareness is an emergent characteristic related to brain organization andbehavioral associations.There were other more advanced structural models that spoke of consciousness centers



Advances in Imaging and Electron Physics, 1995 7and agents. Animal and human minds were taken to be di�erent in the sense that humanspossess a language richer than that of animals; animals were also taken to be sentient,conscious beings. Details of this fascinating tradition, which is not widely known in theWest, may be found in Sinha (1958), Aurobindo (1970), Dyczkowski (1987), and Kak (1993c,1994b).Can the categories of the Vedic cognitive science be related to current neurophysiologicaldiscoveries, we do not know. It is signi�cant that the tradition claims to de�ne a scienceof consciousness and the description is in terms of a holistic framework that is reminiscentof that of quantum mechanics. It is not surprising, therefore, that at least for Schr�odinger,one of the creators of quantum mechanics, Vedic ideas were a direct source of inspiration(Schr�odinger 1961; Moore 1989, pages 170-3). Schr�odinger (1965) also believed that theVedic conception provided the resolution to the paradox of consciousness. Walter Moore,Schr�odinger's biographer, summarizes:The unity and continuity of Vedanta are reected in the unity and continuityof wave mechanics. In 1925, the world view of physics was a model of a greatmachine composed of separable interacting material particles. During the nextfew years, Schr�odinger and Heisenberg and their followers created a universebased on superimposed inseparable waves of probability amplitudes. This newview would be entirely consistent with the Vedantic concept of All in One. (Moore1989, page 173)1.5 Overview of the ArticleThis article presents several perspectives on the problem of machine and animal intelligenceso as to set the framework for introducing the notion of a quantum neural computer. Theemphasis of this article is on concepts and not on practical considerations. We do not speakabout a design for a quantum neural computer, but the examination of this concept is veryuseful in understanding the limitations of current techniques of machine intelligence.We begin by revisiting the Turing test and suggest that a new test that measures gra-dations of intelligence should be devised. Recent research on the cognitive capabilities ofsome animals, that validates the notion of levels of intelligence, is reviewed. This researchestablishes that certain cognitive abilities of animals, such as abstract generalization, arebeyond the capabilities of conventional computers.This is followed by a survey of the state of current neural network research. We considernew neuron and network models including one where, in analogy with quantum mechanics,the neuron outputs are taken to be complex. We also review rapid training of feedforwardnetworks using prescriptive learning, chaotic dynamics in neuron assemblies, models of atten-tion and awareness, and cytoskeletal microtubule information processing. Recent discoveriesin neuroscience that cannot be placed in the reductionist models of biological informationprocessing are examined. We learn from these studies that all biological systems cannot beviewed as connectionist circuits of components or systems; there exist dynamic structureswhose de�nition is, in part, related to the environment and interaction with other similarsystems. Although there are biological structures that are well modelled by arti�cial neural



8 S.C. Kaknetworks, in general biological systems de�ne a concept of interdependence that is muchstronger than the notion of connectionism that has been used in arti�cial neural networks.This is based on a recursive relationship between the organism and the environment. Wecall such interdependence as connectionism in its strong sense. One may postulate systemsthat are equivalent in their connectionist complexity to biological systems.We de�ne a quantum neural computer as a strongly connectionist system that is never-theless characterized by a wavefunction. In contrast to a quantum computer, which consistsof quantum gates as components, a quantum neural computer consists of a neural networkwhere quantum processes are supported. The neural network is a self-organizing type thatbecomes a di�erent measuring system based on associations triggered by an external or an in-ternally generated stimulus. We consider some characteristics of a quantum neural computerand show that information is not a locally additive variable in such a computer. Models for asubneuron �eld that could explain the unity of awareness are reviewed. Uncertainty relationsconnecting the programs for structure and environment are described. Issues related to thedesign of intelligent systems, di�erent in their programmatic structure from those found innature, are discussed.The article argues that quantum neural computing has parallels with brain behavior.Owing to this perspective, a considerable part of this article is devoted to pointing outthe limitations of the conventional computing paradigm and the characteristics of quantumsystems. We have adopted the philosophical point of view that quantum reality reveals itselfthrough questions, as embodied by di�erent experimental arrangements. It is natural thento �rst explore the information theoretic issues related to the concept of a quantum neuralcomputer.



Chapter 2Turing Test RevisitedIf current computers are so fundamentally de�cient in comparison with biological organismsat certain kinds of tasks, one might ask why has the discipline of computer science notgenerally recognized it. It appears that a pre-occupation with comparisons with humanthought distracted researchers from considering a rich set of possibilities regarding gradationsof intelligence. The prestige of the famed test for machine intelligence proposed by AlanTuring (1950), that now bears his name, was partly responsible for such a focus.2.1 The TestThe Turing test proposes the following protocol to check if a computer can think: (1) Thecomputer together with a human subject are to communicate, in an impersonal fashion, froma remote location with an interrogator; (2) The human subject answers truthfully while thecomputer is allowed to lie to try to convince the interrogator that it is the human subject.If in the course of a series of such tests the interrogator is unable to identify the real humansubject in any consistent fashion then the computer is deemed to have passed the test ofbeing able to think.It is assumed that the computer is so programmed that it is mimicking the abilities ofhumans. In other words, it is responding in a manner that does not give away the computer'ssuperior performance at repetitive tasks and numerical calculations.The trouble with the popular interpretation of the Turing test is that it focused attentionexclusively on the cognitive abilities of humans. So researchers could always claim to bemaking progress with respect to the ultimate goal of the program, but there was no meansto check if the research was on the right track. In other words, the absence of intermediatesignposts made it impossible to determine whether the techniques and philosophy used wouldeventually allow the Turing test to be passed.In 1950, when Turing's essay appeared in print, his test embodied the goal for machineintelligence. But a statement of a goal, without a de�nition of the path that might be takento reach it, detracts from its usefulness. Had speci�c tasks, that would have constitutedlevels of intelligence or thinking below that of a human, been de�ned then one would havehad a more realistic approach to assessing the progress of AI.Perhaps this happened because the dominant scienti�c paradigm in 1950, following old9



10 S.C. KakCartesian ideas, took only humans to be capable of thought. The rich tradition of cognitivephilosophy that emerged in India about four thousand years ago (Kak 1993b) where �nerdistinctions in the capacity to think were argued was at that time generally unknown to AIresearchers. The dominant intellectual ideas ran counter to the folk wisdom of all traditionsregarding animal intelligence. That Cartesian ideas on thinking and intelligence were wronghas been amply established by the research on sub-human intelligence of the past few decades.Another reason why Turing's test found a resonance in the intellectual climate of histimes was the then prestige of operationalism as a scienti�c philosophy. According to theoperationalist view, a machine is to be seen as having thoughts if its behavior is indistin-guishable from that of a human. The ascendancy of operationalism came about from thestandard interpretation of quantum mechanics, according to which one could only speakin terms of the observations by di�erent experimental arrangements, and not ask questionsabout what the underlying reality was.2.2 On Animal IntelligenceAccording to one view, generally attributed to Descartes, animal behavior is a series ofunthinking mechanical responses. Such behavior is an automatic response to stimuli thatoriginate in the animal's internal or external environments. In this view, complex behaviorcan always be reduced to a con�guration of reexes where thought plays no role. Accordingto Descartes only humans are capable of thought since only they have the capacity to learnlanguage.Recent investigations of sub-human animal intelligence not only contradict Cartesianideas, but also present fascinating riddles. It had long been thought that the cognitivecapacities of the humans were to be credited in part to the mediating role of the innerlinguistic discourse. Terrace (1985) claims that animals do think but cannot master language,so the question arises as to how thinking can be done without language:Recent attempts to teach apes rudimentary grammatical skills have producednegative results. The basic obstacle appears to be at the level of the individualsymbol which, for apes, functions only as a demand. Evidence is lacking that apescan use symbols as names, that is, as a means of simply transmitting information.Even though non-human animals lack linguistic competence, much evidence hasrecently accumulated that a variety of animals can represent particular featuresof their environment. What then is the non-verbal nature of animal representa-tions?...[For example] learning to produce a particular sequence of four elements(colours), pigeons also acquire knowledge about a relation between non-adjacentelements and about the ordinal position of a particular element. (Terrace, 1985,page 113)Clearly the performance of animals points to representation of whole patterns that in-volves discrimination at a variety of levels. In an ingenious series of experiments, Herrnsteinand Loveland (1964) were able to elicit responses about concept learning from pigeons. Inanother experiment, Herrnstein (1985) presented 80 photographic slides of natural scenes to



Advances in Imaging and Electron Physics, 1995 11pigeons who were accustomed to pecking at a switch for brief access to feed. The sceneswere comparable but half contained trees and the rest did not. The tree photographs hadfull views of single and multiple trees as well as obscure and distant views of a variety oftypes. The slides were shown in no particular order and the pigeons were rewarded withfood if they pecked at the switch in response to a tree slide; otherwise nothing was done.Even before all the slides had been shown the pigeons were able to discriminate between thetree and the non-tree slides. That this ability, impossible for any machine to match, was notsomehow learnt through the long process of evolution and hardwired into the brain of thepigeons, another experiment was designed to check the discriminating ability of pigeons withrespect to �sh and non-�sh scenes and once again the birds had no problem doing so. Overthe years it has been shown that pigeons can also distinguish: (1) oak leaves from leaves ofother trees, (ii) scenes with or without bodies of water, (iii) pictures showing a particularperson from others with no people or di�erent individuals.Herrnstein (1985) summarizes the evidence thus:Pigeons and other animals can categorize photographs or drawings as com-plex as those encountered in ordinary human experience. The fundamental riddleposed by natural categorization is how organisms devoid of language, and pre-sumably also of the associated higher cognitive capacities, can rapidly extractabstract invariances for some (but not all) stimulus classes containing instancesso variable that we cannot physically describe either the class rule or the in-stances, let alone account for the underlying capacity.Amongst other examples of animal intelligence are mynah birds who can recognize treesor people in pictures, and signal their identi�cation by vocal utterances|words|instead ofpecking at buttons (Turney 1982), and a parrot who can answer, vocally, questions aboutshapes and colors of objects, even those not seen before (Pepperberg 1983).The question of the relationship between intelligence and consciousness may be asked.Gri�n infers animal consciousness from a variety of evidence:I. Versatile adaptability of behavior to novel challenges;II. Physiological signals from the brain that may be correlated with consciousthinking;III. Most promising of all, data concerning communicative behavior by whichanimals sometimes appear to convey to others at least some of their thoughts.(Page 27, Gri�n 1992)Consciousness implies using internal images and reconstructions of the world. Purposivebehavior is contingent on these internal representations. These representations may be basedon the stimulus from the environment, memories, or anticipation of future events.2.3 Gradation of IntelligenceThe insight from experiments of animal intelligence, that one can attempt to de�ne di�erentgradations of cognitive function, is a useful one. The theory of evolution not only posits the



12 S.C. Kakevolution of human brains but also that of behavior. In this theory one would expect to seedi�erent levels of intelligence.It is obvious that animals are not as intelligent as humans; likewise, certain animalsappear to be more intelligent than others. For example, pigeons did poorly at picking apattern against two other identical ones, as in picking an A against two B's. This is a verysimple task for humans. Herrnstein (1985) describes how they seemed to do badly at certaintasks:1. Pigeons did not do well at the categorization of certain man-made and three-dimensionalobjects.2. Pigeons seem to require more information than humans for constructing a three-dimensional image from a plane representation.3. Pigeons seem to have di�culty with dealing with problems involving classes of classes.Thus they do not do very well with the isolation of a relationship among variables, asagaint a representation of a set of exemplars.In a later experiment Herrnstein et al (1989) trained pigeons to follow an abstract rela-tional rule by pecking at patterns in which one object was inside, rather than outside of aclosed linear �gure. It is to be noted that pigeons and other animals are made to respondin extremely unnatural conditions in Skinner boxes of various kinds. The abilities elicitedin research must be taken to be merely suggestive of the intelligence of the animal, and notthe limit of it.Animal intelligence experiments suggest that one can speak of di�erent styles of solvingAI problems. Are the cognitive capabilities of pigeons limited because their style has funda-mental limitations? Or is the cognitive style of all animals similar and the di�erences in theircognitive capabilities arise from the di�erences in the sizes of their mental hardware? Andsince current machines do not, and cannot, use inner representations, is it right to concludethat their performance can never match that of animals?This raises the question whether one can de�ne a hierarchy of computational tasks thatcould be quanti�ed as varying levels of intelligence. These tasks could be the goals de�ned ina sequence that could be set for AI research. If the simplest of these tasks proved intractablefor the most powerful of computers then the verdict would be clear that computers aredesigned based on principles that are de�cient compared to the style at the basis of animalintelligence.2.4 Animal and Machine Behavior2.4.1 Linguistic behaviorA classi�cation of computer languages in the 1950s provided an impetus to examine thenature of animal communication. The focus of these studies on primates was not to decodethis communication in their natural setting, but rather to see if animals could be taughtto communicate with humans. Since the development of language, as part of behavior,



Advances in Imaging and Electron Physics, 1995 13is critically a component of social interaction, studies in unnatural laboratory settings areinherently limited.Many projects have examined the grammatical competence in apes (e.g. Savage-Rumbaughet al 1985, Gri�n 1992). This research has clari�ed questions related to what we understandby language. Responding to signals in a consistent way by the subject is not su�cient todemonstrate linguisitic competence. It is essential for us to know that the subject usesdi�erent symbols for naming.Savage-Rumbaugh (1986) argues that to qualify as a word, a signal must satisfy thefollowing attributes: (1) it must be an arbitrary symbol that stands for some object, activity,or relationship; (2) it must be used intentionally to convey knowledge; and (3) the recipientmust be able to decode and respond appropriately to the symbols. Many early ape languageprojects did not satisfy all these attributes. Savage-Rumbaugh et al (1985) report strikingsuccess in the acquisition of symbolic skills on a lexigram keyboard by an ape named Kanzi.How to grade competence in symbolic manipulation remains an interesting problem. Ifthis were possible, one would have the picture of di�erent levels of symbol manipulationleading �nally to the development of language. Grammatical competence could likewise beclassi�ed in di�erent categories. The relationship of these levels to the ability to solve AIproblems could be explored. A hierarchy of intelligence levels will be useful in the classi�ca-tion of animal behavior.2.4.2 Recursive behaviorAnother useful perspective on animal behavior is its recursive nature. Life can be seen atvarious levels, but consciousness is a characteristic of the individual alone.Considering this from the bottom up, animal societies have been viewed as \superorgan-isms." For example, the ants in an ant colony may be compared to cells, their castes totissues and organs, the queen and her drones to the generative system, and the exchange ofliquid food amongst the colony members to the circulation of blood and lymph. Further-more, corresponding to morphogenesis in organisms the ant colony has sociogenesis, whichconsists of the processes by which the individuals undergo changes in caste and behavior.Such recursion has been viewed all the way up to the earth itself seen as a living entity. Par-enthetically, it may be asked whether the earth itself, as a living but unconscious organism,may not be viewed like the unconscious brain. Paralleling this recursion is the individualwho can be viewed as a collection of several \agents" where these agents have sub-agentswhich are the sensory mechanisms and so on. But these agents are bound together and thisbinding de�nes consciousness.A question that arises out of this reasoning is whether an organism as well as a super-organism could be simultaneously conscious. It appears that such nested consciousnessshould be impossible. In multiple personality disorder, the person's consciousness remainsa unity. Such a person might claim that \yesterday I was Alice and today I am Mary,"but each time the assertion would be in terms of an indivisible consciousness. In split-brainpatients, the minor hemisphere does not have a conscious awareness. In other words, thereis no nested consciousness.



14 S.C. Kak2.4.3 Logical tasksLogical tasks are easy for machines whereas AI tasks are hard. We have two perspectives.The �rst is: Why build machines in a hierarchy that mimics nature? After all, wheeledmachines do better than animals at locomotion. The second is that there is somethingfundamental to be gained in building machines that have recursively de�ned behavior in themanner of life, and the same facility for solving AI problems that subhumans possess. If thebasis for animal competence at AI tasks were understood then new kinds of AI machinescould be designed.Logical tasks are di�cult for animals to complete. Human language is more than reexivebehavior, and it has a logical component. A logical structure underpins human language. Onthe other hand, when apes have been taught associations of symbols with objects, they havefound it hard to string these together into rule-based combinations that could be termedlanguage. Although communication amongst animals seems to be very rich, it is clear thatanimal communication lacks many features that are present in human language. To see thesedi�erences in terms of less developed neural structures would connect neural hardware withspeci�c function.



Chapter 3Neural Network Models3.1 The BrainThe central nervous system of vertebrates is organized in an ascending hierarchy of structures|spinal cord, brain stem, and brain. A human brain (Figure 1) contains about 1011 neurons.The structure, composition, and functioning of central nervous systems in all vertebrateshave general similarity. The peripheral nervous system consists of peripheral nerves and theganglia of the autonomic nervous system.At the gross level, the brain is bilaterally symmetric and the two hemispheres are con-nected together by a large tract of about half a billion axons called the corpus callosum.At the base are structures such as the medulla, which regulates autonomic functions, andthe cerebellum, which coordinates movement. Within lies the limbic system, a collection ofstructures involved in emotional behavior, long-term memory and other functions.The convoluted surface of the cerebral hemispheres is called the cerebral cortex. Thecerebral cortex is a part of the brain more developed in humans than in other species. Ap-proximately seventy percent of all the neurons in the central nervous systems of primatesare found in the cortex. This is where the most complex processing and coding of sensoryinformation occurs. The most evolutionary ancient part of the cortex is part of the lim-bic system. The larger, younger neocortex is divided into frontal, temporal, parietal, andoccipital lobes that are separated by deep folds. Each of these lobes contains yet furthersubdivisions. The parietal, temporal, and occipital lobes receive sensory information such ashearing and vision. These sensory-receiving areas occupy a small portion of each lobe, theremainder being termed the association cortex. Each sensory area of the neocortex receivesprojections primarily from a single sensory organ. Thus, the visual-receiving area in theoccipital lobe processes sensations received by the retina; the auditory-receiving area in thetemporal lobe processes sensations received by the cochlea; and the body-sense-receivingarea in the parietal lobe processes sensations received by the body surface. Within eachsensory-receiving area, the sense-organ projections form a map of the sensory organ on theneocortical surface. 15



16 S.C. Kak3.2 Neurons and SynapsesThe nervous tissue is made up of two types of cells: neurons and satellite cells. In the centralnervous system the satellite cells are called neuroglia and in the periphery, Schwann cells.The satellite cells provide insulating myelin sheathing around the neurons. This insulationincreases the propagation velocity of the electrical signals.A neuron consists of tree-like networks of nerve �ber called dendrites, the cell body (orsoma), and a single long �ber called the axon, which branches into strands and substrands(Figure 2). At the end of these substrands are the axon terminals, the transmitting ends ofthe synaptic junctions, or synapses (Figure 3). The receiving ends of these junctions can befound both on the dendrites and on the cell bodies themselves. The axon of a typical neuronmakes about a thousand synapses with other neurons.It may be argued that brain computations must really be seen to take place in thesynapses, rather than neurons. This change in point of view has important philosophicalimplications. Not only are there more synapses than neurons, say about 1015, but thischanged perspective can be taken to mean a view of the brain as a chemical computer ratherthan an electrical digital system. This is an issue that will not be explored in this article.Two major types of synapse are electrical and chemical. In electrical synapses the chan-nels formed by proteins in the presynaptic membrane are physically continuous with the simi-lar channels in the postsynaptic membrane, or the synaptic gap is only about two nanometers,allowing the two cells to share some cytoplasm constituents and electrical currents.At chemical synapses, the gap of about 20 to 30 nanometers between the presynaptic andpostsynaptic membranes prevents a direct ow of current. The signal is now transmittedto the next neuron through an intermediary chemical process in which neurotransmittersubstances are released from spherical vesicles in the synaptic bouton. This raises or lowersthe electrical potential inside the body of the receiving cell. When this potential reaches athreshold, a pulse or action potential of �xed strength and duration is sent down the axon.This constitutes the �ring of the cell. After �ring, the cell cannot �re again until the end ofthe refractory period.Ionic currents owing across surface membranes of nerve cells lead to electrical potentialchanges. Ions such as sodium, potassium, calcium, and chloride participate in this process.The nerve maintains an electrical polarization across its membrane by actively pumpingsodium ions out and potassium ions in. When ion channels are opened by voltage changes,neurotransmitters, drugs and so on, sodium and potassium rapidly ow through the channelcreating a depolarization. Action potentials occur on an all or none basis from integrationof dendiritic input at the cell body region of the neuron. The frequency of �ring is relatedto the intensity of the stimulus. Action potential velocity is �xed for given axons dependingon axon diameter, degree of myelinization, and distribution of ion channels. Typical valuesof action potential velocity is 100 meters per second.The neurons come in a great variety of structures. The diversity is even greater if molec-ular di�erences are considered. Although all cells contain the same set of genes, individualcells exhibit, or activate, only a small subset of these genes. Selective gene expression hasbeen found even in seemingly homogeneous populations of neurons. Evidence does not sup-port the thesis that each neuron is unique; but certainly the brain cannot be viewed as



Advances in Imaging and Electron Physics, 1995 17a collection of identical elements. An order is imposed on the enormous diversity of theneurons and their connection patterns by the nested arrangement of certain circuits andsubcircuits (Mountcastle 1978, Sutton et al 1988). For example, neurons of similar functionsare grouped together in columns that extend through the thickness of the cortex. A typicalmodule is the visual cortex, which could contain more than 100,000 cells, the great majorityof which form local circuits devoted to a particular function.3.2.1 The McCulloch-Pitts modelMcCulloch and Pitts (1943) proposed a binary threshold model for the neuron. The modelneuron computes a weighted sum of its inputs from other inputs and outputs a one or azero according to whether this sum is above or below a certain threshold. The updatingof the states of a network of such neurons was done according to a clock. Although theMcCulloch-Pitts (MP) neurons do not model the biological reality well, networks built upof such neurons can perform useful computations. Variants of the MP neurons have gradedresponse; this is achieved if the neuron performs a sigmoidal transformation on the sumof the input data. But networks of such graded neurons do not provide any fundamentalcomputing advantage over binary neurons.Networks of MP-like neurons have been extensively used to model brain circuits in thehope that these networks will somehow capture the essentials of the processing done in thebrain. Various kinds of networks have been used in these models.3.3 Feedback and Feedforward NetworksA broad distinction may be made between feedback and feedforward neural networks. Infeedback networks the computation may be taken to be over when the networks has reacheda stable state. The updating for the network may be represented by the ruleXnew = f(Xold)where f represents the concatenation of the transformation by the synaptic interconnectionweight matrix and the sign or the sigmoidal function. This updating may be viewed to occureither synchronously or asynchronously. The operation of such a network in the asynchronousmode may be viewed as a descent to minimumenergy value in the state space. Such minimascan thus represent stored memories in a feedback model. Learning shapes attraction areasaround exemplars. The notion of the attraction basis associated with each energy minimumprovides the model for generalization. The major limitation of the feedback model is thatalong with the useful memory, a very large number of spurious memories are automaticallygenerated.Feedforward networks perform mapping from an input to an output. Once the traininginput-output pairs have been learned to de�ne certain classes, this network also has thecapacity to generalize. This means that neighbors of the training inputs are automaticallyclassi�ed.Although feedforward networks are quite popular as far as signal processing applicationsare concerned, they su�er from inherent limitations. This is owing to the fact that such



18 S.C. Kaknetworks perform no more than mapping transformations or signal classi�cation. Feedbacknetworks, on the other hand, o�er greater parallels with biological memory, and biologicalstructures, such as the vision system, have aspects that include feedback. It is due to thisreason that recurrent networks, which are feedforward networks with global feedback, arebeing increasingly studied. If one accepts the proposition that arti�cial neural architectureswould gain from insights obtained in the study of biological systems, then a further study offeedback networks is called for.The neuron model that we examine in this chapter is the on-o� or the bipolar MPmodel. This model and its variant, where the neuron output can be any analog valueover a range, have generally been used for signal processing arti�cial neural networks. Butbiological neurons exhibit extremely complex behavior and on-o� type neurons are a grosssimpli�cation of the biological reality (Libet 1986). For example, neuron output is in termsof spikes, this output cannot be taken to be held to any �xed value. There is, furthermore,the question of the refractory phase of a neuron's response. If one considers waves of neuralactivity, then a continuummodel may be called for (Milton et al 1994). Neuron outputs mayalso be considered to arise from the partial response of other neurons. In addition, thereexist neurons that remain quiescent in a computation. We look at some of these issues andinvestigate how the bipolar model can be made more realistic.In many arti�cial intelligence problems, such as those of speech or image understanding,local operators can be properly designed only if some understanding of the global informationis available. Networks of MP neurons do not provide any choice as far as resolution of thedata is concerned. A generalization of the MP model of neurons appears essential in orderto account for certain aspects of distributed information processing in biological systems.One particular generalization allows one to deal with some recent �ndings of Optican andRichmond (1987) that indicate that in neuron activity the spike rate as well as spike distri-bution carry information. This supposes complex valued neurons with relationship betweenthe real and imaginary activations; this can form the �rst step in the storage of patterns insuch a fashion so that together with these corresponding context clues are represented in thecomplex domain.3.4 Iterative TransformationsConsider a fully connected neural network, composed of n neurons, with a symmetric synapticinterconnection matrix Tij where Tii = 0. The matrix T is obtained by Hebbian learning,which is an outer product learning rule, or its generalization called the delta rule. In Hebbianlearning Tij = lXk=1Xki Xkjwhere l is the number of memories, and Xk represents the kth memory. Let xi be the outputof neuron i. The updated value of this neuron isx0i = f( nXj=1 Tijxj)



Advances in Imaging and Electron Physics, 1995 19where f is a sigmoid or a step function. Without loss of generality we will now con�neourselves to the sign function (sgn) for f and we will use the convention that sgn(0) = 1.Also note that the updating of the neurons may be done in any random order, in other wordsasynchronously.The characteristics of such a feedback network have parallels with that of one-variableiterative systems. Consider the equation g(x) = 0, the solutions for x de�ning the roots ofthe equation. Let x0 be a point near a root x. Then one may expand g(x) in a Taylor seriesso that g(x) = g(x0) + (x� x0)g0(x0)=1! + (x� x0)2 g00(x0)=2! + :::For values of x near x0, (x�x0) will be small. Assuming that g0(x0) is large compared to(x�x0), and that g00(x0) and the higher derivatives are not unduly large, the above equationmay be rewritten as a �rst approximation:g(x) = g(x0) + (x� x0)g0(x0)Since we seek x such that g(x) = 0, we can simplify this equation as:x = x0 � g(x0)=g0(x0)The new x will be closer to the root than x0 and this forms the basis of the Newton-Raphson iteration formula: xn+1 = xn � g(xn)=g0(xn)If the equation g(x) = 0 has several solutions then the variable x will get divided intothe same number of ranges. Starting in a speci�c range would take one to the correspondingsolution. Each range can therefore be seen as an attraction basin.This may be generalized by the consideration of the transformation on the complex plane.For an analytic function one can use the Taylor series to give:zn+1 = zn � g(zn)=g0(zn)For g(z), a nth degree polynomial, one would see n attraction basins. A good exampleis g(z) = z3 � 1 = 0 which leads to the iterative mapping:zn+1 = (2z3 + 1)=3z2This has three attraction basins. The boundaries of the basins are fractals. Das (1994) hasexamined how neural networks that are a generalization of the above idea can be designed.We see that for an iterative transformation the concepts of attractors and attractionbasins are de�ned similar to those for the feedback neural network. However, we do not geta regular structure of connected points de�ning an attraction basin. Moreover, the nature ofthe attraction basins is dependent on the iterative transformation although the underlyingpolynomial may be the same.



20 S.C. Kak3.4.1 Neuron models and complex neuronsBiological neurons are characterized by extremely complex behavior expressed in a distri-bution of voltage and time dependence of current. Di�erent types of membrane currentsmay be involved. Perhaps the simplest model is the classic Hodgkin-Huxley model of thesquid giant axon. It has three main characteristics: 1) an action potential, 2) a refractoryperiod after an action potential during which the slow recovery of the potassium and sodiumconductance has a great impact on electrical properties, and 3) the ability to capacitivelyintegrate incoming current pulses. This model is approximated by two �rst order di�erentialequations in terms of four time-dependent dynamical variables. It has been suggested thata further approximation in terms of two dimensions is reasonably good. This descriptionshows that the MP binary or bipolar neurons do not capture the intricacies of even thesimple Hodgkin-Huxley model.Considering the problem at a gross level, it has been suggested that neurons carry in-formation in the distribution as well as the number of spikes in a response (Optican andRichmond 1987). The nature of the relationship between these two types of informationis not clear. In the most general case one may take these two channels of information toprovide us with independent information, although they may actually be connected throughsome transformation.On the other hand, from an analytical perspective related to information processing, thereexists the problem of local/global information linkage whereby local information features arelinked into global concepts. This may be seen to occur through stages of transformation sothat information is delivered to neurons that deal directly with global concepts.One may use a straightforward generalization of the standard neuron model to includecomplex sequences where the real and the imaginary activations are related to each other.It may be assumed that usual observations, being based on time-averaged behaviour, ignorethe information in the distribution of the spikes. One might further assume that the realactivation is related to the spike rate and the imaginary activation expresses the informationin the spike distribution. In the general case the real and the imaginary quantities areconnected to each other through a transformation. Note that each neuron in the standardnetwork model does receive information from all other neurons and, therefore, there existsthe potential of the delivery of global information at each neuron. However, this informationis presented in a mixed fashion from where it may not be retrievable. It is for this reason itis useful to postulate an explicit transformation.Let the stored memories be represented by zj wherezj = xj + iyjand yj = g(xj)The transformation g would in general be nonlinear. As a starting point this transforma-tion may be taken to be Fourier followed by a saturation function. Transformations such asFourier decorrelate redundant patterns. This means that far fewer components of the patternin the transformed domain are necessary to represent most of the pattern information.



Advances in Imaging and Electron Physics, 1995 21For ease of illustration one may consider bipolar neurons. The Hebbian learning rule forthe interconnection weight matrix T can be stated to have the form:T = mXj=1 zjzj�0The neural network operates in the usual mode, Znew = sgmfTZoldg.The only di�erence with the standard Hebbian rule is that the column memory vector ismultiplied with its complex conjugate transposed form. Also, if the staggering is done cor-rectly for the patterns in a set, Hebbian learning will automatically associate the imaginarycomponents of these patterns in a concatenated form.3.4.2 Chaotic maps on the complex planeThe dynamics of a synchronous feedback network is represented by Xnew = f(Xold), wheref is a linear map followed by a sigmoidal function and X is a n-component vector. In asynchronous update one can encounter oscillatory behavior. When the components of theX vector are continuous then the behavior can be chaotic. This will be seen in the contextof a speci�c non-linear transformation below.Consider zn+1 = f(zn), an iterative transformation on the complex plane. Such aniterative transformation must be considered for points on the unit circle because for jzj < 1the asymptotic value would end up at 0 whereas for jzj > 1 it would end up at 1. The setof points on the unit circle is the Julia set.Consider now zn+1 = z2nfor the unit circle. This corresponds to:zn+1 = xn+1 + iyn+1 = x2n � y2n + i2xnynSince x2n + y2n = 1, we obtain a pair of transformations for the x and y variables:xn+1 = 2x2n � 1; �1 � xn � 1and y2n+1 = 4y2n (1� y2n)Let us de�ne another variable rn = y2n, then the above equation can be rewritten as:rn+1 = 4rn(1� rn); 0 � rn � 1This represents the well known logistic map. If ro is represented by an irrational pointthen the iterative transformation will never return to its starting point. In other words, thelogistic map will generate an in�nite period sequence, or a chaotic sequence. The same willalso be true of the other maps listed above.



22 S.C. KakTo see this consider zn = jznj exp(i�). It is clear that this map implies multiplying theangle � by 2 at each iteration. Now, if the starting angle �o is represented in a binary form,then each step implies shifting the expansion one bit to the left. Therefore, if the originalangle is represented by an in�nite expansion (as for an irrational number) the iterativetransformation will lead to chaotic behavior.It is also clear from the above that the two-dimensional structure of the Julia sets merelyexpresses the randomness properties in di�erent scales of the underlying irrational number.One may consider di�erent generalizations of the map on the unit circle. Thus one mayconsider x2n+1 = �x2n  1� �+ ��y2n!y2n+1 = � � �x2ny2nWhen � = � = 1 and � = 4, we obtain the logistic map. When only � = � = 1, we have:rn+1 = �rn(1� rn)To determine the stability of a �xed point one looks at the slope jf 0(r)j evaluated at the�xed point. The �xed point is unstable if jf 0j > 1. For this logistic function when 1 < � < 3,there are two �xed points r = 0; (� � 1)=� of which r = 0 is unstable and the other point isstable.For � > 3 the slope at r = (� � 1)=�, which is f 0 = 2 � � becomes greater than 1 andboth equilibrium points become unstable. At � = 3 the steady solution becomes unstableand a two-cycle orbit becomes stable. For 3 < � < 4, the map shows many multiple periodand chaotic motions. The �rst chaotic motion is seen for � = 3:56994:::. Before the onsetof chaos at this value if the nth period doubling is obtained for �n, we get the well-knownresult that in the limit �n+1 � �n�n � �n�1 ! 4:6692016:::which is the Feigenbaum number (Feigenbaum 1978). This represents an example of theperiod-doubling route to chaos. There are other routes to chaos, such as quasi-periodicityand intermittency, that do not concern us in the present discussion.Considering that chaos in the brain arises from a similar mechanism, one might askwhether the universality of the route to chaos provides a certain normative basis.3.4.3 ImplicationThe study of complex valued neurons and iterative transformations shows that these aloneare not capable of de�ning a rich enough framework in which cognitive functions can beunderstood. Thus a complex network may be replaced by four real ones and so nothingfundamental is gained by such a generalization. That should not be surprising since thetransition from classical to quantummechanics is much more than generalization from scalarto complex representations.



Advances in Imaging and Electron Physics, 1995 233.4.4 Performance of interacting unitsWe now consider the question of a computation being carried out by a neural system ofwhich a feedback network is a part. A network that deals with non-trivial computing taskswill be composed of several decision structures. If the neural network computation can beexpressed in terms of a straightforward sequential algorithm then it is inappropriate to callthe computation style neural. We may call neurons that perform decision computations tobe cognitive neurons. These cognitive neurons may take advantage of information storedin specialized networks some of which perform logical processing. There would be otherneurons that simply compute without cognitive function. Such cognitive neurons could lieat the end of the brain's many convergence regions. It is essential to assume that manycognitive neurons compute in parallel for a computation to be neural. It was shown in Kak(1992, 1993b) that independent cognitive centers will lead to competing behaviour.In the cortex certain cells seem to be responsive to speci�c inputs. In other words, certainneurons process global information. Thus Hubel and Wiesel (1968) have shown that certaincells in the visual cortex of a cat are responsive to lines in the visual �eld which have aparticular angle of slope. Other cells respond to speci�c colors, and others respond to thedi�erences between what each eye has received, leading to depth perception. One mightassume that neurons are organized hierarchically, with the higher level neurons dealing withmore abstract information. It may be assumed that the two di�erent kinds of neurons dointeract with each other? Does the information processing of such a network have specialcharacteristics or limitations?Another interesting phenomenon is where damage to parts of the visual cortex makes aperson blind in the corresponding part of the visual �eld. However, experiments have shownthat often such subjects are able to \guess" objects placed in this region with accuracy eventhough they are blind in that region. The information from the retina is also processedby obscure regions lying in the lower temporal lobe. Clearly, these independent cognitivecentres supply information to the subject's consciousness. But this is done without directawareness.Consider two non-linearly interacting cognitive centers A and B with three courses ofaction labeled 1, 2, and 3 with energies (�1; 2; 1) and (3; 5;�1) respectively. If the non-linear interaction is represented by multiplication at the systems level then the system stateswill be shown as in the table below.Energy A1 A2 A3B1 -3 6 3B2 -5 10 5B3 1 -2 -1The optimal system performance is represented by A1 B2 which corresponds to the mini-mum energy of -5. However, the two centers would choose A1 and B3 considering individualenergy distributions.



24 S.C. KakThis is indication that an energy function cannot be associated with a neural networkthat performs logical processing. But if there is no energy function, then how do the neuronsoperate cooperatively?Neural network models do not deal with or describe inner representations, so from our ex-perience with animal intelligence (Chapter 2.2) it is clear their behavior cannot be purposive.Current theory does not show how such inner representations could be developed.



Chapter 4The Binding Problem and Learning4.1 The Binding ProblemHow is a stimulus recognized if it belongs to a class that has been learnt before? If the stim-ulus triggers the �ring of certain neurons, how is the �ring information \gathered" togetherto lead to the particular perception? Considering visual perception, there exist an unlimitednumber of objects that one is capable of seeing. Early theories postulated \grandmother neu-rons," one for each image; this concept leads to a homunculus|the person's representationinside the brain which observes and controls, and also represents the self. The postulationof grandmother neurons leads to logical problems: How can we have a number that wouldexhaust all possible objects, and how does the homunculus organize all the sensory inputthat is received? Thus grandmother neurons cannot exist, although there might exist somespecialized structures for certain features. If a large number of neurons �re in response toan image, the problem of how this set �res in unison, de�ning the perception of the image,is called the \binding problem." No satisfactory solution to the binding problem is knownat this time.In reality the problem is much worse than the binding problem as stated above. Thebound sets are in turn bound at a higher level of abstraction to de�ne deeper relationships.The reductionist approach seeks explanations of brain behavior in terms of a sum of thebehaviors of lower level elements. Brain behavior has traditionally been examined at threedi�erent levels of hierarchy: (i) synaptic level or in terms of biochemical changes; (ii) neuronlevel as in maps of the retina in the visual cortex; (iii) that of neural networks where theinformation is distributed over entire neuron cell assemblies. But the explanation of brainfunction in terms of behavior at these levels has proved to be inadequate.Skarda and Freeman (1990) have argued that while reductionist models have an importantfunction, they su�er from severe limitations. They claim that \perceptual processing is nota passive process of reaction, like a reex, in which whatever hits the receptors is registeredinside the brain. Perception does not begin with causal impact on receptors; it begins withinthe organism with internally generated (self-organized) neural activity that, by re-a�erence,lays the ground for processing of future receptor input... Perception is a self-organizeddynamic process of interchange inaugurated by the brain in which the brain fails to respondto irrelevant input, opens itself to the input it accepts, reorganizes itself, and then reaches25



26 S.C. Kakout to change its input (page 279)." In other words, the neural networks that performthe perceptual processing function together within a holistic framework that de�nes theself-organizing principle.4.2 Learning4.2.1 The biological basisTwo types of learning or memories have been described by researchers. Memories that requirea conscious record have been termed declarative or explicit. Memories where consciousparticipation is not needed are called nondeclarative or implicit. It is not known whetherother types of memories exist.Explicit learning is fast and may take place after only one training trial. It involvesassociations of simultaneous stimuli and de�nes memory of single events. In contrast, implicitlearning is slow and requires repetition over many trials. It often connects sequential stimuliin a temporal sequence. Implicit learning is expressed by improved performance on certaintasks without the subject being able to describe what he has learnt. Experiments indicatethat the storage of both these memory types proceeds in stages. \Storage of the initialinformation, a type of short-term memory, lasts minutes to hours and involves changes inthe strength of existing synaptic connections. The long-term changes (those that persist forweeks and months) are stored at the same site, but they require something entirely new:the activation of genes, the expression of new proteins and the growth of new connections."(Kandel and Hawkins 1994)Since gene activation at neuron sites, and the reorganization of the brain, are two of theconsequences of learning, the question arises: Do we perceive as we do as a consequence ofthe genetic potential within us via its embodiment in the organization of the brain? In otherwords, is learning a part of the response to the universe? If the ape, or the pigeon, does nothave the appropriate genes to activate speci�c development and reorganization of the brainit will not respond to certain patterns in its environment.Hebb's rule that coincident activity in the presynaptic and postsynaptic neurons strength-ens the connection between them, is one learning mechanism. According to another rule,called the pre-modulatory associative mechanism, the synaptic connection can be strength-ened without activity of the postsynaptic cell when a third neuron, called a modulatoryneuron, acts on the presynaptic neuron. The associations are formed when the action po-tentials on the presynaptic cell are coincident with the action potentials in the modulatoryneuron.4.2.2 Prescriptive learningAlthough neural networks and other AI techniques provide good generalization in manysignal and image recognition applications, these methods are nowhere close to matching theperformance of biological neural systems. As explained in Chapter 2, pigeons, parrots andother animals can quite easily perform abstract generalization, recognizing abstract classessuch as those of a tree, a human, and so on which lies completely beyond the capability of



Advances in Imaging and Electron Physics, 1995 27any AI machine. This raises the question if current learning strategies being employed arefundamentally de�cient. One would expect that biological systems in their evolution throughmillions of years would have evolved learning mechanisms that are optimal in a certain sense.This section examines biological learning to conclude that arti�cial neural networks do notlearn in the same manner as animals. We claim that a two-step learning scheme, where the�rst step is a prescriptive design, o�ers a more versatile model for machine learning.Our starting point is developmental neurobiology. During embryogenesis several kindsof cell death occur. One is histogenetic cell death, or the death of neurons that have ceasedproliferation and have begun to di�erentiate; this is what is of relevance for our discussion.One may also speak of phylogenetic cell death, responsible for the regression of vestigal organsor of larval organs during metamorphosis (such as the tadpole tail), and morphogenetic celldeath, which involves degeneration of cells during massive changes in shape as in bendingand folding of tissues and organs during early embryogenesis.According to Oppenheim (1981): \The neurons that exhibit cell death include such awide variety of cells ... that it is impossible at this time to argue that any particular featureis characteristic of all neurons exhibiting cell death. Although it has been suggested thatcell death may only occur among neurons that have greatly restricted or limited numbers ofsynaptic targets, the variety of cell types [that exhibit cell death] would appear to contradictsuch a suggestion."Soon after the issuance of Darwin's The Origin of Species it was suggested by T.H. Huxley,G.S. Lewes, and Wilhelm Roux that Darwinian ideas of natural selection might apply to thecells and tissues of the developing organism. The Spanish neuroanatomist Ram�on y Cajalalso suggested in 1919 that \during neurogenesis there is a kind of competitive struggleamong the outgrowth (and perhaps even among the nerve cells) for space and nutrition.The victorious neurons ... would have the privilege of attaining the adult phase and ofdeveloping stable dynamic connections." But none of these early pioneers anticipated thepossiblity of massive neuronal death during normal development which was reported �rst byHamburger and Levi-Montalcini (1949).We suggest that cell death is a result of many neurons being rendered redundant duringa stage of reorganization that follows the �rst phase of development of the system. Duringthe �rst phase all the neurons ful�l a speci�c function; this is followed by a structuralreorganization. This two-step strategy can be used to devise a new approach to machinelearning.4.2.3 ReorganizationThe two-step learning scheme allows us to view the developmental process in a di�erent light.The �rst step consists of prescriptive learning which de�nes the layout and the synapticweights of the interconnections. This learning may be called the biologically programmedcomponent of the learning.The nature of the prescriptive learning requires many more neurons than are necessaryin a more e�ciently organized network. During the second stage of learning a reorganizationof the network takes place that renders a large number of neurons redundant. These arethe neurons that su�er death as they do not receive appropriate signals from target neurons



28 S.C. Kak(Purves 1988).In a more general setting this new learning strategy may be termed a structured approach.We begin with a general kind of architecture for the intelligent machine which is re�nedduring a subsequent phase of training.4.2.4 The example of feedforward neural networksBackpropagation is the commonly used method for training feedforward networks. But thisdoes not explicitly use any speci�c architecture related to the nature of the mapping.It has recently been shown that a prescriptive learning scheme can be devised (Kak1993a, 1994a). In its basic form this does not require any training whatsoever. But thisform does not generalize. The weights are now changed slightly by adding random noisewhich allows the network to generalize. Characteristics of this model are summarized in thework of Madineni (1994) and Raina (1994). This variant scheme provides signi�cant learninggeneralization and a speed-up advantage of 100 over fastest versions of backpropagation. Thepenalty to be paid for this speed-up is the much larger number of hidden neurons that arerequired.The second step in this training would be to reorganize from the architecture obtainedusing prescriptive learning and reduce the number of hidden neurons.The speed of learning, and the simplicity of this procedure make the new model a plausiblemechanism for biological learning in certain structures. Interesting issues that remain to beinvestigated include further development of this approach so that one can obtain continuousvalued outputs and the development of competitive learning. But we cannot expect suchmodels to provide any insight regarding holistic behavior.But to explain the nature of memory at the level of the neural network model, one needsto understand learning at the more fundamental level of organization of the brain.4.3 Chaotic DynamicsFreeman and his associates (e.g. Freeman 1992, 1993) have argued that neuron populationsare predisposed to instability and bifurcations that depend on external input and internalparameters. Freeman (1993) claims that chaotic dynamics makes it \possible for microscopicsensory input that is received by the cortex to control the macroscopic activity that con-stitutes cortical output, owing to the the selective sensitivity of chaotic systems to smalluctuations and their capacity for rapid state transitions."One signi�cance of this work is to point out the gulf that separates simple input-outputmapping networks used in engineering research from the complexity of biological reality.But the claim that chaotic dynamics in themselves somehow carry the potential to explainmacroscopic cortical activity relating to the binding problem seems to be without foundation.The nonlinearities at the basis of chaos are seen as the basis of a self-organizing principle.Considering these ideas for the olfaction in a rabbit, Freeman (1993) says: \The olfactorysystem maintains a global chaotic attractor with multiple wings or side lobes, one for eachodor that a subject has learned to discriminate. Each lobe is formed by a bifurcation duringlearning, which changes the entire structure of the attractor, including the pre-existing lobes



Advances in Imaging and Electron Physics, 1995 29and their modes of access through basins of attraction. During an act of perception the actof sampling a stimulus destabilizes the olfactory bulbar mechanism, drives it from the core ofits basal chaotic attractor by a state transition, and constrains it into a lobe that is selectedby the stimulus for as long as the stimulus lasts, on the order of a tenth of a second... Inthis way the cortical response to a stimulus is \newly constructed"... rather than retrievedfrom a dead store."The above theory is very attractive for the olfactory system but it remains very limitedin its scope. It is hard to see how it could be generalized for more complex informationprocessing.4.4 Attention, Awareness, ConsciousnessMilner (1974) speculated that neurons responding to a \�gure" �re synchronously in time,whereas neurons responding to the background �re randomly. More recently von der Mals-burg and Schneider (1986) have proposed a correlation theory to explain a temporal segre-gation of patterns.Crick and Koch (1990) have considered the problem of visual awareness. They distinguishbetween two kinds of memory: \very short term" or \iconic," and a slower \short term" orworking memory. Iconic memory appears to involve visual primitives, such as orientationand movement, and it appears to last half a second or less. On the other hand, short termor working memory lasts for a few seconds, and it deals with more abstract representations.This memory also has a limited capacity and it has been claimed that this capacity is aboutseven items.For the \short term" memory Crick and Koch postulate an attentional mechanism thattransiently binds together all those neurons whose activity relates to the di�erent features ofthe visual object. They argue that semi-synchronous coherent oscillations in the 40{70 Hzrange are an expression of this mechanism. These oscillations are sensory-evoked in responseto auditory or visual stimuli. But postulating such a mechanism merely trade one problemfor another: how the neurons that participate in these oscillations get bound is still notexplained. This theory is an extension of the earlier \searchlight" hypothesis relating toawareness. It shifts the basis of awareness to a more abstract mechanism of attention.This work has led to a re-examination of the question of what may be taken to de�nethe loss of consciousness. In the standard view, anesthesia leads to four distinct e�ects:motionlessness in the face of surgery, attenuation or abolition of the autonomic responseslike tachycardia, hypertension, and so on that would normally accompany surgery, lack ofpain, and lack of recall. Use of EEG's shows little di�erence between natural sleep andthe anesthetized state. On the other hand, Kulli and Koch (1991) argue that the loss ofconsciousness, as de�ned by these four e�ects, is best represented by the loss of the 40Hz sensory-evoked oscillations. Deepening anesthesia has also been seen as progressive lossof complexity of the EEG phase plot (Hamero� 1987). Hamero� claims that anestheticsretard mobility of electrons, and doing so may disrupt hydrophobic links among proteinswhich interconnect microtubules which are �lamentous substructures of the neuron (See nextsection). From a functional point of view one may see a prevention of memory consolidationfrom input to long-term memory storage as one of the consequences of anesthesia; other



30 S.C. Kakcognitive and motor functions may be similarly inhibited.4.4.1 ScriptsYarbus (1967) recorded the eye movements when a picture is viewed. He found that there isa continual scanning of the scene with a predominance of the �xation points on parts whichcarry important and complex features. From this one may infer that the brain constructs theregular image from fragments, obtained through the scanning process, that may be termedscripts. Such scripts may be de�ned both with respect to space as well as time.The structuring of events in dreams gives us important clues regarding time scripts. Myfather explained to me in 1955 that certain dreams run as scripts. Thus a foot slipping o�another in sleep may be accompanied by a dream about falling o� a precipice. That sucha script includes an appropriate sequence of events preceding the climax indicates that themind rearranges the events so that the dream appears to have started before the slippingof the foot. Similar scripts should be a part of normal awake cognition. For example, indelirious speech ideas and words are strung together in an illogical manner. It is as if di�erentbrief scripts have been jumbled together without comparing the stream to the inner modelof reality.Scripts might be seen as chunks of visualization or linguistic behavior, just as neuralsubsystems might be viewed as chunks of structure.4.4.2 Time e�ectsExperiments focusing on time delays and rearrangement of events by consciousness have beenperformed by H.H. Kornhuber and his associates and by Benjamin Libet. Kornhuber andhis associates (Deeke et al 1976) found that the readiness potential, the averaged EEG tracefrom the precentral and parietal cortex, of a subject who was asked to ex his �nger built upgradually for a second to a second and a half before the �nger was actually exed. This slowbuild-up of the readiness potential may be viewed as a response of the unconscious mindbefore it it passes into the conscious mind and is expressed as a voluntary movement. InLibet's work (1976) the subjects were undergoing brain surgery for some reason unconnectedto the experiment and they agreed to electrodes being placed at points in the brain, in thesomato-sensory cortex. It was found that when a stimulus was applied to the skin, thesubject became aware of this half a second later although the brain would have receivedthe signal of the stimulus in barely a hundredth of a second. Furthermore, the subjectsthemselves believed that no delay had taken place in their becoming aware of the stimulus!In further experimentation the somatosensory cortex was electrically stimulated withinhalf a second of skin stimulus. A backward masking phenomenon occurred and the subjectdid not become aware of the earlier skin sensation. Now Libet initiated a persistent corticalstimulation �rst and then within half a second he also touched the skin. The subject now wasaware of both the stimulations but he believed that the skin stimulation preceded that of thecortex. In other words, this established that the subject did extrapolate the skin-touchingsensation backwards in time by about half a second. These experiments also demonstratehow brain works as an active agent, reorganizing itself as well as the information.



Advances in Imaging and Electron Physics, 1995 314.5 Cytoskeletal NetworksRecursive de�nition is one of the fascinating characteristics of life. For example, naturalselection does not work only at the level of species but also at the level of the individualand that of the nerve cells of the developing organism (Cowan 1981). Purposive behaviorcharacterizes human societies as also the societies of other animals such as ants. Recursionmay be seen regarding information processing as well down from animal societies to theneural structures of the individual or perhaps further down to the cytoskeleton of the cell.C.S. Sherrington (1951) argued that even single cells possess what might be called minds:\Many forms of motile single cells lead their own independent lives. They swim and crawl,they secure food, they conjugate, they multiply. The observer at once says `they are alive';the amoeba, paramaecium, vorticella, and so on. They have specialized parts for movement,hair-like, whip-like, spiral, and spring-like... [Of] sense organs ... and nerves there is notrace. But the cell framework, the cyto-skeleton, might serve."Hamero� and his associates have argued that microtubules, hollow cylinders 25 nm across,that are the cytoskeletal �lamentous polymers to be found in most cells, perform informationprocessing. Hamero� (1987) and Rasmussen et al (1990) propose that the cytoskeleton maybe viewed as the cell's nervous system and that it may be involved in molecular level in-formation processing that subserves higher, collective neuronal functions ultimately relatingto cognition. They further propose that microtubule automata may have a function in theguidance and movement of cells and cell processes during the morphogenesis of the brain'snetwork architecture, and that in learning they could regulate synaptic plasticity.In Hamero� (1994) interactions between the electric dipole �eld of water molecules con-�ned within the hollow core of microtubules and the quantized electromagnetic radiation�eld were considered. These and Bose-Einstein condensates in hydrophobic pockets of mi-crotubule subunits were taken to be responsible for microtubule quantum coherence. Itwas suggested that optical signalling in microtubules would be free from both thermal noiseand loss, and that this may provide a basis for biomolecular cognition and a substrate forconsciousness.Irrespective of the precise function of the microtubule information transmission, it couldcarry additional features that may be useful in biological information processing. The notionof a connectionist network within the neuron, which in turn is an element of the connectionistneural network, de�nes a recursive relationship that has many desirable features from thepoint of view of ability to model biological behavior.4.6 Invariants and WholenessThe brain's task can also be viewed as one that involves the extraction of invariants. Forexample, an image cannot be recognized based on the visual stimulus that is compared to astored exemplar. The reason is that the details of the visual stimulus depend on illumination,the distance and orientation of the object, motion and many other factors. In order to extractthe invariant features of the image, the brain must, from the constantly changing cascadeof photonic data, construct an internal visual world. Zeki (1992) has shown that color,form, motion and possibly other attributes are processed separately in specialized parts of



32 S.C. Kakthe visual cortex. These parts function as parallel processing modules, although there existconsiderable connections amongst them. How the processing of these parallel modules isput together remains a puzzle. Zeki summarizes: \The entire network of connections withinthe visual cortex must function healthily for the brain to gain complete knowledge of theexternal world. Yet as patients with blindsight have shown, knowledge cannot be acquiredwithout consciousness, which seems to be a crucial feature of a properly functioning visualapparatus. Consequently, no one will be able to understand the visual brain in any profoundsense without tackling the problem of consciousness as well."It is the notion that awareness possesses a unity and that many aspects of consciousnessare distributed over wide areas of the brain, that has driven the search for quantum neuralmodels. These issues are summarized in Kak (1993c) and Penrose (1989). But the presenceof noise and dissipation inside the brain makes the development of such models a dauntingtask.Arti�cial neural network research has stressed pattern recognition and input-outputmaps. The development of machines that can match biological information processing re-quires much more than just pattern recognition. Corresponding to an input not only aremany sub-patterns bound together, but there is also generated other relevant informationde�ning the background and the context. This is the analog of the binding problem forbiological neurons and therefore further progress in the design of arti�cial neural networksappears to depend on the advances in understanding brain behavior.From the perspective of wholeness it appears that a drastic change of perspective maybe necessary to solve the current problems. Consciousness is a recursive phenomenon: notonly is the subject aware but he is also aware of this awareness. If one were to postulate acertain region inside the brain from where the searchlight is shown on the rest of the brainand which provides the unity and wholeness to the human experience, the question of whatwould happen if this searchlight were to be turned on itself arises.



Chapter 5On Indivisible PhenomenaTo achieve the marvellous information processing ability of animals it is natural to investigatethe neural structure of the brain and relate it to a hypothesized nature of the mind. If brainstructure is neuronal then cognitive capabilities should be found for networks of neurons.But note the argument (Sacks 1990) that neuropsychology itself is awed since it does nottake into account the notion of self, which is why it is hard put to explain phenomena suchas that of phantom limbs (Melzack 1989).The study of neural computers was inspired by possible parallels with the informationprocessing of the brain. It was proposed that arti�cial neural networks constituted a newcomputing paradigm. But our experience with these networks has shown that such a charac-terization is incorrect. When simulated they represent sequential computing. In hardware,they may be viewed as a particular style of parallel processing but as we know parallel com-puting is not a departure from the basic Turing model. Neither does the use of continuousvalues provide us any real advantage because such continuous values can always be quan-tized and processed on a digital machine. Arti�cial neural networks were assumed to o�era real advantage in the solution of optimization problems. However, the energy minimiza-tion technique, while sound in theory, fails in practice since the network gets stuck in localminima.Cognitive abilities may be seen to arise from a continuing reection on the perceivedworld. This question of reection is central to the brain-mind problem and the problem ofdeterminism and free-will (see for example Kak 1986, Penrose 1989). A dualist hypothesis(for example Eccles 1986) to explain brain-mind interaction or the process of reection meetswith the criticism that this violates the conservation laws of physics. On the other hand abrain-mind identity hypothesis, with a mechanistic or electronic representation of the brainprocesses, does not explain how self-awareness could arise. At the level of ordinary perceptionthere exists a duality and complementarity between an autonomous (and reexive) brain anda mind with intentionality. The notion of self seems to hinge on an indivisibility akin to thatfound in quantum mechanics. This was argued most forcefully by Bohr, Heisenberg, andSchr�odinger (e.g. Moore 1989). 33



34 S.C. Kak5.1 UncertaintyUncertainty is a fundamental limitation in a quantum description arising out of indivisibility.Since a quantum system is characterized by the wavefunction  , which is a superpositionof states, and the measurement leads to the collapse of the wavefunction, one can nevercompletely infer the state before the measurement.The wavefunction evolves according to the Schr�odinger equation:i�h@ @t = Ĥ where Ĥ is the Hamiltonian. According to the probability interpretation of the wavefunction,the probability of �nding a quantum object in the volume element d� is given by  �d�Thus   � is a probability density.For a particle the Heisenberg's uncertainty relation�x�p � �h2limits the simultaneous measurements of the coordinate x and momentum p, where �x and�p are the uncertainties in the values of the coordinate and momentum. This relation alsoimplies that one cannot speak of a trajectory of a particle. Since the initial values of x andp are inherently uncertain, so also is the future trajectory of the particle undetermined. Oneconsequence of this picture is that we cannot have the concept of the velocity of a particlein the classical sense of the word.There are many scholars ( see Jammer 1974 for a bibliography) who champion a statisticalinterpretation of the uncertainty relations, according to which the product of the standarddeviations of two canonically conjugate variables has a lower bound given by �h=2. Suchan interpretation is based on the premise that quantum mechanics is a theory of ensemblesrather than individual particles. But there is considerable evidence, including that related tothe EPR experiment, described in the next chapter, that goes against the ensemble view. Itappears, therefore, that the correct interpretation is the non-statistical, according to whichone cannot simultaneously specify the precise values of conjugate variables that describe thebehavior of a single object or system.5.2 ComplementarityThe principle of complementarity, as a commonly used approach to the study of the individ-uality of quantum phenomena, goes beyond wave-particle duality. In the words of Bohr:The crucial point [is] the impossibility of any sharp separation between thebehavior of atomic objects and the interaction with the measuring instrumentswhich serve to de�ne the conditions under which the phenomena appear. In fact,



Advances in Imaging and Electron Physics, 1995 35the individuality of the typical quantum e�ects �nds its proper expression inthe circumstance that any attempt of subdividing the phenomena will demanda change in the experimental arrangement introducing new possibilities of inter-action between objects and measuring instruments which in principle cannot becontrolled. Consequently, evidence obtained under di�erent experimental condi-tions cannot be comprehended within a single picture, but must be regarded ascomplementary in the sense that only the totality of the phenomena exhauststhe possible information about the objects (Bohr 1951, page 39).Observe that complementarity is required at di�erent levels of description. But just asone might use a probabilistic interpretation instead of complementarity for atomic descrip-tions, a probabilistic description may also be used for cognitive behavior. However, sucha probabilistic behavior is inadequate to describe the behavior of individual agents, just asnotions of probability break down for individual objects.According to complementarity, one can only speak of observations in relation to di�erentexperimental arrangements, and not an underlying reality. If such an underlying reality issought then it is seen that the framework of quantum mechanics su�ers from paradoxicalcharacteristics. One of these is non-local correlations that appear in the manner of actionat a distance (Bell 1987). But quantum mechanics remains a very successful theory in itspredictive power.Consider again the similarity between the thought process and the classical limit of thequantum theory. The logical process corresponds to the most general type of thought processas the classical limit corresponds to the most general quantum process. In the logical process,we deal with classi�cations. These classi�cations are conceived as being completely separatebut related by the rules of logic, which may be regarded as the analogue of the causal lawsof classical physics. In any thought process, the component ideas are not separate but owsteadily and indivisibly. An attempt to analyze them into separate parts destroys or changestheir meanings. Yet there are certain types of concepts, among which are those involving theclassi�cation of objects, in which we can, without producing any essential changes, neglectthe indivisible and incompletely controllable connection with other ideas.5.3 What Is A Quantum Model?Wave-particle duality is not a characteristic only of light. Interference experiments have beenconducted with neutrons. In one experiment, the interference pattern formed by neutrons,di�racted along two paths by silicon crystal, could be altered by changing the orientationof the interferometer with respect to the earth's gravitational �eld. This demonstrated thatthe Schr�odinger equation holds true under gravity.Interference experiments are also being designed for whole atoms. If we use complemen-tarity in its widest sense as applying to all \indivisible" phenomena, reality is seen to besuch that it cannot be captured by a single view. This indicates that one should be able tode�ne complementary variables in terms of higher level attributes for \complex", indivisibleobjects.



36 S.C. KakFrom another perspective, a quantum system is characterized by probabilistic behavior.In Born's probability interpretation, the wavefunction is not a material wave but rather aprobability wave. Nevertheless, in relativistic quantum theory, the wavefunction cannot beused for the de�nition of a probability of a single particle.The orthodox Copenhagen interpretation of quantum mechanics is based on the funda-mental notion of uncertainty and that of complementarity. According to this interpretationwe cannot speak of a reality without relating it to the nature of measurement.If one seeks a uni�ed picture one is compelled to accept the existence of e�ects prop-agating instantaneously. One example of paradoxical results arising from an insistence ona description independent of the nature of observation is the delayed choice variant of thedouble-slit experiment of the well-known physicist John Archibald Wheeler.5.3.1 Delayed choiceIn the delayed choice experiment considering a speci�c reality (picture) before observationsleads to the inference that we can inuence the past. In the words of Wheeler (1980):A choice made in the here and now has irretrievable consequences for what onehas the right to say about what has already happened in the very earliest daysof the universe, long before there was any life on earth.Wheeler considers a source that emits light of extremely low intensity, one photon ata time, with a long time interval between the photons. The light is incident on a semi-transparent mirrorM1 and divides into two parts r and t and after reections by the totallyreecting mirrors A and B it reaches the photomultipliers P1 and P2 (Figure 4). Since aphoton will travel one of the two trajectories rAr or tBt, it will be detected either by P1 orP2. This experiment shows the corpuscular nature of photons.Now a semi-transparent mirror M2 is inserted at DCR (the delayed-choice region). Thethickness of the mirror is so chosen that if light is considered wave-like then the superpositionof the waves toward P2 combines in a destructive manner and the waves toward P1 interferein a constructive manner. With the insertion of M2 only the detector P1 will register anyreading and it should be assumed that each photon followed both trajectories.Wheeler now wishes for us to imagine a situation where the mirrorM2 has been insertedat the last moment, when the photon has already passed through M1 and is along the wayeither down rAr or tBt. If M2 is inserted the photon will behave as a wave, as if it hadfollowed both the paths. On the other hand, if M2 is not inserted then the photon choosesonly one of the two paths. Since, the insertion of M2 is done at the last moment, it meansthat this choice modi�es the past with regard to the behavior of that photon.Wheeler points out that astronomers could perform such a delayed choice experiment onlight from quasars that has passed through a galaxy or other massive object that acts asa gravitational lens. Such a lens can split the light from the quasar and refocus it in thedirection of the distant observer.The astronomer's choice of how to observe photons from the quasar appears to determinewhether each photon took both paths or just one path around the gravitational lens in itsjourney commenced billions of years ago. When they approached the galactic beam-splitter,



Advances in Imaging and Electron Physics, 1995 37did the photons make a choice that would satisfy the conditions of an experiment to beperformed by unborn beings on a still nonexistent planet? Clearly, this fallacy arises out ofthe view that a photon has a physical form before the astronomer's observation.
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Chapter 6Of Quantum And NeuralComputation6.1 Parallels With A Neural SystemBy a quantum neural computer we mean a (strongly) connectionist network which is nev-ertheless characterized by a wavefunction. Let us assume that we are only interested inconsidering the computational potential of such a supposition. In parallel to the operationalworkings of a quantum model we can sketch the basic elements of the working of such acomputer. Such a computer will start out with a wavefunction, reecting the state of theself-organization of the connectionist structure, that is a sum of several di�erent problemfunctions. After the evolution of the wavefunction the measurement operator will force thewavefunction to reduce to the correct eigenfunction with the corresponding measurementthat represents the computation.States of quantum systems are associated with unit vectors in an abstract vector spaceV , and observables are associated with self-adjoint linear operators on V . Consider theself-adjoint operator f̂ . We can write f̂ i = fi iwhere  i are the eigenvectors and fi are the eigenvalues. The  i are the wavefunctions andfi represent the corresponding measurements. When  i are a complete orthonormal set ofvectors in V , we have  i �j = �ij. Also any wavefunction  in V can be written as a linearcombination of the  i. Thus  = Xi ci iwhere the complex coe�cients are given byci = Z   �i dqand q represents the con�guration space. The sum of the probabilities of all possible valuesfi equals unity: 39



40 S.C. KakX jcij2 = 1When an observation is made on an object characterized by a wavefunction  , the mea-surement process causes the wavefunction to collapse to the eigenfunction  i that correspondsto the measurement fi. This measurement itself is obtained with the probability jcij2.Since the wavefunction evolves irrespective of whether any observations are being made,this will endow the system to compute several problems simultaneously. Analogously, animalscan simultaneously perform several tasks, although such performance has traditionally beenexplained as being reexive.From a functional point of view this has parallels with the workings of a feedback neuralcomputer. In such a computer the �nal measurement is one of the stored \eigenvectors"Xi where the neural computer is itself characterized by the synaptic interconnection weightmatrix T , so that sgmfTXig = Xiwhere sgm is a nonlinear sigmoid function, so as to de�ne a X with discrete componentvalues.One di�erence between the quantummechanical framework and the above equation is thenon-linearity introduced by the sigmoidal function. But this non-linearity may be seen to beat the end of a chain of transformations, where the �rst step is a linear transformation as inquantum mechanics. On the other hand, the matrix T is like one of the many measurementoperators of a quantum system. In other words, a neural network is associated with asingle measurement operator, whereas a quantum computer is associated with a variety ofmeasurement operators.Equivalently, we may view a quantum computer to be a collection of many neural com-puters that are \bound" together into a unity. The view of the cognitive process representingself-organized neural activity implies that each such process does set up what may be consid-ered a di�erent neural computer. The set of the self-organized states may then be viewed asrepresenting a collection of neural structures that are bound together. The search for a localmechanism for this binding is as di�cult as for the binding problem mentioned in Chapter 4.If on the other hand, we postulate a global function de�ning such a binding, then we speakof a quantum neural computer.If the wavefunction was associated with several operators then the neural hardware for aspeci�c problem will secure its solution. The measurement process will appear instantaneousafter the decision to choose a speci�c measurement has been made. But how this choice mightbe made constitutes another problem.Some of the characteristics of such a model are:1. It explains intuition, or the spontaneous computation of the kind performed in a cre-ative moment, as has been reported by Poincar�e, Hadamard, and Penrose (1989).2. A wavefunction that is a sum of several component functions explains why the free-running mind is a succession of unconnected images or episodes. The classical neuralmodel does not explain this behavior.



Advances in Imaging and Electron Physics, 1995 413. One can admit the possibility of tunnelling through potential barriers. Such a computercan then compute global minima, which cannot be done by classical neural computer,unless by the arti�ce of simulated annealing. (The simulated annealing algorithms maynot converge.)4. Being a linear sum of a large (or in�nite) number of terms, the individual can shiftthe focus to any desired context by the application of an appropriate measurementhardware that has been designed through previous exposure (reinforcement) or throughinheritance. Such a shifting focus is necessary in speech or image understanding.6.2 MeasurementsLet us consider a pure state  to be a superposition of the eigenfuctions. Or =Xi ci iThe overlapping realities collapse into one of the alternative worlds of a speci�c eigenfunc-tion when a measurement by a non-quantum device is made. However, not all measurementdevices are completely non-quantum; thus superconductivity represents a quantum phe-nomenon at the macroscopic level. If the measuring system is also a quantum system, ittoo should be described by a wavefunction. The measurement state would then arise out ofthe interference of the two wavefunctions and, in itself, it would represent a superposition ofseveral states. As shown by von Neumann this requires that further measurements be madeon the measuring apparatus to resolve the wavefunction and so on.6.2.1 The example of visionIt has been argued by Gibson (1979) and Schumacher (1986) that it is not necessary toview vision as resulting from the passage of signals through the optic nerve, but rather as areorganization of the brain as a response to an environment. According to Gibson:It is not necessary to assume that anything whatever is transmitted along theoptic nerve in the activity of perception. We can think of vision as a perceptualsystem, the brain being simply part of the system. The eye is also part of thesystem, since retinal inputs lead to ocular adjustments and then to altered retinalinputs, and so on. The process is circular, not a one-way transmission. The eye-head-brain-body system registers the invariants in the structure of ambient light.The eye is not a camera that forms and delivers an image, nor is the retina simplya keyboard that can be struck by �ngers of light.Consider the parallel between the tracks in the photosensitive emulsion used to detectdeected particles and the eye. Bohm (1980) has argued that the track in the emulsionis to be viewed as resolving the relevant wavefunction; likewise, the track in the eye maybe viewed as resolving the wavefunction associated with the incident beam. But we havealready seen in Chapter 1.1 that the eye cannot be seen to be entirely classical. It appears



42 S.C. Kakthen that the vision system itself should be decomposed into a concatenation of subsystemswhere this resolution proceeds.From this perspective the vision system may be viewed as quantum and classical mea-suring instruments associated with a quantum process.6.3 More On InformationThat a quantum neural computer will have characteristics di�erent from that of a collectionof classical computers is seen from an examination of information. In contrast to classicalsystems, information in a quantum mechanical situation is a�ected by the process of mea-surement. If a linearly polarized photon strikes a polarizer oriented at 90� from its plane ofpolarization, the probability is zero that the photon will pass to the other side. If anotherpolarizer tilted at 45� is placed before the �rst one, there is a 25 percent chance that a photonwill pass both polarizers. By the process of measurement the 45� polarizer transforms thephotons so that half of the initial photons can pass through it. The collapse of the wave-function also causes non-local e�ects. These characteristics can be looked for in determiningwhether biological information systems should be considered quantum.6.3.1 The EPR experimentWe consider the thought experiment described by Einstein, Podolsky, and Rosen (1935)(Bell 1987) now known as the EPR experiment. EPR assume the following condition for anelement of a mathematical model to represent an element of reality:If, without in any way disturbing a system, we can predict with certainty (i.e.,with probability equal to unity) the value of a physical quantity, then there existsan element of physical reality corresponding to this physical reality. (page 777)They also assert that \every element of the physical reality must have a counterpart inthe physical theory." They argue that if a pair of particles has strongly interacted in the pastthen, after they have separated, a measurement on one will yield the corresponding value forthe other. Since the position and momentum values are supposed to be unde�ned before themeasurement is made and, nevertheless, the value is revealed after the measurement on theremote particle is made, EPR argue that the measurements should correspond to aspects ofreality. They conclude that \the quantum-mechanical description of physical reality givenby wave functions is not complete."Since after separation each particle is to be considered as physically independent of theother (locality condition), this can also be taken to imply that e�ects propagate instan-taneously. Bell (1987) has shown that the EPR reality criterion is incompatible with thepredictions of quantummechanics. Experiments have con�rmed the predictions of the latter.We now consider the EPR experiment from an information theoretic viewpoint. In itsBohm variant, a pair of spin one-half particles, A and B, have formed somehow in the singletspin state and they are moving freely in opposite directions. The wavefunction of this pairmay be represented by



Advances in Imaging and Electron Physics, 1995 431p2 (V +W� � V �W+)where V + and V � represent the measurements of spin +1=2 and �1=2 for particle A andW+ and W� represent the measurement of +1=2 and �1=2 for particle B.The EPR argument considers the particles A and B to have separated. Now if a mea-surement is made on A along a certain direction, it guarantees that a measurement madeon B along the same direction will give the opposite spin. The important point here is thatthe spin is determined as soon as, but not before, one of the particles is measured. This hasbeen interpreted to mean that knowledge about A somehow reduces the wavefunction for Bin a speci�c sense. In other words, the EPR correlation has been taken to imply a non-localcharacter for quantum mechanics, or instantaneous action at a distance. To reexamine thesequestions in an information-theoretic perspective, it is essential to determine the extent ofinformation obtained in each measurement.Given a spin one-half particle, an observation on it produces log2 2 = 1 bit of information.A further measurement made along a direction at an angle of � to the previous measurementleads to a probability cos2�=2 that the measurement would give the same sign of spin, anda probability sin2 �=2 that it will give spin of the opposite sign. The information associatedwith the second measurement isH(�) = � cos2 �2 log2 cos2 �2 � sin2 �2 log2 sin2 �2The average information considering all angles is:Hav = 1� Z �0 H(�)d� = 1 � log2pe bits = 0:27865 bits.In other words, the information obtained from the second measurement is somewhat lessthan a quarter of a bit. These sequential experiments are correlated. It is also important toconsider that all further measurements provide exactly 0:27865 bits of information. Thisindicates that information in a quantum description is not a locally additive variable.6.3.2 Information in the experimental setupNow consider the information to be obtained from the measurement of spin of two half-spinparticles that are correlated in the EPR sense. If information were additive then the �rstmeasurement provides one bit of information and after the end of the second measurementwe have a total of 1:27865 bits.Since the EPR correlation reveals the spin of the particle B, as soon as the measure-ment of A has been made, one might infer that the information that the two arms of theexperimental setup provide equals 0:27865 bits. But in reality we cannot do so as the cal-culus for information, in a quantum description, is unknown. Not being locally additive,the information in the experimental setup cannot be used in subsequent repetitions of theexperiment.



44 S.C. Kak6.4 A Generalized Correspondence PrincipleIn a study several years ago (Kak 1976, 1984) it was argued that the fundamental Heisenberguncertainty was compensated by information in terms of new symmetries of the quantumdescription. In other words one can generalize the correspondence principle to include un-certainty: Iclassical = Iqm + uncertaintyA calculation of this information yields plausible results regarding the number of suchsymmetries. The analysis given here provides further elaboration of that idea. Althoughwe appear to be unable to use the information in the various measurements, it is clear thatthe experimental setup itself plays a fundamental role in our knowledge. From anotherperspective, information can be associated with the angular (as well as spatial) position ofan object. Nevertheless, this information cannot be considered in a local fashion. Or in otherwords, this information cannot be considered separately for the components of the system.In the context of a quantum neural computer it means that behavioral characteristics ofsuch a machine can only be de�ned in terms of manner in which measurements on it are made.If such measurements are stored in the machine, then this experience can only be regardedas an interaction between the machine and the environment. Berger (1977, p. xiv) arguesthat one needs to use a similar relativism in the study of biological systems. \A necessarycondition of experience is interaction between the organism and the environment, so thatthe structure of experience reects the structure of both the organism and the environmentwith which it interacts. It follows that an organism cannot experience its own structure orthat of the environment independently of the other."Assume that an emergent phenomenon arises from interactions that are noncomputable interms of the descriptions at the lower level. Assume further that the higher level descriptionis associated with a fundamental uncertainty. Will the generalized correspondence principleapply to this situation? And if it does, will the emergent phenomenon be associated withnew attributes that provide information equal in magnitude to this uncertainty?If information in biological information processing exhibits other non-local characteristicsas well, such behavior may represent further parallels between the quantum mechanicalparadigm and biological reality.



Chapter 7Structure And Information7.1 A Subneuron FieldIn our earlier chapters we have critiqued many materialist models, where an identity isassumed between mental events and neural events in the higher centers of the brain. Ourmain criticism was that these models did not deal with the binding problem. We presentedevidence in support of the view that biological systems perform quantum computing.We now raise the question of the location of the quantum �eld that associates experiencewith its unity. Two proposals are reviewed in this section.7.1.1 A dualist hypothesisPopper and Eccles (1977) presented the view in which the world of mental events (they callit World 2) is sharply separated from the world of brain processes (World 1). Both theseworlds are supposed to have autonomous existence. These ideas were further developed inEccles (1986, 1990).In his theory, Eccles (1990) assumes that the entire set of the inner and outer senses iscomposed of elementary mental events, that he calls psychons. He further proposes thateach psychon is linked to a corresponding functional aggregate of dendrites, that he namesa dendron. A dendron is the basic receptive unit of the cerebral cortex, and it is a bundleor cluster of apical dendrites of certain pyramidal cells. Each dendron could involve about200 neurons and as many as 100,000 synapses. There are about 40 million dendrites in thehuman cerebral cortex. He assumes that the mind exerts a minimal additional excitation onthe dendronic vesicles, which are at a state just below the threshold for excitation.In order to meet the objection that immaterial mental events such as thoughts cannotact on material structures, such as the neurons in the cerebral cortex, Eccles has recourse toquantum mechanics. He says that \a calculation on the basis of the Heisenberg uncertaintyprinciple shows that a vesicle of the presynaptic vesicular grid could conceivably be selectedfor exocytosis by a psychon acting analogously to a quantal probability �eld. The energyrequired to initiate the exocytosis by a particle displacement could be paid back at the sametime and place by the escaping transmitter molecules from a high to a low concentration. Inquantum physics at microsites energy can be borrowed provided it is paid back at once. So45



46 S.C. Kakthe transaction of exocytosis need involve no violation of the conservation laws of physics."(Eccles 1990, page 447)Although the central idea of this theory is the linkage between the psychons and themicrosite dendrons, Eccles' theory is a �eld theory of psychons. A dendron represents themeasurement hardware that each unitary or elementarymental event is associated with. Psy-chons are autonomous entities that may exist apart from dendrons and be related amongstthemselves. In the brain to mind transaction, Eccles proposes that each time a psychonselects a vesicle for exocytosis, this \micro-success" is registered in the psychon for trans-mission through the mental world. This signal carries into the mental world the specialexperiential character of that psychon.Eccles has only sketched the outline of his theory. He sees the psychons and the brainprocesses to be interlinked entities, which is why he labels his theory to be dualistic. Butwhat is the physical support of psychons, he does not explain. Seen from this perspective,psychons are nothing but an arti�ce to circumvent the brain-mind problem. If they need thedendrons to emerge as mental events, then we are again confronted with the problem of theprocesses that lead to such an emergent phenomenon.Eccles does see the need for a quantum theoretic basis to explain psychon-dendron inter-action of mental events. It appears, therefore, that the psychon �eld ought to be a quantum�eld. He does not explain how the world of mental events, as a separate, autonomous reality,functions?7.1.2 Microtubule �eldAs a �eld one cannot take awareness to be localized. Considering the parallel of the wave-function, it is a unity and it cannot be taken to be identical to the physical body although itis associated with it. Hamero� and his collaborators (Hamero� 1994, Jibu et al 1994) havesuggested that the sub-neural structures called microtubules provide coherent informationtransmission that leads to the development of a quantized �eld that solves the \bindingproblem" and explains the unitary sense of self. These cytoskeletal microtubules, whichprovide structural support to cells, are hollow cylinders 25 nanometers in diameter whosewalls are made of subunit proteins known as tubulin. Each tubulin subunit is a 8-nm dimerthat is made up of two slightly di�erent classes of 4-nm dimers known as � and � tubulin.Hamero� has argued that the quantum dynamical system of water molecules and the quan-tized electromagnetic �eld con�ned inside the hollow microtubule core manifests a collectivedynamics by which coherent photons are created inside the microtubule. But the questionof why consciousness characterizes only certain cells, although microtubules are to be foundin all cells, is not clearly answered. Hamero� (1994) suggests that consciousness might be anattribute of all quantum phenomena. Commenting on the results of the EPR experiment, hesays that \quantum entities are `aware' of the states of their spatially separated relatives!"It is possible also to see the microtubule information as providing the \imaginary" com-ponent in the complex neural information that was described in an earlier chapter. If thisis the mechanism that provides the simultaneous global and local information which is es-sential for arti�cial intelligence tasks then it is clearly not feasible to build such quantumneural computers at this time because microtubule information processing is still imperfectly



Advances in Imaging and Electron Physics, 1995 47understood.7.1.3 A universal �eldIf one did not wish for a reductionist explanation as in inherent in the cytoskeletal model, onemight postulate a di�erent origin for the quantum �eld. Just as the uni�ed theories explainthe emergence of electromagnetic and weak forces from a mechanism of symmetry breaking,one might postulate a uni�ed �eld of consciousness-uni�ed force-gravity from where theindividual �elds emerge.The notion of a universal �eld still requires for one to admit the emergence of the individ-ual's I-ness at specialized areas of the brain. This I-ness is intimately related to memories,both short-term and long-term. The recall of these memories may be seen to result fromoperations by neural networks. Lesions to di�erent brain centers e�ect the ability to recallor store memories. For example, lesions to the area V1 of the primary visual cortex leadto blindsight (Weiskrantz 1986). These people can \see" but they are unaware that theyhave seen. Although such visual information is processed, and it can be recalled through aguessing game protocol, it is not passed to the conscious self.7.2 Uncertainty RelationsBy structure we mean a stable organization of the neural system. The notion of the stabilitymay be understood from the perspective of energy of the neural system. Each stable state isan energy minimum. For example, the following energy expression (Hop�eld 1982) is suitablefor a feedback neural network: E = �12Xij TijXiXjAny structure may be represented by a number, or a binary sequence. Thus in a onedimension, the sequences abc; ba; cabrepresent three structures that can be coded into numbers by a binary code.Assume that a neural structure has been represented by a sequence. Since this repre-sentation can be done in a variety of ways, the question of a unique representation becomesrelevant.De�nition 1 Let the shortest binary program that generates the sequence representing thestructure be called p.The idea of the shortest program gives us a measure for the structure that is independent ofthe coding scheme used for the representation. The length of this program may be taken tobe a measure of the information to be associated with the organization of the system. Thislength will depend on the class of sequences that are being generated by the program. Or in



48 S.C. Kakother words, this reects the properties of the class of structures being considered. Evidencefrom biology requires that the brain be viewed as an active system which reorganizes itselfin response to external stimuli. This means that the structure p is a variable with respectto time.Assuming, by generalized complementarity, that the structure itself is not de�ned priorto measurement, then for each state of an energy value E, we may, in analogy with theHeisenberg's uncertainty principle, say that�E�t � k1where k1 is a constant based on the nature of the organizational principle of the neuralsystem.The external environment changes when the neural system is observed, due to the inter-ference of the observer. This means that as the measurement is made, the structure of thesystem changes.This also means that at such a fundamental level, a system cannot be associated witha single structure, but rather with a superposition of several structures. Might this be areason behind pleomorphism, the multiplicity of forms of microbes?The representation described above may also be employed for the external environment.De�nition 2 Let the shortest binary program that generates the external environment becalled x.If the external environment is a eigenstate of the system, then the system organizationwill not change; otherwise, it will.We may now propose an uncertainty principle for neural system structure:�x�p � k2This relation says that the environment and the structure cannot be simultaneously �xed.If one of the variables is precisely de�ned the other becomes uncontrollably large. Eitherof these two conditions implies the death of the system. In other words, such a system willoperate only within a narrow range of values of the environment and structure.We conjecture that k1 = k2 = k.One may pose the following questions:� Are all living systems characterized by the same value of k?� Can one devise stable self-organizing systems that are characterized by a di�erent valueof k? Would arti�cial life have a value of k di�erent from that of natural life?� What is the minimum energy required to change the value of p by one unit?� Does a Schr�odinger type equation de�ne the evolution of structure?It is also clear that before a measurement is made, one cannot speak of a de�nite stateof the machine, nor of a de�nite state of the environment.



Chapter 8Concluding RemarksIn the previous sections we have argued that humans and other animals perform what mightbe called quantum neural computing. If we accept the reverse of this claim then a quantumneural computer would be characterized with life and consequently consciousness. On theother hand, ordinary machines cannot be conscious since they do not come with a set ofpotentialities that consciousness provides. Machines are therefore like the neural hardwarethat provides extension. A machine that is so designed so that it has in�nite set of potential-ities would be alive. But such an alive machine need not be based on the organic moleculesof normal life.Our review has highlighted the following points:� Conventional computing has been unable to devise schemes for holistic processing. Thisis why computers cannot recognize faces or understand text. Conventional computingis based on a reductionist algorithmic approach. But such an approach presupposesthat the particles, or objects of the computation have been selected. The selection ofthese objects is normally left to a human in the solution of any real world problem.Conventional computing has failed at deriving methods for such a selection.� Biological computing may be viewed as a potentially in�nite collection of conventionalcomputing devices. This versatility arises from the brain reorganizing its structure inresponse to an association, presented by the environment or by a self-generated state,to become a special-purpose computing machine suited to the solution of that problem.We postulate a wavefunction associated with brain behavior that allows the biologicalsystem to get into a de�nite structural state corresponding to the stimulus.� We can simulate a quantum neural computer by a collection of a large number ofconventional computers. To build a true quantum neural computer one will have todevelop a framework for organization. In other words, one would then know howthe di�erent conventional computers that together constitute an approximation to thequantum neural computer could have a plasticity built into them so that the samemachine would be able to reorganize itself.� We speculate that self-awareness is associated with the wavefunction that allows for theselectivity in the biological organism. If this is true then a quantum neural computerwill be self-aware. 49



50 S.C. KakThis article presents arguments for a holistic computing paradigm that has parallels withbiological information processing and with quantum computing. In this paradigm inputstrigger an internal reorganization of the connectionist computer that makes it selective tothe input. But such a holistic paradigm su�ers from several paradoxical aspects. No wonder,the determination of the phenomenological correlates of the holistic function, and thereforethe design of a computer that operates in this paradigm, remain perplexing problems.A quantum neural computer represents an underlying quantum system that interactswith classical measurement structures composed of neural networks. This parallels the basicquantum theory framework where measurement is to be performed using macroscopic ap-paratus. Learning by a biological system then represents the development of the measuringinstruments, which are the neural structures in the brain. This picture still needs to addressother questions, such as how in response to a stimulus does the brain reorganize itseld soas to pick the appropriate neural network for measurement? And how does the unity of thewavefunction lead to self-awareness? Unless we consider all matter to be conscious, we musttake consciousness to be an emergent property of a quantum system that requires a certainstructural basis supporting speci�c neuronal activity.
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