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Abstract

Quantum computation uses microscopic quantum level
effects to perform computational tasks and has produced
results that in some cases are exponentially faster than
their classical counterparts.  The unique characteristics of
quantum theory may also be used to create a quantum
associative memory with a capacity exponential in the
number of neurons.  This paper combines two quantum
computational algorithms to produce a quantum
associative memory.  The result is an exponential increase
in the capacity of the memory when compared to
traditional associative memories such as the Hopfield
network.  The paper covers necessary high-level quantum
mechanical ideas and introduces a quantum associative
memory, a small version of which should be physically
realizable in the near future.

1 Introduction

Assume a set P of m binary patterns of length n.  We
consider the problem of pattern completion -- learning
to produce one of the full patterns when presented with
only a partial pattern.  The trivial solution is simply to
store the set of patterns as a lookup table or RAM.
There are two reasons why this is not always the best
solution.  First, it requires that a unique address be
associated with and remembered for each pattern.
Second, the lookup table requires mn bits in order to
store all the patterns.  It is often desirable to be able to
recall the patterns in an associative fashion, thus
eliminating the need for explicit addressing.  That is,
given a partial pattern one would like to be able to “fill
in” a reasonable guess as to the rest of the pattern.
This may also be considered a form of generalization as
the partial pattern may never have been seen during the
learning of the pattern set P .  Further, it would be
beneficial if a smaller representation was possible.

To this end, various classical associative memory
schemes have been proposed, perhaps the most well
known being the Hopfield network [10].  Another well-
known example is the bidirectional associative memory
(BAM) [11].  These neural approaches to the pattern
completion problem allow for associative pattern recall,
but suffer severe storage restrictions.  Storing patterns
of length n requires a network of n neurons, and the
number of patterns, m , is then limited by m  ≤ kn,

where typically 0.15 ≤ k ≤ 0.5.  This paper offers
improvement by proposing a quantum associative
memory that maintains the ability to recall patterns
associatively while offering a storage capacity of O(2n)
using only n neurons.

The field of quantum computation, which applies
ideas from quantum mechanics to the study of
computation, was introduced in the mid 1980's [6].
For a readable introduction to quantum computation see
[1].  The field is still in its infancy and very theoretical
but offers exciting possibilities for the field of
computer science -- perhaps the most notable to date
being the discovery of quantum computational
algorithms for computing discrete logarithms and prime
factorization in polynomial time, two problems for
which no known classical polynomial time solutions
exist [13].  These algorithms provide theoretical proof
not only that interesting computation can be performed
at the quantum level but also that it may in some cases
have distinct advantages over its classical cousin.

Artificial neural networks (ANN) seek to provide
ways for classical computers to learn rather than to be
programmed.  If quantum computers become a reality,
then artificial neural network methods that are amenable
to and take advantage of quantum mechanical properties
will become possible.  In particular, can quantum
mechanical properties be applied to ANNs for problems
such as associative memory?  Recently, work has been
done in the area of combining classical artificial
associative memory with ideas from the field of
quantum mechanics.  Perus details several interesting
mathematical analogies between quantum theory and
neural network theory [12].  [15] goes a step further by
proposing an actual model for a quantum associative
memory.  The work here further develops this model by
exhibiting a physically realizable quantum system for
acting as an associative memory.

This paper presents a unique reformulation of the
pattern completion problem into the language of wave
functions and operators.  This reformulation may be
generalized to a large class of computational learning
problems, opening up the possibility of employing the
capabilities of quantum computational systems for the
solution of computational learning problems.  Section



2 introduces some important ideas from quantum
mechanics and briefly discusses quantum computation
along with some of its early successes.  Section 3 goes
into more detail on one particular algorithm for
quantum database search due to Grover [9].  Section 4
briefly describes a modification of the quantum
algorithm, detailed elsewhere [16] for initializing a
quantum system to represent a set of patterns, and the
two algorithms are combined in section 5 to produce
the quantum associative memory.  Section 6 concludes
and provides directions for further research.

2 Quantum Computation

Quantum computation is based upon physical
principles from the theory of quantum mechanics,
which is in many ways counterintuitive. Yet it has
provided us with perhaps the most accurate physical
theory (in terms of predicting experimental results) ever
devised by science.  The theory is well-established and
is covered in its basic form by many textbooks (see for
example [7]).  Several necessary ideas that form the
basis for the study of quantum computation are briefly
reviewed here.

Linear superposition is closely related to the
familiar mathematical principle of linear combination
of vectors.  Quantum systems are described by a wave
function ψ that exists in a Hilbert space.  The Hilbert
space has a set of states, φi , that form a basis, and
the system is described by a quantum state ψ ,

ψ = ci
i

∑ φi . (1)

ψ  is said to be in a linear superposition of the basis
states φi , and in the general case, the coefficients ci

may be complex.  Use is made here of the Dirac bracket
notation, where the ket ⋅  is analogous to a column
vector, and the bra ⋅  is analogous to the complex
conjugate transpose of the ket.  In quantum mechanics
the Hilbert space and its basis have a physical
interpretation, and this leads directly to perhaps the
most counterintuitive aspect of the theory.  The counter
intuition is this -- at the microscopic or quantum level,
the state of the system is described by the wave
function ψ , that is, as a linear superposition of all
basis states (i.e. in some sense the system is in all
basis states at once).  However, at the macroscopic or
classical level the system can be in only a single basis
state.  For example, at the quantum level an electron
can exist in a superposition of many different energy
levels; however, in the classical realm this cannot be.

Coherence and decoherence are closely related to the
idea of linear superposition.  A quantum system is said
to be coherent if it is in a linear superposition of its

basis states.  A result of quantum mechanics is that if a
system that is in a linear superposition of states
interacts in any way with its environment, the
superposition is destroyed.  This loss of coherence is
called decoherence and is governed by the wave function
ψ.  The coefficients ci are called probability amplitudes,
and ci

2
 gives the probability of ψ  collapsing into

state φi  if it decoheres.  Note that the wave function
ψ describes a real physical system that must collapse to
exactly one basis state.  Therefore, the probabilities
governed by the amplitudes ci must sum to unity.  This
constraint is expressed as the unitarity condition

ci
2

i
∑ = 1. (2)

In the Dirac notation, the probability that a quantum
state ψ  will collapse into an eigenstate φi  is
written φi ψ

2
 and is analogous to the dot product

(projection) of two vectors.  Consider, for example, a
discrete physical variable called spin.  The simplest
spin system is a two-state system, called a spin-1/2
system, whose basis states are usually represented as
↑  (spin up) and ↓  (spin down).  In this simple

system the wave function ψ is a distribution over two
values and a coherent state ψ  is a linear
superposition of ↑  and ↓ .  One such state might be

ψ = 2

5
↑ + 1

5
↓ . (3)

As long as the system maintains its quantum coherence
it cannot be said to be either spin up or spin down.  It
is in some sense both at once.  Classically, it must be
one or the other, and when this system decoheres the
result is, for example, the ↑  state with probability

↑ ψ
2

= 2
5







2

= 0.8. (4)

A simple two-state quantum system, such as the
spin-1/2 system just introduced, is used as the basic
unit of quantum computation.  Such a system is
referred to as a quantum bit or qubit, and renaming the
two states 0  and 1  it is easy to see why this is so.

Operators on a Hilbert space describe how one
wave function is changed into another.  Here they will
be denoted by a capital letter with a hat, such as Â , and
they may be represented as matrices acting on vectors.
Using operators, an eigenvalue equation can be written
Â φi = ai φi , where a i is the eigenvalue.  The
solutions φi  to such an equation are called eigenstates
and can be used to construct the basis of a Hilbert space
as discussed above.  In the quantum formalism, all
properties are represented as operators whose eigenstates
are the basis for the Hilbert space associated with that
property and whose eigenvalues are the quantum
allowed values for that property.  It is important to



note that operators in quantum mechanics must be
linear operators and further that they must be unitary so
that Â† Â = ÂÂ† = Î , where Î  is the identity operator,
and Â† is the complex conjugate transpose of Â .

Interference is a familiar wave phenomenon.  Wave
peaks that are in phase interfere constructively (magnify
each other’s amplitude) while those that are out of
phase interfere destructively (decrease or eliminate each
other’s amplitude).  This is a phenomenon common to
all kinds of wave mechanics from water waves to
optics.  The well-known double slit experiment
demonstrates empirically that interference also applies
to the probability waves of quantum mechanics.

Entanglement is the potential for quantum states to
exhibit correlations that cannot be accounted for
classically.  From a computational standpoint,
entanglement seems intuitive enough -- it is simply the
fact that correlations can exist between different qubits
-- for example if one qubit is in the 1  state, another
will be in the 1  state.  However, from a physical
standpoint, entanglement is little understood.   The
questions of what exactly it is and how it works are
still not resolved.  What makes it so powerful (and so
little understood) is the fact that since quantum states
exist as superpositions, these correlations somehow
exist in superposition as well.  When the superposition
is destroyed, the proper correlation is somehow
communicated between the qubits, and it is this
“communication” that is the crux of entanglement and
the key to quantum computation.  It follows that while
interference is a quantum property that has a classical
cousin, entanglement is a completely quantum
phenomenon for which there is no classical analog.

2.1 Quantum Algorithms

The field of quantum computation offers exciting
possibilities -- the most important quantum algorithms
discovered to date all perform tasks for which there are
no classical equivalents.  For example, Deutsch’s
algorithm [5] is designed to solve the problem of
identifying whether a binary function is constant
(function values are either all 1 or all 0) or balanced
(the function takes an equal number of 0 and 1 values).
Deutsch’s algorithm accomplishes the task in order
O(n) time, while classical methods require O(2n) time.
Simon’s algorithm [14] is constructed for finding the
periodicity in a 2-1 binary function that is guaranteed to
possess a periodic element.  Here again an exponential
speedup is achieved; however, admittedly, both these
algorithms have been designed for artificial, somewhat
contrived problems as a proof of concept.  Grover’s
algorithm [9], on the other hand, provides a method for

searching an unordered quantum database in time
O( N ), compared to the classical lower bound of
O(N).  Here is a real-world problem for which quantum
computation provides performance that is classically
impossible (though the speedup is less dramatic than
exponential).  Finally, the most well-known and
perhaps the most important quantum algorithm
discovered so far is Shor’s algorithm for prime
factorization [13].  This algorithm finds the prime
factors of very large numbers in polynomial time,
while the best classical algorithms require exponential
time.  Obviously, the implications for the field of
cryptography are profound.

3 Grover’s Algorithm

Lov Grover has developed an algorithm for finding one
item in an unsorted database, similar to finding the
name that matches a telephone number in a telephone
book.  Classically, if there are N items in the database,
this would require on average O(N) queries to the
database.  However, Grover has shown how to do this
using quantum computation with only O( N ) queries.
In the quantum computational setting, finding the item
in the database means measuring the system and having
the system collapse with near certainty to the desired
basis state, which corresponds to the item in the
database for which we are searching.  The basic idea of
Grover’s algorithm is to invert the phase of the desired
basis state and then to invert all the basis states about
the average amplitude of all the states (for more details
see [9] [8]).  This process produces an increase in the
amplitude of the desired basis state to near unity
followed by a corresponding decrease in the amplitude
of the desired state back to its original magnitude.  The
process is cyclical with a period of π

4 N , and thus
after O( N ) queries, the system may be observed in
the desired state with near certainty (with probability at
least 1 − 1

N
).  Interestingly this implies that the larger

the database, the greater the certainty of finding the
desired state [3].  Of course, if greater certainty is
required, the system may be sampled k times boosting
the certainty of finding the desired state to 1 − 1

N k
.

Define the following operators.

Îφ = identity matrix except for φφ = −1, (5)

which inverts the phase of the basis state φ  and

Ŵ = 1

2

1 1

1 −1






, (6)

which is often called the Walsh or Hadamard transform.
This operator, when applied to a set of qubits, performs
a special case of the discrete fourier transform.

Now to perform the quantum search on a database



of size N = 2n, where n is the number of qubits, begin
with the system in the 0  state and apply the Ŵ
operator.  This initializes all the states to have the
same amplitude.  Next apply the operator sequence ĜÎτπ
4

N  times, where Ĝ = −ŴÎ
0
Ŵ  can be thought of as

rotating all the states about their average amplitude
and τ  is the state being sought (and recall that
operators are applied right to left).  Finally, observe the
system.  This algorithm will be used to associatively
“fill in” a pattern by finding a basis state that
corresponds to the partial pattern to be completed.

4 Initializing the Quantum State

In [16] we presented a polynomial-time quantum
algorithm for constructing a quantum state over a set of
qubits to represent the information in a training set.
The algorithm is implemented using a polynomial
number (in the length and number of patterns) of
elementary operations on one, two, or three qubits.
Here the necessary operators are presented briefly and
the reader is referred to [16] for details.

Ŝ p =

1 0 0 0

0 1 0 0

0 0
p − 1

p

−1

p

0 0
1

p

p − 1
p

























, (7)

where 1≤p≤ m .  These operators form a set of
conditional transforms that will be used to incorporate
the set of patterns into a coherent quantum state.  There
will be a different Ŝ p  operator associated with each
pattern to be stored.  The interested reader may note that
this definition of the Ŝ p  operator is slightly different
than the original.  This is because in this context, we
are considering pattern memorization rather than pattern
classification and therefore have no output class per se.
Thus the phase of the coefficients becomes unimportant
in this case.

F̂0 =

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



















, (8)

conditionally flips the second qubit if the first qubit is
in the 0  state; F̂1  conditionally flips the second qubit
if the first qubit is in the 1  state ( F̂1  is the same as
F̂0  except that the off-diagonal elements occur in the
bottom right quadrant rather than in the top left).
These operators are referred to elsewhere as Control-
NOT because a logical NOT (state flip) is performed on
the second qubit depending upon (or controlled by) the

state of the first qubit.

Â00 =

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

































, (9)

conditionally flips the third bit if and only if the first
two are in the state 00 .  Note that this operator can
be thought of as performing a logical AND of the
negation of the first two bits, writing a 1 in the third if
and only if the first two are both 0.  Three other
operators, Â01 , Â10  and Â11, are variations of Â00  in
which the off diagonal elements occur in the other three
possible locations along the main diagonal.  Â01  can
be thought of as performing a logical AND of the first
bit and the negation of the second, and so forth.  These
operators are used to identify specific states in a
superposition.

Now given a set P of m binary patterns of length
n to be memorized, the quantum algorithm for storing
the patterns requires a set of 2n+1 qubits, the first n of
which actually store the patterns and can be thought of
analogously as n neurons in a quantum associative
memory.  For convenience, the qubits are arranged in
three quantum registers labeled x, g, and c, and the
quantum state of all three registers together is
represented in the Dirac notation as x, g,c .

The x register will hold a superposition of the
patterns.  There is one qubit in the register for each bit
in the patterns to be stored, and therefore any possible
input can be represented.  The g register is a garbage
register used only in identifying a particular state.  It is
restored to the state 0  after every iteration.  The c
register contains two control qubits that indicate the
status of each state at any given time.  A high-level
intuitive description of the algorithm is as follows.
The system is initially in the single basis state 0 .
The qubits in the x register are selectively flipped so
that their states correspond to the inputs of the first
pattern.  Then, the state in the superposition
representing the pattern is “broken” into two “pieces” --
one “larger” and one “smaller” and the status of the
smaller one is made permanent.  Next, the x register of
the larger piece is selectively flipped again to match the
input of the second pattern, and the process is repeated
for each pattern.  When all the patterns have been
“broken” off of the large “piece”, then all that is left is



a collection of small pieces, all the same size, that
represent the patterns to be stored; in other words, a
coherent superposition of states is created that
corresponds to the patterns, where the amplitudes of the
states in the superposition are all equal.  The algorithm
requires O (mn ) steps to encode the patterns as a
quantum superposition over n quantum neurons.  Note
that this is optimal in the sense that just reading each
instance once cannot be done any faster than O(mn).

5 Quantum Associative Memory

A quantum associative memory (QuAM) can now be
constructed from the two algorithms of sections 3 and
4.  Define the P̂ operator as the operator combination
of equations (7-9) that implements the algorithm for
memorizing patterns described in section 4.  Then the
operation of the QuAM can be described as follows.
Memorizing a set of patterns is simply

ψ = P̂ 0 , (10)

with ψ  being a quantum superposition of basis
states, one for each pattern.  Now, suppose we know
n–1 bits of a pattern and wish to recall the entire
pattern.  Assuming that there are not two patterns that
differ only in the last bit, we can use Grover’s
algorithm to recall the pattern as (τ  is the target
pattern)

ψ ' = ĜÎτ ψ (11)

applied recursively π
4

N  times.  Thus, with 2n+ 1
neurons (qubits) the QuAM can store up to N=2n

patterns in O(mn) steps and requires O( N ) time to
recall a pattern.

A very simple example will help clarify.  Suppose
that we have a set of patterns P = {000,011,100,110}.
Then using equation (10) memorizes the pattern set as
the quantum state

P̂ 0 = 1
2

000 + 1
2

011 + 1
2

100 + 1
2

110 . (12)

Now suppose that we want to recall the pattern whose
first two bits were 10.  Applying equation (11) gives

ĜÎτ
1
2

000 + 1
2

011 + 1
2

100 + 1
2

110





= Ĝ 1
2

000 + 1
2

011 − 1
2

100 + 1
2

110





= 100 ,

(13)

and we have thus achieved our goal.  We can now
observe the system to see that the completion of the
pattern 10 is 100.

Using some concrete numbers, assume that n = 24

and m  = 214 (we let m  be less than the maximum
possible 216 to allow for some generalization and to

avoid the contradictory patterns that would otherwise
result).  Then the QuAM requires O(mn) = O(218) <
106 operations to memorize the patterns and O( N ) =
O( 216 ) < 103 operators to recall a pattern.  For
comparison, in [1] Barenco gives estimates of how
many operations might be performed before decoherence
for various possible physical implementation
technologies for the qubit.  These estimates range from
as low as 103 (electrons in GaAs and electron quantum
dots) to as high as 1013 (trapped ions), so our estimates
fall comfortably into this range, even near the low end
of it.  Further, the algorithm would require only 2n
+1= 2*16+1 = 33 qubits!  For comparison, a classical
Hopfield type network used as an associative memory
has a saturation point around 0.15n.  In other words,
about 0.15n patterns can be stored and recalled with n
neurons.  Therefore, with n=16 neurons, a Hopfield
network can store only 0.15*16 ≈ 2 patterns.
Conversely, to store 214 patterns would require that the
patterns be close to 110,000 bits long and that the
network have that same number of neurons.

Grover’s original algorithm only applies to the
case where all basis states are represented in the
superposition equally to start with and one and only
one basis state is to be recovered.  In other words,
strictly speaking, the original algorithm would only
apply to the case when the set P  of patterns to be
memorized included all possible patterns of length n
and when we new all n bits of the pattern to be recalled
-- not a very useful associative memory.  However,
several other papers have since generalized Grover’s
original algorithm and improved on his analysis to
include cases where not all possible patterns are
represented and where more than one target state is to
be found [3] [2] [8].  Strictly speaking it is these more
general results which allow us to create a useful QuAM
that will associatively recall patterns.

Finally, it is worth mentioning that very recently
Chuang et. al. have succeeded in physically
implementing Grover’s algorithm for the case n=2
using nuclear magnetic resonance technology on a
solution of chloroform molecules [4].  It is therefore
not unreasonable to assume that a small quantum
associative memory may be implemented in the not too
distant future.

6 Concluding Comments

A unique view of the pattern completion problem is
presented that allows the proposal of a quantum
associative memory with exponential storage capacity.
It employs simple spin-1/2 quantum systems and
represents patterns as quantum operators.  This



approach introduces a large new field to which quantum
computation may be applied to advantage -- that of
neural networks.  In fact, it is the authors’ opinion that
this application of quantum computation will, in
general, demonstrate much greater returns than its
application to more traditional computational tasks
(though Shor’s algorithm is an obvious exception).
We make this conjecture because results in both
quantum computation and neural networks are by nature
probabilistic and inexact, whereas most traditional
computational tasks require precise and deterministic
outcomes.

The most urgently appealing future work suggested
by the result of this paper is, of course, the physical
implementation of the algorithm in a real quantum
system.  As mentioned in section 5, the fact that very
few qubits are required for non-trivial problems together
with the recent physical realization of Grover’s
algorithm helps expedite the realization of quantum
computers performing useful computation.  In the
mean time, a simulation of the quantum associative
memory is being developed to run on a classical
computer at the cost of an exponential slowdown in the
length of the patterns.  Thus, association problems that
are non-trivial and yet small in size will provide
interesting study in simulation.  Another obvious and
important area for future research is investigating
further the application of quantum computational ideas
to the field of neural networks -- the discovery of other
quantum computational learning algorithms.  Further,
techniques and ideas that result from developing
quantum algorithms may be useful in the development
of new classical algorithms.  Finally, the process of
understanding and developing a theory of quantum
computation provides insight and contributes to a
furthering of our understanding and development of a
general theory of computation.
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