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1 IntroductionThe earliest models of objects for computer vision emphasized geometrical descriptionsbased on shape [Roberts, 1965; Chin and Dyer, 1986]. Such descriptions are attractiveas they are easily adapted for the manipulation requirements of robotic assembly tasks.However, they have proved very di�cult to extract from the image owing to the fact thatgeometric and photometric properties are relatively uncorrelated. Insights gained fromwork on active/animate vision [Aloimonos et al., 1988; Bajcsy, 1988; Ballard, 1991] seemto suggest that simpler iconic descriptions of objects based on their photometric propertiesmay often su�ce for many visual tasks [Rao and Ballard, 1995a].This paper investigates the use of an iconic description comprised of photometric featuresat a local image patch as a medium for e�cient object indexing in active vision systems. Thephotometric features are obtained by taking the responses of nine derivative-of-Gaussian�lters at various orientations, each at �ve di�erent scales. The derivative-of-Gaussian �lterscan be shown to arise as a result of unsupervised Hebbian learning by a neural networkthat performs principal component analysis on natural image patches during an initial\development" phase. An object can then be represented by a set of �lter response vectorsfrom di�erent loci within the object for a small number of views sampled from the viewingsphere.The process of object indexing itself is realized within the framework of an active visionsystem used in conjunction with a modi�ed form of Kanerva's sparse distributed memory[Kanerva, 1988]; the memory facilitates interpolation between di�erent views of an objectand provides a convenient platform for learning the association between an object's ap-pearance and its identity. Real-time performance is achieved by implementing both visualpreprocessing and associative memory within a pipeline image processor and exploiting itsability to perform convolutions at frame-rate (Section 5).Experimental results as presented in Section 6 indicate that the indexing scheme isremarkably tolerant to moderate changes in viewing conditions caused by occlusions, illu-mination changes, scale changes and rotations in 3D. The accuracy of the indexing methodwas veri�ed on the well-known Columbia object database containing a number of arbitrary3D objects with complex appearance characteristics; the method was able to attain a 100%recognition rate with a small number of iconic indexes per object.2 Unsupervised Learning of Spatial Filters for RecognitionTypical natural stimuli are highly redundant containing statistical regularities that can beexploited for the purposes of visual coding. For example, in most images, nearby pixelstend to be highly correlated due to the morphological consistency of objects. Thus, someform of recoding into a more e�cient representation is highly desirable [Barlow, 1961].An optimal linear method for reducing redundancy is the Karhunen-Lo�eve transform oreigenvector expansion via Principal Component Analysis (PCA). Brie
y, PCA generatesa set of eigenvectors or principal components (orthogonal axes of projections) of a set ofinput images in the order of decreasing variance. Thus, by projecting new input only along1



the directions given by the dominant eigenvectors (i.e. those associated with the highestvariance), signi�cant data-compression can be achieved.In recent years, there has been considerable interest in the use of PCA for both synthesisand analysis. For example, PCA has recently been applied quite successfully to the prob-lems of recognition of faces [Turk and Pentland, 1991] and arbitrary 3D objects [Muraseand Nayar, 1995]. Turk and Pentland [Turk and Pentland, 1991] use PCA to synthesize theeigenvectors (\eigenfaces") of a training set of face images and achieve recognition by usinga template-matching strategy with vectors obtained by projecting new face images along asmall number of eigenfaces. This work is extended in [Pentland et al., 1994] to a view-basedmethod to handle large-scale recognition from general views. Murase and Nayar [Muraseand Nayar, 1995] apply PCA to a large collection of images obtained by varying pose andillumination for every object and represent objects as manifolds in the low-dimensionalsubspace (\eigenspace") formed by the eigenvectors. They achieve pose-estimation in addi-tion to recognition by using a universal eigenspace for object discrimination and an objecteigenspace for pose, and �nding manifolds that are closest to the projection of an inputimage in the respective eigenspaces.Researchers analyzing the human visual pathway have found PCA to be the crucial linkbetween the pro�les of cortical receptive �elds and the statistics of natural images. Derricoand Buchsbaum [Derrico and Buchsbaum, 1991] showed that PCA of natural images in thecolor domain yields an achromatic component containing most of the signal energy and aminor chromatic component that resembled the red-green color-opponent channels foundin the early visual system. Oja [Oja, 1982] �rst noted that a simple one-layer feedforwardneural-network employing a form of the Hebbian learning rule acted as a principal com-ponent analyzer. Sanger [Sanger, 1989] extended this work to obtain the �rst k principalcomponents and noted that when iteratively applied to natural image patches, his networkconverged to approximations of oriented �rst- and second-derivative operators. Hancock etal. [Hancock et al., 1992] used Sanger's network to extract the �rst few principal componentsof an ensemble of natural images windowed by a Gaussian in order to avoid the distortionsthat may have been caused by the use of square windows in Sanger's work. They observedthat the eigenvectors that the network converged to were very close approximations of thedi�erent oriented derivative-of-Gaussian operators that have been shown to provide thebest �t to primate cortical receptive �eld pro�les among the di�erent mathematical pro-�les suggested in the literature [Young, 1985]. We employed Sanger's network to ascertainwhether the results of Hancock et al. remained true for collections of images containingequal proportions of natural and man-made stimuli. The results, parts of which are shownin Figure 1 (b), con�rmed that regardless of the scale of analysis, the weight vectors ofthe network eventually converged to approximations of di�erent Gaussian derivative oper-ators . These derivatives can, for instance, be implemented in neural hardware by variousdi�erence-of-o�set Gaussian (DOOG) operators [Young, 1985].The oriented derivative-of-Gaussian operators can be regarded as an ideal set of naturalbasis functions for general-purpose recognition. Part of the rationale for this belief stemsfrom the fact that these functions are obtained as a result of applying the principle ofdimensionality-reduction to arbitrary collections of images containing a plethora of featuresfrom natural as well as man-made structures rather than just the images of particular ob-2
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Figure 1: (a) Twelve of the 20 images that we used for training Sanger's PCA network. The networkadapted its weights according to a form of the Hebbian learning rule in response to 12000 32 � 32 imagepatches obtained by scanning across the images. (b) First nine dominant eigenvectors that the weights ofthe network converged to, shown here for di�erent scales (�) of the Gaussian window (intensity is propor-tional to magnitude). (c) The Gaussian derivative basis functions of up to the third-order used in our iconicrepresentations. The �rst few dominant eigenvectors of natural images shown in (b) closely resemble theseanalytically derived function pro�les. Note however that we do not use the �rst eigenvector to avoid illu-mination dependence and additionally incorporate some non-orthogonal basis functions at the higher ordersin order to achieve rotational invariance using the property of steerability. This choice also obviates usingmixed derivatives (as in (b)) since the other oriented �lters yield a complete basis.3



jects or faces. By sacri�cing specialization for a particular class of objects, we achieve widerapplicability and by using �xed basis functions which were learned during an initial \de-velopment" phase, we avoid the high computational overhead involved in recomputing newbasis functions upon the introduction of new objects as necessitated by previous methods[Murase and Nayar, 1995; Turk and Pentland, 1991]. Further support for using the ori-ented derivative-of-Gaussian operators comes from the observation that correlation �ltersgenerated by principal component expansion maximize signal-to-noise ratio and yield muchsharper correlation peaks than traditional raw image cross-correlation techniques (see, forinstance, [Kumar et al., 1982]). Finally, while it is relatively well-known that the class offunctions that simultaneously minimize the product of the standard deviation of the spatialposition sensitivity and spatial frequency sensitivity (as given by the uncertainty principlefrom Fourier theory) are the complex-Gabor elementary functions [Gabor, 1946], a rela-tively lesser known fact is that the class of real-valued functions that minimize the aboveconjoint localization metric are in fact the Gaussian derivative functions as �rst noted byGabor himself ([Gabor, 1946] p. 441; see also [Stork and Wilson, 1990]).3 The Multiscale Iconic IndexOur iconic representation for objects is inspired by the existence of \natural basis func-tions" as outlined in the previous section. The current implementation uses nine Gaussianderivative basis �lters denoted by:G�nn ; n = 1; 2; 3; �n = 0; : : : ; k�=(n+ 1); k = 1; : : : ; n (1)where n denotes the order of the �lter and �n the orientation of the �lter. Figure 1 (c)shows the basis �lters for a particular scale.The response of an image patch I centered at (x0; y0) to a particular basis �lter G�ji canbe obtained by convolving the image patch with the �lter:ri;j(x0; y0) = ZZ G�ji (x0 � x; y0 � y)I(x; y)dx dy (2)The iconic index for a local image patch on an object can then be formed by combining intoa single high-dimensional vector the responses of each of the nine basis �lters at di�erentscales: r =(ri;j;s); i = 1; 2; 3; j = 1; ::; i+ 1; s = smin; ::; smax (3)where ri;j;s denotes the response of a �lter with the index i denoting the order of the �lter,j denoting the number of �lters per order, and s denoting the number of di�erent scales.In our experiments, we used �ve octave-separated scales.An attractive property of the index is that it can be made rotation-invariant aboutthe viewing axis when scale is unchanged. This can be done by exploiting the steerability[Freeman and Adelson, 1991] of the basis functions. First, a canonical orientation (say,horizontal) is assumed. Then, the orientation for a given vector of responses r can becomputed from the two �rst-order responses as� = atan2(r1;1;smax; r1;2;smax) (4)4
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Figure 2: Rotation Normalization. (a) A test image; (b) The same image rotated 38� counterclockwise;(c) The response vectors for corresponding points near the elephant's mouth in the two images beforenormalization; (d) the response vectors after normalization (Positive responses are represented by upwardbars proportional to the response magnitude and negative ones by downward bars with the nine smallestscale responses at the beginning and the nine largest ones at the end).For normalization, the entire set of �lter responses can be \rotated" to the canonical orien-tation using a set of interpolation functions as derived by Freeman and Adelson [Freemanand Adelson, 1991] r0i;j;s = i+1Xj0=1 ri;j0;skj0i(�); (5)where i = 1; 2; 3; j = 1; : : : ; i+ 1; s = smin; : : : ; smax, andkj01(�) = 12h2 cos(� � (j 0 � 1)�=2)i; j 0 = 1; 2 (6)kj02(�) = 13h1 + 2 cos(2(� � (j 0 � 1)�=3))i; j 0 = 1; 2; 3 (7)and kj03(�) = 14h2 cos(� � (j 0 � 1)�=4)+ 2 cos(3(� � (j 0 � 1)�=4))i (8)where j 0 = 1; 2; 3; 4. Figure 2 illustrates the rotation normalization procedure. It is canbe seen that the two previously uncorrelated response vectors of the same point have beenrendered almost identical after normalization.5



4 Sparse Distributed MemoryFor object indexing, the response vectors obtained from various objects need to be storedalong with their associated labels. One way of accomplishing this is to use an associa-tive memory. A model of associative memory that is speci�cally geared towards storageand retrieval of high-dimensional vectors is Kanerva's Sparse Distributed Memory (SDM)[Kanerva, 1988].SDM was developed by Kanerva in an attempt to model human long-term memory.The model is based on the crucial observation that if concepts or objects of interest arerepresented by high-dimensional vectors, they can bene�t from the very favorable matchingproperties caused by the inherent tendency toward orthogonality in high-dimensional spaces.For example, consider the space f0; 1gn for large n (n � 100). If Hamming distance is usedas the distance metric between points in this space, then the number of points that arewithin a distance of D bits from an arbitrary point follows a binomial distribution which,for large n, can be approximated by the normal distribution with mean n=2 and standarddeviation pn=2. In other words, N(D) ' �(D � n=2pn=2 ) (9)where �(z) denotes the standard normal distribution function with zero mean and unitdeviation. Then, Pr[jD� n=2j � tpn=2] � 2(1� �(t)) (10)The important observation is that most of the space is orthogonal (or \indi�erent") to anygiven point. For example, with n = 360, the mean distance is 180 with a standard deviationof 9:5. Using �(4) = 0:99997, we see that most of the space (99:994%) is approximately atthe mean distance of 180 from a given point; less than 0:00006th of the vector space is closerto the point than 142 bits or further from it than 218 bits. Thus, an object of interest can berepresented by a high-dimensional vector that can be subjected to considerable noise before itis confused with other objects . The same argument also applies to high-dimensional vectorswhose components are non-binary such as the iconic feature vectors. Figure 3 shows thedistribution of distances (computed as normalized dot-products or correlations) betweenthe feature vector for a given model point and 220268 other unrelated points in a clutteredscene. The distribution of the distances has a mean � = 0:037 with a standard deviation� = 0:263. It is clear most of the space is indi�erent (correlation ' 0:0) to the given modelpoint. Only 0:018% of the points had a correlation greater than 0:90, most of these pointsbeing located close to the model point.4.1 Description of SDMSimply put, SDM is a generalized random-access memory wherein the memory addressesand data words come from high-dimensional vector spaces. As in a conventional random-access memory, there exists an array of storage locations, each identi�ed by a number (theaddress of the location) with associated data being stored in these locations. However, dueto the astronomical size of the vector space spanned by the address vectors, only a sparse6
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Figure 3: Orthogonality of the �lter response vectors. The plot shows the distribution of distances(correlations) between response vectors for a given point and 220268 other unrelated points in a clutteredscene. A vast majority of the vectors lie near the mean distance � = 0:037 and are thus relatively uncorrelatedwith the response vector for the given point.subset of the address space is used for identifying data locations and input addresses are notrequired to match stored addresses exactly but to only lie within a speci�ed distance of anaddress to activate that address.The basic operation of SDM1 as proposed by Kanerva can be summarized as follows :� Initialization: The physical locations in SDM correspond to the rows of an m � kcontents matrix C (initially �lled with zeroes) in which data vectors 2 f�1; 1gk areto be stored (see Figure 4). Pick m unique addresses (n-element binary vectors) atrandom for each of these locations.� Data Storage: Given an n-element binary address vector a and a k-element datavector d for storage, select all storage locations whose addresses lie within a Hammingdistance of D from a. Add the data vector d to the previous contents of each of theselected row vectors of C. Note that this is di�erent from a conventional memorywhere addresses need to exactly match and previous contents are overwritten withnew data.1The SDM model can be realized as a three-layer feedforward neural network. In fact, the organization ofSDM is strikingly similar to the organization of the human cerebellum. In particular, the cerebellar modelproposed by the late David Marr [Marr, 1969] (and also the CMAC of James Albus [Albus, 1971]) are closelyrelated to generalized forms of the SDM as discussed in [Kanerva, 1993].7
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Figure 4: The modi�ed Sparse Distributed Memory (SDM) model for learning associations between objectappearance and object identity.� Data Retrieval: Given an n-element binary address vector a, select all storagelocations whose addresses lie within a Hamming distance of D from a. Add the valuesof these selected locations in parallel (i.e. vector addition) to yield a sum vector scontaining the k sums. Threshold these k sums at 0 to obtain the data vector d0 i.e.di = 1 if si > 0 and di = �1 otherwise.The statistically reconstructed data vector d0 should be the same as the original data vectorprovided the capacity of the SDM [Kanerva, 1993] has not been exceeded. The intuitivereason for this is as follows: When storing a data vector d using an n-dimensional addressvector a, each of the selected locations receives one copy of the data. During retrieval withan address close to a, say a0, most of the locations that were selected with a are also selectedwith a0. Thus, the sum vector contains most of the copies of d, plus copies of other di�erentwords; however, due to the orthogonality of the address space for large n, these extraneouscopies are much fewer than the number of copies of d. This biases the sum vector in thedirection of d and hence, d is output with high probability. A more rigorous argument canbe found in [Kanerva, 1993].4.2 Using SDM for Visual RecognitionThe model of SDM used in our method di�ers from the one proposed by Kanerva in thefollowing ways: 8



� The addresses are no longer binary but correspond to multivalued response vectorswhose range is determined by the range of �lter outputs.� The normalized dot product is used as the distance metric instead of the Hammingdistance. In other words, the distance between response vectors r1 and r2 is computedas: d(r1; r2) = r1 � r2jjr1jj jjr2jj (11)� The set of response vectors will be clustered in many correlated groups distributedover a large portion of the response vector space. Therefore, if addresses are pickedrandomly, a large number of locations will never be activated while a number oflocations will be selected so often that their contents will resemble noise. The wayout of this dilemma is to pick addresses according to the distribution of the data [Keeler,1988]. In our case, we simply use an initial subset of the training response vectors.When all address locations have subsequently been �lled, the address space can beallowed to self-organize using the well-known soft competitive learning rule [Nowlan,1990; Yair et al., 1992] as suggested by Keeler in [Keeler, 1988].Assume that the number of response vectors (each n-element long) currently stored is m.Let A represent the m� n matrix of magnitude-normalized (i.e. ri=jjrijj) response vectorsfrom the objects. Assume that we have stored response vectors for p objects. Each objectis assigned an identity vector which can be viewed as the response of the system to thevisual stimulus provided by the object; for instance, the identity vector could specify aname, a motor command, or even the response vector itself. For the current purposes, weassociate the identity vectors with object labels, each object being de�ned by a �xed rangeof values giving an indication of the pose of the object . The identity vectors are assumedto belong to the set f�1; 1gk, where k is chosen large enough to allow distinct labels forthe various objects in the domain. Let C represent the m � k counter (or object identity)matrix whose rows will hold summations of object labels and whose entries fall within theset f�c; : : : ; (c� 1)g for some positive integer c. Figure 4 illustrates this organization.Visual Learning of Object IdentityDuring the training phase, objects are presented to the active vision system which extractsthe response vectors from the image region lying within the fovea. Each response vectorr extracted from an object with a label l is stored in the SDM as follows. Let Di denotethe threshold for the ith address location and let T denote the nonlinear threshold functionde�ned on m-element vectors whose ith component is given by :T (x)i = ( 1 if xi � Di0 otherwise (12)Note that T can in general be an arbitrary radial basis function [Poggio and Girosi, 1990].The select vector s = T (A � rjjrjj) (13)9



is then simply the vector containing ones in the locations i that have a correlation of atleast Di with r.2 The object identity label l is then stored in the counter matrix C bysimply adding it to the rows of C that were selected by s :C := C+ s2l (14)where 2 represents the outer product operation. This in fact corresponds to a generalizedHebbian learning rule as noted in [Keeler, 1988].Retrieving Object IdentityLet r be a response vector obtained from one of the points in the current foveal region. Thenthe identity label l0 corresponding to r is computed by summing all the vectors selected bys and thresholding the sum vector thus obtained at 0 :l0 = �(CTs) (15)where �(x) = u where ui = 1 if xi > 0 and ui = �1 otherwise. When more than onevector is used per object, the output label is obtained by thresholding the cumulative sumvector over the di�erent object vectors. An alternative here is to use separate SDMs for thedi�erent foveal locations, thereby yielding a topographic memory [Rao and Ballard, 1995c].Veri�cation, Residuals, and the Dynamics of RecognitionThe output identity label is statistically reconstructed from the counter matrix contain-ing multiplexed labels using a form of majority rule. A label thus obtained will usuallybe correct as long as the sets of response vectors due to two distinct objects does notactivate approximately the same data locations; this is ensured in most cases by the high-dimensionality of a response vector as well as the use of more than one vector per object.However, there may still be cases wherein the output label is either close to the correct label(within a Hamming distance of one or two) or even a non-existent label (for example, whena new object is presented). Such false classi�cations can be avoided by using a veri�cationstep.Given a hypothesized object, the set of response vectors associated with that object canbe used to reconstruct the original image (see [Turk and Pentland, 1991; Ballard and Rao,1994] for example). The reconstructed image is then di�erenced with the original imageto obtain a residual image which is once again �ltered and used in conjunction with theoriginal response vector to obtain a new estimated vector, which in turn can be used toindex into memory. This process can be repeated until either convergence is achieved (i.e.the residual falls below the noise threshold) or divergence is observed. In the former case,the object is classi�ed successfully while in the latter case, a number of di�erent strategies2Note that s is a new representation in an m-dimensional space and corresponds to the codon repre-sentation of input in Marr's cerebellar model [Marr, 1969]. This transformation from an n-dimensional toan m-dimensional space (m >> n) adds further orthogonality to the matching process by amplifying anydi�erences between input response vectors. 10
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VerificationFigure 5: Implementation Diagram of the Indexing Algorithm..can be employed such as checking for convergence using the next closest object, or shiftingthe fovea to a di�erent salient region on the object to restart the process (using the locationalgorithm [Rao and Ballard, 1995b]) or, if all else fails, deeming the object unknown andextracting new response vectors from the object for storage in memory. These optionsare however yet to be exercised in the present implementation. The above veri�cationprocedure is strongly reminiscent of traditional recursive �ltering and estimation techniques(see [Brown, 1994] for a review), and correlates well with recent suggestions in the �eld ofcomputational neuroscience regarding the importance of top-down feedback connections inthe primate visual cortex in guiding the dynamics of visual recognition [Mumford, 1992].5 ImplementationThe algorithms described in the previous section have been implemented on an active visionsystem comprised of a binocular head with two color CCD television cameras that provideinput to a Datacube MaxV ideoTM MV200 pipeline image-processing system. The MV200is a single integrated 6U VME circuit board with a wide range of frame-rate image analysiscapabilities. Of particular interest to our work is its ability to perform convolutions atframe-rate (30=sec).There are clearly three distinct phases in the algorithms of the previous section duringeither storage or retrieval : (a) Figure-ground segmentation, (b) Visual preprocessing toextract �lter responses, and (c) Memory access.11



5.1 Figure-Ground SegmentationThe problem of �gure-ground segmentation is much simpler than the general segmentationproblem and can be solved in a number of di�erent ways, most notably by the use of stereo.We have previously shown [Ballard and Rao, 1994] that the use of an active binocularhead allows stereo to be used for segmenting an occluder by using zero disparity �ltering[Coombs, 1992]. The zero disparity �lter is a simple non-linear image �lter that suppressesfeatures that have non-zero disparity; in other words, it only passes image energy in thehoropter. Such a �lter is well-suited to perform a crude �gure-ground segmentation of anobject amidst a cluttered background.5.2 Visual PreprocessingOnce the approximate boundary of the object is determined, the fovea can be directed tothe centroid of the object. The MV200 executes nine convolutions with the di�erent 8� 8Gaussian derivative kernels on a low-pass �ltered �ve-level pyramid of the input image and�lter responses are extracted for each of the sparse number of points in the foveal region. Forthe experiments, an object was represented by response vectors from the centroid and eachof the points lying on the intersections of radial lines with concentric circles of exponentiallyincreasing radii centered on the centroid as shown in Figure 7 (c). Note that this correspondsto an implicit representation by parts .5.3 Memory AccessOur implementation optimizes the traditionally time-consuming step of memory access byimplementing memory directly within the MV200 image processing system itself and usingconvolutions for distance computations . The modi�ed SDM described in Section 4.2 canbe implemented by using one (or more) of the memory banks of the MV200 for storing thematrix A as a \memory surface." During indexing, an input response vector is loaded intothe 8� 8 convolution kernel and convolved with the memory surface A; the closest vectorscan be selected by simply thresholding the results of the convolution.Figure 5 summarizes the implementation of the indexing scheme.6 Experimental ResultsWe �rst describe the results of varying viewing conditions on the iconic feature vectors ofarbitrary objects. These experiments give an indication of the robustness of the indexingalgorithm by showing that the response vectors often change only slightly (correlation withthe model vector remains above 0:8) when subjected to di�erent variations in viewing con-dition. The SDM uses thresholds in the range 0:80-0:95 as motivated by Figure 3 whereonly 0:26% of the points have correlations greater than 0:8. Ambiguities left unresolved bysingle vectors are countered by using more than one feature vector per object as describedin Section 5.2. 12



For the �rst experiment, we extracted the response vector from a region near the centroidof an initially unoccluded model object and plotted the distance (correlation) between themodel response vector and those for the same point in scenarios with increasing degrees ofocclusion as shown in Figure 6 (a). Despite the distortions caused by the occluders, thenew iconic feature vectors remain correlated with the original vector.To test insensitivity to modest changes in view, we examined the e�ect of gradualclockwise 5� changes in pose on the response vectors for a �xed point for a simple 3Dobject. As shown in Figure 6 (b), the correlation remains above 0:8 for pose changes ofupto 40�.The iconic object representations are tolerant to minor scale variations (< 10%). Thisfact is illustrated in Figure 6 (c) which depicts the experimental results obtained by in-creasing scale in steps of 2%. Larger changes in scale are handled by a scale interpolationstrategy which accounts for scale changes by interpolating with responses across scales asillustrated in Figure 6 (d) (see [Rao and Ballard, 1995a] for further details).In the experiment shown in Figure 6 (e), we exposed a model object separately toillumination from a 60W bulb at a radial distance of 2 feet from four di�erent directions(labeled 0, 1, 2, and 3). There is a noticeable decrease in correlation between the modelvector and the new vectors, though it remains relatively high (> 0:8). Larger changes inillumination can be countered by using brightness normalization techniques in addition topossible active control of camera aperture.The experiment in Figure 6 (f) shows the graceful degradation caused by incrementallyadding (1) an occlusion, (2) an illumination change followed by (3) a view variation and�nally, (4) a reduction in scale (brightness normalization and scale interpolation strategieswere not used for this experiment). Despite the large distortions caused by these transfor-mations, the new iconic feature vectors all have a correlation of 0:5 or more, which is stillfar from the indi�erence distance of 0:0 where the vast majority of the other vectors lie(Figure 3).Finally, the 3D recognition performance of the indexing technique was tested on theColumbia object database that was originally used in [Murase and Nayar, 1995] by Muraseand Nayar. Figure 7 (a) shows the segmented images of 20 3D objects in the database fora given pose. During the training phase, 36 images of each object at 10� increments inpose were used to extract response vectors for storage in the SDM. For testing the indexingscheme, we randomly selected images of objects corresponding to poses that lie exactly inbetween the training poses. As indicated by Figure 7 (e), even when only one point wasused per object, 70% of the test cases were still successfully recognized. Addition of morepoints within the fovea per object increased the recognition rate until 100% accuracy wasachieved when 25 foveal points were used for indexing into the SDM.7 Discussion and ConclusionsThis paper presents a new approach to the object indexing problem: using multiscale iconicfeature vectors as components of a sparse distributed memory. This combination has anumber of salient features which can be summarized as follows:13
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� PCA-based Generalized Basis Functions: The derivative-of-Gaussian basis func-tions used in our approach arise as a result of unsupervised learning in a neural networkperforming PCA on arbitrary images of natural scenes; they are thus well-suited forindexing in a wide variety of domains. The high-dimensionality of the response vectorsderived from the basis functions further improves recognition accuracy.� Rotation and Scale Invariance: The steerability of Gaussian derivative �ltersallows an e�cient normalization procedure for rotations about the viewing axis. Theincorporation of �lter responses at di�erent scales allows the use of simple interpolationstrategies for achieving invariance in the presence of drastic changes in scale [Rao andBallard, 1995a].� Tolerance to Changes in Viewing Conditions: Minor occlusions3 or modest per-spective changes and interference caused by varying background lying in the receptive�elds of the largest scale �lters are tolerated because a large number of measurementsare used per point; distortions in a few components act as noise to which the high-dimensional representation remains robust. Illumination changes are handled in twoways. First, none of the �lters used have a DC response. Second, the use of normal-ized dot product as a distance metric additionally makes the matching process robustto global contrast changes.� Sparse Distributed Memory: An associative model of visual memory based onKanerva's sparse distributed memory is used for storage and retrieval of object iden-tity. This form of memory facilitates visual learning and allows interpolation be-tween views besides o�ering the additional advantages of constant indexing time(O(M) = O(1) where M is the number of address/storage locations) and the pos-sibility of greater storage capacity over sequential memory due to the multiplexinginherent in the SDM combined with the use of more than one response vector perobject.� Real-Time Recognition: Iconic techniques such as the one proposed in this pa-per have been greeted with considerable skepticism in the past since they have beencomputation-intensive. However, the recent availability of pipeline image processorssigni�cantly ameliorates this drawback. In particular, the frame-rate convolution ca-pability of these processors can be e�ectively exploited to make iconic techniquespractical and e�cient as demonstrated in this paper.A possible cause for concern is the use of upto 25 vectors per object. A little re
ectionhowever reveals that this choice still results in considerable savings over the alternative ofpixelwise storage of images (25� 45 versus 128� 128). Our view-based approach raises thequestion of scalability: will the method fail when extremely large model bases of objects areused with arbitrary 3D pose? It is however not hard to see that the use of more than onevector per object potentially allows an extremely large number of objects to be handled.Kanerva [Kanerva, 1993] estimates the capacity of the SDM to be about 5% of the numberof storage locations; thus, with only 1000 storage locations, the number of potentially3A more sophisticated strategy for handling partial occlusions is described in [Ballard and Rao, 1994].16



distinguishable objects is still �5025� which is an extremely large number, even after factoringout the number of di�erent views for an object. The accuracy of the above naive estimateclearly depends on the extent to which response vectors are shared between di�erent objects;while we have found noticeable overlap in general, we believe that the possible use of self-organization within the address space using competitive learning [Nowlan, 1990; Yair et al.,1992] will signi�cantly help in extending the capacity of the memory by allowing the storedresponse vectors to essentially act as higher-level basis functions for describing objects.Ongoing work includes motion-based segmentation, saliency-based selection of objectpoints, and extending the current representation to color-opponent �lters derived fromunsupervised learning along the RGB planes.
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