
Condensed Matter Option Superconductivity

Outline of the course

The lecture course on Superconductivity will be given in 7 lectures in Trinity term. The topics covered
include

• Introduction to superconductivity

• The London equations

• Ginzburg-Landau theory

• The Josephson effect

• BCS theory & the energy gap

• Unconventional superconductors & superconducting technology

Reading

• ‘Superconductivity, Superfluids and Condensates’, by J. F. Annett, OUP 2004: the best book for
the course.

• ‘Solid State Physics’ by N. W. Ashcroft and N. D. Mermin, chapters 34, is a good overview of
some of the material in the course, though out of date on experiments and written in cgs units. The
relevant chapters in the solid state texts by Kittel can also be consulted.

• An advanced but informative description of the ideas concerning broken symmetry may be found in
the second chapter of ‘Basic Notions of Condensed Matter Physics’, by P. W. Anderson (Benjamin-
Cummings 1984). For enthusiasts only!

• A popular account of the history of superconductivity can be found in Stephen Blundell’s ‘Super-
conductivity: A Very Short Introduction’, OUP 2009.

Web-page for the course:

www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option

This handout contains figures and material either complementary or additional to the content of the
lectures.

Recap: Maxwell’s equations:

In free space, Maxwell’s equations are

∇ ·E = ρ/ε0 (1)

∇ ·B = 0 (2)

∇×E = −∂B

∂t
(3)

∇×B = µ0J + ε0µ0
∂E

∂t
, (4)

and describe the relationships between the electric field ε, the magnetic induction B, the charge
density ρ and the current density J. Equation 1 shows that electric field diverges away from positive

Trinity 2017 1 Dr PJ Leek & Dr AI Coldea



Condensed Matter Option Superconductivity

charges and converges into negative charges; charge density therefore acts as a source or a sink of
electric field. Equation 2 shows that magnetic fields have no such divergence; thus there are no
magnetic charges (monopoles) and lines of B field must just exist in loops; they can never start or
stop anywhere. Equation 3 shows that you only get loops of electric field around regions in space in
which there is a changing magnetic field. This leads to Faraday’s law of electromagnetic induction.
Equation 4, in the absence of a changing electric field, shows that loops of magnetic induction are
found around electric currents – Ampere’s Law. In the presence of matter, we have:

∇ ·D = ρfree (5)

∇ ·B = 0 (6)

∇×E = −∂B

∂t
(7)

∇×H = Jfree +
∂D

∂t
, (8)

Recap: Charges moving in fields

(i) Magnetic Vector Potential

The magnetic vector potential A is defined by

B = ∇×A (9)

Since A is essentially derived from B via an integration, this definition is not complete. We could if
we wanted add another term, the gradient of a scalar function, leaving B unchanged.

A → A +∇χ (10)

B → ∇× (A +∇χ) = ∇×A (11)

A choice of χ is called a choice of gauge. In a given situation the gauge can be chosen so as to make
the mathematics simple. In many cases the gauge is fixed so as to have ∇ ·A = 0, this is known as
the Coulomb gauge or, in the area of superconductivity, the London gauge.

Note that A also contributes to the electric field,

E = −∇V − ∂A

∂t
(12)

and although the electric scalar potential V is also altered by a change of gauge, the field remains
unaffected

A → A +∇χ (13)

φ → V − ∂χ

∂t
(14)

E → −∇(V − ∂χ

∂t
)− ∂

∂t
(A +∇χ) = −∇V − ∂A

∂t
. (15)

Trinity 2017 2 Dr PJ Leek & Dr AI Coldea



Condensed Matter Option Superconductivity

(ii) Canonical Momentum∗

In classical mechanics the Lorentz force F on a particle with charge q moving with velocity v in an
electric field E and magnetic field B is

F = q(E + v ×B). (16)

Using F = mdv/dt, B = ∇×A and E = −∇V − ∂A/∂t, where m is the mass of the particle, this
equation may be rewritten as

m
dv

dt
= −q∇V − q∂A

∂t
+ qv × (∇×A). (17)

Simplifying with the vector identity

v × (∇×A) = ∇(v ·A)− (v · ∇)A (18)

yields

m
dv

dt
+ q

(
∂A

∂t
+ (v · ∇)A

)
= −q∇(V − v ·A). (19)

Note that mdv/dt is the force on a charged particle measured in a coordinate system that moves
with the particle. The partial derivative ∂A/∂t measures the rate of change of A at a fixed point in
space. We can rewrite Equation 19 as

d

dt
(mv + qA) = −q∇(V − v ·A) (20)

where dA/dt is the convective derivative of A, written as

dA

dt
=
∂A

∂t
+ (v · ∇)A, (21)

which measures the rate of change of A at the location of the moving particle. Equation 20 takes the
form of Newton’s second law (i.e. it reads ‘the rate of change of a quantity that looks like momentum
is equal to the gradient of a quantity that looks like potential energy’). We therefore define the
canonical momentum

p = mv + qA (22)

and an effective potential energy experienced by the charge particle, q(V − v ·A), which is velocity-
dependent. The canonical momentum reverts to the familiar momentum mv in the case of no mag-
netic field, A = 0. The kinetic energy remains the energy associated with actual motion throughout,
i.e. equal to 1

2mv
2, and can therefore be written in terms of the canonical momentum as (p−qA)2/2m.

In terms of quantum mechanics the upshot of all this is that when we are considering the wave
functions of charged particles we must make the replacement †

−ih̄∇ → −ih̄∇− qA. (23)

The quantum mechanical operator associated with the kinetic energy of a charged particle in a
magnetic field is thus (−ih̄∇− qA)2/2m.

∗This section is lifted almost intact from Blundell, Magnetism in Condensed Matter, Chapter 1.
†see, for example, Feynman Lectures on Physics, Vol. 3, Chapter 21.
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Meissner effect

Superconducting transition temperatures

Substance Tc (K)

Al 1.196
Hg 4.15
In 3.40
Nb 9.26
Pb 7.19
Sn 3.72
Zn 0.875

Nb3Sn 18.1
V3Si 17
Nb3Ge 23.2
BaPbO3 0.4
BaxLa5−xCu5Oy 30–35
YBa2Cu3O7−δ 95
Bi2Sr2Ca2Cu3O10 110
Hg0.8Pb0.2Ba2Ca2Cu3Ox 133
HgBa2Ca2Cu3O8+δ at 30 GPa 164

URu2Si2 1.3
MgB2 39
YNi2B2C 12.5
(TMTSF)2ClO4 1.4
K3C60 19
Cs3C60 at 7 kbar 38
(BEDT-TTF)2Cu(NCS)2 10.4
(BEDT-TTF)2Cu[N(CN)2]Br 11.8
Sm[O1−xFx]FeAs 55
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Thermodynamics

At constant pressure dG = −S dT −m dB. Therefore, when T is constant and less than TC

Gs(B)−Gs(0) = −
∫ B

0
mdB. (24)

Here m = MV and M = −H = −B/µ0. This implies that

Gs(B)−Gs(0) = −
∫ B

0
mdB =

V B2

2µ0
. (25)

At B = Bc, we have that
Gs(Bc) = Gn(Bc) = Gn(0) (26)

because

• the superconducting and normal states are in equilibrium,

• we assume no field dependence in Gn.

Hence

Gn(0)−Gs(0) =
V B2

2µ0
, (27)

and therefore

Sn − Ss = − V
µ0
Bc

dBc

dT
> 0, (28)

because
dBc

dT
< 0. (29)

Therefore the entropy of the superconducting state is lower than the normal state. Differentiation
yields

Cn − Cs = −TV
µ0

[
Bc

d2Bc

dT 2
+

(
dBc

dT

)2
]
. (30)

London equation

Fritz London, working with Heinz London, realised that superconductivity was due to a macroscopic
quantum phenomenon in which there was long range order of the momentum vector. This implies
condensation in momentum space. Fritz London also realised that it is the rigidity of the
superconducting wave function ψ which is responsible for perfect diamagnetism.

The London equation is

J = −nq
2

m
A (31)

This leads to an equation for the magnetic field B = ∇×A of the form

∇2B =
B

λ2
, (32)
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where λ is the London penetration depth. This differential equation can be solved in various geome-
tries.

Gauge theory and the London equation

The London equation J = −nq
2

m A only works in one choice of gauge, known as the London gauge.
The continuity equation ρ̇ + ∇ · J = 0 in the DC case is just ∇ · J = 0 and so the London gauge
amounts to choosing ∇ ·A = 0.

Notice that the canonical momentum p = mv + qA is therefore not gauge invariant either:

A → A +∇χ
p → p + q∇χ (33)

Assuming a wave function ψ(r) = ψeiθ(r) with a phase θ that depends on position in space, then
p = −ih̄∇ = h̄∇θ, and

h̄∇θ → h̄∇θ + q∇χ (34)

or
θ → θ +

qχ

h̄
, (35)

and so the phase (and hence the wave function) is also not gauge invariant.

Note, however, that the operator associated with kinetic energy, (h̄∇θ− qA)2/2m, is gauge invari-
ant, with the effect of the gauge transformations on both θ and A cancelling each other out.

Flux quantization

Flux quantization leads to the equation Φ = NΦ0 where N is an integer and Φ0 is the flux quantum:

Φ0 =
h

2e
. (36)

The 2e in this equation represents the charge of the superconducting carrier, and experiment implies
that the carrier consists of a pair of electrons.

The first evidence for this pairing came from the data shown below [B. S. Deaver and W. M. Fairbank,
Phys. Rev. Lett. 7, 43 (1961)]; this is from an experiment on a cylinder made of tin. Note the
quaint oldy-worldy units.
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The experiment shown below [C. E. Gough et al, Nature 326, 855 (1987)] tried a similar experiment,
this time using a ring made out of a high-Tc superconductor (Y1.2Ba0.8CuO4). What is shown here
is the output of an rf-SQUID magnetometer. The ring was exposed to a source of electromagnetic
noise so that the flux varied through the ring. Once the output of the rf-SQUID was calibrated, one
could show that the flux jumps were 0.97±0.04 (h/2e), confirming that the charge carriers in the
high-Tc materials were pairs of electrons.

The Fluxoid

Fritz London noted that it is not strictly speaking flux that is conserved and quantized in a supercon-
ductor. If one considers the region close to the edge of the superconductor then it is a combination
of flux and surface currents that has these properties. This combination is called a fluxoid and is
given by

Φ′ = Φ +
m

nq2

∮
J · dl (37)

Deep inside the superconductor, the second term on the right will be zero and flux and fluxoids are
the same, but within a few penetration depths of the surface the J-term is still present. Here, we
would have dΦ′/dt = 0 and Φ′ = Nh/2e.

Pippard coherence length

The London equation is a local equation, with the value of the magnetic potential at a point deter-
mining the current density at that point. It was found that experimentally derived values of London
penetration depths were frequently greater than those estimated from the Londons’ theory. To rem-
edy this Brian Pippard (1953) suggested a non-local modification of the theory in which a disturbance
in magnetic potential would be felt by all superconducting carriers within a certain distance of the
perturbation. Deep in the superconducting state of a material free from impurities this distance is
known as the Pippard coherence length, ξ0. Pippard’s predicted form for ξ0 was later confirmed by
the microscopic theory of Bardeen, Cooper and Schrieffer.

Ginzburg-Landau theory

In the lectures, we will motivate the (gauge-invariant) Ginzburg-Landau expression for the free-energy
of a superconductor:

Fs = Fn +

∫
d3r

[
a(T )|ψ(r)|2 +

b

2
|ψ(r)|4 +

1

2m
| − ih̄∇ψ(r) + 2eAψ(r)|2 +

(B(r)−B0)2

2µ0

]
, (38)

where ψ(r) = ψ0eiθ(r) is the complex order parameter and B0 is the applied field.
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Part of the derivation is included here: When the magnetic field can be ignored (and setting A = 0), we have

Fs = Fn +

∫
d3r f, (39)

where f = a(T )|ψ|2 + b
2
|ψ|4 + h̄2

2m
|∇ψ|2. If ψ is varied, then

df = 2aψ dψ + 2bψ3 dψ +
h̄2

2m
d|∇ψ|2, (40)

and d|∇ψ|2 = |∇(ψ + dψ)|2 − |∇ψ|2 = 2∇ψ · ∇(dψ). In the integral, the term ∇ · [∇ψ dψ] = (∇2ψ) dψ +∇ψ · d∇ψ
gives a surface contribution, which in certain circumstances can be taken to be zero. Hence

df = 2dψ[(a+ bψ2)ψ − h̄2

2m
∇2ψ] = 0 (41)

for any ψ. This looks like a non-linear Schrödinger equation. Near Tc we can neglect the bψ2 term because ψ → 0 and
then the equation takes the form

∇2ψ =
ψ

ξ2
(42)

where ξ =
√

h̄2

2m|a(T )| .

Minimizing this equation with respect to variations in ψ and A yields the Ginzburg-Landau equa-
tions:

h̄2

2m

(
−i∇+

2e

h̄
A

)2

ψ + a(T )ψ + bψ3 = 0, (43)

and
∇×B

µ0
= J = −ieh̄

m
[ψ∗∇ψ − ψ∇ψ∗]− 4e2

m
|ψ|2A. (44)

These equations imply that, in the absence of a magnetic field, there is an energy cost associated
with having a variation in the order parameter from one part of the system to another. In particular,
the superconducting ground state is one in which the phase of the order parameter takes a constant,
but arbitrary, value throughout the sample. This macroscopic phase coherence is the essence of
the long-range order exhibited by a superconductor.

The GL equations also predict the Meissner effect, flux trapping and quantization, as well as yielding
expressions for the penetration depth λ:

λ =

√
mb

4µ0e2|a(T )| (45)

and the Ginzburg-Landau coherence length ξ:‡

ξ =

√
h̄2

2m|a(T )| . (46)

‡In a pure superconductor far below the transition temperature ξ(T ) ≈ ξ0, where ξ0 is the Pippard coherence length.
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Type II superconductors

The Ginzburg-Landau parameter κ is defined by κ = λ/ξ. If κ < 1/
√

2, we have a type I superconduc-
tor. If κ > 1/

√
2, we have a type II superconductor. The figure on the left above shows the behaviour

of magnetic field (B) and order parameter (ψ) close to the surface of a type I superconductor that
exists for x > 0. Here the surface costs energy because there is an extended region for which field is
being expelled, but where the order parameter has not reached its bulk value. The middle figure is
the same plot for a type II superconductor showing that the surface saves energy because there are
regions that have the full bulk value of the order parameter, but are not completely expelling the
magnetic field. This qualitatively accounts for the formation of the mixed or vortex phase.

In the latter case vortices, each containing one flux quantum, will form into a lattice for fields
between Bc1 and Bc2. The phase diagram, obtained by solving the Ginzburg-Landau equations, is
shown above on the right.

Bc1 = µ0Hc1 ≈
Φ0

4πλ2
lnκ (47)

Bc2 = µ0Hc2 =
Φ0

2πξ2
(48)

This figure shows the vortex lattice im-
aged in NbSe2 (a type II superconduc-
tor with a transition temperature of 7.2 K
and a critical field of 3.2 T) by tunnelling
into the superconducting gap edge with
a low-temperature scanning-tunnelling mi-
croscope. The magnetic field used is 1 T.
H. F. Hess et al., Phys. Rev. Lett. 62, 214
(1989). Also shown is a table of critical
fields for a selection of materials.

Type I Bc(T)

Al 0.01
Sn 0.03
Hg 0.04
Pb 0.08

Type II Bc2(T)

Nb 0.8
V 1
Nb3Sn 25
YBa2Cu3O7−δ 120

For a square vortex lattice of spacing d, we have that Φ0 = Bd2 and so d = (Φ0/B)1/2. For the much
more common triangular vortex lattice d = (2Φ0/

√
3B)1/2.

Silsbee’s rule

For a wire of radius a, the critical current is related to the critical field that destroys superconductivity
by Ic = 2πaBc/µ0.
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The Josephson effect§

Voltage-source model

• The DC Josephson effect: I = IJ sinφ, where φ is the phase difference across the Josephson
junction.

• The AC Josephson effect: h̄φ̇ = 2eV so that I = IJ sin(ωJt+ φ0) where ωJ = 2eV/h̄.

• The inverse AC Josephson effect: For an ac voltage V = V0 + Vrf cosωt, we have that

I = IJ sin(ωJt+ φ0 +
2eVrf

h̄ω
sinωt)

I = IJ

∞∑
n=−∞

(−1)nJn

(
2eVrf

h̄ω

)
sin[(ωJ − nω)t+ φ0]

where we have used the identity sin(a + z sin θ) =
∑∞
n=−∞(−1)nJn(z) sin(a − nθ), and Jn are

Bessel functions.

I0

V/R

R

I0

V/R

R C

Current-source model

A perfect Josephson junction (signified by the
cross) can be inserted in various electrical cir-
cuits. (A real Josephson junction may well
have some real resistance or capacitance so
this circuit can be thought of as an attempt to
model real junctions.) Single junctions typ-
ically have low impedances compared to the
transmission lines that feed them and so can
be thought of as being fed by a constant cur-
rent source.

• The resistively shunted Josephson (a) model yields

I0 = IJ sinφ+
V

R
= IJ sinφ+

h̄φ̇

2eR
. (49)

Adding in a capacitor (b) gives

I0 = IJ sinφ+
V

R
+ CV̇ = IJ sinφ+

h̄φ̇

2eR
+
h̄Cφ̈

2e
. (50)

This can be rewritten as

mφ̈ = −∂U
∂φ
− h̄

2eR
φ, (51)

where m = h̄C/2e and U = −IJ cosφ− I0φ is the tilted washboard potential.

• The gauge invariant phase difference is written as

φ = θ1 − θ2 −
2e

h̄

∫ 2

1
A · dl (52)

This expression can be used to explain the behaviour of the SQUID Superconducting Quantum
Interference Device.

§A good text on Josephson effects is Superconductivity of metals and cuprates by J R Waldram (IOP). If anybody is
interested in information on using Josephson junctions for quantum computing try the review Superconducting quantum
circuits, qubits and computing by Wendin and Shumeiko (http://arxiv.org/abs/cond-mat/0508729).
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The current-voltage characteristic (V horizontal, I vertical) for a superconductor-insulator-superconductor
(SIS) Nb–Al2O3 –Nb junction. This corresponds well with the voltage-source model. [Left] The spike
in the centre is caused by the DC and AC Josephson effects, while currents at larger values of V
are caused by normal electron transport. [Right] Applied microwave radiation of 70 GHz yields the
Shapiro spikes of the inverse AC Josephson effect.

The current-voltage characteristic (V horizontal, I vertical) for a superconductor-normal-superconductor
(SNS) Nb–PdAu–Nb junction This corresponds well with the current-source model, in which the
spikes are replaced by steps. [Left] The DC and AC effects. [Right] Microwave radiation of 10 GHz
produces Shapiro steps.

The current-voltage characteristic (V horizon-
tal, I vertical) for a high-Tc Josephson junction
under microwave illumination. Data are shown
for increasing microwave power.
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Two regimes for the tilted washboard po-
tential: I0 < IJ, which leads to minima
in U(φ) [left]; or I0 > IJ for which there
are no minima [right]. In the latter case,
φ and hence IJ sinφ continue to vary with
time. When minima are present it is pos-
sible for φ to reach a steady solution.

The isotope effect

The transition temperature Tc ∝M−1/2 where M is the mass of the isotope.

T
c
(K

)

M−1/2

M

T
c
(K

)

M−1/2

M

This is very good evidence for the role of phonons in superconductivity.

Cooper pairs

The superconducting carriers in BCS theory are Cooper pairs, which consist of two electrons with
equal and opposite crystal momentum and spin, bound together by a phonon-mediated interaction.
Below is a hand-wavy cartoon of how the interaction works: an electron perturbs the lattice as it
moves past and a nearby electron is attracted to the perturbation.
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Creation and annihilation operators

We define a creation operator â† and an annihilation operator â for the harmonic oscillator problem:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (53)

Since [x̂, p̂] = ih̄ we have that [â, â†] = 1. Furthermore, we can write

â†|n〉 =
√
n+ 1|n+ 1〉 (54)

â|n〉 =
√
n|n− 1〉 (55)

â†â|n〉 = n|n〉, (56)

and hence â†â is the number operator. The Hamiltonian becomes

Ĥ = h̄ω(â†â+
1

2
), (57)

and the eigenvalues are E = (n+ 1
2)h̄ω. Note that

|n〉 =
1√
n!

(â†)n|0〉. (58)

Coherent states

A coherent state |α〉 is defined by

|α〉 = C

[
|0〉+

α√
1!
|1〉+

α2

√
2!
|2〉+

α3

√
3!
|3〉+ · · ·

]
, (59)

where α = |α|eiθ is a complex number. Hence

|α〉 = C

[
1 +

αâ†√
1!

+
(αâ†)2

√
2!

+
(αâ†)3

√
3!

+ · · ·
]
|0〉, (60)

This state can be written |α〉 = e−|α|
2/2 exp(αâ†)|0〉 . The coherent state is an eigenstate of the

annihilation operator, so that â|α〉 = α|α〉, and has a well-defined phase but an uncertain number of
particles.

• ĉ†kσ is a creation operator for an electron with momentum k and spin σ.

• ĉkσ is a annihilation operator for an electron with momentum k and spin σ.

• P̂ †k = ĉ†k↑ĉ
†
−k↑ is a pair creation operator.

Note that we can write the Fermi sea as

|Fermi sea〉 =
∏
k<kF

P̂ †kσ|0〉. (61)

The BCS wave function will be written as a product of coherent states of pairs:

|ΨBCS〉 = constant×
∏
k

exp(αkP̂
†
k )|0〉. (62)
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BCS theory

The derivation of BCS theory is rather involved and only an outline is given here. For more details,
consult the books by Annett and by Schrieffer. This material provided in this section is for interest
only and the less-interested reader need only focus on the boxed results.

The BCS trial wave function can be written as a product of coherent states of pairs (we will drop
the hats from the operators now):

|ΨBCS〉 = constant×
∏
k

exp(αkP
†
k)|0〉, (63)

where P †k is a pair creation operator. In the lecture, we showed that this could be written

|ΨBCS〉 =
∏
k

(u∗k + v∗kP
†
k)|0〉, (64)

where u∗k and v∗k are variational parameters which can be adjusted to minimise the energy.

The BCS Hamiltonian is

H =
∑
k,σ

εkc
†
kσckσ − |geff |2

∑
k,k′

c†k↑c
†
−k↓c−k′↓ck′↑, (65)

where the first term represents the kinetic energy and the second term accounts for the electron
phonon interaction. This Hamiltonian is applied to the BCS Hamiltonian, and the energy is min-
imised with respect to the parameters uk and vk. The results of this are that

|uk|2 =
1

2

(
1 +

εk − µ
Ek

)
(66)

|vk|2 =
1

2

(
1− εk − µ

Ek

)
(67)

Ek =
√

(εk − µ)2 + |∆|2. (68)

These results are plotted in the graphs above. |vk|2 and |uk|2 can be interpreted as the probabilities of
a pair state being respectively occupied and unoccupied, while Ek can be interpreted as the energy of
an electronic excitation (note that both electron and hole solutions emerge). The minimum electronic
excitation energy is the energy gap ∆.

The gap parameter is defined by ∆ = |geff |2
∑

k ukv
∗
k = |geff |2

∑
k〈c−k↓ck↑〉. One also finds that

ukv
∗
k = ∆/(2Ek). These two equations lead to the BCS gap equation at T = 0:

∆ = |geff |2
∑
k

∆

2Ek
. (69)

Writing the electron-phonon coupling parameter as λ = |geff |2g(EF), where g(EF) is the density of
states at the Fermi level, this becomes

∆ = λ

∫ h̄ωD

0

∆ dε√
∆2 + ε2

, (70)

and so
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E k

k- k-

k k

1

λ
=

∫ h̄ωD

0

dε√
∆2 + ε2

= sinh−1
(
h̄ωD

∆

)
. (71)

Since ∆� h̄ωD, we have that e1/λ/2 ≈ h̄ωD/∆ and so

∆ ≈ 2h̄ωDe
−1/λ . (72)

In the above we have made use of the BCS approximation, the result of which is that the gap function
has no k-dependence.

When T 6= 0, we must replace eqn 70 by

∆ = λ

∫ h̄ωD

0

∆ dε√
∆2 + ε2

[1− 2f(ε)], (73)

where f(ε) is the Fermi-Dirac function. Hence, for T = Tc we have that ∆ = 0 and so

1

λ
=

∫ xD

0

tanhx

x
dx, (74)

where xD = h̄ωD/2kBTc and hence

kBTc = 1.13h̄ωDe
−1/λ . (75)

Because λ is typically small, BCS theory predicts an upper limit on the critical temperature
of about 30 – 40 K. Eqns 72 and 75 can be combined to yield

2∆(0) = 3.52kBTc . (76)
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Condensed Matter Option Superconductivity

Evidence for the energy gap

Absorption of infra-red radiation

P. L. Richards and M. Tinkham,
Physical Review 119, 575 (1960).

Heat capacity data

Norman E. Phillips, Physical Review 134, A386 (1963).
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Condensed Matter Option Superconductivity

Photoemission spectroscopy

F. Reinert et al.,
Physical Review Letters 85, 3930 (2000).

“Observation of a BCS 
spectral Function in a 
Conventional 
Superconductor by 
Photoelectron Spectroscopy”

F. Reinert et al.

Physical Review Letters 
85, 3930 (2000)

T > TC
normal 
state

T < TC
SC state

V3Si

Temperature dependence of the gap

I. Giaever and K. Mergerle,
Phys. Rev. 122, 1101 (1961).

Experimental values of Tc, 2∆(0)/kBTc and (Cs − Cn)/Cn, the jump in the heat capacity at Tc, are
given in the following table (BCS predicted values for the last two are 3.52 and 1.43, respectively):

Material Tc(K) 2∆(0)/kBTc (Cs − Cn)/Cn

Zn 0.9 3.2 1.3
Al 1.2 3.4 1.6
In 3.4 3.6
Sn 3.7 3.5 1.6
Ta 4.5 3.7 1.6
V 5.4 3.4 1.6
Hg 4.2 4.6 2.2
Pb 7.2 4.3 2.7
Nb 9.3 3.7 2.1
K3C60 19 3.6
YBa2Cu3O7−δ 93 4.0 2.9
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Condensed Matter Option Superconductivity

Noteable aspects of BCS superconductivity

• The superconducting condensate is made up of a large number of Cooper pairs all of which
have the same ground state wave function.

• Cooper pairs are constructed from electrons that have equal and opposite crystal momenta and
opposite spin. The pairs are formed via an electron-phonon interaction.

• The part of the Cooper-pair wave function that deals with centre-of-mass motion is equivalent
to the order parameter in Ginzburg-Landau theory.

• The full Cooper-pair wave function contains the characteristic real-space length scale of the
Cooper pair, which is of the order of the Pippard coherence length, ξ0. This can be much
bigger than the average distance between electrons in the normal state.

• BCS theory deals with the condensate as a whole and defines a coherent many-body wave
function, |ΨBCS〉.

• The theory predicts the existence of a complex gap function, ∆. The magnitude of this func-
tion within BCS theory is independent of k and represents the size of the energy gap that
occurs at the Fermi energy, separating the superconducting ground state from the quasiparticle
excitations.

• The formation of the condensate is a cooperative effect, with the size of the energy gap depen-
dent on the number of quasiparticles that condense. The quantitative predictions of the gap
that emerge from BCS have been experimentally verified in a large number of superconducting
materials.

• The gap function is proportional to the Ginzburg-Landau order parameter. The GL equations
(and hence the London equations, flux quantization, and the Meissner & Josephson effects) can
be derived from BCS theory.

Beyond BCS

The deviations in 2∆(0)/kBTc for some elemental materials (including Pb and Hg) from the BCS
predictions can be explained through the extending the theory to include strong coupling of the
electrons and phonons.

It is now apparent that some materials have properties that may not be explained entirely within
either weakly or strongly-coupled BCS theories. These include some heavy-fermion superconductors,
organic superconductors, the high-temperature or cuprate superconductors, and the recently discov-
ered iron-based superconductors. In several of these materials it is likely that the symmetry of the
gap function is different to the isotropic gap predicted by BCS.
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Condensed Matter Option Superconductivity

In the normal state above Tc, a given superconducting material has a symmetry group that incorpo-
rates the symmetry of the underlying crystal structure, spin rotation symmetries, and so-called U(1)
symmetry. Below Tc the U(1) symmetry is spontaneously broken, giving rise to phase coherence. If
this is the only symmetry that is broken on going through the transition, then the material is called a
conventional superconductor, and will have an isotropic or s-wave gap function (the latter in ref-
erence to the atomic l = 0, isotropic s-orbital). If, in addition to U(1), the system breaks one or more
of the other symmetries it possessed above the transition, then it is known as an unconventional
superconductor.¶

These unconventional materials still contain superconducting pairs of electrons and exhibit much
of the superconducting phenomena we discuss in the course. However, the interaction mechanism
responsible for pairing the electrons in these materials is not yet established and, in some cases, the
critical temperatures can be in excess of 100 K, indicating the likelihood of something more exotic
than the “simple” BCS electron-phonon interaction.

¶For an introduction to the symmetry aspects of superconductivity see James Annett’s book, or his article in
Contemporary Physics vol. 36, p423 (1995).
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