
Intentional Software
Charles Simonyi

Intentional Software Corporation
500 108th Ave NE, #1050

Bellevue, WA, 98004
+1 425 467 6600

charless@intentsoft.com

Magnus Christerson
Intentional Software Corporation

500 108th Ave NE, #1050
Bellevue, WA, 98004

+1 425 467 6600
magnus@intentsoft.com

Shane Clifford
Intentional Software Corporation

500 108th Ave NE, #1050
Bellevue, WA, 98004

+1 425 467 6600
shane@intentsoft.com

Abstract
Wysiwyg editors simplified document creation by separating the
document contents from the looks and by automating the re-
application of the looks to changing contents. In the same way
Intentional Software simplifies software creation by separating the
software contents in terms of their various domains from the
implementation of the software and by enabling automatic re-
generation of the software as the contents change. This way,
domain experts can work in parallel with programmers in their
respective areas of expertise; and the repeated intermingling can
be automated. Intentional Software is supported by a Domain
Workbench tool where multiple domains can be defined, created,
edited, transformed and integrated during software creation. Key
features include a uniform representation of multiple interrelated
domains, the ability to project the domains in multiple editable
notations, and simple access for a program generator.

Categories and Subject Descriptors D.2.2 [Software
Engineering]: Design Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features.

General Terms Management, Design, Human Factors,
Languages, Theory.

Keywords Intentional Software, Generative Programming.

1. Introduction
For numerous practical reasons the creation of software has been
historically approached from the point of view of the computer.
As a result most software is expressed in a general purpose
programming language. Consequently, the programs record what
is required for the computer, the detailed instructions for
execution, rather than the problem details. This would not be an
issue if only computers looked at programs, but that is evidently
not the case. Because programs are the only precise (i.e. machine
processable) artifacts that record the programmers’ work, any
change (whether maintenance or extension) has to be done to the
program, which is encoded in a way that does not clearly express
the problem that was to be solved.

Fred Brooks expressed the frustration of programmers thusly [1]:

“Much of the complexity [the programmer] must master
is arbitrary complexity, forced without rhyme or reason
by the many human institutions and systems…’

Of course this complexity is not at all arbitrary from the point of
view of the domain experts such as the hospital administrators, the

content creators for a website, or the aeronautical engineers who
have software needs.

The goal of software is to implement a solution to a problem that
is defined by human intent alone. Some people have expertise in
the problem domain - they are domain experts. Some people have
expertise in software creation – they are programmers. Together
they create software, perhaps with some people in both roles.

This division of labor also leaves the domain experts frustrated.
Why can they not contribute more directly to the software?
Granted, their potential contributions in terms of their domain
expertise would not be executable by computer, but they evidently
comprise an ever growing part of the total effort. The domain
experts’ plea is: Programmers, if you are frustrated with
complexity of the domain and with changes in the specifications,
give us a system where we, domain experts, can record and
maintain our contributions in a way that is convenient for you to
process by software.

The paper will present the following argument:

1. First we review the well-known idea of generative
programming that promises to involve the domain experts in
the creation of software by factoring the program into three
parts: domain schema, domain code, and generator code.

2. The main emphasis will be on the domain code. The novelty
of this paper’s approach is to introduce a tool, the Domain
Workbench that allows the combination of multiple domains
that can be viewed and edited in multiple projections.

3. The domain schema defines the terms of the domain code
and allows the generator to recognize and process these
terms.

4. The generator processes the domain code and produces
executable target code. The generator can be created using
typical software engineering techniques.

5. The need for multiple domains and multiple projections is
introduced through a simple example familiar to many
programmers: specification of a parser through production
rules and tree building templates.

6. Finally, additional applications are discussed and related
approaches are reviewed.

1.1 Direct Programming and Intentionality
For the creation of any software, two kinds of contributions need
to be combined even though they are not at all similar: those of
the domain providing the problem statement and those of software
engineering providing the implementation. They need to be
woven together to form the program.

The direct development workflow in use today (Figure 1) is the
following: The domain expert communicates the problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
Copyright © 2006 ACM 1-59593-348-4/06/0010…$5.00.

statement to the programmer. This is done in forms that can not be
automatically transformed into code, such as specs, use cases,
stories, and sketches. The programmer then weaves these
intentions together with software engineering knowledge and
implementation decisions and creates the source code that can run
on a computer.

Figure 1. Direct programming workflow.

Persistent problems with this process stem from the fact that
maintenance and correctness must be defined in the problem
statement and in the implementation separately. However,
maintenance has to be performed and correctness has to be
evaluated on the source code mixture of the two.

Consider for example the following simple snippet from a banking
application:

void Trnsfr(Acct payer, Acct payee, Dlrs amount)

{ AuditTrl(payer.Xact(amount), payee.Xact(-amount)); }

This program is correct with respect to implementation types, yet
it is incorrect in the domain: the payee should be credited the
amount and vice versa.

When extending or otherwise maintaining a program, the
programmer must mentally unweave the implementation (into
Debits and Credits, for example), reason about the part in
question, solve the problem and reweave the result. This repeated
unweaving and reweaving is an added burden on the programmers
that introduces many programming errors into the software and
can increase costs disproportionate to the size of the problem.

The example could be refactored like this:

{ AuditTrail(payer.Debit(amount), payee.Credit(amount)); }

By using the domain terms Credit and Debit, the efficiency of
maintenance can be greatly improved. We may say that the second
snippet is more intentional than the first – it is a more direct
encoding of what was originally intended. Unfortunately, in
complex systems a higher degree of intentionality is very difficult
to achieve since a more complex domain vocabulary, domain
relationships, and domain rules simply cannot be mapped into a
programming language without a great deal of software
engineering trickery which in turn makes maintenance
exceedingly difficult.

1.2 Generative Programming
If we want to guarantee a high degree of intentionality, we have to
express the problem in domain terms. Since by itself the
expression won’t necessarily constitute an executable program we
have to rely on an additional transformational step: program
generation.

Generative programming (Figure 2) is a technique where instead
of focusing on the final program, the programmers focus on a
generator program that takes domain code as its input and outputs
the target code which is the final program. The domain code is
expressed in a Domain Specific Language [4]. The target code can
be a combination of any desired executable codes and other
deliverables.

The generator is the place where programming still needs to get
done; but the focus of the programmers' work has changed from
writing the program directly, to writing the generator. Much of the
programming effort is very much like direct programming – the
program organization and the data structures all need to be
designed, defined, and written except that now the target code can
be parameterized by the domain code. The savings are achieved
when the domain code is maintained and the generator is re-run.
Now the computer does what ordinarily would be the
programmer’s task: distributing the domain code changes
appropriately according to the complex correspondence between
the domain and the chosen implementation.

Figure 2 Generative programming workflow

The different applications of the generative techniques differ in
how the domain specific language is defined, how it is edited, and
how the generator itself gains access to the language. A classic
overview of the range of possibilities is given in [3].

1.3 Intentional Software
By using a generator, the concerns of the domain experts and of
the programmers can be separated. Nonetheless, many issues
remain for practical application. The relative dearth of generative
solutions today may be due to the lack of satisfactory resolutions
for these issues: What is the language of the domain code? Who
defines and who supports this language and its documentation?
What if the problem spans more than one domain – for example
banking and user interfaces? And what API does the generator
use to access the domain code?

To create Intentional Software, we propose specific resolutions
for the above issues and use a Domain Workbench for support.

The process starts by the domain experts–with support from the
programmers—defining the domain schema (see below) that will
serve as the interface between the Domain Workbench and the
generator as well as their users the domain experts and
programmers. The domain schema contains at least a distinct
identity (also called an intentional definition or def) for each
concept of the domain. 1

Were the domain chess, for example, we would need a def for the
pieces, the colors, the board and its squares, and the various
states: initial, check, checkmate, draw. It is not required that we
define the game in the schema – presumably that will be a part of
the program that we create – but we need to have the vocabulary
complete enough to define the game.

If the domain is banking, we need defs for kinds of customers, for
accounts, for credit and debit, for loan, debt, and interest; and also
for the different banking services, personnel titles, banking
procedures and so on. Again, this is by no means a definition of

1 Conceptions of William James [11], or acquaintance objects as

explained by Peter Naur [17] are remarkably similar to the
intentional definitions, in that they have an identity but no fixed
definition other than through their participation in a stream of
consciousness.

Edits

Run

Generate Compile

Domain

Code

Source

Code

Programmer

Talks to

Run

Edits Compile

Programmer Source CodeDomain

Expert

banking but something that is essential if we want to say
something about banking.

The domain code is maintained by the domain experts. The need
for a fixed language is eliminated by the Domain Workbench’s
ability to project contents from multiple interrelated domains in
multiple views.

Finally, a generator is written by the programmers to define how
the domain code input should be processed to get the intended
implementation, see Figure 3. In other words, the generator
represents implementation knowledge such as engineering design,
algorithm choices, platforms and code patterns used (essentially
all the work that programmers typically perform except for the
domain details in the domain code). So the generator excludes
some information that is in sources produced by direct
programming, but also includes information that is not found in
direct sources, namely in what precise ways the target code
depends on the problem details.

Figure 3. Intentional Software creation workflow

How do the domain schema and domain code differ from classes
and objects? The main difference is the complete lack of a priori
semantics. The domain expert need not make a decision whether
the domain concept is an object, a quality, an action, a goal, or
anything else. The need is just to establish an identity for it,
whatever it may be, and that can be accomplished always in the
same way—by a def in the schema.

On the other hand, how are the domain schema and domain code
different from UML? The difference is the absence of prior
restrictions of what can be represented in the domains that are
described by the schemas. The generator is the ultimate guarantor
of extensibility, but to do that the generator may need arbitrary
forms in the domain code. This in turn is guaranteed by the
extensibility of the schema language.

Through bootstrapping, circular arguments are permitted in
software engineering. So we can say that the schema language is
extendible with new properties (that might be considered meta-
properties in this context.) It can also be projected and edited in a
number of notations because every language in a Domain
Workbench, partly with the guidance of schemas, can be so
extended and so edited.

Given this ability to add properties to languages, we can enrich
the schema language to contain the meta-information needed for
the various domains. In effect, the schema is simply a database of
meta-information to be used by the generator and by the editor.

2. The Domain Workbench
The Domain Workbench is used to define, create, edit, transform
and integrate multiple domains. The Domain Workbench is an
instance of the Language Workbench class of tools as described
by Fowler [8].

Wysiwyg editors [14] are a useful historical metaphor for what
can be done when the demand for the expression and
manipulation of more complex data arises. Before Wysiwyg
became popular, editors were called text-editors since they
represented only the text contents of documents. As an
intermediate stage of development, special character combinations
(or “control codes”) were used to encode what the formatting
should be. For example, ^i might turn on italics. HTML and its
successors still use this style of encoding. Today, a word-
processing user does not have to make a distinction between the
italic character i and its underlying representation. Wysiwyg
editors separate the display of the document on the screen (“What
you see”) and what is printed (“what you get”) from the
underlying representation of the document. That separation makes
it possible for the user to create and edit much more complex and
effective documents.

The editor of the Domain Workbench applies the same Wysiwyg
technique to software sources. It separates the display of the
software and what is generated from the underlying representation
of the software—whether schemas, domain code, or programming
language source code. The representation is in a uniform format
for all domains: the intentional tree. Display and editing is
performed by projecting the tree on a display by a number of
reversible transformations–some of which may be domain
specific. All are sensitive to user options that select from the many
available views to project.

2.1 A simple example
Consider the following program statement as we used to write it:

return a = b / (c + 1);

Naturally there is a projection of this statement that looks exactly
like text:

But how does the intentional tree look? The editor has another
projection that shows the underlying intentional tree like this:

There are differences in the information shown in the program
text and tree representations. What happened to the semicolon (;)
and the parentheses that are in the program text and not in the
tree? These are artifacts of the programming language syntax. The
semicolon is implied by the structure below the Return

RunEdits

Programmer

Domain Code
Domain

Expert

Generate &

Compile

GeneratorBuilds

statement: it may or may not be needed depending on the syntax
and depending whether the statement is the last in the statement
list. At any rate the semicolon does not convey any intention.

Compare the above tree with this tree:

which describes the different formula b / c + 1 instead of b / (c+1).
So the parentheses are artifacts of the algebraic notation that takes
the traditional precedences of the / and + operators into account.
There is an intention expressed (namely which operator we want
to apply to the result of the other) but we express this in terms of
the intentional tree structure, not some additional participants like
the left and right parentheses. By changing settings, we can
project the original intentional tree into other different notations:

Note that the intentions are so clear there is no need at all for
parentheses. We realize that in the program text notation the
unambiguousness of programming languages presupposes that we
have perfect knowledge of possibly obscure language details, such
as the relative precedence of “&&” to “||”. When we lack this
knowledge, the theoretically unambiguous notation is in fact
ambiguous for us. By projecting using a different notation (that
may also be ambiguous but along a different axis) we can easily
resolve the ambiguity.

As we will see, mixing and integrating notations and domains
with software programs make software creation more effective for
the programmer. This also allows projections that non-
programming domain experts can understand and edit.

2.2 Structured Source Code and Structured Editors
I mean, source code in files;
how quaint, how seventies!

 Kent Beck

The Domain Workbench builds on two key ideas that are decades
old: Structured Source Code and Structured Editors.

Consider two questions about a programming language. “How do
you write an “if” in Ada?”, and “Does Ada have coroutines?”. The
first question is about notation or syntax, the second is about
semantics. These are the two main components of a text-based
programming language. These two components are also reflected
by the structure of a typical compiler: the front end embodies the
knowledge of the syntax, while the middle part defines the
semantics. (The back end of a compiler expresses the knowledge
of the target machine, which is not important here.)

Structured source code means that we store, maintain and process
the input to the compiler's middle part directly. In computer
science this is called an Abstract Syntax Tree (AST). The
intentional tree is similar to an AST, but there are some key
differences that we will discuss in Section 2.3. The format of the
tree structure could be XML [20], but we use the proprietary
Intentional Tree [19] representation.

A structured editor is an editor that is cognizant of some higher
organization in the edited data. Wysiwyg editors such as Bravo
[14] or Microsoft Word can be called structured.

Especially when applied to program code, there are two major
kinds of structured editors:

A syntax directed editor is an editor that knows about a
language syntax that is used ostensibly to help the user.
Syntax directed editors [12] operate well within the
constraints of the syntax with many of the advantages
and disadvantages thereof that are outside of the
purview of this paper.

A projecting editor transforms, or projects, the
underlying representation into one or more notations
and may be able to invert the transformation to effect
changes to the representation. CAD systems and
modeling tools are typically projecting editors.

Early work on structured source code used in combination with
structured editors had two goals. The now obsolete initial goal
was to improve compiler performance. The other goal was to help
implement syntax directed editors where it was thought that strict
control of the input and context-specific typing prompts would
help the user enter programs more rapidly and with fewer errors.
By and large these efforts were disappointing in that limitations of
the input tended to get in the way of the creative process where
the program text often passes through intermediate stages of
completeness and correctness. For example, one might start with
the interior of a loop and work outward.

In contrast with the above goals, Intentional Software uses
structured source code and a projecting editor not to help with
enforcing a syntax but so that domains are not limited by syntax.
Definition of new domains and arbitrary extension of existing
domains, can be difficult to accomplish if a parsable and
unambiguous syntax also has to be designed.

There are several reasons for separating the syntax from the
domain. We gain notational flexibility in that many notations we
observe both in programming domains and other domains can be
equally accommodated. This also results in greater user
satisfaction because individual preferences differ, not only out of
caprice, but also due to individual backgrounds and experiences.
Individuals prefer what is familiar from prior contexts.

But the most important reason for separation is that computer
notation then no longer needs to be unambiguous. It can thus
more closely resemble the domains’ own notations. In fact very
few if any of the everyday domain notations are unambiguous. A
good example is a drawing of a building facade – it is just one
view. We know that the complete definition of the building means
a whole set of drawings, or more recently a CAD database from
which any drawing can be printed as needed.

The difference between notations and syntax is subtle but
important. Notations need not be parsable, so they can be quite

freely chosen on the basis of qualities other than parsability. For
example, we can pick notations that simply look good, or are
traditional in the domain, or otherwise please the users. Even
ambiguity need not be an obstacle. For example, the common
mathematical notation Aj is ambiguous yet it can be what the user
wants and likes. Note that the structure that is projected is never
ambiguous, but the projection might be. In the proper context, an
ambiguous projection need not create an ambiguous impression in
the mind of the person using the editor. For example, mechanical
drawings can be very ambiguous. A circle may well denote the
void of a hole in a plate or the cross section of a steel shaft, yet the
engineer familiar with the context would not be confused.

However, key advantages of text representation that have assured
its preponderance are worth reviewing. Text representations are
easy to implement, especially when using traditional input devices
such as punched cards, keyboards, and glass teletypes. Text
languages consequently have a very simple editing model. For
example, to create the program fragment a+b one simply has to
press the keys a, +, and b. So the editing model and the
representation model coincide. But this advantage is not going to
remain sufficient in the long run to compensate for the
disadvantages enumerated in Section 2.5, especially when most
other application programs have abandoned text based
representation and introduced more effective editing models. For
example, slide presentations and spreadsheets are not created just
by using text syntax.

2.3 Intentional Tree

The famous painting by Magritte (“Ceci n’est pas une pipe”) is
not a pipe but a painting of a pipe. Similarly, the illustration of the
tree representation above is not the tree; it is a projection of the
tree. The actual tree, the domain code, is a data structure with
nodes that have an “isa” field pointing to the intentional definition
(def) in the domain schema. This is indicated in the above
projection by names such as “Plus” or “b”.

A node may have children, and may also contain arbitrary binary
data whose interpretation is based upon the node’s definition. For
example, a “NumLit” together with the appropriate bits (...001) is
projected above as the constant 1. The definitions themselves,
represented in a domain schema, are also nodes in trees and as
such form a domain of their own. For example, we can define a
name as a “TextLit” parameter underneath the definition:

def (name (TextLit "Plus"))

Figure 4 illustrates that there are no fundamental distinctions
between nodes in the domain code and definitions in the domain
schema.

The name property of a definition is not fundamentally different
from a string literal parameter in a print statement, or from a
comment that looks like this in the tree:

Comment (TextLit ‘this is a comment’)

Note that there are no comment delimiters or string quotes stored
in the string, as opposed to XML. The proper delimiters for any
given notation will be supplied by the respective projection. Of
course uses of names, string literals, or comments are completely
different, but the underlying representation can be the same.

Treating names and other strings the same way eliminates the
need for limiting rules on what can be a name or whether more
than one name can decorate a node. Domains often use names that
programming languages do not support, for instance spaces or
characters from non-English alphabets. In the intentional tree
names are like comments. Names are there to communicate with
the users; they are not internal identifiers.

The representation of the intentional tree is implemented in a
special purpose system [19], rather than using a general purpose
encoding of, say, XML. In a well designed system, solutions to all
the issues that come up in practical use can be implemented
uniformly to meet the highest standards. Examples include how to
maintain identity reliably and independently of names; renamings;
what happens if a definition is deleted; how to handle undo;
versioning and groupware; how to search efficiently; and so on.

In addition to maintaining identities, the most important
requirement is the ability to refine any node at any time to an
arbitrary extent by adding parameters without disturbing the
existing parameterization. In domains this corresponds to the need
for continuous refinement. Refinement is used to add operands,
attributes, properties, formatting, subscripting, tags, or
decorations. For example, we can make the word “is” in the
comment italic, by adding a parameter like this:

comment(TextLit ‘this ‘
TextLit ‘is’ (Italics)
TextLit ‘ a comment’)

When strings are available it is always tempting to encode new
information into the strings using special syntax. We could have
written:

comment(TextLit ‘this <i>is</i> a comment’)

The disadvantage would be that none of the guarantees and
benefits of the intentional tree representation would accrue to the
text formatting.

Plus
Def

NumLit

1

Domain code Domain schema

b

Div

isa

c

Name

TextLit

“Plus”……

Figure 4. Domain Code and Domain

…

…

…

…

2.4 Domain Schemas and Transformations
Domain definitions, such as TextLit or Plus, are defined as nodes
in Domain Schemas that are also defined in an intentional tree
using a definition domain as its meta-domain. The description of
this meta-domain is outside the scope of this paper. It is worth
noting, however, that even a minimal definition is usually
sufficient to start using it in intentional domain code. Any new
definition will inherit sufficient services to be useful. For
example, it will show up in name lists within the domain, and it
can be displayed in any number of the universal tree display
projections such as the one in Section 2.3.

The semantic value of a definition is ultimately derived from
intentional tree transformations that do something with it. For this
the transformations need only a minimal definition – the identity
of the intention. Meta-data associated with the definition –the
Schema content – serves merely to parameterize the
transformation so that more general transformations can be
performed without requiring meta-data specific code.

For example, a name string in the definition allows the use of a
general name lookup facility, possibly using multiple names of
any specific node. Field descriptions under the definition enable
the use of menus that can prompt the user for common parameters
or auto completion. In addition, help text in the definition is used
to generate a help facility.

For example, the definition of Plus can list the notations for
Plus, including its possible names, possible symbols, methods
for computing Plus, and information for generating code for Plus.
The definition can also include help text and the precedence of
addition operator in multiple standard languages. All of this
information is there to support specific transformations, so that
generic methods can be used to evaluate expressions, to project
the operation in multiple ways, or to generate code or a help
facility for Plus.

These benefits are there to support the schemas as well. Schema
notation can evolve and improve as needs expand. Similarly, new
kinds of information can be added to schemas.

Because each node is self-identifying through its schema, mixing
trees from different domains becomes practical. See Sections 3.2,
4.1.1 and 4.1.7 for some examples.

2.5 Projections and Editing
Domain code and domain schemas are just data. They have no
behavior on their own. Transformations add behavior, and a
special type of transformation is the projection for editing in the
Domain Workbench. But how can arbitrary editing work
consistently across various notations? The well-established cut,
copy, and paste model works well for most structured editing. The
main difference is that in text editing, the user perceives two kinds
of selections: a place and an extent. There may be many different
ways of selecting extents: by drawing through them, by double
clicking for words, or clicking on the left margin to select lines
and paragraphs. When satisfied with a selection, the user can cut,
copy, paste, or move the selected text.

In structured editing, a few more kinds of selections become
available. This is not unusual. For instance, a spreadsheet
application is a form of structured editor, where the selection has
to distinguish between whole cells and the contents of a cell.
Since the user is predisposed to making exactly that kind of

distinction, the distinction between cell selections and contents
selection in spreadsheets does not raise usability issues.

Similarly, in the Domain Workbench we use selection to
distinguish the following editing situations:

1. Prepare for editing just one node in the tree (“crown
selection”)

2. Prepare for editing a subtree or forest (“tree/range
selection”)

3. Insert into a list (“place selection”)

4. Parameterize ie. add new children (“under selection”)

5. Operate on a subtree ie. splice above a node (“wrap
selection”)

6. Edit text contents (“text selection”)

These selections provide an essentially complete set because any
tree can be built, and editing operations to change a current tree
into a desired tree are reasonably intuitive. For example, to negate
an expression, the user wrap selects the expression in question
and pastes the negation operator node.

Each selection is identified and highlighted in an image of the
underlying node or subtree in a projection, so it is largely
independent of the projections. For example, to change a division
into a multiplication, the user crown selects the division sign (in

whatever format is projected for example x/y or
y

x
) by clicking

on its image and pasting a multiplication operator node (perhaps
from a menu). This can be accomplished in any notation that has
any image of the division, including if it is denoted by a fractional
line. Often making a selection and seeing the highlight helps one
to navigate complex formulas and visualize what operations apply
to what operands.

When a selection is in text, editing can continue in a conventional
manner. The keyboard is used to input intentional information in
two stages. First, sufficient text is entered and projected at the
place of editing to convey the user intention. This text is not yet a
real edit on the intentional tree. Second, the editor must interpret
the text and convert it into an intentional node or nodes at which
point the edit–effectively a “paste”–takes place. Each
interpretation at a minimum must recognize names by using name
tables from which the intentional reference can be determined or
by user interface techniques in case of name ambiguity or other
complication. Numbers must be also recognized by the usual
rules. At this point an arbitrary tree can already be built using the
keyboard and the selections.

The simplicity of editing text-based languages comes at a high
cost. In effect, the user is continually expected to manually project
the underlying intention into the text representation, just so the
system can claim simplicity for its editing model! Editing in the
Domain Workbench editor can also be perceived as simple
because the user can think of editing the underlying intention, not
somehow trying to manipulate the projection. This may take a
little getting used to just as Wysiwyg surprised its first users by
making text flow from one line to another without typing carriage
returns. If your expectation was that you are essentially using a
typewriter (a “glass teletype”) such behavior could have been
surprising and disturbing. On the other hand, if your expectation
is that you are interacting with the contents and you let the system

handle the text layout, the flowing of the text is now perceived as
perfectly natural. In fact, when text does not flow that is the
surprising exception that may indicate a problem.

Intentional interpretation of text can be extended to parsing of
various simple syntaxes, such as the traditional syntax for
expressions or code snippets from programming languages that
are already defined to be parsable. Note that this is not the same
as using syntax to encode a result. Parsing is just another input
device to augment the mouse, menus, and control keys of the
editor. Once the data has been intentionalized–turned into
intentional tree form—all the guarantees will hold. To bring
legacy definitions and code into the Intentional tree Parsing is a
convenient way to bring legacy definitions and code into the
intentional tree.

3. An Example: Grammars
Despite the fact that the Domain Workbench does not rely
extensively on syntax information, grammars can still be used as
an example of an intentional domain. A grammar is not executable
by itself, but can be used as input to a generator that generates an
executable program–in this example a parser. Grammar also has
the advantage of being very familiar to computer scientists and
comparable applications exist, most notably YACC [21].

An example is also valuable because a similar approach could be
used to implement business software. Of course, business domains
are very different from grammars. But for comparison purposes
they have much in common. Most importantly, neither is
executable. Furthermore, both are repositories of complex
information that define a specific set of decisions and rules from
some more general domain.

In the production rules of a grammar, the decisions described are
the structure of the language to be defined, the nomenclature of
the syntactic categories, and the like. The general domain is the
theory of computer languages. For a business domain, the specific
decisions described can include the nature of the process steps,
their connection to each other, business rules and the
nomenclature. A process domain can be a set of common process
steps such as process initiation, communication, approval and the
common agents and concepts such as customer, invoice, or
payment. In both cases the theory comes with a large number of
operations, combination rules for the operations, and whatever
common notations the domain experts prefer.

The purpose of our comparison with YACC is not to belabor the
obvious—that after more than 20 years of advancement in
hardware and software technology we can produce better looking
output. The purpose is to suggest that the Domain Workbench can
simplify the creation of tools like YACC. The novelty is not the

quality of the output, but the ease by which that quality can be
achieved.

3.1 Intentional Production Rules
Figure 5 shows two production rules for a small part of the C#
language shown as projections in the Domain Workbench editor.
The underlying tree for the second of these is as follows:

ProductionRule
(
 Name("using"),

 Concatenate
 (

"using",
type-name,
Optional
(
 "=",
 type-name

),
 ";"
)
)
The production rule is expressed as the definition with a name so
that it shows up in the name lists that the editor supports. Within
the expression we have three kinds of operators:

terminals – coded as literals,

non-terminals – coded as nodes referencing the
corresponding production rule,

meta-operators – such as ProductionRule or
Concatenate.

Using the domain schema we can easily make changes such as the
following without invalidating legacy code that has already been
developed in this domain:

change or extend the nomenclature (the names of the
meta-operators),

add new meta-operators,

extend the current meta-operators with new or different
parameters,

introduce new notations,

and enjoy other benefits of the Domain Workbench
such as groupware.

Legacy domain code only needs to be modified if the domain
schema changes radically, and if it is desirable to eliminate
references to the old schema design (for usability or maintenance
reasons). Multiple schemas can easily coexist for an interim
period—even using the same projections and the same
nomenclature.

Figure 5. Projecting a subset of the C# grammar.

Figure 6. Projecting the subset using a different notation.

Domain-specific names can also be accommodated. For example,
non-terminals in production rules often use hyphenated names as
shown in Figures 5-8. The use of common terms, such as
“Concatenate,” will not limit use of these productions when
mixed with other domains that also use the same term. Since
names are used only to communicate with the user, name
overloading affects only the user, not the system. In everyday life
we are well equipped to handle occasional name ambiguity. For
example, we would not otherwise use first names.

In the projection in Figure 5, the symbols * and [..] denote
ZeroOrMore and Optional repetitions respectively. If the user
forgets which one is which, the user can simply change to the
projection shown in Figure 6 where the repetitions are shown
explicitly. This projection is also editable. But that does not mean
the lower and upper limits are arbitrary (for example
Repeat(...; 2..3)) unless such an operator is also defined for
the domain. To change the first Repeat clause, it (or the * in
Figure 5) can be selected and “Optional” can be typed or chosen
from a name list for pasting over. In response the system will echo
Repeat(...; 0..1).

This example shows the difference between what the intentional
source is, how it is viewed, and how it can be edited. When these
activities are separated, the domain designer can choose to invest
more or less support into any or all of them depending on user
feedback. The interesting thing is how much is possible with little
or no special support.

Other projections can be created for the same domain with
dramatically different effect. In Figure 6 we used the < > brackets
instead of italics to distinguish non-terminals. Figure 7 uses
capitals, as in COBOL manuals with a twist on the nomenclature.
Figure 8 uses “railroad” diagrams where non-terminals are
distinguished by both font and borders. Note that each of these
projections uses exactly the same intentional tree representation.
Only the projections are altered.

In Figure 8, in contrast to the “Repeat” case, it would be quite
natural for users to change the first loop by picking “Optional”
from a menu. This is because when the notation is graphical the
user simply does not expect to type what the user wants to see.

3.2 Extending and mixing domains
Extending and mixing domains are useful capabilities. For
example, we have already made a small extension the grammar
domain: we have added a repetition construct to the basic BNF

notation to shorten the syntax productions. (Section 3.4 shows in
part the extra productions that would have been necessary had we
not used repetition.)

The goal of these productions is not only to parse syntax but also
to build trees. There are several requirements: we need to specify
the template for the tree to build and we need to connect the parts
of the productions to the variable parts of the template. The
additional goal is easily met by wrapping the individual parts,
giving them names when the non-terminal name would not be
sufficient, and building the template by actually quoting the
desired results. Compare the following native projection with
those in Section 3.1:

ProductionRule
(
 ProductionOutput
 (
 Name("namespace"),

 Concatenate
 (
 "using",
 ProductionOutput
 (
 Name("Alias"),

 type-name,
)
 Optional

 (
 "=",

 ProductionOutput
 (
 Name("Reference"),
 type-name,
)
),
 ";"
)
 Template
 (
 Using
 (
 Reference,
 Alias,
)
)
)
)
These productions can be projected without the template-related
information as in Section 3.1, or with it included (see Figure 9.)

Figure 7. Projecting the subset of the C# grammar using CAPITALS.

Figure 8. Projecting using railroad notation.

The projection in Figure 9 neatly separates the production rules
from the templates that reference it. The projection of the
templates (in the right column) uses the C# language domain.

Note that this domain code combines three domains: the domain
of grammars, the domain of tree-building templates, and the
domain of C# (where the actual definitions of the source intention
namespace and using reside). The productions named namespace
and using define the syntax only. Note also that the same name is
used to denote two very different, yet related, things. If that is not
tolerable, renaming and multiple names can always be used.

3.3 The Generator
The generator is a class written in C# that creates the parser (also
in C#) as directed by the domain code. The Domain Workbench
provides an API whereby the generator program can access the
domain schemas and the domain code. The parser uses a simple
name binder and textbook algorithms.

When the parser is given the above sources and the string

“namespace Foo { using Bar ; }”

the output will be a tree that is projected:

3.4 Comparison with YACC
These results can be directly compared with YACC files that
perform essentially the same tasks. Following are the YACC
statements equivalent to the domain code in Section 3.2:

namespace : 'namespace' type-name
 {
 nsCurrent = new Ns($2, nsCurrent);
 }
 '{' optional-usings

optional-namespace-member-declarations
namespace_close
{

nsCurrent = nsCurrent.parent;
}

namespace_close : '}' ';' | '}'

optional-usings : | usings

usings : using | using usings

using : 'using' alias '=' type-name {
 nsCurrent.AddChild(new Us($4, $2)); }

 |'using' type-name {
 nsCurrent.AddChild(new Us($2)); }

alias : type-name

optional-namespace-member-declarations :
 | namespace-member-declarations

namespace-member-declarations :
namespace-member-declaration
 | namespace-member-declaration

namespace-member-declarations

First, note the extra productions above that were not necessary in
the Intentional system. Those with names “optional-*” were
implemented by the Optional construct. The production named
“namespace_close” was necessary to allow the association of a
template with both alternatives, with or without the semicolon.

Second, the parse tree is built using templates written in a general
purpose language like C++. This assures flexibility, but it is
complicated for normal cases. An API must be written for
building the tree, in this example the classes Ns for namespace
and Us for using. Irrespective of how the YACC template is
expressed, how to connect it to parts of the production remains an
issue. YACC uses the pragmatic approach of integer indices into
the production. For example, $4 represents what was returned by
the 4th item in the production:

'using' alias '=' type-name
namely type-name.

To summarize the differences:

i) Enhancing expressiveness of a domain can improve
intentionality of the domain. The Domain Workbench
expressed with 2 productions what took 8 productions in
YACC. The “extra” 6 productions in YACC were unrelated
to the domain, having more to do with the lack of
expressiveness. Especially for larger, realistic problems, this
expansion (a factor of 4 in this case) from the domain into a
representation of the domain can obscure what is being
described and is an obstacle to maintenance and
enhancements.

ii) Domain enhancement can continue in the Domain
Workbench. For example, the “OneOrMoreOf” construct
could also specify the delimiter before and after the list and
in between the list items. This further reduces the clutter and
separates essential information (that there is a list) from the
stylistic (that the list is separated by commas).

Figure 9. Mixing the grammar domain and the template domain.

iii) When domains can be combined clearly (with reliable
references across the boundaries,) we can create a template
domain that is related to the target language thus avoiding or
delaying use of a general purpose programming language
(until truly exceptional situations arise).

iv) Replacement of fragile integer references (such as $4 in
YACC) with intentional references also eliminates a large
source of potential problems.

These advantages are individually small but generally applicable
and therefore have great cumulative effect.

Just as it is simple to add capabilities to the domain schema, it is
also possible to keep unnecessary constructs out of the domain;
for example, eliminating the extra productions and omitting the
templates from the projections. The purity of the domain helps
with maintenance and with processing the domain for new
purposes. For example, the grammar domain may be used to
create a framework for documentation, or to generate a projection
automatically from an intentional tree into the particular notation
described by the domain.

4. Applications
The capabilities of the Domain Workbench can be applied in
many domains including various Software Engineering domains.
The ability to define, create, edit, transform and integrate multiple
domains creates an opportunity to rethink some Software
Engineering practices.

Depending on the focus of the Domain Schemas we can
distinguish between language oriented development (where the
notations, the schemas, and the generator closely mirror and
extend existing general purpose languages) and domain oriented
development (where a business domain is the starting point and
the generator is built to create a domain specific solution.)

4.1 Language-oriented development
4.1.1 Mixing sources from multiple languages
Many software systems are implemented using multiple
languages, for example Java, Javascript, and HTML. The biggest
problems here are references from one language into another and
sharing of definitions and other meta-data. In Section 2.3 we
showed how the intentional tree representation expresses
references. Similarly all meta-data can be shared and manual
copying and translation of definitions can be avoided. The editor
provides a common editing experience across all languages.

Figure 10 shows a projection where a SQL statement (using a

SQL domain) has been mixed into a C# program (using a C#
domain). Note the reference to the C# formal parameter
ADDRESSID in the SQL code. This is not a SQL feature, but a
simple generator can create the files for the fragments to run in
standard C# and SQL environments.

4.1.2 Extending a language
Language features are currently associated with specific languages
and a great deal of energy is spent explaining the coherence or
cleanliness of the rather arbitrary feature bundles we call
languages. Just as programmers are free to define APIs and data
structures today (for better or for worse), using the Domain
Workbench they will also be able to implement whatever
language features will help them.

4.1.3 Names
Names in programming languages serve two purposes. One has to
do with identification of references, and the other has to do with
human factors (as a name is also a communication, mnemonic and
thinking aid).

With these purposes separated, each purpose can be better served.
A quantity can have multiple names. The old name after renaming
can be retained to ensure continuity with legacy. Localized names
can be used in national alphabets. Nicknames can be used for
quick entry. Iconic names can be used for learning.

Names that follow a convention (for example using the type as a
name) can be generated automatically.

4.1.4 Eliminating code copying and aspect fragmentation
Language extension should be considered when code is copied or
when a particular concern (or aspect) is fragmented over many
parts of the source. The former is frequently due to the difficulty
of expressing performance concerns or for parameterization in a
context where the language does not permit it. The latter gave rise
to Aspect-Oriented Programming [13] with language features that
centralize the expression of aspects.

Code copying and aspect fragmentation cause many of the most
common maintenance problems [7].

4.1.5 Personal preferences
A frequent source of frustration in any environment arises from
conflicts between personal preferences and external standards.
Many of these conflicts go away in the Domain Workbench as
each user can simply project the common information in whatever
ways that user prefers.

Figure 10. Mixing source from a C# domain and a SQL domain.

4.1.6 Testing
Programmers’ ability to improve testing suffers greatly from lack
of support to express and process test intentions beyond Asserts.
The main needs are:

a. The ability to associate test code (including asserts,
pre and post conditions, white-box test and test data)
with the code being tested without any permanent visual
or other impact.

b. The ability to refer to parts of the algorithm being
tested and affect their behaviors for testing without
disturbing the source code.

c. Access to meta-data and other descriptions of the
problem.

Figure 11 is an example of how test cases can be inserted directly
in the source code. In this example, test case 4 signals an error,
but the error is actually in the test data not in the code.

4.1.7 Eliminating the need for many tradeoffs
Languages tend to differentiate themselves by the position taken
on two inherently opposing requirements, expressiveness vs.
brevity. Some languages take one extreme, some the other. For
example, the language APL [10] is famous for its extreme brevity.
Others made pragmatic choices somewhere in the middle to
minimize overall misery, while COBOL opted for garrulousness.
The Domain Workbench can move from one choice to another
whenever needed so the tradeoff disappears. We can focus on
many new choices in the solution space, rather than continue to
argue about yet another tradeoff.

4.1.8 Program transformation and refactoring
The intentional tree format is also convenient for program
transformations. Both display generation and code generation
employs tree transformations. These capabilities are easily
harnessed for other code refactoring and code analysis tasks, with
the additional benefit that results of each transformation can be
inspected in many formats.

Note that program transformation is a domain of its own that
invites support by DSLs.

4.1.9 Improving IDE interaction
Many functions of Integrated Development Environments are
limited by the lack of intentional information in the source code.

A trivial example is the lack of connection between a comment
and the statements. When the source contains the connection at
the outset, it is much easier to move the comment with the code,

and to determine when the display of a comment should be
suppressed in outlines.

When the editor can distinguish code that is used only for error
cases, or only for testing, it becomes easier to include more testing
code or more assertions. Their presence will not overwhelm
viewing of the main program logic.

4.1.10 Reuse
Reusability is an important quality of code that is deeply
connected to parameterization. The issues of reuse in general are
complicated and outside the purview of this discussion. But the
likelihood of reuse, can be greatly increased by parameterization.
Fixed code will either match a situation or not. Parameterized
code will match a larger number of situations.

Programmers are implored to make software more reusable. This
is effectively a call for parameterization with respect to some
expected range of differences. The parameterization guarantee of
intentional trees always makes this possible. If notation becomes
an issue, that can be resolved by extending the projections.
Performance issues can be handled by specialization in code
generation.

4.2 Domain-oriented development benefits
The domain schema, the domain code, and the generator together
represent a factoring of the implementation. This factoring makes
Intentional Software a plausible approach for dealing with the
complexity of domains. The schema and generator can be
improved incrementally as new knowledge is gained in the
domain. The domain experts can update the domain code and re-
run the generator for common changes in the problem that are still
within the schema parameters. While not all desired changes can
be made this way, the worst case outcome is just today's best
practice. Namely the domain experts will have to talk to the
programmers. This contrasts with direct programming (as
discussed in Section 1.1) where every change requires human
interaction that introduces delay, costs, and potential errors.

Programmers can also make substantial implementation changes
in many instances by only changing the generator. The absence of
domain detail helps reduce the scope of these programming tasks.
The programmers' task of creating a generator, however, may be
thought of as harder than just creating one implementation
instance. On the other hand, it can also be argued that creating the
generator is a purer, more explicit, and more transparent
expression of what the programmers should be doing: verifying
assumptions, incorporating testing into the code, making
dependencies on domain details clear, and so on.

The concept of partial implementation is also worth noting. An
intention recorded in the schema or in the domain code is valuable
when the implementation is not yet started, is done partially, or is
done "fully". Of course, there rarely is any "full" implementation.
Just as there is no perfect implementation, a minimal
implementation can be valuable during the development process.

Variants of generative programming have been tried in the past
with generally positive results. One important bottleneck has been
the need to specify the input to the generator in the form of a DSL
typically including a syntax and parser. Even with automatic
parser generators, just the design costs of a syntax can be
daunting. In addition, most DSLs retain a programming language
flavor that hinders more direct involvement of non-programmers

Figure 11. Integrating dynamically evaluated tests into source.

such as domain experts. For domain experts to be efficient, the
domain descriptions need to mirror the domain intentions [6].

Furthermore, most problems involve multiple domains and legacy
components written in other languages. However, DSLs have
historically been difficult to mix with general purpose
programming languages and other DSLs. Sections 3.3 and 4.1.1
discusses how this can be resolved in the Domain Workbench.

5. Other Generative Approaches
Several other approaches use generative techniques to tackle
complexity in software development.

Code generation is commonly used for generative programming.
For example, template libraries like STL [16] use code generation.
The CASE products of the 80’s were able to generate standard
COBOL or C applications from specialized diagrams. These were
fixed generators. If the users needed to do anything that was not in
the generator's repertoire, the user had to maintain the generated
COBOL or C code. For specific, well contained problems, code
generation was and still is effective. A list of current code
generators can be found at [2].

Wizards are another example of code generators popular in IDEs.
Wizard dialogs often capture intentional information about the
program. But once the programmer clicks Finish, the code gets
generated and the succinct intentions are scattered across the
generated code and lost.

Code generators work fine as long as the output of the generator
does not have to edited. When the output of the generator is
edited, problems can arise the next time the generator runs–the
edits may be overwritten. Editing the output challenges the code
generator to invert the encoding function. Most generators cannot
perform the inversion, and even if they were helped they could not
represent the inverse without an enhancement of the input.

Round trip engineering, two-way wizards, and synchronization
were all developed to solve the problem of allowing modification
of generated code and still allow reconciliation with the domain
specific model. These remain standard features of many model
driven tools.

In a round trip the same data persists in two places, in the model
and in the code. That makes it difficult to maintain consistency.
Typical approaches designate one copy as master and either pull
on demand or push on change from the master to the redundant
copies.

Another way around the problems is to separate the code that is
generated into two parts: one that is editable by the programmer
and one that is not. But this forces the programmers into whatever
artificial separation is prescribed by the tool.

Domain Specific Languages shift customization into the language
itself by trying to design the optimal language for each specific
domain [4, 5, 9, 15, and 18]. One problem with DSLs is that,
since by nature they are specific to one domain, they often
become silos of their own. Furthermore, DSLs suffer from the
same problems as General Purpose Languages: good languages
are difficult to design, their syntax is limited both in the notation
and expressiveness, they are difficult to evolve, and it has been
difficult to combine multiple languages.

6. Summary
This paper presented the general ideas of Intentional Software.
The Domain Workbench allows creation and editing of domain
code. The intentional tree contains the domain code for Domain
Specific Languages, General Purpose Languages, and meta-data.
The use of Generative Programming turns the domain code into
executable target code.

Past problems with structured editing have also been discussed.
While past experience with structured editors has been generally
negative, the need in this new context should cause us to re-
examine the problems and implement pragmatic solutions. Most
application software other than programming has already moved
ahead toward recognizing more structure in documents.

The domain of grammar production rules was used as an example.
Some snippets from the C# syntax were presented in a number of
projections to show the interchangeability of popular notations
and the corresponding tree-generating templates.

These examples were selected to show not only that syntax and
semantics can be separated, but also that the users’ intention—
domain code–is a proper focus of investigation. The factoring
described can yield benefits beyond direct benefits of notational
flexibility and semantic extension.

7. Acknowledgements
The authors are grateful to all reviewers and colleagues at
Intentional Software Corporation for their valuable contributions
to the content of this paper.

8. References
[1] Brooks, Fredrick, No Silver Bullet – Essence and Accidents

of Software Engineering, Computer Magazine, 1987.

[2] Code Generation Network www.codegeneration.net

[3] Czarnecki, K. and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley,
Reading, MA, USA, June 2000

[4] van Deursen, Arie, Paul Klint and Joost Visser Domain-
Specific Languages: An Annotated Bibliography, 2000
http://homepages.cwi.nl/~arie/papers/dslbib/ An updated list
published here
http://catamaran.labs.cs.uu.nl/twiki/pt/bin/view/Transform/D
SLBibliographyAdditions

[5] Dmitriev, Sergey. Language Oriented Programming: The
Next Programming Paradigm, 2004.
http://www.onboard.jetbrains.com/articles/04/10/lop/

[6] Evans, Eric. Domain-Driven Design. Addison Wesley, 2004

[7] Foote, B. and Yoder, J., Big Ball of Mud, Fourth Conference
on Pattern Language Programs, 1997.

[8] Fowler, Martin, Language Workbenches: The Killer-App for
Domain Specific Languages? , 2005. www.martinfowler.com

[9] Greenfield, Jack, Keith Short, Steve Cook, Stuart Kent,
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools

[10] Iverson, K. A Programming Language, 1962. See also
Programming Notation in Systems Design. IBM Systems
Journal 2(2): 117-128 (1963)

[11] James, William, The Principles of Psychology, Henry Holt
1890

[12] Khwaja, Amir, Joseph Urban, Syntax-directed editing
environments: issues and features, Proceedings of the 1993
ACM/SIGAPP symposium on Applied Computing: states of
the art and practice.

[13] Kiczales G, et al, Aspect-Oriented Programming,
Proceedings of European Conference on Object-Oriented
Programming, 1997.

[14] Lampson, B.W. Personal Distributed Computing: The ALTO
and Ethernet Software, ACM conference on the History of
Personal Workstations, Palo Alto, 1986.

[15] Mernik, M, Heering, J, Sloane, A, When and How to
Develop Domain Specific Languages, ACM Computing
Surveys, vol 37, no 4, December 2005

[16] Musser, David R., Gillmer J. Derge, and Atul Saini STL
Tutorial and Reference Guide, Second Edition: C++
Programming with the Standard Template Library, Addison-
Wesley, 2001

[17] Naur, Peter, A Synapse-State Theory of Mental Life, 2004,
www.naur.com/synapse-state.pdf

[18] Simonyi, Charles. Intentional Programming – An Ecology
for Abstraction. 1997, Invited Talk USENIX Conference on
Domain-Specific Languages

[19] Simonyi, Charles. Intentional Program Tree Represented By
High-Level Computational Constructs, US Patent Nos.
5790863, 5911072, 6070007, 6078746, 6097888 and
6189143

[20] Wilson, Gregory V., Extensible Programming for the 21st

Century, ACM Queue, Vol 2, No 9, Dec/Jan 2004/2005.

[21] YACC. http://dinosaur.compilertools.net

