Structured Contextual Rewriting 1

gian, Zhenyu

FB 3 Mathematik/Informatik, University of Bremen
D-2800 Bremen 33, Fed. Rep. of Germany
UUCP: unidolubrinf!gian

Abstract
In this paper, we develop a mechanism, which we call structured contextual
system, (SCS for short,) to deal with some non-finitely-based algebraic
specifications. The sufficient condition for confluence and termination of
this kind of systems is also considered, based on a generalization of the
appoach by O'Donell.

1. Introduction

Up to now much of work has been done on the specification of abstract
data types in the algebraic approach ([ADJ 78]) and on its implementation
by term rewrite systems (short: TRS) ([De 85] [HO 80]). This work provides
a sound foundation for the definition of semantics of specification
languages, {(e.g. [BG 79]), for theorem-proving ([De 83]), for program
development ([CIP-L] [De 83]).

One restriction of the up to now research is that most of the work, espe-
cially that discussing operational properties of TRS’s, has assumed that the
set of rewrite rules with variables is finite, i.e. the TR3's are finitely based,
although this is not necessary from the viewpoint of the algebraic and
operational semantics. In fact, some abstract data types can only be
specified by an infinite set of equations with variables, i.e. they are non-
finitely-based (cf. [Ta 79], [DMT 85] and the following sections). We define
a mechanism, which we call structured contextual system, to describe such
non-finitely-based specifications. The description is an extension of the
conventional TRS’s. In addition, we can use this method to express condi-
tional rewrite systems (see [Ka 83]), and the expressions suggest a simple
implementation in terms of their syntactical structure.

In order to consider the operational properties of an SCS, we generalize
the sufficient condition for confluence and termination proposed by {Ro 73]
and [0O'D 77]. To be able to deal with more real conventional TRS's, first we
extend the notion of non-overlapping by a new notion called non-
interfering, which forms the central part of a weaker suflicient condition
for confluence and termination of conventional TRS's. Then we apply the
fundamental idea to SCS. We feel that the extension is intuitively clear and
understandable.

IThis work is supported by the Commission of the European Community under the
ESPRIT Programme in the PROSPECTRA Project. ref§380

169

This paper is a compact form of [Qi 86a], [Qi 86b], [Qi 86c], where proofs
for the new theorems and more motivating examples can be found. The
work coincides with the approach of Program Development by Specification
and Transformation {cf. [PROSPECTRA]), and can be used to help in design-
ing a transformation calculus and a transformation language (cf. [K-B 86]).
In Section 2, some widely used basic notations and results are repeated
briefly. Section 3 clarifies the definition of SCS. In Section 4 we consider
the generalization of sufficient condition for confluence and termination of
conventional TRS’s, and use the idea to explain such a condition for SCS.
In Section 5, 6, we consider related work and further research.

2. Notations and Some Known Results

In this section we summarize some of the notions and known results
developed in [ADJ 78] [De 85] [0'D 77] [HO 80], which are necessary in our
paper.

We use <S,I> (or short: L) to denote a signature with sort set S and finite
function family Z: <¥y ¢>wes®ses- An S-indexed family of denumerable vari-
able sets will be denoted as X: <X;>,c5. Ty denotes <Tg >scs. where Tg,
denotes the set of those terms constructed only by functions in T and has
an outermost function of the arity w->s. Tg(X) denotes the family of sets of
terms possibly with variables. For a term i, Var{t) denotes the set of all
variables in t. If Var(t)=¢, t is a ground term. A specification <S,L,E> con-
tains a signature and a denumerable set E of equations in Tg(X). An equa-
tion is expressed as t=t’. Note that the syntactical identity is also
expressed as t=t', but no ambiguity is possible because of the different con-
texts.

The ancestor relation =< (ancestor of) is an ordering on N° satisfying

wy=w; iff 5 o, wyw'=wy. If neither of them is an ancestor of the other, then
wylws (independence?. Il meansv w,w'€f), wlw' or w=w"

For an occurrence we) of a term t, t/w denotes the subterm cut from t
at w. t:w denotes the outermost function of t/w.

If we consider that the equations of a specification are oriented in a
proof system, then we call it a term rewrite system (short: TRS). In this
case we call each element of E a rule. t=t'is called steady iff Var(t)>Var(t'),
and lefi-linear iff each variable ocurrs at most once in t. Two rules u;=4;,
i=1,2, are called non-overlapping iff for their instances t=t;, i=1,2, if 5 ¢,
ty/w=ty, theng o', w'=sw and u,:w’ is a variable.

Given a term t. Assume |, QCOcc(t). Parallel substitution in term t at
by t' is denoted as t[(<-t’]. For short we write t[c<-t'] instead of t[t~!(c)<-
t'] for ceXUZ. An assignment ¢ replaces each variable with some term. We
define a quasi-ordering < in Tg(X) in terms of assignment: ust iff5 g, ou = t.
We define: t=t' (variable-renaming) iff t<st’ and t'st.

170

Let —» be the reduction relation on terms in the common sense. A normal
form of a term t is a term t’ such that t»"t' and there is no t'* such that
t'-»t". A TRS is called confluent iff for terms t, t,, t, if t=°t; and t="t,, then

3t, t,=°t" and ty~"t". A TRS is called terminating iff any sequence of its
reductions will terminate. Confluence or termination w.r.t. ground terms
means that we consider the TRS only having ground rules. We can assume
that a TRS contains only ground rules even if it has rules with variables. In
fact, we can imagine that a rule with variables represents all its possible
ground instances if the TRS is generated.

We discuss in this paper only the following full replacement strategy:
Reduce a term at all its redexes from innermost to outermost. Repeat the
above process as a whole until a normal form is found.

A TRS is called relatively terminating if any term will reach a normal
form after a finite number of reductions, whenever this term has a normal
form. Since we shall mainly discuss reductions of ground terms under the
full replacement strategy, in this paper confluence means confluence w.r.t.
ground terms, termination means relative termination under the full
replacement strategy w.r.t. ground terms.

3. Structured Contextual Systern

The notion of structured contextual system (SCS for short) is developed
to describe some non-finitely-based equational systems or TRS’s, without
the need to introduce any auxiliary symbols. It can also be used to specify
the algebras given by some conditional equational systems.

3.1. Motivations

Example 1 ([DMT 85]) _
Let {, g and h be l-ary functions and x be a variable. Equation set ng’hx
= fglhx, 1,j€N} is non-finitely-based.

Exarople 2

Let assume a function set {f{_.,_).h{_).a,b,c]. An algebra is specified by
the equations { h{t} = h{t') |, where t’ corresponds to t such that all
occurrences of symbol a in t are replaced by symbol b in . Eg.
h{f(f(c,a),a)) = h{f{f{c,b),b}) is an equation in this set. This specification
is also non-finitely-based. A real example of this algebra is the transfor-
mation of all function declarations and their calls in a preogram f{rag-
ment into procedure ones. (See [BaWé 82] and [Qi 86b}.)

3.2. Informal Explanation of SCS

171

Before we make any formal definitions, we try first to explain the notions
by an example of SCS specifying the algebra given in Example 1.

Example 3

DMT
sorts: s

subsorts: s’, 5'Cs
opns: f, g, h: s»s
eqns: for all x:s; (v, ¥):(s",5")
f(g(v)) = 1(v)
where s:h(x) = §:h(x)
g(v)= gv
gv)= v
fig.1

Explanations: Compared with the traditional algebraic specification, we
have the following extensions:

1. s’ and § are two sorts related to tiie original sort s.

2. v and ¥ are two associated variables of two associated sorts s’ and &',
resp. X is a variable in the conventional sense.

3. The legal terms of s’ is defined by the left column following s' in the
where-part, and those of §' by the right column following §'.

4. The mechanism for computation is unification/co-generation. E.g. if we
are going to prove DMT' | {(g(g(h(a)))) = f(g(h(a))) (*), we do the follow-
ing:

a) We attempt to use f(g(v)) = {(¥) to unify (*), and find out that (*) is
true in DMT" if we can find associated pair of terms (g(h(a)), g(h(a)))
for (v, v)in S’ and §".

b) For this purpose, we use g(v) = g(¥) in where-part to confirm
(g(h(a)), g(h(a))), and find out that the above is true if (h(a), h(a)) is
a possible instantiated pair for (v, ¥) in S’ and S'.

c) Furthermore, by h(x) = h(x) in where-part, we know that we will
succeed if we instantiate x with a.

What we have achieved by SCS is that some contextual properties appear
syntactically.

3.3. Definition of SCS

Definition 1 (TGS)
A term generation system (short: TGS) on a given signature SIG:<Sy,I>,
which is called base signature of this TGS, is a triple <S,V,P> such that

172

t. each s€S corresponds to a base sort, denoted as base(s)€S,;

2. V=<V >..5 is a family of denumerable sets of distinct variables. We
denote v€V, as vis;

3. PcSxTg(V) is a finite set of productions, which are denoted as <s:u>
or siu with u€Ty pasers)(V)-

A TGS in the SCS of Example 3 contains the production set {S:h(x),
S:g{v), S:g{v’})} over the base signature ({S}, {f,g,h.a]) with variable family
(Ix,...s.tv.v"...§5.19....]5"). The other TGS contains the production set {S":h(x),

S g(v)].

Remark: Two productions differ, if they are not identical. That is, not
identical u,u'€Te(V) constitute different productions <s:u>, <s:u’>, even
when they are equal under a variable-renaming.

Note that the base signature can be considered as a TGS over itseli. We
denote this TGS as SIG(V) for a base signature SIG. From now on we =ssume
all TGS’s in a common context are based on the same signature.

Definition 2 (production)
Let A=<8,V,P> be a TGS on <S,.2> and teTe(V). Let veVar(t) and vis for
some s€S. Let p=<s:t,>€P. Then
(i) t=>, t[v<-t'] (t produces t[v<-t'] at v by p) iff5 t'€Tg, base(s)(V) such
that
a) t'=t;
b) Var(t)nVar{t')=¢

(ii) ->»4 denotes =y p for some v and p in A —>>, denotes the
reflexive and transilive closure of —>,.

Remark: Point a) and b) say that a new term is generated without vari-
able conflicts.
Definition 3
Let A=<S,V,P> be a TGS. Its language is defined as T,={teTy | 3
veV,v=>>,t]. For t’€Tg(V), we define the language of A(t") as Tp(t")={teTy |
t'—>st]. Note that variables only serve as a place-holder for the terms
of a certain sort. If t'=v with v:s, we can write A(s) for A(v), Tx(s) for
Ta(v). We assume here that TGS's have no productions that can never be
used in the language generation. Note that we always have Ty(s)CTg pase(s)
for TGS A on <S3.&>.

it is obvious that the TGS of any column in the equation part of Example
3 produces the language {fg'hx | €Ty, p o), iEN].
Definition 4
Let V be a variable family indexed by sort sets S. A relation m on V is said
to be sort-preserving iff for (vo,v'g), (vy.v'{)€m, vy, v :s€S iff v'y,v'y:s'€S.
For a sort-preserving relation m, an induced relation im on S is defined

173

by: (s,s")€im iff5 (v,v')em with v:s, v':s'.
Note that the renaming of terms is sort-preserving.

Definition 5 (ATGS)

Let A=<S,V,P>, A=<S,V,P> be two TGS's. Assume that we have a sort-
preserving bijection mv on V, called variable association, and a bijection
mp: PxP, called production association. An associated TGS (ATGS for
short) is a 4-tuple <A,A,mv,mp> such that

1. if (<s:t>,<§t>)emp for some t and t, then for the induced map imv of

mv, {s,§)€imv, and
2. not both (<s:u>p)emp and (p’,<s:t>)emp for any s, u, t, p and p’.

Remarks:

1. The introduction of the above two associations is based on the remark
made after Definition 1 and the fact that V is a family of denumerable
sets. Otherwise the notion of bag (cf. [MW 85]) should be introduced.

2. The Point.2 means that terms of a sort can not be produced in both
TGS's.

In Example 3, the mp is expressed by = The occurrences of x on both
sides of {<s':hx>,<§"hx>) (abbreviated as hx=hx there) should be under-
stood as two variables of two sorts with 2quivalent sets of terms, which are
well-formed terms in the sense of conventional algebraic specification. The
sorts for fgv={¥ are anonymous because no variables are declared explicitly
for them. All these notations will be formally clarified later on.

Definition 6 (associated productions)
Let <AAmv,mp> be an ATGS with A=<SV,P>, A=<S\V.P>. Let
(<sit'>,<5:t'>)emp. Let u, GeTg(V). For (v.9)emv, vis, ¥35, let t=u[v<-i(t)],
t=u[v<-i(t')] under two variable-renamings i and 1. We say that
u=>, (o>t and Ty ..t are associated iff for any v'eVar(t')
v'eVar(t'), if (v',9')emy, then (i(v),1(¥"))emv.

Remark: The above definition requires that i and i are so determined that
mv between t and t respects the original mv between variables in t’ and .
Note that the productions may still be associated even if veVar(u) or
v¢Var(Q).

Examples of associated production steps are those production steps
given in the Point. a, b, ¢, of the explanations made after Example 3.

Definition 7
(i) Let AA=<AAmv,mp> be an ATGS. Assume that at least one of
veVar(ty), veVar(t;) is true. Let (v,¥)emv and (p,p)€mp.
<tpty > o n<tala>, or <t f;>—3u<ty >, pronounced as co-
produces, iff t;—>>, ;t; and t,— >y ptg are associated.
We use -3>j, to denote the reflexive and transitive closure of - =2 a4

174

(ii) The language of AA is Gp={<ti> | tteTg 3 (v¥)emw
<V, >34, <t, 1>,
We call elements of G, ground equations. We denote these equa-
tions as <t,t>.

In Example 3, we have <v,¥>->"<g'hx,g’hx>, where i=j and x€Tyg, 1, o}-

Remark: In {ii} we have in fact defined all the possible ground instances
represented by an ATGS. That is why we call them ground equations.

If we want to get the set of the equations of certain form, we can indicate
the main equation {or mother equation in [K-B 86]) in an ATGS as a start
point for ithe production of ground equations. Note that from now on we
define the notions in the context of TRS. We can also do the same for equa-
tional system.

Definition 8 (SCR)
Let AA be an ATGS. Assume {v,V)emv for v:s, ¥:5 with base(s)=base(5). A -
structured contextual rule (short: SCR) w.r.t. (535) is denoted as AA(s,5)
or AA(v,v). Its language is defined by: Gs(s,8)=Gpa(v.¥)={<t,t> | tLeTy,
<V, 9> =3 <t >,

In the above case, if <s:t'>, <&:t'> are the only productions for sorts s and
§, resp., and they will never be used after the first application, we can
denote AA(s,S) as AA{t’.t"). In Example 3, fgv = {¥ correspond to t' and t',
resp. Its language Tpyp = {<fg'hx,fghhx> | i>], X€Ty;p). The notion of SCR
simplifies the form of the transformational language suggested in [K-B 86].

We assume that AA(v,¥} contains no production associations which are
never used in the generation of its language.

Definition 9 (SCS)
A structured contextual TRS (short: SCS) is a triple <Sy,L,E> such that E
is a finite set of SCR's.

The language of the above E can be denoted as Gg= {y Gy, which is an
ReE
enurnerable set of ground rules. The semantics of <S;,Z,E> is the seman-

tics of <5, Z,Gg>.

3.4. SCS as Generalization of Conventional TRS

Assume that two ATGS AA, BB have the same sorts, functions and variable
set. BB is called a base ATGS of AA if GggCGus. Consider two ATGS's AA,
i=1,2, which have a common base ATGS BB. Then we may hope that we do
not have to describe BB two times.

In an SCS E, all SCR’s have a common base, which specifies all legal terms
on the base signature. We assign a special Sy-induced family of variable
sets X such that the following holds:

175

1. If x€X and x:s, then x":s implies x'€X.

2. For (x,X)emv, x€X iff X€X. Then we can let mvy denote the part of mv
thatison X.

3. Let Dbase(s)=base(s)=s,. Let (x,X)emvy, xys; and F;§ with
base(s;)=s;,=base(s;), for 1lsisn. For each f€L with arity s;p...Spp~Sp,
there is (<s:f(x,,...,x)> <8:f(%,,....X,)>)€mp, and there are x,X€X with
x:s, X:5.

Due to the above properties of X, we can simplify the notations by using
only half of X, half of the sort set for X and considering mvy as identical
relation. Then for any sorts with variables in X,
(<s:f(Xq,eenxy) >, <E(Ry,.... X)) >) can be denoted as
(<s:f(%q,0.0Xg) > <8:£(X 1,0 %) >). <SIG(X),SIG(X).1x.1p> is a base ATGS for all
SCS’s on the base signature SIG and denotes nothing else than a conven-
tional TRS which has no rewrite rules. In general, we do not have to specify
the possible co-productions of variables in X. One of such variable x is given .
in Example 3. In this case, the SCR’s of the form AA(t,t) with Var(t)cX,
Var(1)cX are conventional rewrite rules. This means that SCS contains the
conventional TRS as a special case.

If we not only allow the ground rules as the language of an SCS, but also
rules with variables in X, using G(X) to denote this language, then we con-
stitute a conventional TRS <S,,L,G{X}> with an infinite (but enumerable!)
rule set. In this sense, we have achieved a description of some non-finitely-
based TRS. In addition, all the discussions for SCS are valid for conven-
tional TRS’s.

The variables in X are called terminal, others, non-terminal.
4. Sufficient Condition for Confluence and Termination

4.1. Generalization of the Classical Sufficient Condition

Later on in this paper, “classical approach” means the approach of [O'D
77], "conventional rule” means rewrite rule without non-terminal variables.

The main part in the classical sufficient condition for confluence and ter-
mination by O'Donell (cf. [0'D 77]) is non-overlapping of the rewrite rules.
The following example shows that some TRS's are intuitively confluent,
although the condition of non-overlapping fails.

Example 4
Let a TRS contain rules h{f(x,a))=h(f(x,b)), f{c,x)=f(d,x) on functions {
h(_), f(_._). a, b, ¢, d]. It does not satisfy the non-overlapping property
because for the instances h(f(c,a))=h(f(c,b)), f(c,a)=i(d,a),
h(f(x,a)):1=f(_,_)€Z.” However, these two rules will not destroy
confluence, as illustrated by the following diagram:

176

h{f(c,
h(f(d,aﬁ/ (Ca))‘“hﬁ(c,b))

~ah(f(d,b)})e—
fig.2
This example represents a large class of rewritings, where real subterm
changes of two rules happen only within a common context, but these
changes are independent. The TRS is overlapping because of the common

context. In the above example the function { is a context, within which a
and ¢ can be rewritten into b and 4, resp.

In order to develop a suficient condition considering the above example,
we generalize the classical condition by replacing the notion of non-
overlapping with pon-interfering. Including non-overlapping as a special
case, it allows two rules to overlap, but forbid them to change dependent
subterms. In the following, we explain this notion informally by examples.
We claim that any non-interfering TRS, which is, in addition, left-linear,
steady, consistent (for these notions cf. [O'D 77]), is confluent and ter-
minating. For more details one should refer to [Qi 86c].

More exactly speaking, two rules t,=t,, t,=t, are said to be non-
interfering iff if they are both applicable to (i.e. unifiable with) a term t,
then the following holds:

1. They do not change dependent subterms of {.

2. Each of them should be still applicable to the term obtained after appli-
cation of the other one to t.

3. Since both rules are applicable to one term, we can assume that uisin
t, the subterm that is unifiable with t,. We require that if a variable x
in u corresponding to a by t,=t, changed subterm in t,, then each
occurrence of x in t; should be in a subterm unifiable with t,.

Example 5

a) The rule set (h{f(x.a))=g{f(x,b).f(x,c)), {(dx)=f(e,x)} is non-
interfering. E.g. the rewriting of term h(f(d,a)) will terminate and the
unique normal form is g{f{e,b),f(e,c)), no matter in which order the
rules are appiied.

b) The rule set {{{x,c)=f(x.f(x,d)), f(a,x)=1(b,x)] is non-interfering.

¢} The rule set (h{f{x.a),y)=g({(x.g(y))), flex)=f(d,x), b=e}] is non-
interfering. ’

d) The rule set { h{f(c,a))=g(f(c,b).f{c,b)), f(c,x)=1(d,x) | is not non-
interfering, since the application of the second rule to term h(f(c,a))},
to which both rules are applicable, yields term h{f(d,a)), to which the
first rule is no longer applicable.

¢} The rule set (h{f{x,a))=g{{x,b).,x), f{cx)={(d,x}] is not non-
interfering, since the second occurrence of x on the right-hand side
of the first rule is not in a subterm that is unifiable with the second
rule. (Compare with the Example b.}

177

f) The rule set {h(f(x,a))=g(f(x.g(x))). f(c.x)=f(d,x)} is not non-
interfering for the same reason as above. (Compare with the Exam-
plec.)

4.2. Sufficient Condition for Confluence and Termination of SCS

We first claim that an SCS is confluent and terminating if it is left-linear,
steady, consistent and non-interfering. We omit the definitions of the other
notions in the context of SCS and give a very brief informal explanation of
the notion of non-interfering. For more details about non-interfering and
other notions, one may refer to [Qi 86¢].

Compared with conventional TRS's, we have in an SCS a where-part, which
defines the possible pairs of terms instantiated for associated variables on
both sides of a rule. Since the structures of possible instances are given by
an SCS, we do not feel much more difficult than in the conventional case to
formulate the notion of non-interfering (and the whole sufficient condi-
tion). However, for technical reasons, we have to require that the overlap-
ping parts of two SCS's have the same sort- and subsort-structure (up to
renaming). Then we can localize the definition by considering the
corresponding production associations of the overlapping parts.

5. Other Approaches Lo Non-Finitely-Based TRS

Some other investigations in this area have been done. Taylor in [Ta 79]
has analysed the non-finitely-based specifications. [DMT 85] discussed the
possibility of describing non-finitely-based specifications by auxiliary sym-
bols. For example, for the specification in Example 1, [DMT 85] has given a
solution using an auxiliary symbol g" {fgx=fg'x, g'gx=gg'x, g'’hx=hx]. In
[BMR 86] a transformation system in the above style based on the transfor-
mation Janguage OPTRAN (see [MWW 86]) is discussed. However, these auxi-.
liary symbols have no original semantics. This is undesirable, especially in
an user-interactive system.

Another approach to cope with the non-finitely-based specification is
conditional equational system. By describing the following conditional
specification using SCS, we can see the essential relationship between
them.

Div2

BOOL + NAT + DNZBOOL + NAT +
sorts: sorts:

opns: div2: Nat-Nat
even: Nat-Bool
eqns: for all n : Nat

subsorts: Even, HalfCNat
opns: div2: Nat-»Nat
eqns: for all (v,7):(Even,Half)

even(succ(suce(n))) = even{n) i =v
even(succ(0)) = false 31{,’622 Y
even(0) = true Even: succ(succ(v)) = Half: succ(v)

even(n) = true »

divz((g;i(%“cc(succ(n))) = succ(diva(n))

= 0

178

In the notations of 5CS, we do not need the auxiliary boolean function
"even” to define the partiality of div2. Instead, we give the structure of the
possible terms directly. Note that the SCS suggests a more efficient imple-
mentation.

6. Further Researches

[O'D 85] discusses the topic of designing a programming language based
on the equational logic. Our approach could be a basis for a transformation
language, an extension of the language of [0'D 85]. A draft discussion has
been made in [K-B 86]. For open questions see [Qi 86¢].

From the theoretical point of view, we feel that the SCS style of describ-
ing an equational specification might be of some use in the study of error
algebra. (See [Kre 86] for another interesting approach.)

Another problem, which is of interest from the practical as well as
theoretical point of view, is how to simplify the description of SCS.

We have introduced a suflicient condition for non-interfering of an SCS.
How to implement this checking mechanically requires a lot of implementa-
tion work. But we feel that the designer of an SCS should write the system
in a way to ease this checking.

If we consider a calculus of program development or transformation, (see
e.g. [Pe 84], [JHW 86],) it is natural to ask whether SCS could contribute to
the framework of a calculus, and which kind of influences it might have on
the calculus. Among others, there would be the question of composition of
transformation operations and validation of a transformation against the
original semantics of the source language.

7. Acknowledgment

I would like to thank B.Krieg-Bruckner for the encouragemeni and
B.Krieg-Briickner, B.Hoffmann, Wei Li for the valuable discussions. Thanks
are also due to B. Gersdorf and St. Kahrs for valuable comments on the
earlier version of this paper.

8. References

[ADI 78] Goguen,J.A., ThatcherJ.W. Wagner,E.G: "An Initial Algebra Approach to the
Specification. Correctness, and Implementation of Abstract Data Types” in:
Current Trends in Programming Methodology, Vol IV {ed. Yeh,R.T.), Prentice
Hall, 1978.

[BG 79] Burstall,R.M., Goguen,l.A., "The Semantics of Clear, a Specification Language”
In: Proe. of the 1979 Copenhagen Winter School on Abstract Software
Specification, LNCS Vol. 88, Springer-Verlag, 1980.

[BaWd 82] BHauer,F.L.Wdssner H., “Algorithmic Language and Program Development”
Springer-Verlag 1982

179

[BMR 86] Badt,P., Mdncke,U. and Raber,P., “Specification of Recursive Patterns” PROS-
PECTRA Research Report S.1.8_3N_4.0, March, 1986

[CIP-L] Bauer,F.L.. BroyM., Dosch,W., Geiselbrechtinger,F,, Hesse W., Gratz,R., Krieg-
Briickner,B., Laut,A., Matzner,T., Mslier,B., NickLF., Partsch,H.,
Pepper,P..Samelson K., Wirsing, M., Wossner,H,, “"The Munich Project CIP. Volume
I: The ¥Wide Spectrum Language CIP-L" LNCS 183, Springer 1985

[De B3] Dershowitz,N., "Applications for the Knuth-Bendix Completion Procedure”,
Aerospace Report No. atr-83{8478)-2, Lab. Operations, The Aerospace Corpora-
tion, 1883

[De 85] Dershowitz,N., "Computing with Rewrite Systems”, in: Information and Control
Vol.85, No.2/3, May/June 1985

{DMT 85] Dershowitz,N., Marcus,L. and Tarlecki,A.,"Existence, Uniqueness, and Construc-
tion of Rewrite Systems” Aerospace Report No. atr-85(8354)-7, Lab. Operations,
The Aerospace Corporation, 1885

[HO 80] Huet.G., Oppen,D.C., "Equations and Rewrite Rules : A Survey” in: Formal
Language Theory: Perspectives and Open Problems (ed. Book,R.), Academic
Press, New York, 1980

{JHW 868] Jahnichen,S., Hussain,F.A,, Weber M., “Program Development Using a Design Cal-
culus”, Proceeding of the ESPRIT Technical Week, 1986.

[Ka 83] Kaplan,S. “Conditional Term Rewrite Systems” Report No.150, LRI-Orsay, France
1983. Revised Version in: Theo. Comp. Sci. Vol.33, 19684

[K-B 88] Krieg-Briickner,B., "Informal Specification of Trafola” PROSPECTRA Research
Report M.1.1.51-SN-10.0, Bremen, March, 1988,

[Kre 86] Kreowski, H.-J., "Partial Algebras Flow From Algebraic Specification”, draft ver-
sion, FB Mathematik/Informatik, Univ. of Bremen, Feb. 1988.

[MW 85] Manna,Z., Waldinger,R.: "The Logic Basis for Computer Programming Vol. 1:
Deductive Reasoning”, Addison-Wesley Publishing Company, Inc., 1985

{0'D 77] O'DonellMJ., "Computing in Systems Described by Equations” LNCS 58,
Springer-Verlag 1977

[0'D B5] O'Donell,Md., "Equational Logic as a Programming Language”, MIT Press Series
in the Foundations of Computing, Cambridge Massachusetts, London,England,
1985

[Pe B4] Pepper,P., "A Simple Calculus for Program Transformations (Inclusive of Induc-
tion)", Research Report TUM-18408, Technical Univ. of Munich, July 1984

[PROSPECTRA]
Krieg-Brickner,B., Ganzinger,H., BroyM., VWilhelmR., McGettrick,AM.,
CampbellL.G., VWinterstein,G., "PROgram development by SPECification and
TRAnsformation, Project Summary.” Univ. of Bremen, 1985
[Qi 88a] Qian,Zh., "Recursive Presentation of Program Transformation” PROSPECTRA
Study Notes M.1.1.S1-SN-17.1, Univ. of Bremen, Sept, 1986

[Qi 86b] Qian,Zh., "An Example of Recursively Presented Transformation” PROSPECTRA
Study Notes M.1.1.51-SN-21.0, Univ. of Bremen, Nov. 1988

{Qi 88c] Qian,Zh., "Sufficient Condition for Confluent and Terminating Term Rewrite Sys-
tem and its Extension to Recursively Presented Term Rewriting” PROSPECTRA
Study Notes M.1.1.51-SN-16.2, Univ. of Bremen, Nov. 1988

[Ta 79] Talor,W., "Equational Logic" in: Universal Algebra“ (ed. Gratzer,G.), second edi-
tion, Springer-Verlag 1979

