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Inventory Model with Seasonal Demand: A Specific Application to Haute Couture 
 

Abstract 
 
In the stochastic multiperiod inventory problem, a vast majority of the literature deals with 

demand volume uncertainty.  Other dimensions of uncertainty have generally been overlooked.  

In this paper, we develop a newsboy formulation for the aggregate multiperiod inventory 

problem intended for products of short sales season and without replenishments.  A 

distinguishing characteristic of our formulation is that it takes a time dimension of demand 

uncertainty into account.  The proposed model is particularly suitable for applications in haute 

couture, i.e., high fashion industry.  The model determines the time of switching primary sales 

effort from one season to the next as well as optimal order quantity for each season with the 

objective of maximizing expected profit over the planning horizon.  We also derive the 

optimality conditions for the time of switching primary sales effort and order quantity.  

Furthermore, we show that if time uncertainty and volume uncertainty are independent, order 

quantity becomes the main decision over the interval of the primary selling season.  Finally, we 

demonstrate that the results from the two-season case can be directly extended to the multi-

season case and the limited resource multiple-item case. 

 

Key Words: Inventory Model; Newsboy Formulation; Optimal Policies 
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Inventory Model with Seasonal Demand: A Specific Application to Haute Couture 
 
 

1. Motivation 

A vast majority of the literature dealing with the stochastic multiperiod inventory problem 

focuses on demand volume uncertainty.  Other dimensions of uncertainty are generally 

overlooked.  In this paper, we incorporate a time dimension of demand uncertainty into the 

aggregate multiperiod inventory problem for products of short sales seasons that have no 

replenishment and long lead times.  For products exhibiting a seasonal demand pattern, at least 

some portion of the demand in two consecutive seasons overlaps each other.  Therefore, the 

decision on the time to switch the primary sales effort from one season to another is of critical 

interest to managers, along with the associated order quantity decision for each season.  The 

“time” decision is particularly relevant to haute couture, i.e., high fashion industry.   

 

While the functional aspects of haute couture products such as keeping warm are not entirely 

ignored; nevertheless, the key magnet of haute couture rests on the leading edge fashion.  Hence, 

haute couture’s sales effort is concentrated on how to stimulate their customers’ fashion 

impulses.  Most of the major markets of haute couture are located in regions with four distinctive 

seasons, including Europe, Japan, and North America.  When a new season is approaching, haute 

couture often creates a fashion fad promoting the belief that “a new season is here.”  Based on 

our experience, a common practice in the haute couture industry is to create a fashion impulse 

for the new season products by making an overnight transition from the current season sale to the 

next season sale.  For retailers of low-to-medium priced apparels—such as Target, JC Penny, and 

Macy’s—this transition happens rather gradually.  As a new season comes closer, more and more 

of the new season products are brought onto sales floors, and the new season products are 
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generally on display along with the leftovers of the current season products.  In the haute couture 

industry, on the other hand, this transition is very fast and occurs virtually overnight.  This is 

because an effective means to stimulate an impulse is through a quick and complete transition.   

 

It is frequently observed that sales of the new season product start much earlier than the actual 

season.  For instance, a shop has the Spring Collections on display and for sale in the middle of 

late winter.  The shop could have delayed the transition from the Winter Collections to the 

Spring Collections for a week or two and satisfied some late demands of winter clothing.  On the 

other hand, if the shop had delayed the transition, the shop would have missed early demands of 

spring clothing.  Therefore, it is important for haute couture managers to determine the optimal 

time to terminate the current season sale and to start a new season sale.  This “switch timing 

decision”—when to switch from the current season sale to the next season sale—is more critical 

to haute couture managers, because they generally do not participate in the secondary market.  

Lee and Whang (2002) have investigated the impacts of a secondary market where resellers can 

buy and sell excess inventory.  The secondary market is opened when the first period market 

ends.  The equilibrium price of the secondary market is typically assumed to be lower than the 

price of the primary market.  Haute couture companies, however, have no desire to create the 

secondary market.  Some haute couture companies go even further, they actively engage in 

activities to prevent the secondary market from emerging.  One of the key appeals to haute 

couture customers is exclusiveness, or so-called “being snob.”  Customers satisfy their personal 

esteems of being exclusive by knowing the fact that the prices of the products they just paid for 

are so high that not everyone can afford it.  It is not desirable for brand loyalty if high fashion 
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companies make products affordable to more people by cutting prices, even though these 

products are somewhat out-of-fashion or off-season.   

 

When a firm is facing seasonal demands with non-negotiable secondary market price, the 

newsboy model has been extensively used as a tool to determine the order quantity for this 

stochastic inventory problem.  Petruzzi and Dada (1999), Emmons and Gilbert (1998), Eppen 

and Iyer (1997), and Khouja (1996) are just a few examples.  The existing literature of the 

newsboy problem unfortunately does not deal with the switching time decision.  They only 

consider the order quantity decision when a specific switching time is given.   

 

In this paper, we suggest a variation of the newsboy problem formulation that considers the order 

quantity and the switching time simultaneously.  The rest of this paper is organized as follows.  

In Section 2, we review the relevant literature.  In Section 3, we present the basic model of two-

season inventory planning with a single product for each season.  The optimal conditions for the 

order quantity and switching time have been derived.  In Section 4, we discuss a special case and 

the general extensions of the model.  The results and the future extension are concluded in 

Section 5.   

 

2. Relevant Literature 

Very few published papers have treated the interval of sales period as a decision variable.  

Instead, researchers have developed newsboy model applications or yield management 

techniques to study stochastic multiperiod inventory systems.  In this section, we review 
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inventory literature on the following two topics: newsboy applications related to the stochastic 

inventory research and yield management research involving a stopping time of a sales offer.   

 

The newsboy problem has been a critical building block of the stochastic inventory theory 

(Petruzzi and Dada, 1999).  As an application to retail inventory management, Khouja (1996) 

extends the newsboy problem to a case involving supplier’s quantity discounts and retailer’s 

progressive discounts.  He demonstrates that the newsboy problem with multiple discounts gives 

a larger order quantity than the problem with only supplier discounts.  He explains the result by 

arguing that multiple discounts lead to an increased demand at prices that are higher than the 

salvage value of the classical newsboy model.   

 

Emmons and Gilbert (1998) examine the role of return policies for catalogue goods through a 

newsboy formulation.  They refer “catalogue style goods” to a situation in which a retailer must 

commit to a fixed retail price for a substantial portion of the selling season for a particular item.  

They demonstrate that it is necessary to incorporate retailer’s self-interest into manufacturer’s 

pricing policy.  Eppen and Iyer (1997) study backup agreements between a catalogue company 

and manufacturers.  A backup agreement states that if the catalogue company commits to a 

number of units for the season, the manufacturer holds back a constant fraction of the 

commitment and delivers the remaining units before the start of the fashion season.  Through 

Bayesian updating, their results indicate that the backup agreement, including penalty cost for 

each unit not taken from backup, may increase the committed quantity as well as the expected 

profit.   
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As an application to global supply chain management, Kouvelis and Gutierrez (1997) examine a 

transfer pricing policy for a producer of “style goods” who sells the goods to two different 

countries (known as the primary and secondary market countries) with non-overlapping selling 

season.  They demonstrate a decentralized production control policy, with the production centres 

at each country are treated as independent profit centres and a constant transfer price is used to 

coordinate their production, may lead to sub-optimal solutions.  They also show that much of the 

penalties from placing decentralized control policy can be eliminated by adopting their non-

linear transfer pricing scheme.   

 

Petruzzi and Dada (1999) examine an extension of the newsboy problem such that stocking 

quantity and selling price are determined simultaneously.  Their work is remarkable in that it 

incorporates selling price, which have been typically taken as exogenous, into the newsboy 

model.          

 

Facing the problem of selling a fixed stock of items over a finite horizon, maximizing revenue in 

an excess of salvage value has always been an important issue for industries such as airlines, 

hotels, and seasonal manufacturers (Feng and Gallego, 1995).  Feng and Gallego (1995) address 

the problem of deciding the optimal timing of a single price change from a given initial price to a 

given second price.  Their notion of “stopping time” denotes the moment of stopping selling 

products at the initial price, that is, the time of changing price.  Their “stopping time” is 

determined by the number of unsold units and the time-left to the end of the season.  More 

recently, Feng and Xiao (1999) present a risk sensitive pricing model to maximize sales revenue 

for perishable commodities with fixed capacity.  They add a variance term to the objective 
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function in the form of penalty (or premium).  As another stream of application, Bitran, 

Caldentey, and Mondschein (1998) and Smith and Achabal (1998) study the clearance pricing 

policy for retail chains.  In summary, the core issue in the yield management literature is about 

adjusting selling price according to the level of unsold inventory and time left to the end of the 

season. 

 

As discussed above, the traditional newsboy models mainly deal with the quantity decision to 

minimize the inventory cost while the yield management researches tend to focus on the pricing 

policy for maximizing the revenue.  This paper is the first to combine the decision of quantity 

and timing together in a newsboy setup.  The model has potential applications in seasonal 

product industries, particularly in high fashion haute couture environment. 

 

3. Model 

To illustrate the problem more clearly, we first examine the two-season inventory planning with 

a single product for each season.  Let a random variable  be the demand volume of season i 

product at time t.   follows a joint density function , where a random variable  

represents the demand volume and random variable t  represents timing of demand occurrence 

( , ).  The marginal density function of , is 

equivalent to a typical demand volume distribution.  On the other hand, the marginal density 

function of , , represents the demand behaviour over time.  At least in 

theory, it is a straightforward statistical task to find an empirical distribution of  from the 
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historical data.  Suppose 10% of the demand takes place until time unit 10 and 50% of demand 

occurs until time unit 30.  Then, , c.d.f. of , is defined as F tti
( ) f tt ii

( ) Fti
( ) .10 01=  and 

, respectively.  Once the demand is estimated as a function of , the density 

function  is derived by taking the first order derivative of  with respect to .   
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Let  be the order quantity for season i product and  be the profit function of season 

i.  The profit function  is defined as a typical newsboy formulation. P x Qi i i( , )

 

P x Qi i i( , ) =           (1) 
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−
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where , , and  are unit profit, overstock cost, and under stock cost of season i product, 

respectively.   
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With (1), the objective function is stated as: 
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+    (2) [ ( ) ] ( , )p Q x Q Cu f x t dt dx
dQ

2 2 2 2 2 2 2 2 2 2
2

− −
∞∞

∫∫

 

where TP is the expected total profit, and d is the time that the firm switches its sales effort from 

season 1 to season 2.  In other words, season 1 lasts during the time period of [ , and season 

2 covers the time period of [d, ∞].  

, ]0 d

 

Optimality Conditions for d* 

The first order optimality condition of d* is derived by taking the first order derivative of (2) 

with respect to d. 

P x Q f x d dx P x Q f x d dx1 1 1 1 1 1 2 2 2 2 2 2
00

( , ) ( , *) ( , ) ( , *)=
∞∞

∫∫         (3) 

The interpretation of Equation (3) is quite intuitive.  It implies d* is the time that equates the 

expected profit of season 1 to the expected profit of season 2.   

 

The marginal expected profit of season 1 at d* and marginal expected loss of season 2 at d* are 

defined as 1
0
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easily seen that the following condition should hold for d* to be an optimal solution.   
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Inequality (4) leads the following theorem.   

 

Theorem 1 
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Let d* be the solution of (3).  If the marginal expected loss of season 2 at d* is greater than 

marginal expected profit of season 1 at d*, then d* maximizes (2).   

 

Proof of Theorem 1 is omitted since it is a straight-forward interpretation of (4).  Infeasibility in 

(3) may arise, 

if  ,  for  ∫∫
∞∞

>
0

2222222
0

1111211 ),(),(),(),( dxdxfxQxPdxdxfxQxP d ∈ ∞[ , )0

or , for d∫∫
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0

2222222
0

1111211 ),(),(),(),( dxdxfxQxPdxdxfxQxP ∈ ∞[ , )0  

The former case implies that the sales of season 1 product is always more profitable than the 

sales of season 2 product.  The latter case suggests the opposite.  In other terms, d* = ∞ for the 

former case and  for the latter case. d* = 0

 

Optimality Conditions for Order Quantity 

At any given d, the first order optimality condition for  is derived from (2). Q1

∂
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After algebraic manipulation, the above simplifies to: 
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It is not surprising to see that (5b) possesses a typical form of the newsboy solution, except it is 

defined on a conditional distribution of  at given d.  The next theorem shows that  is 

indeed optimal.   

xi Q1 *

 

Theorem 2 

Q1 * in (5b) maximizes (2). 

 

Proof 

Q1 * satisfies the first order optimality condition, since it is a solution of (5b).  From the second 

order optimality condition, we have  
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Similarly,  
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Since Ignall and Veinott (1969), it has been well known that a myopic policy leads to an optimal 

order quantity for a multiple time period problem to minimize the inventory relevant costs.  The 

first order derivative of (2) with respect to Q  is only defined in terms of .  It implies that 

 is independent of  at any given d.   

1 Q1

Q1 * Q2 *

 

4. A Special Case and Extensions of the Model 

4.1 A Special Case:  and t  are Independent xi i

To obtain the optimal solutions of , , and Q , Equations (3), (5a), and (5b) are to be 

solved simultaneously.  If  and  are independently distributed, further analytic results could 

be obtained from (3), (5a), and (5b).  One interpretation of independence between  and  is 

the behaviour of demand spread overtime does not give any information on demand volume, and 

vice versa.  Let’s take college textbooks as an example.  Publishers know most of the demand 

occurs in the first few days of a semester, say 

*d

i

Q1 * 2 *

(

xi t

xi ti

9.0)__ =daysfewF

9

first
it

.0)

.  To estimate the 

demand volume, however, the publishers have to look at completely different sources of 

information, such as past class enrollments, ratio of students who actually purchase text book, 

etc.  More specifically, from __( =daysF
it

fewfirst , the publishers expect 90% of demand 

volume would occur in the first few days of a semester.  The publishers have to look at different 

sources of information, however, in order to estimate how many textbooks would be ordered by 
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students for a semester.  Therefore, in some cases, it might be reasonable to assume that  and 

 are independently distributed.   

xi

ti

 

The following two theorems show that order quantity is the primary decision to make over the 

switching time d, if  and  are independently distributed.   xi ti

 

Theorem 3 

If  and  are independent,  are independent of d*.   xi ti Qi * ( ,i = 1 2)

 

Proof 

Since  and  are independent, (5b) and (5c) are reduced to xi ti
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Theorem 4 

If  and t  are independent, d* is determined as a function of . xi i Qi *

 

Proof 

Let .  From (2), d* is the value which satisfies the following 

equality.   
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Equivalently, 

*)(
*)(

*)(
*)(

11
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2

1

Q
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t

δ
δ

=           (6) 

As it is shown, the left hand side of (6) is a function of . g Qi *

 

Theorem 3 is quite intuitive.  If  and  are independent, order quantity decision is reduced to a 

typical newsboy problem.  The switching time is then obtained by solving (6) numerically.   

xi ti

 

4.2. Model For Multiple Season Planning with a Single Product for Each Season 

Let n denote the number of seasons in a planning horizon.  The objective function is then 

formulated as the following.   

          Max   TP   =         (7) P x Q f x t dtdxi i i i i i
d

d
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i
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The season i is defined as the period during [ .  It should be noted that  = 0 and = Ω, 

where Ω is the planning horizon.   

],1 ii dd − d0 dn

 

As in two-season case, a myopic policy leads to the optimal solutions of .  The first order 

optimality condition for  is defined with respect to single i:   

Qi *
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where  and d  are the solutions of (7) for season i  and season (di−1 * *i )1+i , respectively.  The 

formula for  is the same as (5b).  The first order optimality conditions for  when i  

is stated as: 

Q1 * Qi * ≥ 2
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Further simplification of (9) is not possible unless more specific assumptions are made on 

demand distribution.  If  and  are independently distributed, however, Theorems 3 and 4 

hold for the multiple season planning model.  The proof is omitted since it is essentially identical 

the proofs of Theorem 3 and Theorem 4.   

xi ti

 

The next theorem extends the applicability of a myopic policy into the optimal solutions of . di *

 

Theorem 5 

Let d  be an optimal solution of (7).  d  is independent of  for i * i * d j * i j≠ . 

 

Proof 
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Since the first order optimality condition on  is only defined on itself,  is independent of 
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di * di *
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(5b) and (5c) have shown that a myopic policy leads to an optimal order quantity.  Theorem 5 

shows that a myopic policy also leads to the optimal solutions of . di *

   

4.3. Model for Multiple Items with Limited Resource  

It is not just in the high fashion industry that all items of a season share the common sales 

interval.  College textbooks of a term, for example, also share a common sales interval.  Here, a 

model for multiple items with a single resource constraint is presented.  The model is an 

extension of Silver and Peterson (1985) that present the budget limitation problem.   

 

Let i denote season index (  and j denote item index (),...,1 ni = imj ,...,1= ).  The objective 

function is stated as:  

Max   TP   =  
j
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where ,  is the amount of resource available in season i, and  is the units of 

resource consumed by item j of season i.  Restating equation (10) by applying a Lagrange 

multiplier, we have: 

Ω== ndd ,00 Si sij

Max   TP   =       (11) P x Q f x t dt dx s Q Sij ij ij
d

d

ij ij ij ij ij
j
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i

n

i ij ij
j

m

i

ii i

( , ) ( , ) (
−

∫∫∑∑ ∑
∞

== =

−
1011 1

λ i )−

 

The first order derivative of (11) with respect to λi  yields the following, which imposes the 

resource constraint.    
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From the first order optimality condition of  in (11), we obtain: id
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To derive the optimality conditions of , the profit function is expanded as below: Qij *

P x Qij ij ij( , )

)

 =  
p x Q x Co if x Q
p Q x Q Cu if x Q

ij ij ij ij ij ij ij

ij ij ij ij ij ij ij

− − ≤
− − >





( ) ,
( ) ,

where , , ,  are the profit function, unit profit, overstock cost, and under 

stock cost of item j of season i, respectively.  Substituting the above profit function into (11), the 

first order optimality condition of is derived as: 

P x Qij ij ij( , pij Coij Cuij

Qij

*)(*)|*(*)(*)|*( 11*|*| 1 −−−
− itiijTxitiijTx dFdQFdFdQF

ijiijijiij
 

ijijij

iji

ijijij

ititijij

pCuCo
s

pCuCo

dFdFCup
ijij

++
−

++

−+
=

− λ*)](*)()[( 1        (13) 

Further simplification of (13) for  is not possible unless more specific assumptions are 

made on the demand distribution.   

Qij *

 

It is straightforward to show that Theorem 3 and 4 still hold for (11), if  and t  are 

independently distributed.  Further, it is easy to show that  decreases, as

xij ij

Qij * λi ,  increase.  If 

 and  are independent, Equation (13) is simplified to:  

sij

xij tij

 17



F Q
p Cu s

Co Cu px ij
ij ij ij i ij

ij ij ij
ij

( *) =
+ −

+ +

−α λ1

 

where *)()*( 1−−= ititij dFdF
ijij

α  and 0 1≤ ≤α ij .  Then, 
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Clearly, as λi ,  increase,  decreases.  sij Qij * λi  has the similar interpretation of shadow price of 

additional unit of resource in season i.  Also, λi

ij

*i

 is non-increasing in , and  is non-

increasing in .  Similar to (6), if  and t  are independently distributed, (12) can be 

simplified into the following equation to obtain  numerically. 

Si Qij *

Si xij

d

]*)()()*,([]*)()()*,([
1

11
1

11111
1

∑ ∫∑ ∫
+

++
=

++

∞

+++
=

∞

=
i

jiji

i

ijij

m

j
itjijix

o
jiijji

m

j
itijijx

o
ijijij dfdxxfQxPdfdxxfQxP  (14) 

The Interpretation of (14) is similar to Theorems 3 and 4.   

 

5. Conclusions 

The switching time decision has attracted very little attentions from the stochastic inventory 

literature.  In this paper, we develop a newsboy formulation for the aggregate multiperiod 

inventory problem intended for products of short sales season and without replenishments.  A 

distinguishing feature of our formulation is that it takes a time dimension of demand uncertainty 

into consideration.  The proposed model is important because it represents one of the first to 

investigate the switching time and quantity decisions simultaneously and is easy to understand 

and thus to apply.  It is especially suitable for applications in haute couture, i.e., high fashion 

industry.  The model determines the time of switching primary sales effort from one season to 

the next as well as optimal order quantity for each season with the aim of maximizing expected 
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profit over the planning horizon.  We also derive the optimality conditions for the time of 

switching primary sales effort and order quantity.  Furthermore, we show that if time uncertainty 

and volume uncertainty are independent, order quantity becomes the major decision over the 

interval of the primary selling season.  Finally, we demonstrate that the results from the two-

season case can be directly extended to the multi-season case and the limited resource multiple-

item case.   

Future extensions include incorporating the pricing and progressive switching decisions 

into the proposed model.  Contrary to haute couture, many firms have opportunities to maximize 

revenue by changing prices over the selling period.  Hence, another future research avenue is to 

incorporate the optimal timing of price change and optimal price level into the switching time 

decision.  Without doubt, these additions will on one hand make the model more complicated.  

On the other hand, the applicability of the proposed model will be substantially broadened.   
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