
Fast Block Cipher Proposal
Burton S. Kaliski Jr. and M.J.B. Robshaw

RSA Laboratories
100 Marine Parkway

Redwood City, CA 94065

1 I n t r o d u c t i o n

In what follows we present the basic features of a proposed block cipher that is
fast to implement in software. In consideration of the uncharacteristically large
block size, it might best be viewed as a presentation of ideas rather than as an
immediately applicable cipher.

Whilst the present proposal provides an encryption rate Of up to 500 Kbyte/s
in software, we feel that provided no inherent weakness in the design philosophy
is uncovered, higher encryption rates may well be possible. A particularly nice
feature is the possibility of extensive parallelisation, which would make the basic
approach very suitable for hardware implementation.

The main motivation, however, is for high-speed performance in software. As
a consequence we show little concern for the amount of memory that might be
required in an implementation, provided of course that it remains reasonable.
We have decided to concentrate on the following three features - increasing
the block size, using a modular method of construction and integrating current
cryptographic techniques.

Regarding the block size we wish to implement, we have decided to push
this to an extreme degree. If the same processing time is required to provide an
acceptable level of security for a 64-bit block cipher as for a 128-bit block cipher,
perhaps because they both use the same structure, then we have effectively
doubled the speed of the block cipher. It is not hard to imagine a 32-bit version
of DES [7] that replaces every bit of DES with a 32-bit word, and hence has a
larger block size and huge S-boxes.

We note that this was also the motivation behind the DES variant G-DES
proposed by Schaumuller-Bichl [12]. Though the security of G-DES has been
seriously undermined [1] the basic principle it embodies in attempting to get
better performance is not in question.

Additionally, the move to larger block sizes might allow us greater flexibility
in the use of computer architecture that is designed to efficiently manipulate
'words' of 32 bits (rather than individual bits themselves); this in itself could
lead to an improved level of performance.

Finally, the choice of a particularly large block size is also motivational. We
believe it provides an opportunity to move beyond calls for changes to DES-like
structures, and to get away from the ideas of iterated block ciphers.

We feel that the proposal we present provides a good structure with some nice
features on which to hang some carefully assessed components. For this reason
we like to consider the design as a modular one - certain parts can be replaced

34

as seems fit, others can be extended, and there is a great deal of flexibility in
arriving at a final cipher.

2 P r o p o s a l

The main approach has been to incorporate techniques already used in hash
functions. It is well known that certain hash functions are designed around the
use of DES in an attempt to exploit the security offered by DES [9]. In a similar
manner, it is possible to modify some of the dedicated hash functions, which are
designed to be particularly fast, into block ciphers.

It is well known that the MD5 hash function [11] can be adapted in an obvi-
ous way to allow decryption to take place. By removing the feedforward which
surrounds each iteration, what remains is reversible. We could then encrypt
plaintext blocks of 128 bits using a 512-bit key. Such a cipher would run at �88
the speed of MD5 giving a software performance of around 250 Kbyte/s.

Instead of using the MD5 hash function as a whole, we take parts of the
algorithm that provide us with some of the properties we would like a block
cipher to possess. In doing this we forego the opportunity to relate the security
of the block cipher to the security of the hash function in any obvious manner,
but we can perhaps get a block cipher which performs at great speed by using
techniques we have seen successfully applied elsewhere.

2.1 Overv iew

The block cipher we propose operates on unconventionally large plaintext blocks,
namely blocks of 256 words, where a word consists of 32 bits. The cipher uses a
pseudo-random permutation P on the numbers 0 , . . . , 255 and 2048 32-bit words
X~. These should be generated using the secret key K.

There are four rounds and each round uses a different function Fr which takes
as input four words of plaintext and some key-dependent information. While it
may be potentially confusing at first, we feel the best way to refer to the rounds
during a written description is as first, second, third and fourth, but the best
way to index them within formulae is by r = 0 , . . . , 3.

The question of the best choices for Fr is, of course, open. We have decided
to use ones closely based on those used in MD5 because their use is familiar and
there is some feel for the security they might offer. The size of the key K is again
open to debate, the current fashion seems to be for 80-bit keys which we shall
use for the sake of a concrete details in section 2.3. The encryption procedure
can be described as follows. X < < < b denotes a left rotation of X by b bits, this
rotation might be performed on 8-bit or 32-bit quantities, the context should
make this clear.

1. Obtain key K
2. Generate the random permutations P and words Xi, 0 < i < 2047, using

the key K

35

3. Write the plaintext as P[.] = P[0]. . .P[255] where P[i] is a word of 32-
bits. Permute the 256 words of plaintext according to the key dependent
permutation P to give P'[0] . . . P'[255]

4. For r o u n d r = 0 t o 3 d o {
For group g = 0 to 63 do {

Initialize buffer words A, B, C, D as

A = P ' [(4 . 9) < < < 2r], B = P ' [(4 . g + 1) < < < 2r],

C = P ' [(4*g + 2) < < < 2r] , D = P ' [(4*g + 3) < < < 2r]

For step s = 0 to 7 do {
A = A @ Fr(B,C,D,Xi) for some Xi where i = 512r + 8g + s
A = D, B = (A < < < 5), C = B and D = C

}
Modify the plaintext by

P'[(4* g) < < < 2r] = A , P ' [(4 * g + 1) < < < 2r] = B,

P ' [(4 * g + 2) < < < 2r] = C , P ' [(4*g + 3) < < < 2r] = D

}
}

5. Output P ' [0] . . . P'[255] as ciphertext.

The details of decryption, the reverse operation to encryption, can be easily
established.

2.2 The r o und f u n c t i o n s

A function Fr is applied 8 times in the processing of each of 64 independent
groups in each round. The round functions wc specify were chosen arbitrarily,
but are loosely based on the round functions used in the hash function MD5
with some account taken of results on its cryptanalysis [2].

The functions Fr use a Boolean function fr which differs from round to
round. Otherwise the Fr are identical and can be described as follows. Addition
is performed modulo 232 .

A = A|

= A| (B + fr(B,C,D) +X~)

The Boolean functions fr are defined as follows and are those used in the MD5
hash function. The notation should be familiar and the operations are performed
bitwise.

Yo(B,C,D) = (B A C) V (~ B A D)

f l (B, C, D) = (B A D) V (C A 99)

f 2 (B , C , D) = B @ C @ D

f3(B,C,D) = C@ (B V-~D)

36

2.3 Ini t ia l izat ion

The initial permutation P (represented as the table S[0] , . . . , S[255]) could be
generated using a key K by variations on techniques presented in Knuth [3]; one
variation is presented below. Note that all quantities enclosed in square brackets
are to be considered modulo 256.

1. Denote the 80-bit key K by k[0].., k[9]
2. Expand the key to 256 bytes k[0].., k[255] by using the following recurrence:

k[a + 10] -- k[a + 8] @ k[a + 4] | k[a + 3] | k[a]
3. For i = 0 to 255 do

S[i] = i
4. m = 0
5. For p a s s = O t o 1 d o {

For i = 256 to 1 step - 1 do {
m = (k[256 - i] + k[257 - i]) rood i
k[257 - i] = (k[257 - i] < < < 3)
Swap Sire] and S[i - 1]

}
}

The words Xi, 0 < i < 2047, might be derived from a second pseudo-random
permutation of 0 . . . 255; represented as To. . . T255, generated using the key K
in byte-wise reverse order k[9].., k[0]. Define the words used in the first round
by Xi, 0 _ i < 255 where Xi is the concatenation of Ti , . . . ,T i+3 and Xi,
256 < i < 511 is the concatenat~ion of Ti,Ti+2,Ti+4 and Ti+6, addition in the
subscripts being performed modulo 256. For subsequent rounds define the Xi
as follows. For 512 < i < 1023, Xi = (Xi-512) < < < 3; for 1024 < i < 1535,
Xi = (Xi-1024) < < < 7; and for 1536 < i < 2047, Xi = (Xi-1536) < < < 19.

The details that we have provided for the initialization process should again
be viewed as motivational; there may well be alternative schemes which are both
more efficient and offer improved security.

3 C o m m e n t s a n d p e r f o r m a n c e e s t i m a t e s

At the beginning of the first round, the plaintext words are moved to 64 groups
of four in a pseudo-random manner using the permutation 7).

Within each group the words are processed in such a way that all four words
at the end of the round are dependent on each of the input words and some key-
dependent information. In subsequent rounds we tie the groups together using a
method motivated by techniques used in the calculation of the Discrete Fourier
Transform [8].

In round one the first group uses words P'[0], P~[1], P'[2] and P'[3]. In round
two, tile first group takes the modified words P'[0], P'[4], P'[8] and P'[12]. The
first group of the third round takes modified P'[0], P'[16], P'[32] and P'[48] and
the final round uses the recently modified P'[0], P'[64], P'[128] and P'[192].

37

This is generalized to the other groups and at the end of the fourth round a
complete diffusive effect has been obtained whereby each output word depends
on each of the 256 plaintext words of the input. This effect is easily achieved by
using bit rotations of the variable used to index the permuted plaintext words.
It can be generalized as follows where r = 0 , . . . , 3 denotes the round.

A = P'[(4 * g) < < < 2r], B = P'[(4 * g + 1) < < < 2r],

C = P '[(4*g + 2) < < < 2r], D = P'[(4* g + 3) < < < 2r]

Four rounds are sufficient, and are the minimum necessary in this design, to
achieve a complete diffusion of 256 words of plaintext information within the
resultant ciphertext. Preliminary empirical testing suggests that a very good
avalanche effect is obtained using this network together with the proposed round
functions. Alternative approaches would include using three rounds with 64
plaintext words or two rounds with 16 plaintext words, each of which would
offer an increasing improvement in the speed of the cipher. We have, however,
been more conservative and we feel that less than four rounds could lead to
a compromise in the security. Clearly, extensive message padding might be re-
quired for the encryption of some messages and the details of a suitable padding
scheme have yet to be assessed.

In a software implementation, each round consists of processing 64 groups,
where the processing requires eight steps. Each step requires about 6 to 8 opera-
tions and so we see that an implementation may run very quickly. The indexing
of P'[.] is easily optimized. The time to initialize the permutations :P and the
words X~ is a fixed overhead and dependent on the methods used. This overhead
becomes proportionally less significant the larger the message. It may well be
possible to reduce the number of key dependent words X~ without compromis-
ing security thus reducing the time required for the pre-computation of the key
dependent material.

Each round is effectively 64 applications of I of an MD5 hashing round (each
round in MD5 has 16 steps). Interestingly, the buffer words in the hash function
are replaced by the plaintext and its modifications in the block cipher, whilst the
message in the hash function becomes the key-dependent material in the block
cipher.

There are 4 rounds in the block cipher, as in MD5, and so we estimate that
256 • 32 bits are encrypted using the equivalent of 64 • �89 MD5 hashes of 512
bits. This gives a rough estimate for the encryption rate of around 500 Kbyte/s,
half the speed of MD5.

We draw attention to the fact that the processing of each of the 64 groups in
each round is independent. This provides a great opportunity for parallelisation
in hardware, something which would immediately yield a 64-fold improvement
in speed.

38

4 S e c u r i t y a n d f u t u r e r e s e a r c h

We have attempted to get away from the ideas of iterated ciphers, ciphers for
which a weak round function is repeated sufficiently often to resist cryptanalytic
attack. Differential [1] and linear [4] cryptanalysis rely on statistical advantages,
identified by the analysis of a few rounds, still being of value in the analysis of
the complete cipher.

We hinder this approach by using a different complex round function in each
of the four rounds. We hope that with a good choice of round functions we
can make such attacks infeasible. We take some comfort for this view from the
history of cryptanalytic attacks on hash fimctions. Looking at MD4 [10] as a
particularly good example, we see reduced round versions become vulnerable to
attack, but it is the combination of rounds, with different round functions, that
provides the overall security. We fecl that a poor choice of round fimctions will
almost inevitably result in a poor cipher. By this we mean that the structure of
the cipher which provides the diffusion adds little complexity to the analysis of
the cipher and is unlikely to make up for any deficiency in the round functions.
This is perhaps the opposite situation to that of an iterated block cipher where
the round functions are known to be weak but the mixing is so thorough during
encryption that any weakness cannot easily be exploited.

If the round functions we have chosen prove to be inadequate, or to be vulner-
able to certain cryptanalytic attacks, then the modular design allows the whole
round function to be replaced. This again marks a shift from iterated ciphers
whereby increased security is often obtained by adding more rounds. Instead we
keep the structure of the cipher fixed and security can be improved by adjusting
the round function itself.

The aim of defining the Xi in the manner we did (section 2.3) is to prevent
easily identified partial dependencies building up between rounds. The expansion
of the key material from 10 to 256 bytes in the generation of the tables was
motivated by techniques used in the Secure Hash Algorithm [6]; some initial
statistical testing confirms that the table initialization procedure appears to
perform quite well.

Although the choice of functions and structure owes a lot to MD5, it is diffi-
cult to equate the security of the block cipher with the security of the motivating
hash function. Analysis of the relation between block ciphers and hash functions
would be a valuable research effort.

Finally, an alternative way of viewing our proposal is as the concantenation
of a series of encryptions using several strong encrypting functions each of which
comprises a round of the cipher. It would be particularly useful to equate the
security of the overall cipher to the security of the constituent round functions.
In this way it might be possible to obtain results analogous to those obtained
by Maurer and Massey on encryption using several unrelated ciphers [5].

5 S u m m a r y

We have suggested a block cipher design that includes two major features.

39

The first is a push towards large block sizes. This allows the design of so-
phisticated functions which take advantage of 32-bit architectures, and perhaps,
in the future, even 64-bit architectures. We feel that a great improvement in
the speed performance of block ciphers can be gained through such techniques.
Additionally, using some of the established features of trusted dedicated hash
functions might well be used in the design of faster block ciphers. The commonly
trusted dedicated hash functions are often based on 32-bit operations and this
provides a great opportunity to fulfil the first aim by using techniques we have
seen successfully applied elsewhere.

The second issue we have tried to address is that of a move away from iterated
block ciphers. We have tried to obtain comparable security by using what we
shall call incompatible round functions. In this way we hope that fcwer rounds
might bc necessary to provide a good cipher, thus giving bet ter performance.
Additionally, the use of the proposed network for combining these rounds allows
a larger block size and hence a higher bit-rate, together with the opportunity
for extensive parallelisation.

The cipher presented here is a first a t tempt to mesh these ideas together
and due to the very limited time available we have been unable to provide a
full evaluation of the potential security. The use of a non-iterative cipher with
few rounds will undoubtedly open new methods of cryptanalysis, presumably
including many that have previously been uscd on hash functions [9]. It then
becomes an open challenge to replace any components of the above proposal
tha t are discovered to be weak with others that might have a bet ter future.

References

1. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, New York, 1993.

2. B. den Boer and A. Bosselaers. Collisions for the compression function of MD5.
In Advances in CryptoIogy - - Eurocrypt '93, 1993. To appear.

3. D.E. Knuth. The Art of Computer Programming. Volume 2, Addison-Wesley,
Reading, Mass., 2nd edition, 1981.

4. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptol-
ogy - - Eurocrypt '93, 1993. To appear.

5. U.M. Maurer and J.L. Massey. Cascade ciphers: the importance of being first. In
Proc. IEEE Symposium on Information Theory, 1990. January 14-19, San Diego,
CA.

6. National Institute of Standards and Technology (NIST). FIPS Publication 180:
Secure Hash Standard (SHS). May 11, 1993.

7. National Institute of Standards and Technology (NIST). FIPS Publication 46-
1: Data Encryption Standard. January 22, 1988. Originally issued by National
Bureau of Standards.

8. A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice-HM1, Inc.,
New Jersey, 1975.

9. B. Preneel. Analysis and design of cryptographic hash]unctions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

40

10. R.L Rivest. The MD4 message digest algorithm. In Advances in Cryptology
Crypto '90, pages 303-311, Springer-Verlag, New York, 1991.

11. R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board, April 1992.

12. I. Schaumuller-Bichl. On the design and analysis of new cipher systems related to
the DES. Technical Report, Linz University, 1983.

