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Abstract Bias/variance analysis is a useful tool for investigating the performance of ma-
chine learning algorithms. Conventional analysis decomposes loss into errors due to aspects
of the learning process, but in relational domains, the inference process used for prediction
introduces an additional source of error. Collective inference techniques introduce addi-
tional error, both through the use of approximate inference algorithms and through variation
in the availability of test-set information. To date, the impact of inference error on model
performance has not been investigated. We propose a new bias/variance framework that de-
composes loss into errors due to both the learning and inference processes. We evaluate the
performance of three relational models on both synthetic and real-world datasets and show
that (1) inference can be a significant source of error, and (2) the models exhibit different
types of errors as data characteristics are varied.

Keywords Statistical relational learning - Collective inference - Evaluation

1 Introduction

Bias/variance analysis (Geman et al. 1992) has been used for a number of years to inves-
tigate the mechanisms behind model performance. This analysis has focused on loss as a
measure of classification performance—a loss function L(¢, y) defines the penalty for pre-
dicting class y for an instance x when its true class label value is ¢. Bias/variance analysis
decomposes the expected loss (E[L(¢, y)]) for an instance x into three components of er-
ror: bias, variance, and noise. Overall model loss can be reduced by reducing either bias
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or variance, but there is often a tradeoff between the two components when learning statis-
tical models. Searching over a larger model space, to estimate a more complex model, can
decrease bias but often increases variance. On the other hand, very simple models can some-
times outperform complex models due to decreased variance, albeit with higher bias (Holte
1993).

Conventional bias/variance analysis accounts for two sources of variability in expected
loss—the variation of true values ¢ due to noise in the domain and the variation in predicted
values y due to learning the model on different training sets (i.e., different samples from
the underlying distribution). Correspondingly, in the traditional decomposition, bias and
variance measure estimation errors associated with the learning technique. For example, the
Naive Bayes classifier typically has high bias due to the assumption of independence among
features, but low variance due to the use of a large sample (i.e., entire training set) to estimate
the conditional probability distribution for each feature (Domingos and Pazzani 1997).

The assumption underlying the conventional decomposition is that there is no variation
in expected loss due to (1) the inference process used for prediction, and (2) the available
information in the test set. Classification of relational data often violates these assumptions
when collective inference models are used.

Probabilistic models for independent and identically distributed (i.i.d.) data estimate a
conditional distribution for the target class label Y, given other attributes X, focusing on a
single instance i:'

pOYIX) = pOy'Ixy, x5, ).
In collective inference models (see e.g., Jensen et al. 2004), the predictive distribution for
Y is also conditioned on the attributes and the class labels of related instances R ={j : 1 <
J<nARG, H}:

p(y XL xE y®) = p(yiixd, .. .,x,';l,xfl,...,x;i,‘, .. .,x{", XDy,
When inferring the values of y’ for a number of interrelated instances, some of the values
of y® may be unknown (if the class labels of related instances are to be inferred as well).
Collective inference techniques infer the unobserved class labels values simultaneously, with
the aim of fully exploiting the dependencies among related instances.

However, the use of collective inference introduces a new source of variability that can
affect expected loss. Collective inference often requires the use of approximate inference
techniques, which may result in variation in the predicted values y for an instance x. For
example, the final prediction for x may depend on the initial (random) start state used during
inference, thus multiple runs of inference with the same model could result in different
predictions y. In addition, relational models are often applied to classify a partially labeled
test set, where the known class labels serve to seed the collective inference process. In this
case, the predicted values y may vary based on which instances are labeled in the test set.
Due to the heterogeneity of relational data graphs, it is likely that some instances will have
more of an impact on neighbor predictions than others, thus the set of instances that seed the
inference process may be a source of substantial variation. Note that this variation does not
occur in predictions from i.i.d. models—since the predictions are computed independently
for each instance, they do not vary based on the observed and/or predicted information for
other instances in the data.

THere we use superscripts to refer to instances and subscripts to refer to attributes.
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To date, the impact of inference variation on model performance has not been inves-
tigated. We propose a new bias/variance framework that decomposes expected loss into
components of error due to both the learning algorithm used to estimate the model and
the inference algorithm used for prediction. We evaluate the performance of three relational
models on synthetic data and of two models on real-world data, using the framework to un-
derstand the reasons for poor model performance. Each of the models exhibits a different
relationship between error and dataset characteristics—relational Markov networks (Taskar
et al. 2002) have higher inference bias in densely connected networks; relational dependency
networks (Neville and Jensen 2004) have higher inference variance when there is little in-
formation to seed the inference process; latent group models (Neville and Jensen 2005) have
higher learning bias when the underlying group structure is difficult to identify from the net-
work structure. Using this understanding, we propose a number of algorithmic modifications
to improve the performance of each model.

2 Framework

In conventional bias/variance analysis, loss is decomposed into three factors: bias, variance,
and noise (Geman et al. 1992; Friedman 1997; Domingos 2000; James 2003). Given an ex-
ample x, a model that produces a prediction f(x) =y, and a true value for x of 7, squared
loss is defined” as: L(t, y) = (t — y)>. The expected loss for an example x can be decom-
posed into bias, variance, and noise components. Here the expectation is over training sets
D—the expected loss is measured with respect to the variation in predictions for x when the
model is learned on different training sets: Ep [L(¢, y)] = B(x) + V(x) + N (x).

Bias is defined as the loss incurred by the mean prediction y,, relative to the Bayes-
optimal prediction y, (see e.g., Duda et al. 2001): B(x) = L(y«, ym). Variance is de-
fined as the average loss incurred by all predictions y, relative to the mean prediction y,,:
V(x) = Ep[L(ym,y)]. Noise is defined as the loss that is incurred independent of the learn-
ing algorithm, due to noise in the data set: N(x) = E,[L(¢, y.)].

Bias and variance measures are typically estimated for each test-set example x using
models learned from a number of different training sets. This type of analysis decomposes
model error to associate it with aspects of the learning process, not aspects of the inference
process used for prediction. The technique assumes that there is no variation in prediction if
the same model is applied multiple times to the same dataset. However, in relational datasets
there can be additional variation in model predictions due to the use of collective inference
techniques and due to the availability of test-set information. In order to accurately ascribe
errors to learning and inference, we have extended the conventional bias/variance framework
to incorporate errors due to application of the model for inference.

For relational data, we first define tofal loss, bias, and variance with respect to variation
due to both the learning and inference processes. Note that we focus on marginal squared
loss in this framework.

2Note that we use y as a general reference to the model prediction for instance x. However, when analyzing
probabilistic models we use the probability estimate for y rather than the most likely class value (i.e., y =
p(y =+) and not y = argmaxy p(y)). To compute loss (with binary class values), we set t = 1 if the true
class label is + and O otherwise.
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Definition 1 7otal loss for an instance x € D; is defined as Ey;[L(z, y)]. This is the ex-
pected loss for x over the training sets D used for learning, the inference runs / in the test
set Dy, and the true value ¢ for instance x.}

Definition 2 Total bias for an instance x € D; is defined as By (x) = (E;[t] — Er;[y])>.
This is the loss incurred by this mean prediction for x relative to its Bayes-optimal prediction
(v« = EL[t] = E;[t]), where the mean prediction E[y] is averaged over both the training
sets Dy used for learning and inference runs 7 in the test set D;.

Definition 3 Total variance for an instance x € D is defined as V7 (x) = E;[(EL;[y] —
y)?]. This is the average loss incurred by all predictions y, relative to the mean prediction
E;[y] over both learning and inference.

Notice the difference between our approach and conventional bias/variance decomposi-
tions is with respect to the expectations. In the conventional setting the expectation is over
learning alone (i.e., variation due to learning the model on different training sets). We are
now using an expectation over both learning and inference, capturing the variation in pre-
dictions due to different inference runs with the same learned model.

Following the standard decomposition for loss as described in (Geman et al. 1992), we
can decompose fotal loss into total bias, variance, and noise.

Lemmal E;;[L(t,y)] = Br(x) + Vr(x) + N(x).
Proof

Evi[L(t. y)] = Evil(t = y)’]

= Ep[t* =2ty +°]

= Epg[y’1 = 2EL [N Es[y] + Ep[*]

= Epg[y’]1 = EpglyP + Eng[yF = 2B E[y] + Ep[r°]

= Vr(x) + Epi[yl = 2ELi [t E [yl + ELy[£°]

= Vr(x) + Epi[y) = 2EL[Y1ELi[t] + Epg[t) — Epg[t) + Ep[17)]

= Vr(x) + (Epslt] = Engly])? = Evs[tF + Ep[r°]

= Vr(x) + Br(x) + Eps[1°] = Epy [t

= Vr(x) + Br(x) + Ep;[(t — Ef[1])?]

= Br(x) + Vr(x) + N(x). 0

In this decomposition the total bias By (x) and total variance Vr(x) are calculated with

respect to variation in model predictions due to both the learning and inference processes.
Note that the definition of noise is the same as in previous bias/variance decompositions—it

is the loss incurred independent of the chosen modeling technique, due to noise in the data
set.

3For notational simplicity, we refer to the expectation Ep, 1 ,[.], over datasets Dy, inference runs /, and
true value ¢ as Ep f[.].
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Now we define the learning bias and variance through expectations over training sets
alone (Dy), using Bayes-optimal predictions for related instances in the test set during in-
ference. This enables the application of exact inference techniques for prediction (since we
no longer need to perform collective classification) and ensures that the test-set information
most closely matches the information used during learning. Note that this part of the analy-
sis mirrors the conventional approach to bias/variance decomposition, isolating the errors
due to the learning process.

Definition 4 Learning bias for an instance x € Dy is defined as B, (x) = (E.[t]— EL[y])>.
This is the loss incurred by the mean prediction E;[y] averaged over the training sets Dy,
used for learning, relative to the Bayes-optimal prediction for that instance E; [¢]. During
inference we allow the model to use the Bayes-optimal predictions for all other instances in
the dataset (X — {x}), which isolates the error due to the learning process.

Definition 5 Learning variance for an instance x € D; is defined as V, (x) = E.[(E.[y] —
y)2]. This is the average loss incurred by all predictions y, relative to the mean prediction
E[y] over learning. Again, we use the Bayes-optimal predictions for all other instances in
the dataset (X — {x}) during inference.

Now we can define the inference bias and variance with respect to the learning compo-
nents.

Definition 6 Inference bias for an instance x € D; is defined as B;(x) = (E.[y]— Er;[y])>%.
This is the loss incurred by the mean prediction E;[y] (averaged over learning and infer-
ence), relative to the mean prediction over learning alone E[y].

Definition 7 Inference variance for an instance x € D; is defined as V;(x) = o — 8 =
EL[(ELly]l — v)21— EL[(EL;[y] — y)?]. This includes two variance components. The first
component « is the average loss incurred by all predictions y, relative to the mean learning
prediction E;[y]. The second component § is the average loss incurred by the predictions
for y that use exact inference (using Bayes-optimal predictions for all other instances in the
data), relative to the overall mean prediction E;;[y]. Inference variance is the difference
between the @ and  components.

We can now show that total bias is composed of the learning and inference bias compo-
nents.

Lemma 2 By(x) = Br(x) + B;(x) 4+ y, where y is an interaction bias term defined as
Yy =2[(ELlt] — EL[yD(EL[y] — ELi[yD].
Proof

Br(x) = (Er[t] — ELi[y])?
= EL[1]* = 2EL[t]ELi[y] 4+ ELi[y] 4+ 2EL[Y]EL[1]
—2EL[YIEL[]1+ EL[y) — EL[yP
= (EL[t] = ELIy)? = 2EL[t]EL;[y] + Ei[y) — EL[y)* +2EL[Y]EL[t]
= BL(x) + (ELly] — ELi[y])? — 2EL[t1EL [y] = 2EL [y
+2EL[YIEL[t] +2EL[Y]ELi[Y]
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= Br(x) + Br(x) +2[(EL[t] = ELlyD(ELlY] — Eri[yD]
=B.(x)+ B;(x)+v. U
Note that all bias terms are squared deviations. The relationship among the unsquared
bias components is trivial: E;;[t] — E /[yl = (EL[t] — ELly]) + (ELly] — EL;[y]). The y
component is thus an interaction term due to the quadratic expansion of Br. Positive values
of y occur when the mean prediction of the total distribution (E,;[y]) is farther from the
optimal prediction (E[¢]) than the mean prediction of the learning distribution (E[y]).
Negative values of y indicate that either (1) E.;[y] and E.[y] are on opposite sides of
E([t], or (2) EL[y] is farther from E[¢] than E;;[y]. We will revisit this issue below and
illustrate with an example.

Next we show that total variance is composed of the learning and inference variance
components.

Lemma 3 V7 (x)=V.(x) + V;(x).
Proof

Vi (x) = Eri[(Erily]l — »)*]
= Ep[Epilyl —2EL[yly + y* + ELly) — ELly® = 2E.[yly +2E.[y]y]
= Ep[(ELly] = )21+ ELf[Ep[yP = 2E1[yly — EL[y)* + 2EL[y]y]
=a+ E [yl —2EL[y) — EL[yP + 2EL[Y]EL[y]
=a— ELlyP + ELly’]1 = ELly’] = ELi[y]? + 2ELIY1EL[y]
=a+ EL(ELly] — y)’1 = EL[y’] — Eilyl + 2EL[y]ELi[y]
=a+Vo(x) = EL[y* + Eri [y — 2E1;[y]y]
=a+ V.(x) = EL[(ELi[y] = y)’]
=Vix)+(a—p8)
=Vi(x)+ Vi(x). O

Now we can show that total loss decomposes into learning bias/variance, inference
bias/variance, and noise.

Theorem 1 In collective classification settings, where there is variation in model predic-
tions due to both the learning and inference processes, total loss for an instance x can

be decomposed into the following components: overall noise, learning bias, inference bias,
learning variance, inference variance, and an interaction bias term y:

Ep[L(t,y)] = N(x)+ Br(x) + Br(x) + VL(x) + Vi(x) + .
Proof This follows directly from Lemmas 1-3. U

To illustrate the decomposition, consider the distributions of model predictions in Fig. 1.
We measure the variation of model predictions for an instance x in two ways. First, when we
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Fig. 1 Distributions of model BT
predictions illustrating bias and A
variance components. The é

Bayes-optimal prediction is B, B,

(using optimal neighbor --- Learni ng
predictions for exact inference);
the solid line denotes the total
distribution (using collective
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denotes the learning distribution 15
|
!
[}

Y ;Lm ;Tm

generate synthetic data we can record the data generation probability as the optimal predic-
tion y,. Next, we record marginal predictions for x from models learned on different training
sets, allowing the optimal predictions of related instances (y.) to be used during exact in-
ference. These predictions form the learning distribution, with a mean learning prediction
of y;,,. Finally, we record predictions for x from models learned on different training sets,
where each learned model is applied a number of times on the test set using collective infer-
ence. These predictions form the rotal distribution, with a mean fotal prediction of yr,,. The
model’s learning bias is calculated from the difference between y, and y;,,; the inference
bias is calculated from the difference between y;,, and yr,,. The model’s learning variance
is calculated from the dispersion of the learning distribution; the inference variance is cal-
culated as the difference between the rotal variance and the learning variance. Note that the
inference variance can be negative if the total variance is less than the learning variance.
This could happen if using the true class labels of neighbors for prediction results in a more
stable prediction than using the optimal probabilities.

Also, note that if the bias terms were not squared, the inference bias could be negative.
This would happen if the application of collective inference results in improved model pre-
dictions (compared to exact inference with optimal neighbor probabilities). This is reflected
in the y term in the decomposition. If y, < v, < yrm OF Y7 < Yim < Y&, then y will
be positive. This is the case that we would expect to see in practice—reflecting a degra-
dation in the quality of the predictions due to the use approximate collective inference in-
stead of exact inference with optimal neighbor information. However, if y, < yr,, < yp,, or
Yim < Yrm < Y&, then collective inference has improved performance and y will be negative.
The value of y will also be negative if y7,, < yx < yrm OF Yrm < Y« < yrm. This indicates
that different types of errors are made with collective inference and exact inference (i.e., one
overestimates the probability while the other underestimates it).

Finally, we note that since learning bias and variance are defined with respect to model
performance when all neighbors are optimally labeled, a model can exhibit low learning
bias without necessarily increasing the expressiveness of the hypothesis space it explores.
This can be achieved through the use of strong prior knowledge to restrict the hypothesis
space to very specific relational dependencies. For example, when the data exhibit strong
correlation among the class labels of related instances, very simple models that represent
autocorrelation* dependencies can achieve low learning bias. Indeed, there are very simple

4See Sect. 3.1.1 for a more detailed description of autocorrelation.
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relational models that do not learn at all but simply assume autocorrelation is present while
propagating information throughout the graph for inference (e.g., Macskassy and Provost
2007). Although these types of simple models will have low learning bias when these rela-
tional dependencies are present, the models will not enjoy uniformly superior classification
performance—they will only be successful in inference settings where there is enough infor-
mation (i.e., known class labels) to seed the inference process. In this case, the low learning
bias accurately reflects the ability of the models to represent the dependencies in the data.
‘When there are few labeled instances in the test set, model error will be due to inference bias
or inference variance (depending of the chosen inference technique). This more accurately
describes the source of the error in the model, which is due to characteristics of the test set
and the inference process.

3 Experiments

The experiments below illustrate the utility of our bias/variance framework for relational
model evaluation. We compare three models on synthetic data and two models on real-
world data, measuring squared loss and decomposing it into bias and variance components
for each model. The experiments assess model performance in a collective classification
context, where a single attribute is unobserved in the test set.

3.1 Data
3.1.1 Synthetic data

The synthetic datasets are homogeneous data graphs with relational autocorrelation. Re-
lational autocorrelation is a statistical dependency between the values of the same vari-
able (e.g., the class label) on related entities and is a nearly ubiquitous characteristic of
relational datasets (Jensen and Neville 2002; Taskar et al. 2002; Bernstein et al. 2003;
Hill et al. 2006). For example, hyperlinked web pages are more likely to share the same
topic than randomly selected pages.

Much of the success of collective inference techniques in relational domains is due to the
presence of autocorrelation in the data. When there are dependencies among the class labels
of related instances, the inferences about one instance can be used to improve the inferences
about other related instances. Collective inference techniques exploit these dependencies,
producing more accurate predictions than conditional inference for each instance indepen-
dently (Jensen et al. 2004).

More formally, we define relational autocorrelation with respect to an attributed graph
G = (V, E), where each node v € V represents an object (i.e., instance) and each edge
e € E represents a binary link (i.e., relation). Autocorrelation is measured for a set of
object pairs Pg related through paths of length I in a set of edges Eg: Pgr = {(vi, v;) :
€ikys Chykys - - -+ €k j € ER}, where Eg = {e;;} C E. It is the correlation between the values of
a variable X on the object pairs (v;.x, v;.x) such that (v;, v;) € Pg.

The autocorrelation in our synthetic datasets is due to an underlying (hidden) group
structure—where each group’s members are likely to have the same class label and group
members are more likely to link to each other than to objects in other groups. More specif-
ically, each object has a group G and four boolean attributes: a class label Y, and attributes
X1, X, and X3. Each group has an associated type T and each object’s Y value is determined
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from the type of its group. This procedure results in data where Y has an autocorrelation
level of 0.5 among pairs of directly linked objects.’

The generative process uses a simple model where Y depends only on the type of the
associated group, X; depends on Y, and the other two attributes have no dependencies. We
used the procedure below to generate a dataset with Ny objects and G g average group size:

1. Foreach group g, 1 < g < (Ng =No/Gs):
(a) Choose a value for group type t, from p(T).
2. For each objecti, 1 <i < Ng:
(a) Choose a group g; uniformly in [1, Ng].
(b) Choose a class value Y; from p(Y|7g,).
(c) Choose a value for Xy; from p(X,|Y).
(d) Choose values for X,; from p(X») and X3; from p(X3).
3. For each object j, 1 < j < Ng:
(a) Foreach objectk, j <k < Ny:
(i) Choose whether the two objects are linked from p(E|G; = Gy).

The following default parameter settings were used in the generation procedure:

No =250,
p(T) = {p(T =1)=0.50; p(T =0) = 0.50},
p(Y|Tg) = {p(Y = 1|Tg = 1) =0.90; p(Y =0|Tg = 0) = 0.90},
p(X1|Y) = {p(X, =1]Y =1) =0.75; p(X, =0]Y =0) =0.75},
p(X;=1)= p(X3=1)=0.50.

For the experiments, we generated four types of datasets with two groups sizes and two
levels of linkage:
Gs: small=5; large =25
Liyw|Gs =small: {p(E=1|G; =Gy)=0.50; p(E =1|G; # Gy) = 0.0008},
Lijign|lGs =small:  {p(E =1|G; = Gy) =0.80; p(E =1|G; # Gi) =0.004},
Liw|Gs=large: {p(E=1|G;=Gy)=0.20; p(E =1|G; # G;) =0.0008},
Figure 2 graphs a sample synthetic dataset with small group size and high linkage. The
final datasets are homogeneous—there is only one object type and one link type, and each

object has four attributes. After the groups are used to generate the data, we delete them
from the data—the groups are not available for model learning or inference.

SWe only report results for autocorrelation = 0.5 because varying autocorrelation does not alter the relative
performance of the models—Ilower levels of autocorrelation weaken the effects, higher levels strength the
effects reported herein.

@ Springer



96 Mach Learn (2008) 73: 87-106

Fig. 2 Sample synthetic dataset

3.1.2 Real world data

We used two real-world relational datasets for model evaluation. The first data set was
collected by the WebKB Project (Craven et al. 1998). The data consist of a set of 3,877
web pages from four computer science departments, manually labeled with the categories:
course, faculty, staff, student, research project, or other. We considered the unipartite co-
citation web graph. The classification task was to predict page category. As in previous
work on this dataset (Taskar et al. 2002), we do not try to predict the category “other”; we
remove these instances from the data after creating the co-citation graph.

The second data set is drawn from Cora, a database of computer science research pa-
pers extracted automatically from the Web using machine learning techniques (McCallum
et al. 1999). We considered the unipartite co-citation graph of 4,330 machine-learning pa-
pers. For classification, we sampled the 1669 papers published between 1993 and 1998. The
classification task was to predict one of seven paper topics (e.g., neural networks).

3.2 Models

We compare the performance of three different relational models: relational Markov net-
works (RMNs), relational dependency networks (RDNs), and latent group models (LGMs).

RMNs (Taskar et al. 2002), extend Markov networks to a relational setting, representing
a joint distribution over the values of the attributes in a network dataset. RMNs represent
the joint distribution using an undirected graphical model with a set of relational clique tem-
plates and corresponding potential functions. We defined clique templates for each pairwise
combination of class label value and attribute value, where the available attributes consisted
of the intrinsic attributes of objects, and both the class label and attributes of directly related
objects. We used maximum a posteriori parameter estimation to estimate the feature weights,
using conjugate gradient with zero-mean Gaussian priors, and a uniform prior variance of 5.
For inference, we used loopy belief propagation (Murphy et al. 1999).

RDNs (Neville and Jensen 2004) extend dependency networks (Heckerman et al. 2000)
to work with relational data in much the same way that RMNs extend Markov networks.
RDNs approximate the joint distribution with pseudolikelihood—modeling the joint with
a set of conditional probability distributions that are each learned independently. We used
relational probability trees (RPTs) (Neville et al. 2003) as the component CPD to model Y.
Note that the RPT is a selective model (i.e., the learning algorithm selects which features
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are relevant to the task), so it may not use all the available attributes. For inference, we used
Gibbs sampling with fixed-length chains of 2000 samples and a burn-in length of 100.

LGMs (Neville and Jensen 2005) specify a generative probabilistic model for the at-
tributes and link structure of a relational dataset. LGMs are a form of probabilistic relational
model that combine a relational Bayesian network (Getoor et al. 2001), link existence un-
certainty, and hierarchical latent variables. The model posits groups of objects in the data
of various types. Membership in these groups influences the observed attributes of objects,
as well as the existence of relations (links) among objects. LGMs use a sequential learning
approach—spectral clustering is used first to determine group membership based on the ob-
served link structure alone, then EM is used to learn the remainder of the model (i.e., infer
group types and estimate parameters). The resulting clusters are disjoint, and within each
group the class labels are conditionally independent given the group type, thus we can use
standard belief propagation for inference in the test set.

The synthetic data generation uses an LGM model with manually specified parameters.
However, we note that the LGM models evaluated below are different LGM models that
are learned from the training data. Due to modest training-set sizes, the learning procedure
will not recover the model used for data generation and thus the learned LGMs will have
non-zero bias.

3.3 Methodology

The experiments evaluate model performance in a collective classification context, where
a single attribute is unobserved in the test set. During inference we varied the number of
known class labels in the test set, measuring performance on the remaining unlabeled in-
stances. This serves to illustrate how model performance varies as the amount of information
seeding the inference process increases. We expect similar performance when other infor-
mation seeds the inference process—for example, when some labels can be inferred from
intrinsic attributes, or when weak predictions about related instances serve to constrain the
system.

3.3.1 Synthetic data

The synthetic data experiments explore the effects of relational graph and attribute structure
on model performance. We generated synthetic datasets with varying levels of linkage and
group structure. Group structure is used to control the inherent clustering of the data. We
generated data in the manner described above, and learned models to predict Y using the
intrinsic attributes of the object (X, X», X3) as well as the class label and attributes of
directly related objects (Y, X, X», X3). We generated disjoint training and test sets for use
in the procedure below and compared LGM, RDN, and RMN performance.

To decompose the learning and inference errors in the synthetic data experiments, we
used the following procedure:

1. For each outer trial i = {1, ..., 5}:
(a) Generate test set i; record optimal predictions.
(b) For each learning trial j ={1,...,5}:
(i) Generate training set j.
(i) Learn model of Y on training set j.
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(iii) Infer marginal probabilities for test set i with optimal labels;® record learning

predictions.
(iv) For each inference trial k = {1, ...,5} and proportion labeled p = {0.0, 0.3,
0.6}:
(A) Choose p% of test set randomly and reveal the correct class labels for those
objects.
(B) Infer marginal probabilities for unlabeled test objects and then record fotal
predictions.

(C) Measure squared loss.
(c) Calculate learning bias and variance from distributions of learning predictions. Cal-
culate inference bias and variance from distributions of fotal predictions.
2. Calculate average model loss, average learning bias/variance, and average inference
bias/variance.

3.3.2 Real world data

The real-world data experiments evaluate the models in two illustrative real-world scenarios.
In these experiments, we only evaluate LGM and RDN models. This is due to the compu-
tational complexity of learning the RMNs on large datasets with many relational attributes.
Instead of closed-form parameter estimation, RMNs are trained with conjugate gradient
methods, where each iteration requires a round of collective inference. In the scenarios we
consider below, the cost of inference is prohibitively expensive to use successively during
learning.

The first scenario is classification in the WebKB data. The task was to predict page cat-
egory in the co-citation graph using the intrinsic attributes of the pages and the class labels
and attributes of hyperlinked pages. We sampled by department and treated each of the four
departments as a disjoint test set for the outer trials, while learning different models on each
of the (;) other departments for the learning trials.

The second scenario is classification in the Cora data. The task was to predict paper topic
in the co-citation graph using the intrinsic attributes of the papers and the class labels and
attributes of cited papers. We used temporal sampling in which we learned models on one
year of data and applied the models to the subsequent year. We considered each year from
1994-1998 as a test set in the outer trials. For each of these years, we used the sample from
the previous year as the training set and employed snowball sampling (Goodman 1961) to
partition the data into three samples for the learning trials.

To decompose the learning and inference errors in the real-data experiments, we used the
following procedure:

1. For each outer trial i:
(a) Record class labels of test set i as the optimal predictions.
(b) For each learning trial j:
(i) Learn model of Y on training set j.
(ii) Infer marginal probabilities for test set i with optimal labels; record learning
predictions.
(iii) For each inference trial k = {1, ...,5} and proportion labeled p = {0.0,0.3,
0.6, 0.9}:

6Predictions for instance i will use the optimal predictions for related objects in the graph (i.e., x — {x;}) as
the correct class labels for those instances.
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(A) Choose p% of test set randomly and reveal the correct class labels for those
objects.
(B) Infer marginal probabilities for unlabeled test objects and then record fotal
predictions.
(C) Measure squared loss.
(c) Calculate learning bias and variance from distributions of learning predictions. Cal-
culate inference bias and variance from distributions of fotal predictions.
2. Calculate average model loss, average learning bias/variance, and average inference
bias/variance.

In the real data experiments we do not have a generative model for the data so we need
to approximate the optimal probabilities for use in the bias/variance decomposition. As in
previous bias/variance analysis (see e.g., James 2003), we use empirical estimates of the
Bayes-optimal predictions in place of the true optimal predictions. The Bayes-optimal pre-
diction for an example x; is:

1 = x Ay =+

— r__ —
=P = =
In conventional bias/variance analysis, x' records the set of intrinsic attributes about in-
stance i. In relational data, when we use the attributes and class labels of related instances
for prediction, our representation for calculating the Bayes-optimal prediction should in-
clude more than just the intrinsic attributes of i. However, in real-world relational datasets,
when we consider the class labels and attributes of neighboring examples along with the
intrinsic attributes of i (i.e., {x’, xR, y®}), there is very little similarity among instances. In
fact, in the Cora and WebKB datasets, 100% of examples are unique when we represent an
instance i as {x;, x®,y®} (ie., |[{x" : x' =x'}| =1).

When the relational instances are unique, the Bayes-optimal prediction corresponds to
the true value of the class label (i.e., y, = {1 if y' = +; 0 otherwise}). For the real-data
experiments, we use this approximation to compute the learning bias and variance. If the
approximation of the Bayes optimal prediction is inaccurate, it can affect estimates of all
bias components. The bias measurements of conventional bias/variance methods would be
affected similarly. However, in our framework, approximation error can also affect esti-
mates of learning variance because its calculation uses the Bayes-optimal probabilities for
neighbors during inference. Since the approximation of Bayes-optimal predictions is only
necessary in real datasets, this indicates that researchers should conduct both synthetic and
real data experiments to fully investigate model performance.

3.4 Results
3.4.1 Synthetic data

Figure 3 graphs performance on four different types of data. The first set of data has small
group size and low linkage, thus we expect it will be difficult for the models to exploit
the autocorrelation in the data due to low connectivity. The second set of data has small
group size but high linkage, thus we expect the models will be able to exploit neighbor
information more effectively. The third set of data has large group size and low linkage. We
expect the LGM models to be more accurate on data with large group sizes because they can
incorporate information from a wider neighborhood than RDNs and RMNs, which use only
local neighbor information. The fourth set of data has large group size and high linkage—we
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Fig. 3 Bias/variance analysis on synthetic data. Note that the y-axes are not aligned
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expect the models will be able to exploit autocorrelation dependencies most effectively in
these data, due to high connectivity and clustering.

Figure 3 graphs the squared loss decomposition for each model as the level of test-set
labeling is varied. When group size is small and linkage is high (row b), LGMs are out-
performed by the other two models when the test data are at least partially labeled. The
bias/variance decomposition shows that poor LGM performance is due to high learning
bias. This is likely due to the LGM algorithm’s inability to identify the latent group struc-
ture when group size is small and linkage is high. The LGM learning procedure uses a
sequential approach where the data are clustered into groups using the link structure alone
and the remainder of the model is learned given the identified group structure. When den-
sity of linkage between groups is relatively high compared to group size, it will be difficult
for the clustering algorithm to correctly identify the fine-grained underlying group structure,
and this in turn will bias the learned model. When LGMs are given the true underlying group
structure, this bias disappears.

When group size is large and linkage is low (row c), RMNs are outperformed by the
other two models regardless of the level of test-set labeling. The bias/variance decomposi-
tion shows that poor RMN performance is primarily due to high learning variance. Although
the RMN has high inference bias across all four types of data, for this setting it experiences
particularly high learning variance. This is somewhat offset by negative inference variance
(i.e., inference reduces the overall variance of the predictions) but not completely. This in-
dicates that the RMN learning procedure is overfitting to the training set, which may be due
to a larger model space (the combination of larger group size and sparse linkage results in
a larger number of possible weight configurations). We experimented with a wide range of
priors to limit the impact of overfitting but the effect remained consistent.

The high inference bias exhibited by RMNs is likely due to the use of loopy belief prop-
agation (LBP) for inference. Regardless of our linkage setting, there are likely to be many
short cycles in the graphs since the objects are clustered in groups. These short cycles will
degrade the quality of LBP inference because they violate its implicit assumption of tree-
like graphs (i.e., that there are only very long cycles). When LBP is applied to collectively
infer the labels in a test set with little seed information, the inference process may converge
to extreme autocorrelated labellings (e.g., all positive labels in some regions of the graph,
all negative labels in other regions), resulting in high inference bias.

When group size is large and linkage is high (row d), RDNs perform worse than LGMs
when there is 0% test-set labeling but perform significantly better when the test data are
partially labeled. The bias/variance decomposition shows that poor RDN performance is
due to high inference variance, which decreases as labeling increases. The RDN inference
algorithm uses Gibbs sampling, seeded with a randomly labeled test set. When there are few
labeled objects in the test set, the inference process may be unduly influenced by the initial
random labeling of the test set if the RDN model has selected the class label in lieu of other
known attributes in the data. When such RDN models are applied to an unlabeled test set, the
initial random Gibbs labeling may bias the inference process to converge to widely varying
labellings. Thus the initial random labeling can increase the variance of predictions over
multiple runs of inference, particularly when there is little information to seed the inference
process.

Figure 4 graphs the y values for each type of synthetic data. Recall that positive values of
y indicate that the mean prediction of the total distribution (yr,,) is farther from the optimal
prediction (y,) than the mean prediction of the learning distribution (y,,,) and that both
deviate in the same direction. Negative values of y indicate that either (1) yz,, and y.,, are
on opposite sides of y,, or (2) y.,, is farther from y, than yr,, (i.e., inference improves the
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Fig. 4 Synthetic data experiments: y component

model’s predictions). The negative y values for RMN models are due to the first case. When
the model uses the optimal neighbor labels for prediction, the RMN makes one type of error
(e.g., undershooting the optimal probability), and when the model uses collective inference
for prediction it makes the other type of error (e.g., overshooting the optimal probability).
This occurs consistently across the four types of synthetic data that we used for evaluation.

3.4.2 Real-world data

Figure 5 graphs LGM and RDN performance on the WebKB data. On these data the LGM
model outperforms the RDN model, most significantly at the 30% level of labeling. This
is primarily due to high inference bias. Notice that the LGM inference bias decreases more
quickly than the RDN inference bias as labeling increases. This shows how the LGM model
is able to more fully exploit the information in a partially labeled test set. Also, in these
data the LGM model has consistently lower values of learning bias, inference bias, and
learning variance. The LGM only underperforms in terms of inference variance, which is
counter to what we observed in the synthetic data experiments when the RDN demonstrated
high inference variance. This may indicate that the approximation to the optimal predictions
ascribes more variance to the learning component than it should.

Figure 6 graphs LGM and RDN performance on the Cora data. On these data the RDN
model outperforms the LGM model at low levels of test-set labeling. This is due to higher
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Fig. 5 Bias/variance analysis on WebKB data. Note that the y-axes are not aligned
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Fig. 6 Bias/variance analysis on Cora data. Note that the y-axes are not aligned

bias—both learning and inference bias. At 0% labeled the inference bias dominates, but at
30% labeled the learning bias dominates. This shows the change in the components of error
as the test-set characteristics vary. When there are many labeled objects in the test set, the
error components more closely resemble the conventional bias/variance decomposition that
attributes error to the learning process alone.

4 Discussion

The synthetic data experiments measure model performance over a range of data charac-
teristics, illustrating the situations in which we can expect each model to perform well. In
particular, both the LGM and RDN models perform close to optimal” when group size is
large and linkage is high (row d). This indicates that as clustering and connectivity increase,
the performance of relational models may improve (given moderate levels of autocorrela-
tion).

These experiments have shown several characteristics of relational data that can impact
model performance. Graph structure, autocorrelation dependencies, and amount of test-set
labeling, all affect relational model performance. LGMs are more robust to sparse labeling

7For these datasets, N7 = 0.09 so the models cannot achieve a squared loss lower than 0.09.
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and perform well when graph clustering is high. When the underlying groups are small and
linkage is low, LGMs experience high learning bias due to poor cluster identification. RDNSs,
applied with Gibbs sampling, experience high variance on test data with sparse labeling, but
perform well across a wide range of graph structures. RMNs, applied with loopy belief
propagation, have higher bias on densely connected graphs, but are more robust to sparse
test-set labeling. Our analysis has demonstrated the error introduced by the use of collective
inference techniques and how that error varies across models and datasets. This suggests
a number of directions to pursue to improve model performance—either by incorporating
properties of the inference process into learning or through modification of the inference
process based on properties of learning.

These experiments also help us understand model limitations and suggest a number of
ways to improve the design of relational learning/inference algorithms. To improve LGM
performance, we need to improve the identification of clusters when inter-group linkage
drowns out a weak intra-group signal. This may be achieved by the use of alternative cluster-
ing techniques in the LGM learning approach, or through the development of a joint learning
procedure that clusters for groups while simultaneously estimating attribute dependencies in
the model.

To improve RDN performance, we need to improve inference when there are few la-
beled objects in the test set. This may be achieved through the use of non-random initial
labeling to seed the Gibbs sampling procedure. We have started exploring the use of rela-
tional probability trees (Neville et al. 2003), learned on the known attributes in the data,
to predict class labels for use in the initial Gibbs labeling. Preliminary results indicate that
this modification to the inference procedure reduces RDN loss by 10-15% when there is
0% test-set labeling. Alternatively, we could improve the RDN learning algorithm by using
meta-knowledge about the test set to bias the feature selection process. For example, if we
know that the model will be applied to an unlabeled test set, then we can bias the selective
learning procedure to prefer attributes that will be known with certainty during the inference
process.

Finally, to improve RMN performance, we need to improve inference when connectivity
is high, either when there are large clusters or when overall linkage is dense. This may
be achieved through the use of approximate inference techniques other than loopy belief
propagation, or through the use of aggregate features in clique templates (that summarize
cluster information) rather than using redundant pairwise features. Alternatively, when using
pairwise clique templates in a densely connected dataset, it may be helpful to downsample
the links in the graph to reduce inference bias.

5 Conclusion

This paper presents a new bias/variance framework that decomposes squared-loss error for
model systems, which consist of a learning algorithm for model estimation and an inference
algorithm used for prediction. To date, work on relational models has focused primarily
on the development of models and algorithms rather than the analysis of mechanisms be-
hind model performance. In particular, the impact of collective inference techniques applied
to graphs of various structure has not been explored. This work has demonstrated the ef-
fects of graph characteristics on relational model performance, illustrating the situations in
which we can expect each model to perform well. These experiments also help us under-
stand model limitations and suggest a number of ways to improve the design of relational
learning/inference algorithms.
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There are a number of ways to improve on our initial work with this framework. First, to
facilitate a more extensive analysis of models on real datasets, we are developing (1) rela-
tional kernel density estimation techniques to approximate the optimal predictions in a more
accurate manner, and (2) relational resampling techniques to generate a more representative
set of training samples from a single interconnected training graph. Next, we are examining
the interaction effects between learning and inference errors at a local level to inform and
guide the design of joint learning and inference procedures. Procedures that take the char-
acteristics of inference algorithms into account and bias the learning process are likely to
produce more robust and accurate relational models (Wainwright 2005). Finally, we plan to
extend the framework to analyze additional aspects of model performance. In particular, the
analysis of alternative loss functions (e.g., zero-one) and analysis of errors when estimating
the full joint (rather than marginals), will increase our understanding of model performance
over a wider range of conditions.
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