Airfield Design Specifications

Prof. Amedeo R. Odoni

Airport Systems Course Massachusetts Institute of Technology Fall 2004

Airport Design Specifications

The two most-commonly used sources of geometric specifications for airfield design are:

1. ICAO Annex 14 ("Aerodromes") and associated supplements and manuals
2. FAA Advisory Circular 150/5300-13 ("Airport Design")
FAA updates of specifications are usually developed earlier than updates to ICAO Annex 14 (e.g., Group VI standards)

Airfield Design Specifications

Objective:

+ To outline briefly the fundamental ideas behind the design specifications of airfields
Topics:
+ Principal sources
+ ICAO and FAA reference codes
+ Airport/aircraft compatibility issues

Reference: Chapter 9

Classification (FAA)	
Aircraft Approach Category A: Speed < 91 knots B: [91-121) knots C: [121-141) knots D: [141-166) knots E: Speed 166+ knots	Airplane Design Group I: Wing < $49 \mathrm{ft}(15 \mathrm{~m})$ II: [49-79) ft ($15-24 \mathrm{~m}$) III: [79-118) ft (24-36) IV: [118-171) ft (36-52) V: [171-214) ft (52-65) VI: [214-262) ft (65-80)

Airport Reference Codes (ICAO)

Code $\#$	Field length	Code letter	Wing span	Main gear wheel span
1	Up to 800 m	A	Up to 15 m	Up to 4.5 m
2	$800-1200 \mathrm{~m}$	B	$15-24 \mathrm{~m}$	$4.5-6 \mathrm{~m}$
3	$1200-1800 \mathrm{~m}$	C	$24-36 \mathrm{~m}$	$6-9 \mathrm{~m}$
4	$1800 \mathrm{~m}+$	D	$36-52 \mathrm{~m}$	$9-14 \mathrm{~m}$
		E	$52-65 \mathrm{~m}$	$9-14 \mathrm{~m}$
		F	$65-80 \mathrm{~m}$	$14-16 \mathrm{~m}$

Remarks re ICAO and FAA Airport Reference Codes

Essentially all major commercial airports are in ICAO Code \#4
Main gear wheel span (ICAO) is "dominated" by wing span
ICAO Code Letters A-F wing spans correspond exactly to FAA Airplane Design Groups I-VI wing spans
Most geometric specifications for airports are determined by the wing span of the most demanding (or "critical") aircraft (>500 operations per year)

Airport/Aircraft Compatibility

Problems with the 747-400

+ Civilian aircraft with 64.9 meter wingspan
-- Outside Group V and Code 4E when introduced
${ }^{+}$Changes in Group V, Code 4E definitions were made as a result
Problems with new, larger aircraft
+ When specifications are not met, airport may be unable to accommodate aircraft or special procedures may be required (possibly resulting in congestion or under-utilization)

Runway Separations for Aircraft Approach Cat. C-D

| Runway
 Centerline
 To... | AIRPLANE DESIGN GROUP | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | I | II | III | IV | V | VI |
| | NON-PRECISION INSTRUMENT ANDVISUAL | | | | | |
| Hold Line | 250 ft
 75 m |
| Taxiway | 300 ft | 300 ft | 400 ft | 400 ft | $400 / 450 / 500$ | 600 ft |
| Centerline | 90 m | 90 m | 120 m | 120 m | $120 / 135 / 150$ | 180 m |
| Parking | 400 ft | 400 ft | 500 ft | 500 ft | 500 ft | 500 ft |
| Area | 120 m | 120 m | 150 m | 150 m | 150 m | 150 m |
| PRECISIONINSTRUMENT | | | | | | |
| Hold Line | 250 ft | 250 ft | 250 ft | 250 ft | 280 ft | 325 ft |
| | 75 m | 75 m | 75 m | 75 m | 85 m | 98 m |
| Taxiway | 400 ft | 400 ft | 400 ft | 400 ft | $400 / 450 / 500$ | 600 ft |
| Centerline | 120 m | 120 m | 120 m | 120 m | $120 / 135 / 150$ | 180 m |
| Parking | 500 ft |
| Area | 150 m |

Airfield Capacity

Objective

+ To summarize fundamental concepts re. airfield capacity

Topics

+ Definitions of capacity
\rightarrow Factors affecting capacity
+ Separation requirements
\rightarrow A simple model for a single runway
+ Capacity envelopes and capacity coverage chart Reference: Chapter 10

Capacity Measures

Maximum-Throughput Rate

- Average number of demands a server can process per unit of time when always busy
- μ = maximum throughput rate
- $E(t)=$ expected service time
$\mu=\frac{1}{E(t)}$
Level of Service (LOS) related capacity
- Number of demands processed per unit of time while meeting some pre-specified LOS standards (must know μ to compute)

Less Common LOS-Related Capacity Definitions

Practical Hourly Capacity

The average number of operations that can be performed in one hour on a runway (or, more generally, a system of active runways) with an average delay per operation of 4 minutes.

Sustained Capacity

The average number of operations per hour that can be "sustained" for periods of several hours; vaguely-defined, typically workload-related.

Definitions: Runway Capacity*

Maximum Throughput (or Saturation) Capacity

The expected ("average") number of runway operations (takeoffs and landings) that can be performed in one hour without violating ATC rules, assuming continuous aircraft demand.

Declared Capacity

The capacity per hour used in specifying the number of slots available for schedule coordination purposes; used extensively outside US; no standard method for its determination; no generally accepted LOS; typically set to about $85-90 \%$ of saturation capacity; may be affected by apron capacity and terminal capacity

* These definitions can be applied to a single runway or to the entire complex of runways at an airport.

Factors Affecting Capacity

Number and layout of active runways
Separation requirements (longitudinal, lateral)
Weather (ceiling, visibility)
Wind (direction, strength)
Mix of aircraft

Mix and sequencing of operations (landings, takeoffs, mixed)
Quality and performance of ATM system (including human factor -- pilots and controllers)
Runway exit locations
Noise considerations

Role of ATC Separation Requirements

Runway (and airfield) capacities are constrained by ATC separation requirements
Typically aircraft are separated into a small number (3 or 4) of classes
Example: FAA classification

+ Heavy (H): $255000 \mathrm{lbs}<$ MTOW
+ Large (L): $41000 \mathrm{lbs}<$ MTOW < 255000 lbs
+ Small (S): MTOW < 41000 lbs
Required separations (in time or in distance) are then specified for every possible pair of aircraft classes and operation types (landing or takeoff)
Example: "arrival of H followed by arrival of S"

IFR Separation Requirements: Single

Runway (USA)

Arrival-Arrival:

(1) Airborne separations on final approach (nmi):

Trailing aircraft				
		H	L or B757	S
	H	4	5	$5 / 6^{*}$
Leading	B757	4	4	5
aircraft	L	2.5 (or 3)	2.5 (or 3)	$3 / 4^{*}$
	S	2.5 (or 3)	2.5 (or 3)	2.5 (or 3)

* Applies when leading aircraft is at threshold of runway
(2) Leading aircraft must be clear of the runway before trailing aircraft touches down

IFR Separation Requirements: Single Runway (USA) [2]
Departure-Departure (approximate, in seconds)

		Trailing aircraft		
		H	$\mathrm{L}+\mathrm{B} 757$	S
Leading aircraft	H	90	120	120
	B 757	90	90	120
	L	60	60	60
	S	45	45	45

Arrival-Departure and Departure-Arrival
Leading aircraft must be clear of runway at the instant when trailing aircraft starts takeoff roll or touches down on the runway, respectively. In D-A case, trailing arrival must also be at least $2 \mathbf{n m i}$ from runway when takeoff run begins

Separation Requirements (Italy; until recently)

Parallel Runways (IFR): USA

Separation between runway centerlines	Arrival/ arrival	Departurel departure	Arrival/ departure	Departure/ arrival
$700-2499$ ft	As in single runway	As in single runway	Arrival touches down	Departure is clear of runway
$2500-4300$ ft	1.5 nmi (diagonal)	Indep'nt	Indep'nt	Indep'nt
$4,300 \mathrm{ft}$ or more	Indep'nt	Indep'nt	Indep'nt	Indep'nt

Staggered parallel runways; the "near" runway is used for arrivals and the other for departures

A low- capacity configuration in VMC at Boston Logan

Typical Approach for Estimating Airside Capacity

1. Compute average time interval for all possible aircraft class pairs \mathbf{i}, \mathbf{j}
$t_{\mathrm{ij}}=$ average time interval between successive movements of a pair of aircraft of types i and j (i followed by j) such that no ATC separation requirements are violated
2. Compute probability for all \mathbf{i}, \mathbf{j}
$\mathrm{p}_{\mathrm{ij}}=$ probability of occurrence of the pair of aircraft types i and j (i followed by j)
3. Compute overall average service time

$$
E(t)=\sum_{i} \sum_{j} p_{i j} \cdot t_{i j} \quad \mu=\frac{1}{E(t)}
$$

Numerical Examole				
Given: Single Runway (Arrivals Only: IFR) $\mathrm{n}=5 \mathrm{~N} \text {. Miles }$	Aircraft Types			
	Type	Mix (\%)	Approach Speed (kts)	Runway Occupancy Time (secs)
	Heavy (1)	20	140	60
	Large (2)	50	120	55
	Small (3)	30	100	50
$\left[S_{i j}\right]=\begin{gathered} 1 \\ 1 \end{gathered} \begin{array}{cc} 1 & 3 \\ 2 \\ 3 \end{array}\left[\begin{array}{ccc} 4 & 5 & 6^{*} \\ 3 & 3 & 4^{*} \\ 3 & 3 & 3 \end{array}\right]$		Applies on hreshold (al apply throug	ly with lead a other separ hout final app	aft at ns ach).

Single Runway Model: Arrivals Only

Consider two aircraft, i and j. Let

+ $\mathrm{n}=$ length of final approach (typically $5-8 \mathrm{n} . \mathrm{mi}$.)
$+\mathrm{s}_{\mathrm{ij}}=$ separation in air between i and j
$+v_{i}, v_{j}=$ approach speed of i, j
$+\mathbf{o}_{i}, \mathbf{o}_{\boldsymbol{j}}=$ runway occupancy time of i, j
$+\mathrm{T}_{\mathrm{i}, \mathrm{j}}=\quad$ min. time separation between i and j at runway
Assume $\mathrm{v}_{\mathrm{i}}>\mathrm{v}_{\mathrm{j}}$
- Opening Case: Aircraft i precedes j

$$
T_{i j}=\max \left(\frac{n+S_{i j}}{v_{j}}-\frac{n}{v_{i}}, o_{i}\right)
$$

- Closing Case: Aircraft j precedes

$$
T_{j i}=\max \left(\frac{s_{j i}}{v_{i}}, o_{j}\right)
$$

Graphical Description of the Model

Effect of Airborne Separation Requirement

+Closing Case

- Second aircraft is faster, and must have required separation distance from first aircraft at runway threshold; separation at merge area (beginning of final approach) is greater than minimum

+ Opening Case

- Second aircraft is slower, and must meet separation requirement from first aircraft in merge area when approach is initiated; separation at runway threshold is greater than minimum

Matrix of Minimum Separations [2]

- Closing Case
$T_{31}=\max \left(\frac{3 \mathrm{n} . \mathrm{mi.}}{140 \mathrm{knots}}, 50 \mathrm{sec}\right)$

$$
=\max (77 \mathrm{sec}, 50 \mathrm{sec})=77 \mathrm{sec}
$$

- Stable Case
$T_{22}=\max \left(\frac{3 \mathrm{n} . \mathrm{mi.}}{120 \mathrm{knots}}, 55 \mathrm{sec}\right)$
$=\max (80 \mathrm{sec}, 55 \mathrm{sec})=80 \mathrm{sec}$
- "Special" Case (also T_{23})
$T_{13}=\max \left(\frac{6 \text { n.mi. }}{100 \mathrm{knots}}, 60 \mathrm{sec}\right)$
$=\max (216 \mathrm{sec}, 60 \mathrm{sec})=216 \mathrm{sec}$

Matrix of Minimum

 Separations\rightarrow The number $T_{i j}$ in row i and column j is the minimum separation(sec) for the case of aircraft type i followed by type j

$$
T_{i j}=\left[\begin{array}{ccc}
103 & 171 & 216 \\
77 & 90 & 144 \\
77 & 90 & 108
\end{array}\right]
$$

- Opening Case

$$
T_{12}=\max \left(\frac{10 \mathrm{n} . \mathrm{mi} .}{120 \mathrm{knots}}-\frac{5 \mathrm{n} . \mathrm{mi} .}{140 \mathrm{knots}}, 60 \mathrm{sec}\right)
$$

$$
=\max (171 \mathrm{sec}, 60 \mathrm{sec})=171 \mathrm{sec}
$$

Matrix of Average Time Separations

The t_{ij} indicate the average separation (sec) between an aircraft of type i and a following aircraft of type j.

$$
\begin{aligned}
& t_{i j}=T_{i j}+b \\
& t_{i j}=\left[\begin{array}{ccc}
113 & 181 & 226 \\
87 & 100 & 154 \\
87 & 100 & 118
\end{array}\right]
\end{aligned}
$$

Matrix of Pair Probabilities

${ }^{\boldsymbol{q}}$ Let $\mathrm{p}_{\mathrm{ij}}=$ probability that an aircraft of type i will be followed by one of type j

+ Assume first-come, first-served (FCFS) runway service

$$
p_{i j}=\left[\begin{array}{ccc}
0.04 & 0.1 & 0.06 \\
0.1 & 0.25 & 0.15 \\
0.06 & 0.15 & 0.09
\end{array}\right]
$$

Example

- 20\% of aircraft are Type 1, 50\% are Type 2
- Therefore, the probability of a Type 1 followed by a Type 2 is: $p_{12}=(0.2)^{*}(0.5)=0.1$

Note: This is valid only for an FCFS system; no sequencing

Numerical Example [3]

+ By multiplying the corresponding elements of the matrices $\left[p_{i j}\right]$ and $\left[t_{i j}\right]$ we can compute the average separation (in seconds) between a pair of aircraft on the runway in question.

That is:	Numerically:
$E(t)=\sum_{i} \sum_{j} p_{i j} \cdot t_{i j}$	$E(t)=(0.04)(113)+(0.1)(181)+(0.06)(226)$
$\star \quad \mathbf{E (t)}=\mathbf{1 2 4}$ seconds	$+(0.1)(87)+(0.25)(100)+(0.15)(154)$
	$+(0.06)(87)+(0.15)(100)+(0.09)(118)$

$$
\begin{aligned}
& \text { Saturation } \\
& \text { Capacity }
\end{aligned}=\frac{3600 \text { seconds }}{124 \text { seconds }}=29 \text { aircraft }
$$

Numerical Example [4]

The variance (a measure of variability) of the service times (intervals between successive landings in this case) can also be computed from:

$$
\sigma_{t}^{2}=\sum_{i} \sum_{j} p_{i j} \cdot\left[t_{i j}-E(t)\right]^{2}
$$

Or,
$(0.04)(113-124)^{2}+(0.1)(181-124)^{2}+\ldots .+(0.09)\left((118-124)^{2}\right.$
$=1542 \mathrm{sec}^{2}$
The standard deviation, $\sigma_{t}=\sqrt{ } 1542=39$ seconds

Sensitivity of the model

The model (and the runway's arrival capacity) is sensitive to

+ Airborne separation requirements (regular and waketurbulence related)
+ Runway occupancy times
+ Final approach speeds of aircraft
+ Length of final approach
+ Safety-related margins (buffers) allowed by air traffic controllers
+ Mix of traffic (homogeneity)
+ Sequencing of aircraft

A typical capacity envelope for a single runway

Capacity envelope when operating with strings of arrivals and departures

Capacity envelope for two parallel runways, one used for arrivals and the other for departures

A hypothetical capacity envelope for a multirunway airport with mixed use of the runways

Capacity Coverage Chart

CCC shows how much capacity is available for what percentage of time

Assumptions:

- airport will operate at all times with the highest capacity configuration available for prevailing weather/wind conditions
- the capacity shown is for a 50\%-50\% mix of arrivals and departures
Note: Neither of these assumptions is necessarily true in practice (e.g., noise may be principal consideration in selecting configuration during periods of low demand)

Annual Capacity Coverage Chart: Boston/Logan					

Runway configuration usage at Boston/Logan, January 1999 (from Logan FAA tower logs)

Range of Airfield Capacities

The capacity of a single runway varies greatly among airports, depending on local ATC rules, traffic mix, operations mix, local conditions and the other factors identified earlier (12-60+ movements per hour is possible)
At major commercial airports, in developed countries, the range is $\mathbf{2 5 - 6 0}$ movements per hour for each runway
Depending on the number of runways and the airport's geometric configuration, total airfield capacity of major commercial airports ranges from 25 per hour to 200+ per hour

Airport Capacity: US vs. Non-US

- FAA capacity benchmarks (2001): 31 busiest airports
+ 24 of 31: VMC capacity > 100/hour; range: 50-270
+16 of 31: IMC capacity > 100/hour; range: 45-184
+ 14 of 31: Plan a new runway by 2010 (none of the 7 most congested); capacity benefits of $17-50 \%$
+ Capacity benefits due to ATM by 2010: 0 - 17\% (mostly 3 -13\%)
+ www.faa.gov/events/benchmarksl
- Airports elsewhere enjoy a significant advantage in average aircraft size and serve fewer aircraft operations for same number of annual passengers ...but this may be diluted by deregulation and by growth in regional services
- Only three non-US airports with capacity > 100/hour (!)

