Airfield Design Specifications

Prof. Amedeo R. Odoni

Airport Systems Course Massachusetts Institute of Technology Fall 2004

Airfield Design Specifications

Objective:

To outline briefly the fundamental ideas behind the design specifications of airfields

Topics:

- Principal sources
- ICAO and FAA reference codes
- Airport/aircraft compatibility issues

Reference: Chapter 9

Airport Design Specifications

- The two most-commonly used sources of geometric specifications for airfield design are:
 - 1. ICAO Annex 14 ("Aerodromes") and associated supplements and manuals
 - 2. FAA Advisory Circular 150/5300-13 ("Airport Design")
- FAA updates of specifications are usually developed earlier than updates to ICAO Annex 14 (e.g., Group VI standards)

Classification (FAA)

Aircraft Approach Category	<u>Airplane Design Group</u>
• A: Speed < 91 I:	Wing < 49 ft (15 m)
knots II:	: [49 - 79) ft (15-24 m)
B: [91 - 121) knots	: [79 - 118) ft (24-36)
C: [121 - 141) knots	/• [118 - 171) ft (36-52)
D: [141 - 166) knots	[170 - 171] ((30-32)
E: Speed 166+	: [1/1 - 214) ft (52-65)
	l: [214 - 262) ft (65-80)

Airport Reference Codes							
(ICAO)							
Code #	Field length	Code	Wing span	Main gear			
1	Up to 800 m	A	Up to 15 m	Up to 4.5 m			
2	800-1200 m	В	15 – 24 m	4.5 – 6 m			
3	1200-1800 m	С	24 – 36 m	6 – 9 m			
4	1800 m +	D	36 – 52 m	9 – 14 m			
		E	52 – 65 m	9 –14 m			

F

65 – 80 m

14 –16 m

Remarks re ICAO and FAA Airport Reference Codes

- Essentially all major commercial airports are in ICAO Code #4
- Main gear wheel span (ICAO) is "dominated" by wing span
- ICAO Code Letters A-F wing spans correspond exactly to FAA Airplane Design Groups I-VI wing spans
- Most geometric specifications for airports are determined by the wing span of the most demanding (or "critical") aircraft (>500 operations per year)

Airport/Aircraft Compatibility

- Problems with the 747-400
 - → Civilian aircraft with 64.9 meter wingspan
 - -- Outside Group V and Code 4E when introduced
- Changes in Group V, Code 4E definitions were made as a result
- Problems with new, larger aircraft
 - When specifications are not met, airport may be unable to accommodate aircraft or special procedures may be required (possibly resulting in congestion or under-utilization)

Runway Separations for Aircraft Approach Cat. C-D

Runway Centerline	AIRPLANE DESIGN GROUP					
To	I	II	III	IV	V	VI
	NON-PRECISION INSTRUMENT AND VISUAL					
Hold Line	250 ft	250 ft	250 ft	250 ft	250 ft	250 ft
	75 m	75 m	75 m	75 m	75 m	75 m
Taxiway	300 ft	300 ft	400 ft	400 ft	400/450/500	600 ft
Centerline	90 m	90 m	120 m	120 m	120/135/150	180 m
Parking	400 ft	400 ft	500 ft	500 ft	500 ft	500 ft
Area	120 m	120 m	150 m	150 m	150 m	150 m
	PRECISIONINSTRUMENT					
Hold Line	250 ft	250 ft	250 ft	250 ft	280 ft	325 ft
	75 m	75 m	75 m	75 m	85 m	98 m
Taxiway	400 ft	400 ft	400 ft	400 ft	400/450/500	600 ft
Centerline	120 m	120 m	120 m	120 m	120/135/150	180 m
Parking	500 ft	500 ft	500 ft	500 ft	500 ft	500 ft
Area	150 m	150 m	150 m	150 m	150 m	150 m

Airfield Capacity

Prof. Amedeo R. Odoni

Airport Systems Course Massachusetts Institute of Technology Fall 2004

Airfield Capacity

· Objective

- To summarize fundamental concepts re. airfield capacity
- Topics
 - Definitions of capacity
 - Factors affecting capacity
 - Separation requirements
 - A simple model for a single runway
 - Capacity envelopes and capacity coverage chart Reference: Chapter 10

Capacity Measures

Maximum-Throughput Rate

- Average number of demands a server can process per unit of time when always busy
 - $-\mu$ = maximum throughput rate
 - $\mu = \frac{I}{E(t)}$ - E(t) = expected service time
- Level of Service (LOS) related capacity
 - Number of demands processed per unit of time while meeting some pre-specified LOS standards (must know µ to compute)

Definitions: Runway Capacity*

- Maximum Throughput (or Saturation) Capacity
 - The expected ("average") number of runway operations (takeoffs and landings) that can be performed in one hour without violating ATČ rules, assuming continuous aircraft demand.
- **Declared Capacity**
 - The capacity per hour used in specifying the number of slots available for schedule coordination purposes: used extensively outside US: no standard method for its determination; no generally accepted LOS; typically set to about 85-90% of saturation capacity; may be affected by apron capacity and terminal capacity
 - * These definitions can be applied to a single runway or to the entire complex of runways at an airport.

Less Common LOS-Related **Capacity Definitions**

Practical Hourly Capacity

The average number of operations that can be performed in one hour on a runway (or, more generally, a system of active runways) with an average delay per operation of 4 minutes.

Sustained Capacity

The average number of operations per hour that can be "sustained" for periods of several hours: vaguely-defined, typically workload-related.

Factors Affecting Capacity

- Number and lavout of active runways
- Separation requirements (longitudinal, lateral)
- Weather (ceiling, visibility)
- Wind (direction, strength)
- Mix of aircraft

- Mix and sequencing of operations (landings, takeoffs, mixed)
- Quality and performance of ATM system (including human factor -- pilots and controllers)
- **Runway exit locations**
- Noise considerations

Role of ATC Separation Requirements

- Runway (and airfield) capacities are constrained by ATC separation requirements
- Typically aircraft are separated into a small number (3 or 4) of classes
- Example: FAA classification
 - → Heavy (H): 255000 lbs < MTOW</p>
 - → Large (L): 41000 lbs < MTOW < 255000 lbs
 - → Small (S): MTOW < 41000 lbs
- Required separations (in time or in distance) are then specified for every possible pair of aircraft classes and operation types (landing or takeoff)
- Example: "arrival of H followed by arrival of S"

IFR Separation Requirements: Single Runway (USA)

Arrival-Arrival:

(1) Airborne separations on final approach (nmi):

		Trailing aircraft				
		H L or B757 S				
Leading aircraft	Н	4	5	5/6*		
	B757	4	4	5		
	L	2.5 (or 3)	2.5 (or 3)	3/4*		
	S	2.5 (or 3)	2.5 (or 3)	2.5 (or 3)		

* Applies when leading aircraft is at threshold of runway

(2) Leading aircraft must be clear of the runway before trailing aircraft touches down

IFR Separation Requirements: Single Runway (USA) [2]

Departure-Departure (approximate, in seconds)

		Trailing aircraft				
		H L + B757 S				
	Н	90	120	120		
Leading	B757	90	90	120		
aircraft	L	60	60	60		
	S	45	45	45		

Arrival-Departure and Departure-Arrival

Leading aircraft must be clear of runway at the instant when trailing aircraft starts takeoff roll or touches down on the runway, respectively. In D-A case, trailing arrival must also be at least 2 nmi from runway when takeoff run begins

Separation Requirements (Italy; until recently)

Arrival/Arrival (in nautical miles)

$$\begin{array}{c}
H & M/L & s \\
H & 5 & 5 & 7 \\
M/L & 5 & 5 & 5 \\
s & 5 & 5 & 5
\end{array}$$

Departure/Departure

120 seconds between successive departures

Departure/Arrival

Arrival must be at least 5 n.mi. away from runway threshold

Parallel Runways (IFR): USA

Separation between runway centerlines	Arrival/ arrival	Departure/ departure	Arrival/ departure	Departure/ arrival
700-2499 ft	As in single runway	As in single runway	Arrival touches down	Departure is clear of runway
2500- 4300 ft	1.5 nmi (diagonal)	Indep'nt	Indep'nt	Indep'nt
4,300 ft or more	Indep'nt	Indep'nt	Indep'nt	Indep'nt

Effect of Airborne Separation Requirement

Closing Case

• Second aircraft is faster, and must have required separation distance from first aircraft at runway threshold; separation at merge area (beginning of final approach) is greater than minimum

Opening Case

• Second aircraft is slower, and must meet separation requirement from first aircraft in merge area when approach is initiated; separation at runway threshold is greater than minimum

Matrix of Minimum Separations

Matrix of Minimum Separations [2]

Closing Case

 $T_{31} = \max\left(\frac{3 \text{ n. mi.}}{140 \text{ knots}}, 50 \text{ sec}\right)$

 $= \max(77 \sec, 50 \sec) = 77 \sec$

Stable Case

$$T_{22} = \max\left(\frac{3 \text{ n. mi.}}{120 \text{ knots}}, 55 \text{ sec}\right)$$

 $= \max (80 \sec, 55 \sec) = 80 \sec$

• "Special" Case (also T₂₃)

 $T_{I3} = \max\left(\frac{6 \text{ n.mi.}}{100 \text{ knots}}, 60 \text{ sec}\right)$

 $= \max(216 \sec, 60 \sec) = 216 \sec$

Safety Buffer

- In practice, a safety buffer is added to the minimum separations between aircraft, to make up for imperfections in the ATC system
- Allow a buffer of an additional b = 10 seconds between each aircraft for safety (10 seconds implies about 1/3 n. mi. longitudinal separation)

Matrix of Average Time Separations

The t_{ij} indicate the average separation (sec) between an aircraft of type i and a following aircraft of type j.

$$t_{ij} = T_{ij} + b$$

$$t_{ij} = \begin{bmatrix} 113 & 181 & 226 \\ 87 & 100 & 154 \\ 87 & 100 & 118 \end{bmatrix}$$

Matrix of Pair Probabilities* Let p_{ij} = probability that an aircraft of type i will be
followed by one of type j* Assume first-come, first-served (FCFS) runway service $p_{ij} = \begin{bmatrix} 0.04 & 0.1 & 0.06\\ 0.1 & 0.25 & 0.15\\ 0.06 & 0.15 & 0.09 \end{bmatrix}$ Example• 20% of aircraft are Type 1, 50% are Type 2• Therefore, the probability of a Type 1 followed
by a Type 2 is: $p_{12} = (0.2)^*(0.5) = 0.1$ • Note: This is valid only for an FCFS system; no sequencing.

Numerical Example [2]					
Matrix of average time12intervals, t_{ij} (in seconds), for111318all possible pairs of aircraft287100types:387100	2 3 1 226 0 154 0 118				
Matrix of probabilities, p_{ij} , that a particular aircraft pair will occur: $\begin{bmatrix} p_{ij} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 0.04 & 0 \\ 0.1 & 0.2 \\ 0.06 & 0.2 \end{bmatrix}$	2 3 .1 0.06 25 0.15 15 0.09				

Numerical Example [4]

The variance (a measure of variability) of the service times (intervals between successive landings in this case) can also be computed from:

$$\sigma_t^2 = \sum_i \sum_j p_{ij} \cdot [t_{ij} - E(t)]^2$$

· Or,

 $(0.04)(113-124)^2 + (0.1)(181-124)^2 + \dots + (0.09)((118-124)^2)^2$ = 1542 sec²

The standard deviation, $\sigma_t = \sqrt{1542} = 39$ seconds

Sensitivity of the model

- The model (and the runway's arrival capacity) is sensitive to
 - Airborne separation requirements (regular and waketurbulence related)
 - → Runway occupancy times
 - Final approach speeds of aircraft
 - → Length of final approach
 - → Safety-related margins (buffers) allowed by air traffic controllers
 - Hix of traffic (homogeneity)
 - → Sequencing of aircraft

Capacity Coverage Chart CCC shows how much capacity is available for what percentage of time Assumptions: • airport will operate at all times with the highest

- airport will operate at all times with the highest capacity configuration available for prevailing weather/wind conditions
- the capacity shown is for a 50%-50% mix of arrivals and departures

Note: Neither of these assumptions is necessarily true in practice (e.g., noise may be principal consideration in selecting configuration during periods of low demand)

Capacity Coverage Chart [2]

- The CCC summarizes statistically the supply of airside capacity
- CCC requires a capacity analysis for all weather/wind conditions and runway configurations
- "Flat" CCC implies predictability and more effective utilization of airside facilities
 - Operations (takeoffs and landings) can be scheduled with reference to a stable capacity level
 - Fewer instances of under-utilization and over-utilization of facilities

Range of Airfield Capacities

- The capacity of a single runway varies greatly among airports, depending on local ATC rules, traffic mix, operations mix, local conditions and the other factors identified earlier (12 - 60 +movements per hour is possible)
- At major commercial airports, in developed countries, the range is 25 60 movements per hour for each runway
- Depending on the number of runways and the airport's geometric configuration, total airfield capacity of major commercial airports ranges from 25 per hour to 200+ per hour

Airport Capacity: US vs. Non-US

- FAA capacity benchmarks (2001): 31 busiest airports
 - → 24 of 31: VMC capacity > 100/hour; range: 50 270
 - → 16 of 31: IMC capacity > 100/hour; range: 45 184
 - → 14 of 31: Plan a new runway by 2010 (none of the 7 most congested); capacity benefits of 17 50%
 - → Capacity benefits due to ATM by 2010: 0 17% (mostly 3 – 13%)
 - > www.faa.gov/events/benchmarks/
- Airports elsewhere enjoy a significant advantage in average aircraft size and serve fewer aircraft operations for same number of annual passengers ...but this may be diluted by deregulation and by growth in regional services
- Only three non-US airports with capacity > 100/hour (!)