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§23.3 TESTING STABILITY

§23.1. Introduction

This lecture presents basic concepts on structural stability, describes how to test it, classifies models
and analysis methods, and concludes by contrasting exact versus linearized determination of critical
loads using the equilibrium method. Subsequent lectures focus on applications to simple structures.

The term stability has informal and formal meanings. As regards the former, the American Heritage
Dictionary lists the following three: 1. Resistance to sudden change, dislodgment, or overthrow;
2a. Constancy of character or purpose: tenacity, steadfastness; 2b. Reliability, dependability. Verb:
to stabilize, Adjective: stable. Antonyms: stability loss, instability, to destabilize, unstable.

The formal meaning is found in engineering and sciences. It concerns the stability of systems.1

Structural stability can be informally defined as

The power to recover equilibrium.

It is an essential requirement for all structures. Jennings2 provides the following historical sketch:

“Masonry structures generally become more stable with increasing dead weight. However
when iron and steel became available in quantity, elastic buckling due to loss of stability
of slender members appeared as a particular hazard.”

§23.2. Terminology

Readers unfmiliar with stability analysis may want to skim Tables 23.1 and 23.2. Those collect
often used terms.

In this and following Lectures we shall only use physical kinematic variables, such as displacements
and rotations, as degrees of freedom (DOF). We shall generically denote the DOF variables by u.
In discrete models, u is simply the vector that collects all DOF, and is called the state vector. In
continuous models, u is a function of the spatial (position) coordinates.

§23.3. Testing Stability

The stability of a mechanical system, and of structures in particular, can be tested (experimentally or
analytically) by observing how it reacts when external disturbances are applied. The semi-informal
definition given in many textbooks is

A structure is stable at an equilibrium position if it returns to that position
upon being disturbed by an extraneous action.

(23.1)

This definition is akin to that given in Table 23.2. It conveys the right flavor, but needs to be made
more precise. For that we need to distinguish between static and dynamic equilibrium.

1 As defined in Table 23.1, a system is a functionally related group of components forming or regarded as a collective
entity. This definition uses “component” as a generic term that embodies “element” or “part,” which connote simplicity,
as well as “subsystem,” which connotes complexity. In this course we are concerned about mechanical systems governed
by Newtonian mechanics, with focus on structures.

2 A. Jennings, Structures: From Theory to Practice, Taylor and Francis, London, 2004.
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Table 23.1. Terminology Related to Mechanical Systems

Term Definition

System A functionally related set of components regarded as a physical entity.
Configuration The relative disposition or arrangement of system components.
State The condition of the system as regards its form, structure or constitution.
Degrees of Freedom A set of state variables that uniquely characterizes the state. Abbr.: DOF.
Kinematic DOF A DOF that is directly linked to the system geometry; e.g., a displacement.
Input The set of all actions that can influence the state of a system, or component.
Output The set of all quantities that characterize the state of a system, or component.
Model A mathematical idealization of a physical system.
Discrete Model A model with a finite # of DOF. Often expressed as vector equations.
Continuous Model A model with an infinite # of DOF. Often expressed as a ODE or PDE.
Event A change in the state variables produced by an agent.
Behavior A pattern of events.
Reference State A state of the system adopted as base or origin to measure relative changes.

Often the same as the undeformed state (cf. Table 23.2).
Motion The change in system geometry, as measured from a reference state.
Kinematics The study of system motion independently of force agents.
Kinetics The study of forces as action agents, and their effect on the system state.
Kinematic Constraint Any condition that restricts the system motion, usually expressed in terms of

kinematic DOF. Also simply called constraint.
Environment A set of entities that do not belong to the system, but can influence its behavior.
Open System A system that is influenced by entities outside the system (its environment).
Closed System A system that is not affected by entities outside the system.
Interaction The mutual effect of a system component, or group of such components,

on other components.
Forces The action agents through which effects are transmitted between system

components, or between environment entities and system components.
Internal Forces Forces that act between system components.
External Forces Forces that act between environment entities and system components.
Constraint Force A force manifested by removing a constraint while keeping it enforced.
Reaction Force A constraint force that is an external force.
Applied Load An external force specified as data. Also simply called load.

Some of these terms are useful in a more general context; for example active control.

§23.3.1. Stability of Static Equilibrium

For simplicity we will assume that the structure under study is elastic, since memory and historical
effects such as plasticity or creep introduce complications such as path dependence, which are
beyond our scope. The applied forces are characterized by a load factor λ, also called a load
parameter or load multiplier. This value scales reference loads to provide the actual applied loads.

Setting λ = 0 means that the structure is unloaded and takes up an equilibrium configuration C0

called the undeformed state. We assume that this state is stable. As λ is monotonically varied
(either up or down) the structure deforms and assumes equilibrium configurations C(λ). These are
assumed to be (i) continuously dependent on λ, and (ii) stable for sufficiently small |λ|.
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§23.3 TESTING STABILITY

Table 23.2. Terminology Related to Static Stability Analysis

Term Definition

Reference Loads A set of applied loads taken as reference for application of a load factor.
Load Factor A scalar, denoted by λ, which scales reference loads to get the actual

applied loads. Also called load parameter and load multiplier.
System Response Values of the DOF, or subset thereof, expressed as function of the load factor,

or of the load level if only one load is applied. Also simply called response.
Equilibrium State A state in which internal and external forces are in equilibrium.

The associated configuration is called an equilibrium configuration.
Undeformed State The equilibrium state under zero applied loads, or, equivalently, λ = 0.

The associated configuration is called an undeformed configuration.
Equilibrium Response A system response in which all states are equilibrium states.
State Space A RCC frame with a DOF subset as axes.
Response Space A RCC frame with the load factor as one axis, and a DOF subset as the others.
Response Plot A display of the system response in response space.
Equilibrium Path An equilibrium response viewed in response space.
Perturbation An externally imposed disturbance of an equilibrium state while actual

loads are kept fixed. It may involve application of forces or motions.
Allowed Perturbation A perturbation that satisfies kinematic constraints. Also called admissible

perturbation, and (in the sense of variational calculus) virtual variation.
Stability The ability of a system to recover an equilibrium state upon being

disturbed by any of the allowed perturbations.
Instability The inability of a system to recover an equilibrium state upon being

disturbed by at least one allowed perturbation.
Stable Qualifier for an equilibrium state, or configuration, at which stability holds.
Unstable Qualifier for an equilibrium state, or configuration, at which instability occurs.
Neutrally Stable Qualifier for an equilibrium state, or configuration, at which transition

between stability and instability occurs.
Critical A qualifier that flags the occurrence of neutral stability. Applicable to state,

configuration, load, and load factor. For example: critical load.
Critical Point In a equilibrium response plot, a location where a critical state occurs.
Bifurcation Point A critical point at which two or more equilibrium paths cross.
Limit Point A critical point at which the load factor reaches a maximum or minimum.
Buckling Name used by structural engineers for the occurrence of a bifurcation point.
Snapping Name used by structural engineers for the occurrence of a limit point.

Also called snap-through, snap buckling, and snap-through buckling.

How is stability tested? Freeze λ at a value, say λd , in which d connotes “deformed.” The associated
equilibrium configuration is Cd = C(λd). Apply a perturbation to Cd , and remove it. What sort
of perturbation? Any action that may disturb the state, for example a tiny load or a small imposed
motion. It must meet two conditions: any kinematic constraints (for example structural supports)
must be satisfied, and the applied loads are kept fixed. Such perturbations are qualified as allowed
or admissible, as noted in Table 23.2.3

3 In the framework of variational calculus, those perturbations are known as admissible variations, hence the name.
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Equilibrium
configuration

Apply an 
admissible

perturbation

Motion oscillates about 
equilibrium configuration 

or decays toward it

Motion is either unbounded, or  
oscillates about, or decays toward, 
another equilibrium configuration

S: Stable*

U: Unstable

Transition 
between stable
and unstable

N: Neutrally stable

* Strictly speaking, S requires stability
for all possible admissible perturbations

Subsequent
motion outcome

Figure 23.1. Outcomes of stability test done on a static equilibrium configuration.

Applying and removing an allowed perturbation will trigger subsequent motion of the system.
Three possible outcomes are sketched in Figure 23.1.

S: Stable For all admissible perturbations, the structure either returns to the tested configu-
ration Cd or executes bounded oscillations about it. If so, the equilibrium is called
stable.

U: Unstable If for at least one admissible perturbation the structure moves to (decays to, or
oscillates about) another configuration, or “takes off” in an unbounded motion,
the equilibrium is unstable.

N: Neutral The transition from stable to unstable occurs at a value λcr , which is called the
critical load factor. The configuration Ccr = C(λcr ) at the critical load factor is
said to be in neutral equilibrium. The quantitative determination of this transition
is a key objective of the stability analysis.

The foregoing classification has gaps and leaves some details unanswered.

First, speaking about “moving” or “returning” introduces time into the picture. Indeed the concept
of stability is necessarily dynamic in nature.4 There is a before: the act of applying the perturbation
to the frozen configuration, and an after: what happens upon removing it. Many practical methods
to assess critical loads, however, factor out the time dimension as long as certain conditions —
notably conservative loading— are verified. Those are known as static criteria.

Second, the concept of “perturbation” as “small imposed change” is imprecise. How small is a
“tiny load” or a “slight deflection”? The idea will be made more mathematically precise later when
we introduce linearized stability, also called “stability in the small.” This is a natural consequence
of assuming infinitesimal configuration changes.

4 For example, Bazant and Cedolin, in Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, World
Scientific, Singapore, 2010, state on p. 144: “Failure of structures is a dynamical process, and so it is obviouly more
realistic to approach buckling and instability from a dynamical point of view.”
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§23.4 STATIC STABILITY LOSS

§23.3.2. Stability of Dynamic Equilibrium

Stability of motion is a more general topic that includes the static case as a particular one. (As
previously noted, the concept of stability is essentially dynamic in nature.)

Suppose that a mechanical system is moving in a predictable manner. For example, a bridge or
tower oscillates under wind, an airplane is flying a predefined trajectory under automatic pilot, a
satellite orbits the Earth, the Earth orbits the Sun. What is the sensitivity of such a motion to changes
of parameters such as initial conditions or force amplitude? If the system includes stochastic or
chaotic elements, like turbulence, the analysis may also require probabilistic methods.

To make such problems mathematically tractable one usually restricts the kind of admissible motions
in such a way that a bounded reference motion can be readily defined. For example, harmonic
motions of a structure oscillating under periodic excitation. Departures under parametric changes
are studied. Transition to unbounded or unpredictable motion is taken as a sign of instability.

An important application of this concept are vibrations of structures that interact with external or
internal fluid flows: bridges, buildings, airplanes, antennas, fluid pipes. The steady speed of the
flow may be taken as parameter. At a certain flow speed, increasing oscillations may be triggered:
this is called flutter. Or a non-oscillatory unbounded motion occurs: this is called divergence. A
famous example of flutter in a civil structure was the collapse of the newly opened Tacoma-Narrows
suspension bridge near Seattle in 1940 under a moderate wind speed of about 40 mph.

Modeling and analysis of dynamic instability is covered in advanced courses.

§23.4. Static Stability Loss

On restricting attention to static stability, two behavioral assumptions are introduced:

Linear Elasticity. The structural material is, and remains, linearly elastic. Displacements and
rotations, however, are not necessarily small.

Conservative Loading. The applied loads are conservative, that is, derivable from a potential.
For example, gravity and hydrostatic loads are conservative. On the other hand, aerodynamic and
propulsion loads (wind gusts on a bridge, rocket thrust, etc) are generally nonconservative.

The chief reason for the second restriction is that loss of stability under nonconservative loads is
inherently dynamic in nature: time cannot generally be factored out. As a consequence, it requires
additional information, such as mass properties, as well as more advanced mathematics, including
the use of complex arithmetic.

§23.4.1. Buckling or Snapping?

Under the foregoing restrictions, two types of instability may occur:

Bifurcation. Structural engineers prefer the more familiar name buckling for this one. The structure
reaches a bifurcation point, at which two or more equilibrium paths intersect. What happens after
the bifurcation point is reached is called post-buckling behavior.

Snapping. Structural engineers use the closely related term snap-through or snap buckling for
this one. The structure reaches a limit point at which the load, or the loading parameter, reaches a
maximum or minimum. What happens after that is called post-snapping behavior.
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External               Critical State                  Instability Type         Mathematical Characterization
Loading                (math name)                 (engineering name)     of Instability Event                    

Conservative        Bifurcation                     Buckling                    Two or more equilibrium branches
(e.g. gravity)                                                                                     intersect
                               Limit point                     Snap                          Equilibrium branch reaches maxmin
                                                                      (aka snap-through)    or inflexion w.r.t. control parameter

Nonconservative  Vanishing frequency      Divergence               A frequency pair passes through zero 
(e.g. friction)                                                                                    & one root becomes positive real*  
                               Frequency coalescence  Flutter                      Two frequency pairs coalesce
                                                                                                          & one root gets a positive real part*

*  In the frequency complex plane.  The conservative case does not require complex arithmetic. 

Figure 23.2. Four scenarios in which structural stability may be lost. It excludes more complicated
scenarios as nonlinear material behavior (plasticity, creep, fracture), parametric excitation by periodically

varying loads, and trajectory stability.

Bifurcation points and limit points are instances of critical points. The importance of critical points
in static stability analysis stems from the following property:

Transition from stability to instability can only occur at critical points

Reaching a critical point may lead to immediate destruction (collapse) of the structure. This depends
on its post-buckling or post-snapping behavior, and on material resilience (brittle or ductile). For
some scenarios this information is important as immediate collapse may lead to loss of life.

On the other hand, there are some configurations where the structure keeps resisting the critical load,
or even taking up increasing loads, after traversing a bifurcation point.5 Such “load-sustaining”
designs are obviously preferable from a safety standpoint.

Figure 23.2 lists four scenarios treated in which stability of equilibrium can be lost. Note that
identifiers used in applied mathematics and structural engineering are generally distinct.

§23.4.2. Response Diagrams

To illustrate the occurrence of static instability as well as critical points we will often display load-
deflection response diagrams. A response diagram is a plot of equilibrium configurations taken by
a structure as a load, or load parameter, is continuously varied. That is plotted along the vertical
axis while a judiciously chosen representative deflection, which could also be an angle of rotation,
is plotted along the horizontal axis. A common convention is to take zero deflection at zero load.
This defines the reference state, labeled as point R in such plots.

A continuous set of equilibrium configurations forms an equilibrium path. Such paths are illustrated
in Figure 23.3. The plot in Figure 23.3(a) shows a response path with no critical points. On the
other hand, that in Figure 23.3(b) depicts the occurrence of two critical points: one bifurcation and
one limit point. Those points are labeled as B and L, respectively, in the Figure.

5 Post-snapping stability is not possible upon crossing a limit point of maxmin type.
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§23.4 STATIC STABILITY LOSS

Equilibrium paths

Equilibrium
path

Load or load
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Load or load
parameter

Representative 
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Reference state

Limit point
(snapping)

Reference state

Representative 
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Initial linear
   response Bifurcation

point (buckling)

B

R R

L

Terms in red are
those in common 
use by structural
engineers

(b)(a)

Figure 23.3. Graphical representation of static equilibrium paths and critical points: (a) a response path with no
critical points; (b) multiple response paths showing occurrence of two types: bifurcation point (B) and limit point (L).

§23.4.3. Primary Equilibrium Path and the Design Critical Load

A complex structure in general will exhibit several critical points, with a mixture of bifurcation and
limit points. An important question for design engineers is:

Which critical point should be chosen to establish safety factor against instability?

Most textbooks say: pick the one associated with the lowest6 critical load or load factor. That is
fine if post-buckling behavior is not considered. For a more comprehensive answer, it is useful to
introduce the following definition:

The primary equilibrium path is the one that passes through the reference state. This is often the
same as the undeformed or unloaded state.

We accordingly define the design critical load as follows: that located on the primary equilibrium
path that is nearest to the reference state. This makes engineering sense since most structures are
designed to operate on the primary equilibrium path while in service. See Figure 23.4. That location
is called the first critical point, often abbreviated to FCP. See Table 23.2 for related nomenclature.

Note that in the case of Figure 23.4(b) the limit point L defines the design critical load because it is
encountered first while traversing the primary equilibrium path starting from R. It does not matter
that bifurcation point B occurs at a lower load factor unless post-critical behavior is important in
design — which is rarely the case.

§23.4.4. Stability Models

Stability models of actual structures fall into two categories:

Continuous. Such models have an infinite number of degrees of freedom (DOF). They lead to
ordinary or partial differential equations (ODEs or PDEs) in space, from which stability equations

6 If the load factor can take either sign, as happens in some scenarios (for example, shear buckling of panels), lowest is
taken in the sense of absolute value, i.e., that closest to zero.
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Figure 23.4. For design purposes, a critical load is that associated with the critical point first encountered when
traversing the primary equilibium path from the reference state. In (a) the critical load occurs at bifurcation point B
beacuse the limit point occurs later. In (b) the critical load occurs at the limit point L, because bifurcation occurs later.

may be derived by perturbation techniques. Obtaining nontrivial solutions of the perturbed equations
generally leads to trascendental eigenproblems, even if the underlying model is linear.

Discrete. These models have a finite number of DOF in space. Where do these come from? They
usually emerge as discrete approximations to the underlying continuum models. Two common
discretization techniques are:

(1) Lumped parameter models, in which the flexibility of the structure is localized at a finite number
of places. A common model of this type for columns: joint-hinged rigid struts supported by
extensional or torsional springs at the joints. See examples in §23.5 and ?

(2) Finite element models that include the so-called geometric stiffness effects. These are covered
in advanced (graduate-level) courses.

Stability equations for discrete models may be constructed using various devices. For lumped
parameter models one may resort to either perturbed equilibrium equations built via FBDs, or to
energy methods.7 For FEM models only energy methods are practical. All techniques eventually
lead to matrix stability equations that take the form of an algebraic eigenproblem.

§23.4.5. Stability Equations Derivation

The equations that determine critical points are called characteristic equations in the applied math-
ematics literature.8 In structural engineering the names stability equations and buckling equations
are common. Two methods are favored for deriving those equations.

7 If the lumped parameter model contains rigid members, as is often the case, the DSM version of FEM is not easily
applicable because stiffness matrices of rigid elements would have infinite entries. This shortcoming may be addressed
using either multifreedom constraints, or FEM formulations equivalent to the equilibrium method. But the latter choice
rules out the use of commercial DSM-based codes.

8 Often this term is restricted to the determinantal form of the stability eigenproblem. This is the equation whose roots
give the eigenvalues that can be interpreted as critical loads or critical load parameters.
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§23.5 SINGLE-DOF EQUILIBRIUM ANALYSIS EXAMPLES

Equilibrium Method. The equilibrium equations of the structure are established in a perturbed
configuration. This is usually done with Free Body Diagrams (FBD). The resulting equations
are examined for the occurrence of nontrivial solutions. Those are obtained by disturbing the
original equilibrium positions through admissible perturbations. If those equilibrium equations are
linearized for small perturbations, one obtains an algebraic eigenproblem. The eigenvalues give
values of critical loads while eigenvectors yield the buckling or snapping mode shapes.

Energy Method. The total potential energy of the system is established in terms of its degrees of
freedom (DOF). The Hessian matrix of the potential energy function, taken with respect to those
DOF, is established and tested for positive definiteness as the load parameter (or set of parameters) is
varied. Details are given in advanced courses. Loss of such property occurs at critical points. These
may be in turn categorized into bifurcation and limit points according to a subsequent eigenanalysis.

The energy method is more general for structures subject to conservative loading. It has two major
practical advantages:

(1) Merges naturally with the FEM formulation because the Hessian of the potential energy is the
tangent stiffness matrix. Thus it can be readily implemented in general-purpose FEM codes.

(2) Requires no a priori assumptions as regards admissible perturbations.

A clear advantage of the equilibrium method is physical transparency. That makes it invaluable for
undergraduate teaching. The energy method occults the physics behind eigensmoke clouds.

§23.5. Single-DOF Equilibrium Analysis Examples

This section illustrates the geometrically exact equilibrium method of stability analysis with two
examples that involve single-DOF lumped-parameter models. The key feature is that Free Body
Diagrams (FBD) must take the exact post-buckling configuration into account. The results are
compared with those given by the Linearized Prebuckling (LPB) simplified analysis.

Since examples involve rigid members, a conventional FEM-DSM discretization cannot be directly
used, as it would involve infinite stiffness entries.

§23.5.1. TSPHRC Column: Geometrically Exact Analysis

Consider the configuration depicted in Figure 23.5(a). A rigid column of length L is stabilized
(propped) by a torsional spring of stiffness k > 0. It is axially loaded by a vertical dead load
P = λPref , in which Pref is a reference load and λ a dimensionless load parameter. The load
remains vertical as the column tilts. (Note that k has the physical dimension of force × length.) This
configuration will be called a torsional-spring-propped hinged rigid cantilever column, or TSPHRC
column for brevity. The definition P = λk/L renders λ dimensionless, which is convenient for
result presentation. The tilt angle θ , positive CW, is picked as state parameter (and only DOF) as
most appropriate for the ensuing analysis.

For sufficiently small P the column remains vertical as in Figure 23.5(a), with θ = 0. The only
possible buckled shape is the tilted column shown in Figure 23.5(b). That figure depicts the FBD
required to work out the equilibrium of the tilted configuration. Notice that θ is not assumed small.
Taking moments with respect to the hinge B we obtain the following equilibrium equation in terms
of λ and θ :

k θ = P vA = λ Pref L sin θ ⇒ k θ − λ Pref L sin θ = 0. (23.2)
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Figure 23.5. Geometrically exact stability analysis of a torsional-spring-propped hinged
cantilevered rigid (TSPHRC) column: (a) untilted (reference) configuration, (b) FBD of tilted

column, (c) equilibrium paths (full line: stable, dashed line: unstable).

The equation on the right has two equilibrium solutions:

θ = 0 for any λ, λ = k

Pre f L

θ

sin θ
. (23.3)

These pertain to the untilted (θ = 0) and tilted (θ �= 0) equilibrium paths, respectively. Since
lim(θ/ sin θ) → 1 as θ → 0, the paths intersect when

λcr = k

Pre f L
, or Pcr = k

L
. (23.4)

The two paths are plotted in Figure 23.5(c). The intersection (23.4) characterizes a bifurcation
point B. Four equilibrium branches emanate from B. Three are stable (full line) and one is unstable
(dashed line). Observe that the applied load may rise beyond Pcr = λcr Pre f = k/L by moving to
a tilted configuration. It is not difficult to show that the maximum load occurs if θ → 180◦, for
which P → ∞; this is a consequence of the assumption that the column is rigid, and that it may
fully rotate by that amount without being impeded, say, by hitting the ground.

§23.5.2. TSPHRC Column: LPB Analysis

The geometrically exact analysis that leads to (23.3) has the advantage of providing a complete
solution. In particular, it shows what happens after the bifurcation point B is traversed; a behavior
called post buckling. For this configuration the structure maintains load-bearing capabilities while
tilted, which is the hallmark of a safe design. But for more complicated problem this approach
becomes impractical as it involves solving systems of nonlinear algebraic or differential equations.
Post-buckling analysis has then to rely on geometrically nonlinear FEM.

Often the engineer is interested only in the critical load. This is especially true in preliminary design
scenarios, when a key objective is to assess safety factors against buckling. If so, it is more practical
to work with a linearized version of the problem. The technical name is Linearized Prebuckling
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§23.5 SINGLE-DOF EQUILIBRIUM ANALYSIS EXAMPLES

(LPB) analysis. This approach relies on the following assumptions, which are justified in advanced
courses:

• Deformations prior to buckling are neglected. Consequently the analysis can be carried out in
the reference configuration (undeformed) geometry.

• Perturbations of the reference configuration are restricted to infinitesimal displacements and
rotations.

• The structure remains linearly elastic up to buckling.

• Both structure and loading do not exhibit any imperfections.

• The critical state is a bifurcation point.

We apply these rules to the TSPHRC column of Figure 23.5(a). The equilibrium equation (23.2)
is linearized by assuming an infinitesimal tilt angle θ << 1, whence sin θ ≈ θ and that expression
becomes (

k − λ Pref L
)
θ = 0. (23.5)

This is the LPB stability equation. Since the product of two numbers is zero, at least one must
be zero: θ = 0, or k − λ Pref /L = 0, or both. The solution θ = 0 reproduces the untilted
configuration. For buckling to occur, we must have θ �= 0. If so, the expression in parenthesis must
vanish, which requires

λ = λcr = k

Pre f L
or Pcr = λcr Pre f = k

L
. (23.6)

This reproduces the critical load given in (23.4).

Note that a LPB analysis only provides the critical load. It does not give any information on post-
buckling behavior. If this is necessary, a more comprehensive analysis, such as the geometrically
exact one carried out in the previous subsection, is required.

It should also be noted that if the loss of stability is by snap buckling, it cannot be obtained by LPB
analysis. The underlying reason is that finite deformations prior to buckling are essential in finding
limit points, whereas the first LPB assumption listed above explicitly precludes those.

§23.5.3. ESPHRC Column: Geometrically Exact Analysis

Consider next the configuration pictured in Figure 23.6(a). This one differs from the TSPHRC
column in the type of stabilizing spring. A rigid strut of length L is hinged at B and supports a
vertical load P = λPref at end A. The load remains vertical as the column tilts. The column is
propped by an extensional spring of stiffness k attached to A. This configuration will be called a
extensional-spring-propped hinged rigid cantilevered column; or ESPHRC column for short. As
before, the only DOF is the tilt angle θ .

For the geometrically exact analysis is it important to know what happens to the spring as the
column tilts. One possible assumption is that it remains horizontal, as pictured in Figure 23.6(b).
If so, the FBD in the tilted configuration will be as shown in n Figure 23.6(c). Taking moments
about B yields the equilibrium condition

λPref sin θ = k L sin θ cos θ. (23.7)
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Figure 23.6. Geometrically exact analysis of a extensional-spring-propped hinged cantilever rigid (ESPHRC)
column with extensional spring remaining horizontal: (a) untilted column, (b) tilted column showing spring

remaining horizontal, (c) FBD of tilted column, (c) equilibrium paths (full line: stable, dashed line: unstable).

(Important: do not cancel out sin θ from both sides of (23.7) yet — that will cause the primary
equilibrium path θ = 0 to be lost as a solution.) This equation has two equilibrium solutions

θ = 0 for any λ , λ = k L

Pref
cos θ. (23.8)

These solutions yield the vertical-column (primary) and tilted-column (secondary) equilibrium
paths, which are plotted in Figure 23.6(d) on the λ versus θ plane. The two paths intersect at θ = 0
and λ = λcr = k L/Pref , which is a bifurcation point. Consequently the critical load is given by

λcr = k L

Pref
or Pcr = λcr Pre f = k L . (23.9)

Of the four branches that emanate from B, only one (the primary θ = 0 path for λ < λcr ) is
stable. Once B is reached, the tilted column supports only a decreasing load P , which vanishes at
θ = ±90◦. Consequently this configuration is poor from the standpoint of post-buckling safety.

Another reasonable assumption is that the spring attachment point to the wall, which is called C in
Figure 23.7(a), stays fixed. The distance AC is parametrized with respect to the column length as
ηL , in which η is dimensionless. If the column tilts, the spring also tilts as pictured in Figure 23.7(b).
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Figure 23.7. Geometrically exact stability analysis of a extensional-spring-propped hinged rigid cantilever (ESPHRC)
column with wall-attached extensional spring: (a) untilted column; (b) tilted column; (c) FBD for tilted equilibrium.
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Figure 23.8. Geometrically exact analysis of a ESPHRC column with wall-attached extensional spring: λ vs./
θ response diagrams for tilted column and four values of η [defined in Figure 23.7(a)], with Pref = k = L = 1.

Note: the untilted-column equilibrium path θ = 0 is not plotted beyond B to reduce clutter.
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The geometrically exact FBD for this case is shown in Figure 23.7(c). As can be observed, it is
considerably more involved than for the spring-stays-horizontal case. We quote only the final result
for the two equilibrium path equations:

θ = 0 for any λ, λ = kL

Pref

η cos θ + sin θ

η + sin θ
. (23.10)

As in previous cases, the first solution corresponds to the untilted column whereas the second one
pertains to the tilted one. Figure 23.8 shows response plots on the λ versus θ plane for the tilted
column, that is, the second solution in (23.10) for the four cases η = 1

4 , η = 1
2 η = 1 and η = 5,

drawn with Pref = 1, k = 1, and L = 1.

Although the bifurcation points stay in the same location: λ = 1 and θ = 0, the post-buckling
response is no longer symmetric with respect to θ . That deviation is most conspicuous when η < 1,
since if so the spring tilting has a highly noticeable effect if θ < 0. The sharp drop of λ towards
−∞ occurs when the spring and the tilted column are nearly aligned, because if that happens the
column is no longer propped. Comparing the η = 5 plot with that in Figure 23.6(d), it is clear that
as η >> 1 the response approaches that of the spring-stays-horizontal column in (23.8). This may
be mathematically proven by taking the limit of the second of (23.10) as η → ∞.

§23.5.4. ESPHRC Column: LPB Analysis

To linearize the ESPHRC problem, assume again that θ is so small that sin θ ≈ θ and cos θ ≈ 1.
Then the equilibrium equations of the two foregoing cases (horizontal spring and wall-attached
spring) collapse to

(λ Pref − k L) θ = 0. (23.11)

The two solutions of (23.11) represent the equilibrium paths θ = 0 and λ = k L/Pref , which pertain
to the untilted (vertical) and tilted column, respectively. Consequently

λcr = k L

Pref
, or Pcr = λcr Pre f = k L . (23.12)

This result is independent of assumptions on how the spring wall-attachment point behaves after
the column buckles. This is to be expected since linearization filters out that information. Once
again, the LPB analysis provides no information on post-buckling behavior.
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