EPROMMER 64

instruction manual

This page intentionally left blank.

TABLE OF CONTENTS

L A D N 1
EPROMMER 64 SOF TWARE ¢ ittt ittt ittt ittt et ettt ettt 1
O 4
ZIEF SOCKET DIAGRAM . ..ttt ittt ittt ittt teeaeseeneneeneneans 5
CARTRIDGE DEVELOPMENT SYSTEM INSTRUCTIONS................... 6
HARDWARE CONTROL OF THE PLAttt ittt ittt ennann 8
601 0A DIAGRAM . it ittt ittt ettt et e e e e e e 10
CARTRIDGES AND CARTRIDGE BOARDSttt ittt iiennnnn 11
AUTOSTART CARTRIDGE S .. ittt ittt it ittt ittt ittt 16
SAOO00 METHOD t vttt ittt ettt ettt ettt et ettt ettt et et e teaeeaaeenn 16
CBMSBO METHOD ittt ittt it ittt ettt ittt ittt ttneeeenneeeenneeenns 17
CBM80 CARTRIDGE INITIALIZATION.......ttiiiiiiteeeeneeenns 18

MAX METHOD . i ittt ittt it ettt et it ettt e e tneneeneens 19
NORMAL RESET PROCE S S ..t ittt ittt ittt ittt tiititnneenens 20
KERNAL RESET ROUTINEttt ittt 21

C64 CARTRIDGE SCHEMAT I C . i ittt ittt it ettt ettt taneeneeeneenneenns 24

CARTRIDGE BOARD LAY OUT & ittt it ittt it ittt ettt te e eeeeeeens 25

EPROMMER 64 INSTRUCTION MANUAL

WARNING

BEFORE CONNECTING OR DISCONNECTING EPROMMER 64 ALWAYS MAKE SURE THAT
YOUR COMPUTER IS SWITCHED OFF. FAILURE TO DO SO WILL RESULT 1IN
SERIOUS DAMAGE.

EPROMMER 64 SOFTWARE

-——— DATEL ELECTRONICS ———

- EPROM PROGREAMMER V2.2 -
T EPROM TYPE/SIZE 27128 ~_1BK
P FPEOGEAMHMING SPEED 3 _HM5
C PROGEAMMING CHARGE 12.5 U
#* I-0 STATUS BAM
0 PROGEAM RANGE.ALL ALL
O DEUVICE DISK
£ PDIRECTORY € [pISK COMMANDS
L LOAD 5 SAUE
H HONITOR X EXIT PROGRAMM
F FILL MEMORY E ERASE E-EFPRO
B EBLANK EFROM CHECK U UERIFY EFROM
B READ EPROM H HEITE EFROM
CURRENT RANGE A ALTER RANGE
RAM START 4888 SOFTHARE AND BOARD
EPEOM START 6488 DESIGN COPYRIGHT
ThSKE LENGTH 4888 €C3> 1987 BY DATEL
RAM END TFFE EXIT ANY MODE
EPROM END IFFF HITH RUN-STOP

Your EPROMMER 64 is plugged into the user port of the 64/128. The

software when loaded will display a control menu. The wvarious

sections are connected with the different aspects of EPROM
programming, i.e. reading, programming, verifying, etc. The command
section i1s as follows:

T Selects EPROM type. Pressing this key will scan through the
various chip sizes from 2716 to 27256.

P Selects programming speed. Pressing this key will scan
through 3/5/50ms. The burst speed to select is 5ms though 3ms
can be used for faster burn. However 3ms may give unreliable
results on some brands. It should be noted that old 2716 and
2732 devices can only be programmed at 50ms. For this reason

50ms is automatically set when these chips are selected.

C Selects programming voltage. Pressing this key will scan
through the various voltages of 12.5, 21, and 25 volts. When
you select the chip type the wvoltage will set the the most
popular for this device. Always check that your device 1is

suitable for this setting and change accordingly.

=S W o< M oW oM"oOX R o o® B ow

b=

EPROMMER 64 INSTRUCTION MANUAL

Selects I/0O status. Pressing this key will toggle between
RAM/ROM. The purpose of this setting is to select whether to
read from the ROM or from the RAM under the ROM.

Selects program range. Pressing this key will toggle between
all of the chip or a range/selection of the device. If range
is selected then the parameters for the range should be set
(see below.)

Displays disk directory.
Loads a file from disk.
Send a disk command.

Save a file to disk.
Enter ML monitor.

Exit program.

Fills memory with one byte.
Checks for blank EPROM.
Will erase an EEPROM.
Verify EPROM against RAM.
Read an EPROM into RAM.

Write an EPROM.

Allows you to set the range. The current range is displayed
at the bottom left of the screen. Pressing A will allow you
to change these parameters. The cursor will flash alongside
the current setting and you can enter the new value followed
by the RETURN key. Pressing RETURN without entering a new
value will accept the current value. The various values are
as follows:

RAM START This 1is the start location 1in computer RAM
where the file you are going to program into
the EPROM begins.

EPROM START This is the start location in the EPROM to be
programmed. 0000 would program the chip from
the start. 2000 would program the chip from

8k upwards.

TASK LENGTH This value sets how much of the chip is to be
programmed. An EPROM START address of 0000
and a TASK LENGTH of 2000 would program that
chip in the first 8k of the device.

EPROMMER 64 INSTRUCTION MANUAL

RAM START This 1is the start location in computer RAM
where the file you are going to program into
the EPROM begins.

RAM END This value will change when RAM START and TASK
LENGTH are set.

EPROM END This wvalue will change when EPROM START and
TASK LENGTH are reset.

Any part or all of a chip can be programmed at one time. For
instance, if you wanted to program a replacement kernal chip for
your 64 you would need a 16k chip to hold the old 8k system plus the
new 8k system. And example of programming this task would 1look
something like this:

Press 'T' and select 27128 (1lok). New select the correct voltage
for your device. Because we want to copy the old operating kernal
system from the chip 1inside the computer we would press '*' to
select ROM. We are going to burn the chip in two halves so we press

'Q' and select RANGE.

We will now press 'A' to alter the range parameters. Since we are
going to copy the kernal ROM we select RAMSTART to EO000. This means
that we will extract the code from the kernal at EO000 as the source
for our programming. Now set ROMSTART to 0000 because we are going
to put the o0ld kernal code into the Dbottom half of our new chip.
Now we turn to TASK LENGTH. This we will set to 2000 (8k). That's
it, the parameters are set and we can now select 'W' to write to the
EPROM. The screen will show the burn as it progresses. Afterwards
press 'V' to verify the contents of the new chip against the source
(in our case the kernal.) Next we move to the kernal code. We
select 'L' and load our new file from disk. It will load into the
RAM under the kernal (or we can optionally relocate it to any free
8k RAM space.) The EPROM size and speed are unchanged but we press
'*'" to select RAM. Next we choose 'A' to alter the parameters. If
the new file has been loaded to RAM at E000 then we set RAMSTART to
EQOO. Remember that we could have loaded this file into any free 8k

block and so a different RAMSTART value would have been entered in
that case.

The wvalue for ROMSTART should now be changed to 2000. This 1is
because we now want to program the top half of the 16k chip. TASK
LENGTH is unchanged since our new file is also 8k. Again we have to

select 'W' to write the chip and afterwards select 'V' to verify.

This is perhaps a complicated example but it does cover most aspects
of device programming.

If you wanted to read an EPROM into RAM the rules are much the same.

EPROMMER 64 INSTRUCTION MANUAL

MONITOR

When a program is in RAM then changes can be made with the built in

monitor.

M SSSS
D SSSS
G SSSS
H SSSS
C XXXX
X

Press
EEEE
EEEE
EEEE VV
YYYY

'M' to enter. The commands for the monitor are:

Will display as hex and ASCII the code between the
two addresses SSSS-EEEE

Will display a disassembly between the two
addresses.

Will execute (go to) the program starting at that
address.

Will find (hunt for) the wvalue specified Dby VV
between the two addresses.

Will compare between the two values.

Will exit the monitor.

EPROMMER 64 INSTRUCTION MANUAL

ZIF SOCKET DIAGRAM

Q EPROM BOARD

oooooooooooogo

w U b O

gooopOoooOooooon

24 PIN EPROMS 271672732

28 PIN EPROMS 2764/128/256

EPROMMER 64 INSTRUCTION MANUAL

CARTRIDGE DEVELOPMENT SYSTEM INSTRUCTIONS

The cartridge development system is a complete kit of parts to build
an 8k or a 2x8k switchable cartridge. In its simplest form the
board can be formatted as an 8k cartridge to appear in memory at
$8000-9FFF, S$SAOO0O0-BFFF or even replace the kernal at S$SEOOO-FFFF.

By looking at the circuit diagram you will see that fitting the wire
link will ground EXROM line and hence the cartridge will appear at
$8000. ROML is already connected to the chip enable. If in
addition the PAD1 link is made then GAME will also be grounded and
the cartridge will then appear at S$SA000 but this time enabled by
ROMH (padi4). A second EPROM could be incorporated using this method
and a 16k cartridge could be built.

The EPROM provided is a 27128 16k device but our board really treats

it as two 8k devices. When the Dboard has been configured as a
simple 8k cartridge (where ever in memory) the switch can be used to
introduce either the bottom or top half of the chip. Thus two

completely different 8k programs can be switched at will.

We have tried to make the board as versatile as possible both for
you and ourselves since we base most of our own products on this
board. Further examination of the circuit diagram will show that
many more methods of configuration are catered for. For instance
both the GAME and EXROM lines can be connected to the I/01 and I/02
lines. These 1lines are under software control and therefore a
cartridge can be controlled by software.

The Epyx Fastload cartridge wuses the I/0 1lines to make 1itself
invisible to the system.

Please read the Dbooklet carefully and all will be revealed. The
above information 1s only an overview of the options available for
this product. The rest of this booklet will deal with the wvarious
control lines to configure the system. Much of the information 1is
not readily available elsewhere, indeed Commodore themselves treat
this subject as though it was some sort of secret.

When you have read the rest of the instructions you will appreciate

that 1t's not that complicated to achieve great things. On the
other hand, if you find it difficult just read through it again and
we are sure you will pick it up. We have made 1t as concise as

possible and it is an area that is well worth understanding.

Please be careful when programming the EPROM and remember that if
you are going to use it as two 8ks then set your programmer as such.

An attractive case 1s supplied to finish off your cartridge. This
unit is ready drilled for the bank switch and reset button which are
also provided.

If you come up with a good product that you may consider is worth
putting into production then Datel will be pleased to qgquote for
supply of cartridge kits in quantity.

EPROMMER 64 INSTRUCTION MANUAL

Alternatively, 1f it is really good why not sent it for evaluation
and we may be interested in marketing it for you.

EPROMMER 64 INSTRUCTION MANUAL

HARDWARE CONTROL OF THE PLA

The memory that the microprocessor sees may also be controlled by

the hardware. Hardware control requires an actual connection from
the pins on the cartridge port to ground. Two of the 1lines
connected from the PLA to the cartridge port will control memory
configuration. The PLA will monitor the voltage level of these two
lines. These two lines are called EXROM line and the GAME line.
These two lines are normally high (+5v). When either (or both) of

these 1lines are grounded the PLA will reconfigure the memory that
the microprocessor sees.

Grounding only the EXROM 1line will cause the PLA to reconfigure
memory so that the microprocessor will look to the cartridge port to
find the memory from $8000-$9FFF. All of the other memory locations

will remain intact. BASIC ROM, KERNAL ROM and the I/0 devices will
remain in effect. Under normal circumstances the EXROM line would
be grounded only 1if a cartridge had been installed. If we were to

ground the EXROM line without a cartridge installed the
microprocessor would not find any memory at these locations ($8000-
SOFFF) . The PLA does not care if any memory exists at the memory
locations that the microprocessor 1is looking at. If we ground the
EXROM line without plugging in a cartridge, the PLA will prevent the
microprocessor from seeing any memory other than what 1is at the

cartridge port (nothing there in this example.) The microprocessor
will only find random garbage in this area. This 1is a way for the
PLA to prevent the microprocessor from seeing the RAM normally at
$8000-$9FFF. Remember that when the EXROM line is grounded the PLA
will cause the microprocessor to see only that memory that is
plugged into the cartridge port. This will occur whether there is a

cartridge plugged in or not!

Grounding only the GAME 1line will cause the PLA to reconfigure
memory so that the computer will be able to use cartridges designed

for the UltiMax system. The KERNAL ROM and the BASIC ROM will be
switched out and the microprocessor will look to the cartridge port
for memory in the $8000-$9FFF and the $EOOO0-SFFFF range. This

configuration of memory will cause the microprocessor to not see ANY
memory in the following areas of memory: $1000-$S7FFF and SAOQ00-S$CFFF

('"images' may appear in these open areas.) Memory locations $0000-
SOFFF will appear as the normal RAM and $DO000-S$SDFFF will appear as
the normal I/0O devices. The microprocessor will 1look for memory

locations $8000-$9FFF and S$SEOOO-S$FFFF on the cartridge port. Again,
this memory configuration is only for those cartridges that emulate
the UltiMax system.

Grounding BOTH the EXROM and GAME lines at the same time will cause
the PLA to reconfigure memory so that the microprocessor will look

to the cartridge port for memory at locations $8000-$BFFF. This
configuration will allow the wuse of 16k of continuous cartridge
memory. 8k will reside in the normal area of cartridge memory
($8000-$9FFF) . The other 8k will reside in the area of memory that

is normally reserved by BASIC (SAO000-$BFFF).

EPROMMER 64 INSTRUCTION MANUAL

This memory configuration will also allow for the programmer to
switch between the RAM and ROM located at memory locations $8000-

SOFFF. By controlling the LORAM line the programmer may select RAM
or cartridge ROM. When the LORAM 1line is high the PLA will cause
the microprocessor to see ROM at location $8000-S9FFF. When the

LORAM 1line is low the PLA will cause the microprocessor to see RAM
at locations $8000-$9FFF and the microprocessor will still see the
cartridge ROM located at S$SAO000-S$SBFFF. In other words, trying to
turn off the BASIC ROM with LORAM when GAME and EXROM are both
grounded will turn off the cartridge memory at $8000-$9FFF but will
not turn off cartridge memory at $SAQ000-S$SBFFF!

We have now covered the major functions of the PLA and
microprocessor combination used in the C-64 as they relate to memory
management. The PLA also has a few other important functions. When

the microprocessor writes to an area of memory that contains both
RAM and ROM (BASIC ROM S$A000-$BFFF, for example) the PLA will allow

the microprocessor to write to the underlying RAM. The PLA will
decode the microprocessor's instructions when it 1is reading and
writing. The PLA will then “decide” what memory that microprocessor
should have access to (RAM or ROM.) If the microprocessor 1s going
to write (STA) a value to memory, the PLA will select the
appropriate memory (ROM cannot be written to.) If the

microprocessor will be reading (LDA) a value from memory, the PLA
will select the proper area of memory based upon the LORAM, HIRAM,
EXROM and GAME lines. The one deviation from the preceding example
is when the microprocessor writes to the memory at S$SDOOO-$DFFF.
This memory normally contains the I/O devices, rather than RAM or

ROM. Because of this, the PLA will allow the microprocessor to both
read and write to these locations. These addresses do not normally
refer to actual RAM or ROM memory locations used by the 6510. They
primarily contain the on-board registers of the I/0 devices and the
color RAM wused by the VIC chip. The VIC (video) chip, the SID

(sound) chip, the two CIA communication chips, and the color RAM are
located in this area of memory.

The VIC chip can also access (look at) memory. The VIC chip can
only address 16k of memory at any one time. The VIC chip also
causes the PLA to select what area of memory is available to the VIC
chip. For instance, when the VIC chip wants to access the CHARACTER
ROM, the PLA will select this chip rather than the I/0 devices
normally located from $DOOO-$DFFF. For our purposes, we have

already covered all that we need to about the 6510 microprocessor
and the PLA.

10

EPROMMER 64 INSTRUCTION MANUAL

If you had a hard time digesting all the information presented in
this chapter, DON'T WORRY ABOUT 1IT!!! A tremendous amount of

information has been presented here. Let's review a few of the more
important concepts:

1. The 6510 microprocessor is RESET upon power up.

2. Whenever the microprocessor is RESET the LORAM,

the HIRAM and
the CHAREN lines will be set high.

3. The PLA will control the microprocessor's access to various
areas of memory.

4. The PLA may be controlled by Dboth hardware and software
methods.

By grounding the EXROM line we can prevent the microprocessor
from seeing RAM at locations $8000-$9FFF (very important.)

6. A software RESET (SYS 64738 or JMP SFCE2)

is different than a
hardware RESET.

6510A DIAGRAM

19 [s

Py Py Py Ve

AEC |
Po
Py
P2

RES
Ass
At |

|

29 HIRAM
CHAREN
27

N
(-]

3
(=]

N N
N) W

Az
Az
Aty
Ao

N
(=]

-
©

18
17

-
o

-
(5]

-
»

»
@
‘..
=]

12
1
10

FIG 6-1 6510A Ag

|

&'”Hls‘q

8

[*]
~!

W
©

&

-

|
g

GND
121

EPROMMER 64 INSTRUCTION MANUAL

CARTRIDGES AND CARTRIDGE BOARDS

There are two main ways to use an EPROM in your Commodore computer
system. You can use the EPROM on a plug-in cartridge board, or you
can use it to directly replace on of the ROM chips in the computer
or disk drive. We'll cover both of these topics, but we'll
concentrate on cartridges for now. There are several different
kinds of cartridges for the C-64, including exotic cartridges used
in some commercial products. To understand the differences among
cartridges, we need to look at how cartridges are recognized and
accessed by the computer. Before proceeding, be sure you have read
the chapter on memory management (Hardware Control of the PLA.) In
that chapter we looked at the PLA and its relationship with the rest
of the computer. In this chapter we'll 1look at how cartridges
interact with the PLA.

The simplest type of cartridge is the 8k cartridge. Actually, you
could put LESS than 8k of EPROM on this type of cartridge, but 8k is
the maximum, so we'll loosely call it the standard 8k cartridge. A
singe 2764 EPROM (8K) is usually used in these cartridges
(commercial cartridges may use PROMs instead.) When this type of
cartridge 1is plugged into the computer, the EPROM will be seen by
the computer at memory address $8000-S9FFF. The RAM which is
normally there will disappear. Of course, you'll get your RAM back
when you unplug your cartridge. In fact, the contents of the RAM
will be unchanged. (By the way, NEVER plug or unplug a cartridge

when the computer power 1s on, unless you have a cartridge power
switch. Doing so could destroy your computer and cartridge!)

The second type of cartridge can hold up to 16k of memory, so we'll
call it the standard 16k cartridge. Two 2764 EPROMs usually supply
the 16k. The first EPROM will appear in the memory at $8000-$9FFF,
replacing the normal RAM there. The second EPROM will appear at
SAO0O0O0-$BFFF, knocking out the BASIC ROM which is wusually 1located
there. This gives us 16k of continuous cartridge memory from $8000
to S$BFFF. If you recall that the BASIC ROM is already sitting on
top of 8k of RAM, you can appreciate how much is going on behind the
scenes to keep this all straight.

The third type of cartridge is called an UltiMax or Jjust Max

cartridge. UltiMax was a video game system produced by Commodore
and sold only in Europe, and only for a short while. It used the
same VIC II and SID chips as the C-64. The designers of the C-64
arranged it so that cartridges for the Max would work on the C-64
too. On the C-64, Max cartridges replace the KERNAL ROM located at
SEOOO-$FFFF with their own 8k of EPROM. Max cartridges may also
have another 8k of ROM memory 1if desired, which will appear at
$S8000-$9FFF. One special feature of Max cartridges 1s that all of

the RAM of the computer disappears except for 4k at S0000-$OFFF.
Because we <can't access most of the RAM, Max cartridges really
aren't useful in very many applications.

We Jjust said that the EPROMs in these cartridges replace different
areas of memory. This 1s really only true for read operations.

11

EPROMMER 64 INSTRUCTION MANUAL

Write operations will vary in their effect depending on the type of

cartridge. For example, with an 8k cartridge plugged 1in, the
computer will be able to read the cartridge EPROM at $8000. If the
computer tries to write to this location, however, the data will end
up in the RAM address under the cartridge's EPROM. Likewise, with

16k cartridges write operations go to RAM automatically, even though
the second EPROM at S$SA000-S$BFFF is two levels removed from RAM (the
BASIC ROM 1s sandwiched 1in between the EPROM and RAM.) With Max
cartridges, however, the RAM 1is truly gone from the memory map.
Writing has NO effect on any read of RAM except the $0000-$SOFFF
area.

How do the cartridge EPROMs and RAM chips know when to respond and
when not to? Why does a read operation go to EPROM and a write
operation go to RAM? We saw 1n a previous chapter that the C-64's
PLA chip is in charge of memory management. In this chapter we'll
see how the cartridge controls the PLA to produce these effects. At
the same time, we'll address a related topic: what makes the three
types of cartridges different? Why do the cartridge EPROMs appear
at the locations they do?

The answers to these gquestions lie in the EPROM's enable lines. In
order for a chip to be active, it must have a supply of power, first
of all. It must also have address and data lines to communicate to
the outside world. Most chips also have at least one enable line.

Most of the EPROMs discussed in this book actually have two enable
lines, called the chip enable (CE) and output enable (OE) lines.
Both have to be controlled correctly in order to access the chip.

An enable line 1is 1like a switch. The chip enable (CE) 1is a power
switch. Even if power is available, the chip will not become active
until the CE line is brought low (grounded; set to 0 volts.) The

abbreviation CE 1is wusually written with a bar over it to indicate
that the CE line performs 1its function only when it 1s brought low

(this is called active low.) When CE 1is held high (+5 wvolts), the
chip is put into standby mode. In this mode the chip uses much less
power than when active. A certain minimum amount of power 1is used
in standby mode to keep the chip “warmed up”. EPROMs don't require

ANY power just to retain their data.

The other enable 1line, output enable (OE), controls the chip's data
lines. OE is usually written with a bar over it too, since the chip
will only put out data when the OR line is low. In order for the
chip to be active, both OE and CE have to be set low at the same
time. On C-64 cartridges, the two enable lines from the chip are
combined into a single line to make enabling the chip easier. The
chip can be enabled by switching this one combined line high or low.
Cartridges with two chips on board have a separate enable line for
each chip. Each chip enable line is a combination of the OE and CE
lines from one chip. From now on when we speak of THE enable line
for a chip, we'll be referring to the combination of CE and OE.

Enable lines are used when several chips are connected to the same

set of address and data lines. If more than one chip were active at
the same time, there would be mass confusion (bus conflict) and
possibly even physical damage to the chips. By controlling the

12

EPROMMER 64 INSTRUCTION MANUAL

enable lines, you can make sure only one chip at a time will Dbe
active on the address and data lines. Does this situation sound
familiar? Of course - 1it's exactly the situation we have in the C-
64 when we plug in a cartridge, since we could have EPROM, ROM and
RAM potentially residing at the same address! Now we see that there
is really a simple principle underlying the complexity of memory
management. The PLA chip, in its infinite wisdom, knows which chip

enable line to switch on, depending on what type of cartridge (if
any) 1s plugged in and whether the operation is a read or a write.
Remember, write operations are usually directed to RAM, except when
writing to the I/0 devices at $DO00-$DFFF. Read operations have to
be sorted out and directed to the proper chip (EPROM, ROM or RAM.)

The PLA has many lines coming into it (inputs) that it uses to sense

the present state of the computer. It also has several lines coming
out (outputs) that are used to control the memory chips. The PLA
monitors its input lines continuously. Any changes 1in the input
lines affect the output lines immediately. One input 1line called

R/W is wused to distinguish between a read and write operations.
Write operations are “easily” handled since they almost always go to
RAM, so we'll concentrate on read operations. Of all the PLA's
lines, we only need to be concerned about for right now: the two
input lines GAME and EXROM, and the two output lines ROML and ROMH.
The function of the GAME and EXROM lines 1s affected by other input
lines, such as HIRAM and LORAM, but for this discussion we'll assume
that HIRAM and LORAM are both held in their normal state (high).

GAME and EXROM are inputs to the PLA from the cartridge port. They
are not connected to anything else in the C-64. GAME is pin #8 on
the cartridge port. On a cartridge board, this is the 8" pin from
the left on the top side of the board (the component side, where the
EPROMs are mounted.) See the diagram in appendix D. EXROM is pin
#9, right next to GAME. Both are active low, that is, when grounded
(0 volts) . With no cartridge plugged in, these lines are
automatically held high (+5 wvolts). It is up to the cartridge to
ground these lines or not, according to the memory configuration it
wants the PLA to set up. In a nutshell, this is how the PLA knows
what type of cartridge 1s connected. If EXROM alone 1is grounded, it
indicates an 8k cartridge (regardless of how many EPROMs are
actually on the board, as we'll see.) If both EXROM and GAME are
grounded, 1t indicates a 16k cartridge. Finally, 1if Jjust the GAME
line is grounded, it indicates a Max cartridge (either 8k or 16k.)
Grounding a line 1is as simple as 1t sounds - just connect it to the
computer's ground. Pins 1, 22, A and Z on the cartridge port are
all grounds.

A bank-switched cartridge looks like a standard 8k cartridge to the

C-64. The cartridge will ground only the EXROM 1line, so the PLA
thinks the cartridge contains 8k of memory at $8000-S$9FFF. This 1is
accurate as far as 1t goes: only 8k o0of cartridge memory will be
available at a time, and it will appear at $8000. However, the
cartridge board may contain any number of EPROMs. Special circuitry
on-board the cartridge picks out one EPROM at a time to appear at
$8000. Accessing this memory is a two stage process: the PLA brings

the ROML enable line low and then the cartridge band-switch

13

EPROMMER 64 INSTRUCTION MANUAL

circuitry passes this enable signal to its currently selected EPROM.
The C-64 doesn't know about the second stage, of course; it Jjust
sees a standard 8k cartridge. The only time the C-64 has to do
anything special is when it wants the board to change the current
EPROM.

To tell the board to change the current EPROM, we have to send a
special signal to the board. We can't use the regular address,
data, or enable lines for this, however. Instead, most bank-switch
cartridges use a special 1line, not normally used for anything else
on the C-64 (except the Z80 CP/M cartridge.) There are actually two
of these lines to choose from, called I/01l and I/02. I/01 is set to
low whenever a read OR write operation accesses the S$DEOO-$DEFF area
(note that the ROML and ROMH lines are set low only on read

operations.) I/02 is similar except it's triggered by reference to
the S$DFO0-$SDFFF area. I/01 and I/02 are pins #7 and #10 on the
cartridge port, respectively. On a bank-switch board, one of these
lines will be connected to a special piece of circuitry called the
bank-select register (BSR). Depending on whether I/01 or I/02 1is
used, the BSR will appear at $DE00 or $DF00 in memory. To switch
the current EPROM all you have to do is trigger the BSR, usually by
writing a particular value to it. That's all there is to 1it. Once

you trigger the BSR, the EPROM selected will appear at $8000
immediately.

Bank switch cartridges are especially useful for programs which are
too large to fit in 16k (the maximum for a regular—-type cartridge.)
Bank-switching can also provide considerable protection for a
program, depending on how it 1is used. There are two main ways a
cartridge can use Dbank switching. The simplest way 1s to Jjust
download the program from the EPROMs into RAM memory, one 8k chunk
at a time. After downloading, many cartridges can remove themselves
from memory by ungrounding the EXROM line wvia special circuitry.
This frees up the RAM at $8000 (under the cartridge) for use by the

program. The simple download method is relatively easy to set up
but doesn't offer much protection for the program. A second way to
use bank-switching is to have different sections of the program on
different EPROMs. Depending on which part of the code 1is needed,
the board can select the proper EPROM. The code is never downloaded
into RAM, but rather executed directly from the EPROM. This 1is much
more complicated for the programmer to set up, but it is also a very
solid program protection technique. To make a RAM executable copy

from such a cartridge, 1if it could be done at all, the could would
have to be modified extensively.

Okay, so GAME and EXROM tell the PLA what's going on. What does the
PLA do about it? This brings us to the PLA output lines ROML (ROM

Low) and ROMH (ROM High). ROML and ROMH are connected only to the
cartridge port. They are both normally held high (+5v) unless a
cartridge grounds EXROM or GAME (or both.) Depending on which of
these lines are grounded, the PLA will being ROML and/or ROMH low
too. What are ROMH and ROML? Nothing more than two EPROM enable
lines! ROML 1is the combined OE/CE enable 1line for the first
cartridge EPROM, located at $8000-$9FFF in memory. With a cartridge

(any type) plugged in, the PLA will bring ROML low any time a read

14

EPROMMER 64 INSTRUCTION MANUAL

operation tries to access the $8000-$9FFF area. Remember, bringing
an enable low will activate the chip. ROML is not held low all the
time, since then the chip would be active even when other areas of
memory were Dbeing accessed (resulting in Dbus conflict.) ROML is
only held low momentarily until the read operation cam be performed.
This is how the PLA tells the EPROM it is located at $8000. The PLA

only enables the EPROM when that area of memory is being accessed.

The ROMH enable line 1is Jjust a little more complicated because the
second EPROM appears at different locations in memory with different
types of cartridges. With a standard 8k cartridge (EXROM grounded),
the second EPROM is not used and so it's disabled by holding ROMH

high at all times. With a standard 16k cartridge (both GAME and
EXROM grounded), any read operations in the $A000-$BFFF area will
signal the PLA to bring ROMH low. Since ROMH 1is connected to the
second EPROM's enable 1lines, this will make the EPROM appear at
SAQ000 in memory. With a Max cartridge (GAME grounded) , read
operations in the $EOQ00-S$SFFFF area will enable the second EPROM
through ROMH and make it appear at $E00O0. Note that with a Max
cartridge, you MUST have an EPROM at SEOO0Q0-S$SFFFF since the
microprocessor automatically looks there on reset. The $8000-S$9FFF

EPROM 1is optional with Max cartridges (and in fact, rarely 1if ever
used.)

At this point a little review is in order. The GAME and EXROM lines
run from the cartridge to the PLA. They tell the PLA what type of
memory configuration to set up. Based on the memory configuration,
the PLA enables the cartridge EPROMs at the proper times using ROML
and ROMH. Cartridge EPROMs are only enabled for read operations,
never write operations. A cartridge EPROM is only enabled when its
particular area of memory 1s referenced. The PLA controls which
area of memory is assigned to the cartridge EPROMs, depending on the
state of the GAME and EXROM lines. The PLA monitors the GAME and
EXROM lines continuously.

The cartridge types we've examined so far by no means exhaust the

possibilities. By manipulating the GAME, EXROM and other 1lines,
many exotic cartridges can be created. The most common example of
this exotic cartridge 1is a banked-switch cartridge. Bank-switching
means turning memory chips on and off, so different chips can occupy
the same address at different times. Sound familiar? The C-64
already uses bank-switching, controlled by the PLA, to select 1its
different memory configurations. What's different about bank-

switched cartridges is that the bank-switching is done on-board the
cartridge 1itself, in addition to the memory selection done by the
PLA.

15

EPROMMER 64 INSTRUCTION MANUAL

AUTOSTART CARTRIDGES

Suppose you wish to set up a cartridge that runs automatically when

the computer 1s powered up or reset. To do this you'll have to
interrupt the normal power-up (reset) process somehow, and force the
computer to execute your cartridge program. Depending on where vyou
interrupt the normal process, however, your program may have to
initialize some areas of the computer for proper operation. For
instance, it may have to initialize the 6510, VIC or CIA chips, or
the KERNAL or BASIC RAM areas. Thus 1t's important to know what
initialization 1s done normally, when it's done and why. In this
chapter we'll examine the wvarious ways to interrupt the reset
process and autostart a cartridge, including the necessary

initialization tasks.

There are three main methods you can use to autostart a cartridge.
Each method involves interrupting the reset process at a different
point, and each method 1s best suited to a different kind of

cartridge. We'll start with the easiest method first, which we call
the $A000 method (you'll see why in a minute.) The reset process
can be divided into two phases, KERNAL initialization and BASIC
initialization. BASIC initialization 1s only necessary 1f vyour
cartridge must be compatible with the BASIC system. For example, if

your cartridge adds commands to the BASIC language or uses cartain
BASIC ROM subroutines, you'll need to initialize BASIC.

$A000 METHOD

If you don't need the BASIC system, you can “trick” the KERNAL reset
process 1into doing all vyour initialization for vyou and then auto-
starting your cartridge. After completing its own initialization
tasks, the KERNAL reset routine attempts to “cold-start”
(initialize) BASIC. It does this by Jjumping to the location
specified by the BASIC COLD-START VECTOR. Like all vectors, the
BASIC cold-start vector consists of two consecutive bytes containing
a memory address. The address is stored in lo-byte/high-byte order,
which means the low order (least significant) byte is first and the
high order (most significant) Dbyte 1s second. The KERNAL expects
the BASIC cold-start vector to be found in locations S$SA000-$A001,
which 1is normally at the very beginning of the BASIC ROM. The
contents of these two locations in the BASIC ROM are $94 and SE3
respectively, which means they point to location $E394 (vectors are
also called pointers.) This location 1s the start of the BASIC
cold-start routine.

If we could change the BASIC cold-start vector, we could make it

point to our cartridge ©program. Our cartridge would start up
automatically after all KERNAL initialization was finished. But
since this wvector is in BASIC ROM, how do we change 1it? Answer:
replace the BASIC ROM. Not physically, of course, but by using a
standard 16k cartridge. Recall that standard 16k cartridges reside
at $8000-$BFFF. The PLA switches out the BASIC ROM and selects the

16k cartridge configuration when it senses that both of the GAME and

16

EPROMMER 64 INSTRUCTION MANUAL

EXROM 1lines are grounded. Two 8k EPROMs are required for 16k of
memory on the cartridge. The first EPROM resides at $8000-$9FFF and
the second EPROM resides at SAOO0OO0-$BFFF. All you have to do is put
a vector at SA000-$A001 which ©points to the Dbeginning of your
program, and the cartridge will be started automatically at the end
of KERNAL initialization.

If you only need 8k for your cartridge, vyou can still wuse this
technique. Just wuse the second EPROM ($SAO000-$BFFF) and leave the
first EPROM ($8000-$9FFF) socket empty. As long as GAME and EXROM
are grounded, the PLA will still choose the 16k configuration. This
means the RAM normally at $8000-$9FFF will still be switched out,
however (and the BASIC ROM too, of course.) Since you're not using
the first cartridge EPROM, you'll have a hole in memory from $8000-
SOFFF. If you try to read from this area, random data may appear
there. You may even Dbe able to use this phenomena as part of a
protection scheme. As wusual, data written to this area will be

placed in the wunderlying RAM, even though you can't read 1t back
out.

So, to review a bit, the S$A000 method 1is the easiest autostart
technique to use because all KERNAL initialization 1is done for vyou.
You don't have to worry about BASIC initialization since you can't

use BASIC anyway (the BASIC ROM is switched out.) Of course, you
don't have access to the BASIC ROM subroutines either (there's a lot
of useful stuff in there.) This makes the $A000 method most

suitable for cases where you need the maximum of 16k of cartridge
memory, or where you only need 8k and don't need BASIC.

CBM80 METHOD

The second cartridge autostart method is by far the most common. It
can be used by both 8k and 16k cartridges that reside at $8000.
Although this method is sometimes called the “cartridge autostart

option,” it can be used equally well for RAM-based programs, and
often 1is. You probably know it as the CBM80 method. One of the
first things the KERNAL RESET routine does is check locations $8004-
$8008 for the string of characters “CBM80”". If these exact

characters are NOT found there, the KERNAL reset process continues
normally.

If the CBM80 IS found, the RESET routine is 1interrupted and the
processor immediately Jjumps to whatever location is specified by the
CARTRIDGE COLD-START VECTOR. This vector is expected to be found at
locations $8000-$8001. You must place a pointer here, in standard
lo-byte/high-byte order, directing the processor to the beginning of
your cartridge code. From that point on, your cartridge must handle
all the initialization itself for any functions it will use, such as
the I/0 devices or KERNAL or BASIC routines. Fortunately, you still
have the KERNAL initialization routines available for wuse. Unless
you know exactly what you are doing, you cartridge should use these
routines to initialize the functions it needs.

17

EPROMMER 64 INSTRUCTION MANUAL

CBM80 CARTRIDGE INITIALIZATION

8000 90 80 Cartridge cold-start vector = $8009
8002 25 80 Cartridge warm-start vector = $8025
8004 C3 C2CD 38 30 CBM80 - Autostart key

KERNAL reset routine
8009 8E 16 DO STX $DO016 Turn on VIC for PAL/NTSC check
800C 20 A3 FD JSR SFDA3 IOINIT - Init CIA chips
800F 2050 FD JSR S$FD50 RAMTAS - Clear/test system RAM
8012 20 15 FD JSR S$FD15 RESTOR - Init KERNAL RAM vector
8015 20 5B FF JSR SFF5B CINT — Init VIC and screen editor
8018 58 CLI Re-enable IRQ interrupts

BASIC reset routine
8019 20 53 E4 JSR $E453 Init BASIC RAM vectors
801C 20 BF E3 JSR SE3BF Main BASIC RAM init routine
801F 2022 E4 JSR $E422 Power—-up message / NEW command
8022 A2 FB LDX #SFB
8024 9A TXS Reduce stack pointer for BASIC

8025 Lo TART Y R PROGRAM HERE

The cartridge cold-start wvector and autostart key (CBM8O0) have

already been discussed. The warm-start vector at $8002-$8003 is a
feature that allows you to re-enter vyour program after a full
initialization has already been done. Once a cold-start has been
done, 1t usually doesn't need to Dbe done again. Pressing the

RESTORE key calls the NMI (NON-MASKABLE INTERRUPT) routine, which
will see the CBM80 and jump to the location indicated by the warm-
start vector. This i1s why many programs restart themselves when you
press the RESTORE key. In our initialization routine we have
pointed the warm-start wvector to the start of your program. You
could also point it to $8009 to perform a full cold-start on
RESTORE. If you want to disable the RESTORE key entirely, point the
warm start vector to S$FEBC (return from NMI.)

We have included the BASIC RESET process in this cartridge
initialization routine too. Actually, the normal BASIC RESET
routine dead-ends with a jump to the BASIC direct mode interperter,
also know as “READY” mode. This prints the READY prompt and then
sits there waiting for vyou to type a BASIC command. You won't
usually want to exit into READY mode at this point since BASIC will
take over and your cartridge will lost control. If you do want to
exit to BASIC now or later, you may do so with JMP $E386. By the
way, the routine <called at $801F (JSR S$E422) prints the normal
power-up screen and does a NEW command. If you want to skip the
power—-up message, Jjust call the NEW command directly using JSR S$A644
instead of JSR $E422.

To summarize, the CBM80 method can be used with either 8k or 16k
standard cartridges (which start at $8000.) The cartridge

18

EPROMMER 64 INSTRUCTION MANUAL

initialization routine above will be sufficient for the vast

majority of cartridges. KERNAL initialization must be done at least
once (on power-up Or reset.) BASIC initialization can be skipped if
you're not using BASIC, and MUST Dbe skipped if you're using a 16k
cartridge. Through the cartridge warm-start vector, the RESTORE key
can be set up to re-enter your program or it can be disabled
entirely. The CBM80 method 1is by far the most common cartridge

autostart method.

MAX METHOD

The +third and last autostart method 1s the Max method. This
requires the use of an UltiMax cartridge (one that grounds just the
GAME line.) The second EPROM in a Max cartridge resides at SE000-
SFFFF, replacing the KERNAL ROM (the first EPROM appears at $8000-
SOFFF if used.) Max cartridges have many limitations and are rarely
used commercially except for simple video games. One limitation of
Max cartridges is that only 4k of the computer's RAM 1is available
for wuse, and one-quarter of that is required for screen memory.
Another limitation 1is that the KERNAL ROM 1is switched off, which
means you must write your own power-up/reset initialization routines

(although you may use the KERNAL routines as a guide.) You don't
need to worry about BASIC initialization since the BASIC ROM 1is
switched out too. For these reasons, you'll probably never need to
set up a Max cartridge. Only an advanced user would want to

consider using this method.

Max cartridges autostart through a hardware function of the 6510
processor rather than through a software routine in the KERNAL like
the other two methods. When the C-64 1is powered up, a special
circuit resets the 6510 microprocessor, SID and CIA chips, Jjust as
if you have performed a hard reset yourself (with a reset button.)

Two very important events take ©place immediately, before any
instructions are even executed. First, the I/0 devices (VIC 1ITI,
SID, CIAs, and color RAM) are all switched into memory by the PLA,
as well as the KERNAL and BASIC ROMs (normally.) Second, the 6510
processor fetches 1its RESET vector from locations S$FFFC-$FFFD,
normally in the KERNAL ROM. The RESET vector 1is a two-byte wvalue
that points to the beginning of the KERNAL RESET routine. The

processor ALWAYS gets its RESET vector from locations SFFFC-SFFFD.
This feature is hard-wired into the 6510 chip itself, and CANNOT be

changed! You must make sure the processor finds a wvalid addres in
locations S$SFFFC-S$SFFFD, which i1s why the KERNAL is normally switched
in first on reset. The processor does an indirect jump based on the

RESET vector and normally begins executing the KERNAL RESET routine.

The only alternative to executing the KERNAL RESET routine 1is if a

Max cartridge is present. If the PLA senses that a Max cartridge is
plugged in (GAME 1line grounded), it switches 1in the cartridge at
SEOOO-$FFFF, replacing the KERNAL. Then when the 6510 fetches its
RESET vector from S$SFFFC-$FFFD, it will get 1f from the cartridge
instead of the KERNAL. You simply place a vector at S$FFFC-SFFFD
pointing to the beginning of your reset routine, and the processor
will start executing your routine automatically. This 1is how the

19

EPROMMER 64 INSTRUCTION MANUAL

Max autostart method works - your cartridge is switched in and grabs
control fright from the start.

Now it's up to your cartridge to perform all necessary
initialization. For instance, the VIC II chip must be initialized
in order to use the screen. Likewise, the other I/0 devices will
have to be initialized if you want to use the keyboard, Jjoysticks,
SID sound chip, IRQ interrupts, etc. Initializing and controlling
these devices can be quite complicated. We recommend that you use

the corresponding KERNAL routines as a model for your own routines.
In fact, many Max cartridges contain almost byte-for-byte copies of

the KERNAL routines. While we can't cover the KERNAL routines in
depth in this Dbook, we can summarize the wvarious initialization
routines used in the normal reset process. This will help you get

started towards an understanding of what initializations your
cartridge will require.

NORMAL RESET PROCESS

Recall that when the 6510 processor is reset, it begins executing at
the address specified by the RESET vector at S$SFFFC-SFFFD. In the
KERNAL ROM, these locations contain a pointer to the KERNAL RESET
routine at S$SFCE2 (decimal 64738.) The main part of the KERNAL RESET
routine is shown Dbelow. Note the similarities to our CBMS8O0
cartridge initialization routine above. The KERNAL RESET routine
takes three important steps right away. First, IRQ interrupts are
disabled with a SEI instruction, SO the routine won't be
interrupted. Second, the stack pointer is initialized by
transferring a wvalue to it from the X register, using a TXS
instruction. The stack pointer indicates the next empty position on
the stack, which grows DOWNWARD in memory from S$O01FF to $0100 (i.e.
the pointer decreases as the stack 1is filled.) The stack pointer
contains a random value on reset, so we should put a value there
before any stack operations take place (such as PHA, PLA, PHP, PLP,
JSR, RTS, RTI instruction or an NMI, IRQ or BRK interrupt.) The
RESET routine sets the stack pointer to $FF, which starts the stack
out at the very top (allowing it the maximum space.)

The +third step 1s to <clear the decimal mode flag with a CLD

instruction. This flag controls whether math instructions like ADC
(add with carry) and SBC (subtract with borrow) are performed in
normal hex format (actually binary) or in BCD format (BINARY CODED
DECIMAL.) Like the stack pointer, this flag has a random value on
power—-up, sSso 1t 1is set to 0 to ensure that math 1is done 1in hex
format. If you write your own initialization routine for a Max

cartridge you should also do these three things right away.

20

EPROMMER 64 INSTRUCTION MANUAL

KERNAL RESET ROUTINE

FCE2 A2 FF LDX #SFF Stack pointer wvalue

FCE4 78 SEI Disable IRQ interrupts

FCE5 9A TXS Initialize stack pointer

FCE6 D8 CLD Clear decimal mode

FCE7 20 02 FD JSR S$SFDO02 Check for CBM80 key

FCEA DO 03 BNE S$SFCEF Branch 1f not found

FCEC 6C 00 80 JMP ($8000) Jump to cartridge cold-start
FCEF 8E 16 DO STA S$DO016 Turn on VIC II (A = $05)

FCF2 20 A3 FD JSR S$FDA3 IOINIT - init CIA chips

FCF5 20 50 FD JSR $FD50 RAMTAS - Clear/test system RAM
FCFS8 20 15 FD JSR $FD15 RESTOR - Init KERNAL RAM vectors
FCFB 20 5B FF JSR SFF5B CINT - Init VIC and screen editor
FCFE 58 CLI Re—-enable IRQ interrupts

FCFF o6C 00 AOQO JMP (SA000) Jump to BASIC cold-start

After the first three steps, the RESET routine calls an important
subroutine at $FDO02. This routine checks the locations $8004-$8008
for *“CBM80"” autostart key. If these exact characters are found
there, the cartridge cold-start vector is fetched from $8000-$8001.
Execution continues at whatever location 1is indicated Dby this
vector. This is the point at which the CBM80 autostart method takes
control.

If there is no *“CBM80” found, the RESET process continues at S$FCEF.
The X register 1is stored into location $D016, which 1is +the VIC
control register. The value of X at the point 1s always $05 or
less, since it was used as an index in the check for “CBM80” (which
has 5 characters.) Commodore says 1t's extremely important to make
sure bit number 5 of this value is a 0, which it is in this case. A
0 in bit 5 supposedly turns the VIC chip on and a 1 turns it off
(see pages 322 and 488 in the Programmer's Reference Guide.) Your
own initialization routine should set this bit to 0 too. There's an
interesting side-effect when values less than $05 are stored in this
register. In those cases, bit 3 will also be a 0, which selects 38-
column mode. That's why the screen “shrinks” when the computer goes
through 1ts normal reset process - Dbet you always wondered about
that!

Next, the four main KERNAL initialization routines are called.
These are the same routines we called in our CBM80 initialization
routine. The first routine 1s IOINIT, located at S$SFDA3. This
routine can also be reached by Jjumping to $FF84 1in the standard
KERNAL Jump table. IOINIT initializes the CIA chips. It also does
some other minor initialization such as turning off the SID's sound,
switching in the BASIC and KERNAL ROMs (redundant on a hard reset)

and sending a high clock signal (a 1 bit) on the serial Dbus. Next,
the KERNAL routine RAMTAS at S$SFD50 1is called ($SFF87 in the Jjump
table.) This routine clears and tests RAM. First, the routine

fills locations $0002-$0101, $0200-%302FF, and $0300-$03FF (pages O,
2, and 3) with $00 bytes. This piece of code is responsible for the
cassette buffer, etc. being cleared on reset. Note that the stack is

21

EPROMMER 64 INSTRUCTION MANUAL

not cleared (except the bottom two bytes.)

After this, RAMTAS sets the cassette buffer pointer and then begins

testing RAM memory starting at $0400 (the screen.) The purpose of
this test is to find the start of non-RAM memory, i.e., to see if
there 1is cartridge ROM at $8000. The test 1s supposed to be non-
destructive in that RAM memory 1s not altered. First, the current

contents of the location to be tested are saved in the X register.
A $55 byte is stored into the location and then the location is read
back to see if the $55 was stored successfully. If the location now
contains a $55 then it 1is obviously in RAM - or is 1it? What if the
location is in ROM but happened to already contain a $557 To double
check this, the process 1is repeated with the value $AA instead of
$55. If it passes both tests, the location 1is definitely 1in RAM.
The original value which was saved in the X register 1is restored,
and the test continues with the next byte.

Eventually, the routine will run into ROM (either cartridge ROM at
$8000 or BASIC ROM at S$SA0000.) When ROM 1s encountered, a very
undesirable side-effect occurs. The $55 byte that 1is written out
goes 1nto the RAM under the ROM, wiping out the wvalue that was
there. This 1is important to remember when you are trying to recover
a crashed program by resetting it. Once the start of ROM is found,
a routine at S$FE25 (MEMTOP, Jjump table S$FF99) 1is called to set the
top of system RAM to the beginning of ROM. The top of system RAM 1is
used in the calculation of the number of BASIC bytes free. Finally,
the bottom of system RAM 1s set to $0800, and the start of the
screen is set to $0400 for the screen editor.

Back 1in the main RESET routine, a routine at S$FD15 1is <called
(RESTOR, jump table SFF8A.) This routine <copies the KERNAL's
indirect RAM vectors to $0314-0333 from the table at SFD30-S$SFDA4F.
O0ddly enough, it also copies this vector table into the RAM under
the KERNAL at S$FD30-FD4F too! If you are trying to recover the
contents of RAM under the KERNAL after a RESET, you should remember
this feature.

The final KERNAL initialization routine 1is at SFF5B (CINT, jump
table S$FF81.) This routine initializes the VIC II chip and screen
editor variables. The VIC chip is initialized by calling a routine
at SE5A0 which downloads a set of constants to the VIC from $ECB9-
SECEG . This sets the border and background colors as well as the
raster interrupt register, wused in the PAL/NTSC check discussed
below. The screen editor is initialized by a routine by a routine
at $E518. This sets the character color, keyboard decode table
vector, <cursor Dblink and key repeat rates, and then <clears the
screen. The CINT routine ends with the PAL/NTSC check. NTSC is the
North American TV standard and PAL is the International TV standard.
There are more lines on the screen with PAL. This fact is used to
detect which system you have, so the IRQ and RS-232 timing can be
adjusted accordingly. The VIC raster (screen line) interrupt was
set earlier to occur on a line which doesn't exist with NTSC. Later
(at SFF63) the interrupt is checked to see if it happened. If it
did, we're on a PAL system, otherwise it's NTSC. See the
Programmer's Reference Guide pages 150 and 447 for more information

22

EPROMMER 64 INSTRUCTION MANUAL

on the raster interrupt register.

That's about it for the KERNAL RESET routine. IRQOs were disabled
earlier, so they are re-enabled with a CLI instruction. Finally,
BASIC initialization is begun by Jjumping based on the BASIC cold-
start vector in the BASIC ROM at SA000-$AQ001. If a 16k standard
cartridge 1is present, however, 1ts second EPROM will have replaced
BASIC ROM in memory. In this case we must put a vector at $A000 (in
the second cartridge EPROM) to point to the start of the cartridge
program. This is the basis for the $A000 autostart method. Notice

how all the KERNAL initialization has already been done for us 1in
this case.

For you Max cartridge users, this brief outline shouldbe a guide to

examining the reset process yourself. A reference book such as
Anatomy of The Commodore 64 will be an invaluable aid. There is no
substitute for studying the reset process yourself. We can only
give you a few guidelines about what you should and should not do in
your Max cartridge. The only things you HAVE to do are set the
stack pointer to some value (usually S$FF) and wither clear or set
decimal mode (usually clear.) You'll almost certainly want to use
the screen, so you'll need to set up the VIC II chip. Look at the
table of constants at $ECB9 to see what values are put 1into the
VIC's registers normally. Also remember to turn on the VIC as done

at SFCEF-$SFCF1l, and select its memory bank as done at SFDCB-FDCF.
If you want to set up an IRQ interrupt, study the IOINIT routine and
the code at SFF6E-SFF7C. Disk, tape, or RS232 communications will
require enormous amounts of code. If you think you'll need any of
these, you probably shouldn't be using a Max cartridge anyway.

We can also point out some initialization routines you WON'T need.
The CBM80 check routine at SFDO02 is not important since your Max

cartridge has already been autostarted. You won't need the RAMTAS
routine (SFD50) which c¢clears memory and test for the end of
RAM/start of ROM. Your program can easily clear memory itself, and
the end of RAM test would always yield the same results (the only
ram is S$0000-SOFFF.) The RESTOR routine ($FD15) is used to set up
RAM vectors for KERNAL routines which aren't available anyway, so it
can be dispensed with. In short, only the IOINIT and CINT routines
(and related routines) contain useful Max 1initialization code. A
lot of this code is superfluous too. The best idea is to plan out

which functions you'll need and then study how the KERNAL sets up
just those functions.

To round out this chapter, we should look at one other subject of

general interest, warm-starts (via the RESTORE key.) We've already
covered the cartridge warm-start vector at $8002-$8003, which only
applies to the CBM80 autostart method. There 1is one other warm-
start method. If the STOP key is held down along with RESTORE, and
there is no CBM80, the BASIC warm-start vector will be used. This
vector 1is located at $A002-$A003, normally in the BASIC ROM. If we
have a 16k cartridge ($SA000 method), which replaces the BASIC ROM,
we can put our own warm-start vector in at S$A002. In fact, vyou

should always put a valid warm-start vector there to guard against
the user accidentally pressing the RUN/STOP-RESTORE combination.

23

EPROMMER 64 INSTRUCTION MANUAL

Finally, there is no warm-start method for Max cartridges unless you

program it yourself. You may choose to use the RESTORE key for this
or some other method. If you don't use the RESTORE key, you should
set the 6510 NMI vector at SFFFA-$SFFFB to point to an RTI
instruction in case the user accidentally presses RESTORE. The 6510
is hard-wired to wuse S$SFFFA-SFFFB as 1its vector when an NMI 1is
generated (RESTORE key pressed), just as it always uses SFFFC-SFFFD

for its reset vector.

C64 CARTRIDGE SCHEMATIC

RELET —— PADS
P Few GuTTOW

il]
ExTERNAL WO\¥ES

[~ el —_—1 <o S [Sa.]
PADS -
awo ok

LACE PADS PAD
: -7
'S L -8
» 33K
A
+5Se 2 Jz!
" L P 17
[3 Jlav @ Av L
s sdae ™ asloe < .
o o ': P ‘: 22Kk
“ Sineg ~ aMLEg <
v & A ' oF k5
- P ot o lrt
- oty t ca 2o
Y LY VS (S]]
z\ Vige ool
z0 Alion ©% r—
" "3 ow o ::
TS -
™D 1 rl
19 - 4
™
ie
15
1.
PAD3 -
o2 1o I’> an -
Roeet 1) lr>
J D ' Ta4L507
o1 7 {>+
'..99 —=eD L PO
S A -
EXorm 9 == —_
| WIRE LUK
Py =s3n.r ‘
OND e J_,_J
ROMM & [\

24

EPROMMER 64 INSTRUCTION MANUAL

CARTRIDGE BOARD LAYOUT

PADL PAD2
[] -] a a
a [a a
I ; *
PAD4 PAD3
R1 R2
a
@ PADS

L ALINK OR CAPACITOR

o O

7407

EDGE CONNECTOR

RESET

BANK, SWITCH

2764727128
EPROM

25

EPROMMER 64 INSTRUCTION MANUAL

EPROMMER 64

EPROMMER 64 is a multi-feature, low price EPROM programmer for the
64/128. It connects to the user port of the computer and comes with
a comprehensive, menu driven utility program supporting all standard
features for reading, programming, and checking EPROMS.

The unit supports a range of devices from 32k up to 256k. Multiple
program voltages of b5v, 12.5v, 21lv, and 25v make the wunit more
versatile then others generally available. EEPROMs can also be

programmed and erased with the EPROMMER 64.

EPROMMER 64 is built on a high-grade PCB with gquality components
throughout including a 28pin zero insertion force socket.

The software supplied has a host of features including:

* READ EPROM TO RAM * PROGRAM EPROM * VERIFY EPROM
* SAVE & LOAD FEATURES * BLANK TEST * MACHINE CODE MONITOR
* CARTRIDGE GENERATOR.. Takes programs and converts them into files

suitable for programming into a cartridge.

All features including device type, voltage and program selections
are under menu control - no switches to mess around with.

* Program indicator LED * No external power needed * No more to buy

EPROMMER 64 is very simple to wuse and 1is supplied with full
instructions.

Comes complete with program disk. Only 39.99 post free.

26

	WARNING
	EPROMMER 64 SOFTWARE
	MONITOR

	ZIF SOCKET DIAGRAM
	CARTRIDGE DEVELOPMENT SYSTEM INSTRUCTIONS
	HARDWARE CONTROL OF THE PLA
	6510A DIAGRAM

	CARTRIDGES AND CARTRIDGE BOARDS
	AUTOSTART CARTRIDGES
	$A000 METHOD
	CBM80 METHOD
	CBM80 CARTRIDGE INITIALIZATION

	MAX METHOD
	NORMAL RESET PROCESS
	KERNAL RESET ROUTINE

	C64 CARTRIDGE SCHEMATIC
	CARTRIDGE BOARD LAYOUT

