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Pure latticeSU(2) Yang-Mills theory in five dimensions is considered, where an extra dimension is com-
pactified on a circle. Monte Carlo simulations indicate that the theory possesses a continuum limit with a
nonvanishing string tension if the compactification radius is smaller than a certain valueRM which isO(1/10)
of the inverse of the square root of the string tension. We verify nonperturbatively the power-law running of
the gauge coupling constant. Our method can be applied to the investigation of continuum limits in other
higher-dimensional gauge theories.

PACS number~s!: 11.10.Hi, 11.10.Kk, 11.15.Ha, 11.25.Mj

I. INTRODUCTION

The idea of unifying fundamental forces by introducing
extra dimensions has attracted attention for many decades,
and the theory realizing this idea is called Kaluza-Klein
theory@1#. Recently, it has been observed by Arkani-Hamed,
Dimopoulos, and Dvali@2# that the existence of extra dimen-
sions may play an important role in understanding the hier-
archical scales that exist between the weak and Planck
scales. From a simple setting that only the graviton can
propagate in the bulk corresponding to the extra dimensions
while all the other fields of the standard model~SM! are
located on a four-dimensional wall, they have concluded@2#
that the length scale of the extra dimensions can be rather
large *1022 cm. ~A similar observation was previously
made in Ref.@3# in connection to supersymmetry breaking in
string theory.! This should be in contrasted to the situation in
previously suggested Kaluza-Klein theories in which the size
of extra dimensions was of the order of the~four-
dimensional! Planck length 10233 cm or 1/MGUT'10230 cm,
where MGUT is the unification scale in four-dimensional
grand unified theories~GUTs!. Their idea has been then fol-
lowed and extended by several authors@4,5# to obtain more
satisfying solutions of the hierarchy problem. Moreover, the
above phenomenological proposal to confine fields on a
lower-dimensional subspace fits well@7–10# the D-branes
@6# ~extended objects attached by the end points of open
strings! in string theories.

If part of the SM fields can propagate in the bulk, and the
size of the extra dimensions are large, the existence of such
extra dimensions may be experimentally verified. There will
be a number of phenomenological questions~see Ref.@11#,
for instance! such as ‘‘ what are the experimental bounds on
the size of the extra dimensions@12#?’’ However, our con-
cern in this paper is of a theoretical nature: Is the existence of
a large extra dimension consistent with quantum theory? Our
answer to this question will be ‘‘yes,’’ provided that the
compactification radiusR is smaller than a certain value, the
maximal radiusRM . It should be emphasized that the previ-
ous investigations@13–15# on non-Abelian gauge theories in

five dimensions on a lattice~which indicated that the theory
have no continuum limit! were performed in the uncompac-
tified case. These works@14,15# were motivated to investi-
gate whether or not the nontrivial ultraviolet fixed point
found in thee expansion@16# is real.

To be more specific, we consider pureSU(2) Yang-Mills
theory in five dimensions where an extra dimension is com-
pactified on a circleSwith the radius ofR. ~It would be more
‘‘realistic’’ to compactly the fifth dimension on the orbifold
S/Z2 so that the zero modes contain only four-dimensional
gauge fields and no scalar fields. We leave the case ofS/Z2

to future work.! One may expect that the theory will carry
the basic property of a four-dimensional gauge theory if the
radiusR is sufficiently small, while in the opposite limit ofR
the theory becomes more five dimensional. So there may be
the maximal radiusRM below which the theory can possess a
continuum limit with a nonvanishing string tension and can
exist nonperturbatively. We will indeed find that our numeri-
cal simulations based on a compactified lattice gauge theory
are supporting the correctness of this heuristic picture.

The string tension is one of the most familiar physical
quantities, which can give a physical scale to the lattice spac-
ing. However, at a deconfining phase transition of first order,
the string tension vanishes discontinuously, and we cannot
use it for that purpose in this case. One of the crucial obser-
vations in this paper is that, if the fifth dimension is compac-
tified, the first order phase transition changes its nature at a
certain compactification radius. We will see this on aniso-
tropic lattices by performing Monte Carlo simulations with
various compactification radii and by investigating the phase
structure. The simulations also indicate that it could be pos-
sible to give a physical scale to the lattice spacing even in the
deconfining phase if the theory is compactified, and this pos-
sibility will be studied more in detail.

We will assume that the phase transition due to the com-
pactification occurs at a certain value ofR, the critical com-
pactification radiusRC , and that the compactification radius
is kept fixed atRC along the critical line of the phase transi-
tion due to the compactification. That is, the critical compac-
tification radiusRC is assumed to be a physical quantity.
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This assumption enables us to compute the latticeb function
for a givenR as a function of the lattice spacinga4 of the
four-dimensional direction. In doing so, we can verify non-
perturbatively the power-law running of the gauge coupling
constantg, and find that the observed power-law behavior
fits well to the one-loop form suggested in Refs.@9,16–23#.
The results for the latticeb function obtained from our
Monte Carlo simulations indicate the self-consistency of the
assumption above.

The results obtained for the latticeb function can also be
used to make a further assumption on the physical scale in
the deconfining phase and to investigate various scaling
properties of the longitudinal Creutz ratio@defined in Eq.
~4.1!#, making a discussion on the existence of continuum
limits of the theory possible. We will be led to the interpre-
tation that the theory may possess a continuum limit with a
nonvanishing longitudinal string tension if the compactifica-
tion radiusR is smaller thanRM'RC/3, and that the non-
trivial ultraviolet fixed point found in thee expansion in the
continuum theory may no longer be spurious.

After we define our lattice action in Sec. II, we start to
present the details of our calculations. In Sec. III we calcu-
late the ratio of the lattice spacingsj5a4 /a5 in terms of the
parameters of the simulationsb andg, and then we discuss
the phase structure in Sec. IV. In Sec. V we compute the
latticeb function and then study on continuum limits in Sec.
VI, and the last section is devoted to conclusions.

II. THE ACTION

In order to investigate the effects of a compactification in
the five-dimensionalSU(2) gauge theory, it is crucial to
employ an anisotropic lattice which has different lattice
spacingsa4 anda5 in the four-dimensional directions and in
the fifth direction, and is often used in the case of lattice
gauge theories at finite temperature. We find that the effects
of the compactification on an isotropic lattice can appear
only for a small lattice size of the fifth direction (<2) so that
it is practically impossible to study the theory with different
sizes of this direction. Another advantage is that, since we
can varya4 anda5 independently, we can investigate thea4
dependence of physical quantities while keepinga5 fixed.
This enables us to study scaling properties in the compacti-
fied theory for a given compactification radiusR.

We denote the five-dimensional lattice coordinates byzM
(M51, . . . ,5), the four-dimensional ones byxm(m
51, . . . ,4), and the fifth one byy. The link variable takes the
form

UM~x,y!5$Um~x,y!5U~x,y;x1a4m̂,y!,

U5~x,y!5U~x,y;x,y1a5!%, ~2.1!

where U(z1 ;z2)PSU(NC) is the parallel transporter. The
plaquette variables are

UP4
5Umn~x,y!

5Um~x,y!Un~x1a4m̂,y!

3Um
† ~x1a4n̂,y!Un

†~x,y!,

UP5
5Um5~x,y!

5Um~x,y!U5~x1a4m̂,y!

3Um
† ~x,y1a5!U5

†~x,y!. ~2.2!

The Wilson action for pureSU(NC) Yang-Mills theory in
five dimensions is given by

S5b4(
P4

F12
1

NC
Re TrUP4G1b5(

P5
F12

1

NC
Re TrUP5G ,

~2.3!

where (P4
5(z1<m,n<4 and (P5

5(z1<m<4. Periodic
boundary conditions are imposed in all directions.1 The
coupling- and correlation-anisotropy parameters are defined
as

g5Ab5

b4
, j5

a4

a5
, ~2.4!

whereg5j is satisfied in the tree level. In the naive continue
limit a4 ,a5→0 with the length of the fifth dimension fixed at
2pR, the action~2.3! becomes

S52(
x,y

F S b4a4
4

2NC
D 1

2
Tr Fmn

2 1S b5a4
2a5

2

2NC
DTr F5n

2 G1O~a5!,

~2.5!

which goes to

E d4xE
0

2pR

dy
21

2g5
2

Tr FMN
2 , ~2.6!

if b452NCa5 /g5
2 and b552NCa4

2/g5
2a5, where AM

5g5AM
a Ta, FMN5]MAN2]NAM2 i @AM , AN], and we have

used

Um~x,y!5eig5a4Am(x,y), U5~x,y!5eig5a5A5(x,y).
~2.7!

On a lattice a compactification means if

N4a4

N5a5
5

a4N4

2pR
5

N4

N5
j.1 ~2.8!

is satisfied. Note that the gauge coupling constantg5 has the
dimension ofAa4, and can be expressed as

1Another interesting case, i.e., orbifold boundary conditions which
kill the scalar zero mode, can be archived by imposingU(x,y;x,y
1a5)5U†(x,2y2a5 ;x,2y).
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g5
225

b

2NCa4
, b5Ab4b5. ~2.9!

Later on we will use a dimensionless coupling constantg,

g225~2pR!g5
225

N5b

2NCj
, ~2.10!

which is normalized for the four-dimensional Yang-Mills
theory with the tower of the Kaluza-Klein excitations. At this
point, Eq.~2.10! is only a tree-level definition.

III. j-g RELATION

The parameters of the simulations areb andg for a given
size of lattice, and the lattice spacingsa4 and a5 are func-
tions of these parameters. The introduction of an anisotropy
into a lattice means that the regularization breaksO(5) in-
variance of the continuum theory. To recover this symmetry
we have to fine tune the anisotropy parametersg andj that
are defined in Eq.~2.4!. At the tree level, it isj5g as we
have seen in the previous section. In higher orders the tree-
level relation suffers from quantum corrections so that it can
depend onb andg, i.e., j5j(g,b). The basic idea to find
the corrected relation, which has been intensively used in the
study of QCD at finite temperature, is to use that symmetry.
There are variants of the method, and we have decided to use
a slightly modified method that is based on the matching of
the Wilson loop ratio@24–26#. Let us briefly explain the
method below.

We consider two kinds of Wilson loopsW(zM ,zN), the
oneW(xm ,xn) within the four-dimensional subspace and the
other oneW(xm ,y) that is extended into the fifth dimension,
and calculate the ratios

R~xm ,xn!5
W~xm1a4m̂,xm!

W~xm ,xn!

and

R~xm ,y!5
W~xm1a4m̂,y!

W~xm ,y!
. ~3.1!

Since the Wilson loop is related to the static quark potential
as

W~zM ,zN!;exp$2zMV~zN!% for zM→`, ~3.2!

we find that the rations~3.1! for largex andy become

R~xm ,xn!;exp$2a4V~xn!%, R~xm ,y!;exp$2a4V~y!%.

~3.3!

The O(5) symmetry of the continuum theory requires then
that

R~xm ,xn!5kR~xm ,y! for xn5nna45y5n5a5 ,
~3.4!

where we have allowed the presence of the factork. We
measure the ratios for a given set of the lattice sizeb andg,
and assume that they take the form

R~xm ,a4nn!;k1exp$2s4n4%

and

R~xm ,a5n5!;k2exp$2s5n5%, ~3.5!

and that they should become identical with each other, by
symmetry, whennna45n5a5. From this consideration we
obtain j5a4 /a55s4 /s5. Note that the ansatz~3.5! has a
meaning only in the confining region of the parameters, of
course.

In the practice, we fit the ansatz~3.5! for the data, and
then scalen5 by z ~i.e., n5→zn4) in such a way that
R(xm ,za5n4) becomes closest toR(xm ,a4n4), where we as-
sume thatk51 on the right-hand side of Eq.~3.4!.2 In the
ideal case we would havez5s1 /s25j.

To restore theO(5) symmetry in an efficient way, simu-
lations are performed using the heat bath algorithm on the
lattice of N4

43N5, whereN5;gN4 is satisfied as shown in
Table I. We generate 5000 configurations, and Wilson loops
are measured every 5 configurations. Figure 1 showsj ver-
susb for various values ofg, and we see thatj is almost
independent ofb. The data points for largerb are not plotted
because they correspond to the deconfining region so that the
ansatz~3.5! has no meaning. The same data are plotted in
Fig. 2 which shows theg dependence ofj. The data are
summarized in Table I. The central value ofj in the table is
the average of the data points in Fig. 1 for a fixedg.

IV. PHASE STRUCTURE

In this section we would like to investigate the phase
structure of the five-dimensional theory defined by the action

2On a lattice where one can obtain more data points, it is more
convenient to use the method developed in Ref.@26# for QCD, in
which k is different from 1. In our case, due to the size of our
lattice, we cannot obtain enough number of data points. In such a
casek51 is a reasonable assumption, as has been discussed in Ref.
@25#.

TABLE I. j-g relation.

g2 j b-range lattice size

1.50 1.438~57! 1.51868–1.66565 84316
2.00 1.784~50! 1.55563–1.69706 84316
3.00 2.340~40! 1.59349–1.73205 84316
4.00 2.779~34! 1.60000–1.75000 84316
5.00 3.161~39! 1.65469–1.74413 84316
6.00 3.490~33! 1.61666–1.76363 84320
8.00 4.062~39! 1.62635–1.76777 84324
10.00 4.617~35! 1.50208–1.73925 84324
16.00 5.923~51! 1.50000–1.70000 84332
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~2.3!. It is known from the mean field analysis that higher-
dimensional lattice gauge theories in more than four dimen-
sions have a first order phase transition.3 The studies of
Monte Carlo simulations@13,14# also indicate that in the
case ofSU(2) gauge theory the first order transition occurs
starting atD55. Our task is to extend these analyses to the
compactified theory. To this end, we will be intensively us-
ing anisotropic lattices to take into account the compactifi-
cation of the fifth dimension.

A. Longitudinal Creutz ratio

The string tension between two quarks that are separated
in space is a typical physical quantity for the theory. What
we know from experiments is that the string tensionsphys
between two quarks that are separated in the four-
dimensional subspace should be nonvanishing so that the
potential between them is linearly increasing with the dis-
tancer. The string tension is a good physical quantity for
defining a physical scale for other quantities obtained in lat-
tice gauge theories. If the underlying gauge theory is formu-
lated in five dimensions, however, the feature of the linearly
increasing potential is not automatically present, and in fact,
the first order deconfining transition is found in Refs.
@13,14#.

We measure the Creutz ratiox( i , j ) defined as

x~ i , j !52 lnH W~ i , j !W~ i 21,j 21!

W~ i , j 21!W~ i 21,j ! J , ~4.1!

whereW( i , j ) is a rectangular Wilson loop with lengths ofi
and j. The Creutz ratio with largei and j becomes the lattice
string tensions lat in the case of the linearly increasing po-
tential between two quarks. So, if a Creutz ratio with largei
and j takes a nonzero value, the corresponding Wilson loop
shows the area law which we regard as ‘‘confinement.’’ We
consider the Wilson loops longitudinal to the four-

dimensional subspaces, because we are interested in the con-
finement property in this subspace. We would like to dem-
onstrate that the Creutz ratio behaves differently for different
types of lattice. The results obtained from Monte Carlo simu-
lations on an isotropic lattice of size 85 (g251.0) and on an
anisotropic lattice of the same size (g252.0 andg254.0)
are shown in Fig. 3, where the vertical axis stands for the
Creutz ratio, and the horizontal axis stands forb5Ab4b5.
We have generated 2500 configurations for each simulation
point after thermalization, and Wilson loops are measured
every 5 configurations for the calculation of the Creutz ratio.

We see from Fig. 3 that the phase transition between the
confining and deconfining phase exists aroundb51.64 in
the case of the isotropic lattice (g251.0) as it was found in
Refs. @13,14# and aroundb'1.73 and 1.77 in the cases of
g252.0 and 4.0, respectively. We have performed the simu-
lations starting with an ordered configuration withUM51

3See for instance Ref.@27#, and references therein.

FIG. 2. Relation betweenj andg.

FIG. 3. Creutz ratios as a function ofb for g251.0, 2.0, and 4.0
on an 85 lattice. Open symbols are the results of the ordered start
and filled symbols are those of the disordered start.

FIG. 1. b dependence of the anisotropy parameterj.
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@defined in Eq.~2.1!# and with a disordered configuration,
thereby obtaining clear hysteresis curves. The open symbols
are the results of the ordered start and the filled symbols are
those of the disordered start. Our results indicate that the
transitions are of first order, in accord with the finding of
Refs.@13,14# for g251.0.

B. Transverse Polyakov loop

In the uncompactified case, the Polyakov loop plays the
rôle for an indicator of confinement. Here we consider loops
which are transverse to the four-dimensional subspace and
define the transverse Polyakov loop as

L5z
1

N4
4 (

x

1

NC
Tr )

y
U5~x,y!, ~4.2!

wherez is a Z(NC) phase factor (zNC51) such that arg(L)
P(2p/NC ,p/NC). In contrast to the longitudinal Creutz
ratio ~4.1! which we have discussed in the previous subsec-
tion, the transverse Polyakov loop~4.2! has no direct physi-
cal meaning in four dimensions, because we do not identify
the fifth direction with the temporal direction. We may say
however that the quark currents running into the fifth direc-
tion are confined if the transverse Polyakov loop^L& van-
ishes.

Figure 4 shows the results of the transverse Polyakov loop
on the 85 and 84312 lattices for various values ofg, while,
for comparison, the average of the plaquettes (131 Wilson
loop! for the same lattices is shown in Fig. 5. 2500 configu-
rations have been used to measure the Polyakov loop and the
plaquette for each point. As in the previous subsection, the
open symbols are the results of the ordered start and the
filled symbols are those of the disordered start. As expected,
we obtain clear hysteresis curves, and so the transverse
Polyakov loop and the average of the plaquettes also indicate
that the phase transition is of first order.

C. Compactification effects

It may be worth pointing out that the compactified (D
11)-dimensionalSU(NC) lattice gauge theory belongs to
the same universality class as theD-dimensionalZ(NC) spin
model. The case of QCD at finite temperatureT is a well-
known example, where the temporal direction is compacti-
fied with the lengthT21. We expect the existence of a simi-
lar phase transition due to the compactification in our case,
which is of second order, because the phase transition in the
four-dimensionalZ(2) spin model~Ising model! is of second
order. So, we repeat the measurements of the transverse
Polyakov loop ~4.2! and the average of plaquette for the
compactified case.

In order to take into account the compactification of the
fifth dimension, we use anisotropic lattices of size 8434 and
8436. The results for the transverse Polyakov loop with
different g are shown in Figs. 6 and 7.~In Fig. 6 we have
included the result on a 12434 lattice which shows that
there are practically no finite size effects.! Noticing that the
compactification radiusR(5N5a5/2p) becomes smaller for
a givenN5 asg becomes larger~see Fig. 2 and Table I!, we
observe that the nature of the phase transition changes due to
the compactification. Namely, the interval ofb in which two
phases coexist becomes narrower asg increases, and there
are no intervals forg2*2 for the 8434 case and forg2

*4 for the 8436 case, respectively. These phase transitions
seem to be of second order. Observe also that the transition
interval of b for g251.0 does not depend onN5, while, in
contrast to this, the transition pointbC for the second order
transition for a giveng depends onN5. From these results,
we conclude that the second order phase transition is caused
by the compactification, and that the first order transition is
not related to the compactification. In Figs. 8 and 9, we plot
the average of the plaquettes for the 8434 and 8436 lat-
tices. The results show that the transition becomes weak
~similar to a cross over transition! starting atg at which the
first order transition of the transverse Polyakov loop turns to

FIG. 4. Expectation values of the transverse Polyakov loop on
an 85 lattice for g251.0, 2.0, 3.0, and 4.0, and those on an 84

312 lattice forg256.0.

FIG. 5. Expectation values of the plaquette on an 85 lattice for
g251.0, 2.0, 3.0, and 4.0, and those on an 84312 lattice forg2

56.0.
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be of second order.~In Fig. 8 we have included the result on
a 12434 lattice to make it sure that finite size effects are
negligible.!

In Fig. 10 we show the qualitative nature of the phase
structure in theb4-b5 plane, which we have obtained from
the result of this section. The ‘‘confining’’ and ‘‘deconfin-
ing’’ phases are separated by the critical lines of the first and
second order phase transitions. The position of the critical
line ~bold line! of the first order phase transition does not
depend on the lattice size, while that of the second order one
~solid line! depends crucially onN5. Below the critical line
in the b4-b5 plane, the transverse Polyakov loop vanishes,
and it is different from zero above the line. Note that this
does not necessarily mean that the longitudinal Creutz ratio
~4.1! vanishes in the deconfining phase. The longitudinal
Creutz ratio~4.1! corresponds to the ‘‘spatial string tension’’

in QCD at finite temperature, which is defined by the spatial
Wilson loop, and indeed is nonvanishing even in the decon-
fining phase@28#. Figure 11 shows the longitudinal Creutz
ratio versusb for the anisotropic lattice of size 8434 with
g2 fixed at 4.0. The figure shows that the longitudinal Creutz
ratio varies smoothly asb enters into the deconfining phase
of the transverse Polyakov loop, indicating that it could be
possible to give a physical scale to the lattice spacing even in
that phase. Since indeed the spatial string tension is known to
obey a scaling law at high temperature@28#, we may wonder
whether some continuum limit in the present might also ex-
ist. The following sections are devoted to investigate this
possibility from another point of view.

In the case of QCD at finite temperature, the critical tem-
peratureTC is a physical quantity. As in that case, it is well
possible that the critical compactification radiusRC is a
physical quantity, and that the lattice system on the different

FIG. 6. Expectation values of the transverse Polyakov loop on
an 8434 lattice. The star symbols are the results on a 12434 lat-
tice.

FIG. 7. Expectation values of the transverse Polyakov loop on
an 8436 lattice.

FIG. 8. Expectation values of the plaquette on an 8434 lattice.
The star symbols are the results on a 12434 lattice.

FIG. 9. Expectation values of the plaquette on an 8436 lat-
tice.
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critical lines in theb-g plane for differentN5 corresponds to
the same physical system. As a first check, we estimate
roughly the critical radiusRC for two critical lines of the
second order phase transition at the end point. As mentioned
~see also Fig. 16!, at g'A2.0 for N554 and atg'2.0 for
N556, the second order transition line merges in the first
order transition line. The value ofj at the merging points,
respectively, is 1.78 forg5A2.0 and 2.78 forg52.0, where
we have used the data in Table I. From the data on the
Creutz ratio for the 85 lattice ~Fig. 3!, we find that the value
of the longitudinal Creutz ratio at the transition points is
approximately constant independent ofg, i.e.,

s lat5sphysa4
2'0.7, ~4.3!

where we identify the longitudinal Creutz ratiox( i , j ) with
large i and j as the lattice string tensions lat . Using this, we
find

RC5
N5a5c

2p
'

N5

2pjc
F 0.7

sphys
G1/2

'H 0.30/Asphys,

0.29/Asphys,
for H N554,

N556,
~4.4!

wherejc5a4 /a5c . These values are consistent with the as-
sumption that the lattice system on the different critical lines
corresponds to the same physical system. Equation~4.3! also
means that the value ofa4 at which the first order phase
transition appears is approximately independent ofg, indi-
cating that this value might have a sensible meaning. In the
next section, we will do another check by using the latticeb
function.

V. THE LATTICE b FUNCTION

We are interested in physics in the four-dimensional sub-
space with a certain compactification radius. The anisotropic
lattice we have used in the previous section is convenient for
computations with differenta4 while keeping the compacti-
fication radius constant. In this section we would like to
compute the latticeb-function in the four-dimensional sub-
space with the compactification radiusR fixed at a certain
value

b lat52a4

dg2

da4
, ~5.1!

whereg5g5 /A2pR is the four-dimensional, dimensionless
gauge coupling. We will calculate in Sec. V B theb function
at the critical compactification radiusRC using two lattices
with different N5, whereN5 also corresponds to the number
of Kaluza-Klein excitations. So, if the theory we investigate
should be regarded as a four-dimensional theory with only a
few number of Kaluza-Klein excitations, theb-function
should depend explicitly onN5. On the other hand, if we
obtain the same latticeb-function for differentN5, we are
indeed dealing with a five-dimensional theory, and finiteN5
or equivalently finitea5 effects may be regarded as negligi-
bly small. First we would like to check this point. Another
motivation is that we would like to examine non-
perturbatively the celebrated power behavior of the running
of the gauge couplings in higher dimensions, which we will
use in the next section to give a physical scale in the decon-
fining phase of the transverse Polyakov loop and then to
discuss the scaling behavior of the longitudinal Creutz ratio
~4.1!.

Since the gauge couplingg and the latticeb-functionb lat
are dimensionless, we may assume that the lattice spacings
a4 anda5 enter only in the combinationj5a4 /a5. Further-
more, the perturbative analyses and also the discussion that
follows below suggest that the correct variable is

s[
2pN5

j
5

2pN5a5

a4
5

~2p!2R

a4
. ~5.2!

This choice of the parameter has a nontrivial meaning: We
may conclude that, ifg really depends only ons, the con-
tinuum limit a5→0 with the compactification radiusR fixed
can be taken, andR can be regarded as a physical quantity in
this sense.

In the case of QCD at finite temperature, the critical tem-
peratureTC is a universal quantity. The analogy for our case
would be that the critical radiusRC is a universal quantity of

FIG. 10. Illustrations of the phase structure for the noncompac-
tified case~left! and the compactified case~right!, wheres is the
longitudinal Creutz ratio andL is the transverse Polyakov loop.

FIG. 11. Creutz ratios on an 8434 lattice atg254.0.
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the theory. So, the compactification radius would remain
constant along the critical line in theb-g plane. However,
there is a crucial difference compared with the case of QCD
at finite temperature, because the critical lines in the present
case merge into the region of the first order phase transition
which is not related to the compactification. Therefore, this
assumption is not reliable in the region in which the transi-
tion is of the first order.

Keeping these circumstances in mind and defining the
gauge coupling as

g2252pRCg5
225

N5

4

bC

j
~5.3!

on the critical line of the second order phase transition,4 we
can rewrite Eq.~5.1! as

b lat5b̄ latS 12
d ln RC

d ln a4
D

with

b̄ lat5
4

N5
s

d

dsF j

bC
~s!G52

4j

N5bC
F12

j

bC

dbC

dg

dg

dj G ,
~5.4!

where use have been made of Eqs.~2.4!, ~2.9!, and ~2.10!.
Here, we denoteb̄ lat for the b function with the assumption
that theRC is constant along the transition line. If there is no
a4 dependence ofRC , this assumption is correct so that
b lat5b̄ lat .

Note that the critical lines in theb-g plane are different
for differentN5. In Eq. ~5.3! we are implicitly assuming that
g does not depend on which critical line we use to calculate
it. If we obtain the same gauge coupling from the different
lines, it is a sign that the critical lattice systems for different
N5 describe the same physical system. This will be checked
in Sec. V B.

A. Precise determination of the critical lines

To compute the latticeb function b̄ lat using Eq.~5.4!, we
need to know precisely the location of the critical points and
its derivative with respect tog in the b-g plane. Let us
therefore determine the critical lines in theb-g space next.
To this end, we identify the transition point with the position
of the peak of the susceptibility

xL5N4
4~^L2&2^L&2!, ~5.5!

whereL is the transverse Polyakov loop defined in Eq.~4.2!.
We apply the histogram method@29# extended to an aniso-
tropic lattice to evaluate the continuous parameter depen-
dence ofxL , as it was done in Ref.@30#. To measure the
Polyakov loop susceptibility, we take 100 000 configura-

tions. The results are plotted in Fig. 12 forN554 and in Fig.
13 for N556. The large peak height atg252.0 for the 84

34 lattice and atg253.6 and 3.8 for the 8436 lattice ~see
Fig. 14! signals the first order transition which we have seen
in the previous subsection. In Fig. 15, we see flip-flop in the
history of the plaquette values, which is another sign for the
first order phase transition. The transition pointbC and its
derivative dbC /dg for a giveng are given in Table II. Here,
the derivative of a transition point is calculated by fitting the
continuousg dependence ofbC with the polynomial

bC~g!5 (
n50

nmax

f n~g2g0!n, ~5.6!

4This definition of the gauge coupling has the same form as the
tree-level one~2.10!.

FIG. 12. b dependence of the Polyakov loop susceptibility ob-
tained by the histogram method on an 8434 lattice withg2>2.1.
The circles denote the simulation point.

FIG. 13. b dependence of the Polyakov loop susceptibility ob-
tained by the histogram method on an 8436 lattice withg2>4.0.
The circles denote the simulation point.
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where f n’s are fitting parameters, and dbC /dg5 f 1 at g
5g0. The range ofg and nmax are chosen such that the
results of the dbC /dg are independent of the fitting range
and the fitting function. We adopt60.005 from the simula-
tion point as the fitting range ofg and thenmax53 for the
final results, respectively. The bin size of the jackknife error
analysis is 1000.

The transition points in theb-g plane are shown in Fig.
16, where the circles are the results forN554 and the dia-
monds are those forN556, respectively. The short lines on
these symbols denote the upper and lower bound of the slope
of the transition curve. Two solid lines show the boundaries
of the region in which two kind of phases coexist. Note that
these boundary lines in Fig. 16 are obtained in the uncom-
pactified theory.~Figure 10 is an illustration of Fig. 16 trans-
formed into theb42b5 plane.! The interpolation curves are

the dashed curves in Fig. 16, which are determined from the
positions ofbC(g) and its slopes. As we see from the figure,
the critical lines bend strongly atb'1.71 andg'1.42 for
the 8434 lattice, andb'1.75 andg'2.0 for the 8436
lattice. The bending points are the merging points of two
transition lines, the one for the phase transition characterized
by the second order transition of the transverse Polyakov
loop ~4.2! and the other one by the first order transition that
is insensitive toN5.

B. Calculation of b̄ lat

Using the data given in Tables I and II, we can express
the b function in terms ofs, wheres is given in Eq.~5.2!.

FIG. 14. Large peaks of the Polyakov loop susceptibility ob-
tained by the histogram method atg252.0 on an 8434 lattice, and
g253.6 and 3.8 on an 8436 lattice, respectively.

FIG. 15. Flip-flop in the history of the plaquette value atg2

54.0 on an 8434 lattice.

TABLE II. Results for bC and dbC /dg by the histogram
method. The simulations are performed at (b4 ,b5).

lattice g2 (b4 ,b5) bC dbC /dg

8434 2.0 ~1.21250, 2.42500! 1.71472~6! 20.0087~58!

2.1 ~1.18350, 2.48535! 1.71342~25! 20.067~16!

2.5 ~1.07080, 2.67700! 1.69060~36! 20.2219~82!

3.0 ~0.95000, 2.85000! 1.64702~31! 20.3337~67!

4.0 ~0.77000, 3.08000! 1.54018~48! 20.4049~79!

6.0 ~0.55100, 3.30600! 1.34560~59! 20.426~17!

8.0 ~0.42500, 3.40000! 1.19790~47! 20.368~11!

16.0 ~0.21875, 3.50000! 0.87265~37! 20.2070~36!

8436 3.6 ~0.92750, 3.33900! 1.75943~8! 0.0059~12!

3.8 ~0.90150, 3.42570! 1.75654~19! 20.0536~71!

4.0 ~0.87750, 3.51000! 1.75339~44! 20.088~36!

5.0 ~0.76900, 3.84500! 1.72102~26! 20.1723~61!

6.0 ~0.68500, 4.11000! 1.67534~51! 20.2505~89!

8.0 ~0.55550, 4.44400! 1.57140~61! 20.3080~82!

10.0 ~0.46400, 4.64000! 1.46861~61! 20.3194~99!

16.0 ~0.30625, 4.90000! 1.229223~65! 20.2533~96!

FIG. 16. Phase transition points forN554 (s) andN556 (L)
in the b-g plane. Two solid lines denote the boundaries of the
region in which two kind of phases coexist. Compare the figure
with Fig. 10.
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Then it is straightforward to computeb̄ lat from Eq.~5.4!. The
results are shown in Fig. 17, where the circles are obtained
on the critical line withN554 and the squares are those with
N556. As we see from Fig. 17, we obtain the sameb func-
tion for two differentN5 ~or a5c). This implies that the lat-
tice system on two different critical lines describes the same
physical system, and finiteN5 or equivalently finitea5 ef-
fects may be regarded as negligibly small. In Fig. 18 we
showg22 defined in Eq.~5.3! obtained from the data. This
data indicate thatg22 depends only on the variables, sup-
porting our assumption that the critical compactification ra-
dius RC is a physical quantity. Moreover, Fig. 18 suggests
that g22(s) is almost a liner function. Its theoretical inter-
pretation will be given in the next subsection. Note that the
result above obtained forb̄ lat does not verify the assumption
that the compactification radiusR is kept fixed at the critical

value RC along the line of the phase transition due to the
compactification. To verify this assumption we need an ana-
lytical consideration as we will do in the next subsection.

At this point we should emphasize that, in the region with
small g2, the transition is of first order and is not related to
the compactification. It implies that there is no reason to
assume that the compactification radius isRC near the first
order phase transition. In Fig. 18, the order of the transition
turns to be of first order aroundg2250.95 for both cases of
N554 and 6. Therefore, the reliable region in which the
compactification can be assumed to beRC , is g22,0.95.
We, however, will assume in the next section, that the line of
R5RC exists, departing from the transition line around
g2250.95 and entering into the deconfinement phase. How
this line extends into the deconfinement phase cannot be
found out within the framework of the Monte Carlo simula-
tions; we need analytical considerations as we will do in the
next subsection. There we will discuss the theoretical inter-
pretation of our data, and extrapolate the line ofR5RC into
the region of a smallerg2.

C. The e expansion, the power-law behavior and the
ultraviolet fixed pont

The power-law behavior of the gauge coupling is indeed
suggested by its canonical dimension, dim@g#5(42D)/2,
whereD is the number of the space-time dimensions. In the
various explicit computations in perturbation theory
@9,16,23#, this behavior has been directly seen. However, the
explicit computations have been carried out basically within
the frame work of perturbation theory, and so the result may
not be trustful because the theory is perturbatively
nonrenormalizable.5

The simplest way to see the power law behavior in per-
turbation theory may be in the dimensional regularization
scheme, as we do it briefly. LetgD be the dimensionless
gauge coupling in the pureSU(NC) Yang-Mills theory in
D541e dimensions. Theb function is given by@16,14#

bD5L
dgD

2

dL
5egD

2 1
2b

16p2
gD

4 1O~e2! with b52
11

3
NC .

~5.7!

Now to mimic the dimensionless gauge coupling defined in
the compactified theory@see Eq.~5.3!#, we introduce

g̃25
gD

2

~2pRL!D24
, ~5.8!

whoseb function becomes

5The result of Refs.@19,23# goes slightly beyond the perturbation
theory because, though a number of nontrivial truncations to define
an approximation scheme should be introduced, it is based on the
exact Wilson renormalization group approach@31#.

FIG. 17. b̄ lat as a function ofs determined on the transition lines
of N554 (s) and N556 (h). The figures show the physical
equivalence between the critical lattice systems.

FIG. 18. The power-law behavior ofg22 as a function ofs
determined on the transition lines ofN554 (s) and N556 (h),
where the straight line is the one-loop line~5.15!.
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b̃5L
dg̃2

dL
5

2b

16p2
~2pRL!D24g̃41••• ~5.9!

52
11

12p2
~2pRL!g̃41••• for NC52, D55.

~5.10!

Equation ~5.7! suggests that there could exist a nontrivial
ultraviolet fixed point forgD , and as we have mentioned in
the Introduction, this possibility in the uncompactified theory
was ruled out by the numerical studies of Refs.@13–15#.
Note that if the fixed point is real, then it means that the
redefined couplingg̃ behaves as an asymptotically free cou-
pling, because

g̃22→2
2b

16p2

~2pRL!D24

~D24!
→` as L→`.

~5.11!

Translated intogD , we obtain

gD
225

g̃22

~2pRL!D24
→2

2b

~D24!16p2
as L→`,

~5.12!

which is consistent with the fixed point value obtained from
Eq. ~5.7!.

The form of the latticeb function in perturbation theory
may be derived from theb function ~5.10!, if we know the
relation betweenL anda4. Since all the~four-dimensional!
momenta in a lattice theory are restricted to the first Brillouin
zone @2(p/a4),pm<(p/a4)#, the momentum cutoff is
up/a4u. That is, L25(m51

4 (p/a4)25(2p/a4)2, which im-
plies that

L5
2p

a4
. ~5.13!

So, the suggested one-loop latticeb function is

b lat
(0)52

11

12p2
sg4, ~5.14!

where6 we have useds52pN5 /j, R5N5a5/2p and j
5a4 /a5.

D. The power law from the data

Now we would like to proceed with our numerical analy-
sis. Since the data in Fig. 18 suggest thatg22 can be ap-
proximated by a linear function in the region we investigate,

the one-loop form of theb function ~5.14! is approximately
correct. So we fit the function ofs with the form

gp
225C11

C2

12p2
s ~5.15!

for the data ofg22 at the second order transition. We find
that the best values forN554 areC1520.208(8) andC2
59.84(17) withx2/d f51.4, and those forN556 areC15
20.263(15) andC2510.71(21) withx2/d f50.4, respec-
tively. In Fig. 18 we compare the data forg22 with gp

22 for
N556. As we can see from Fig. 18, the one-loop ansatz
~5.15! fits well to the data, and moreover, the coefficient in
front of s on the right-hand side of Eq.~5.15! is close to the
one suggested in Eq.~5.14!. Since the data withN554 and 6
seem to lie on the same line, we also fit these data simulta-
neously. We obtainC1520.224(6) andC2510.16(11)
with x2/d f51.7, which is a reasonable value, implying that
the fittedgp

22’s for different N5 agree with each other. The
fact that our data have a one-loop interpretation indicate that
the assumption that the compactification radiusR is kept
fixed atRC along the line of the phase transition due to the
compactification may be correct.

Next, to discriminate the logarithmic behavior we would
like to try to fit for the data ong22 a function of the form

gl
225B11

B2

16p2
ln s, ~5.16!

and find thatB1520.836(14) andB25100.9(1.1) using the
data forN554 and 6. This fit is not a good one because we
obtainx2/d f533. Moreover, the coefficientB2 for the loga-
rithmic function~5.16! cannot be explained within the frame
work of perturbation theory. Namely, if the compactified
theory on a lattice is simply a four-dimensional theory with
Kaluza-Klein excitations of a finite numbern, then the coef-
ficient B2 should be equal to (40/3)n. Sincen could vary
between 1 andN556, perturbation theory for this assump-
tion would predict

13&B2&80, ~5.17!

which clearly disagrees with the value ofB2 obtained from
fitting for the data. Since we have found that the one-loop
form of the power law behavior describes the data well, the
higher order contributions, especially those coming from
nonrenormalizable operators~remember the naive continuum
theory is not renormalizable by power counting! must be
suppressed, at least in the parameter region in our numerical
simulations.

It is the subject of the next section to investigate this
possibility, where we will assume that the theoretical func-
tion ~5.15! can be used to draw the lines ofR5RC even in
the deconfining phase of the transverse Polyakov loop~4.2!.

VI. TOWARD A CONTINUUM LIMIT

In the weak coupling regime, which is the most important
regime to investigate a continuum limit, the way to use the

6So far there exists no perturbative computation ofb lat in litera-
ture. Note also that the one-loop coefficient ofb lat

(0) depends not
only on the regularization employed, but also on the definition of
the gauge coupling. Our definition is given in Eq.~5.3!.
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transverse string tension as a physical quantity to give a
physical scale is not available, because the phase transition
due to the compactification in that regime disappears. One of
the central assumption in discussing the continuum limit in
this paper is that the one-loop function~5.15! can be ex-
tended into the weak coupling regime. Equivalently, we as-
sume that theb-function for a given compactification radius
R is given by

b lat52a4

dg2

da4
52

C2

3

R

a4
g4, ~6.1!

whereC2 is given in Eq.~5.15!. The assumption implies that
we can draw lines ofR5 const in the weak coupling regime.
On these lines the simulation parameterb becomes a func-
tion of g, which can be obtained from Table I and Eqs.~5.3!
and ~5.15!. So, given the latticeb function ~6.1! we now
know how to approach continuum limits. The object whose
scaling property should be investigated is the longitudinal
lattice string tensions lat which we replace by the Creutz
ratio ~4.1!. As we have seen in Sec. IV, the longitudinal
Creutz ratio can be nonvanishing even in the deconfining
phase of the transverse Polyakov loop. In the following sub-
sections we will investigate the scaling law of the longitudi-
nal string tension

s lat5sphysa4
25sphysa5

2j2, ~6.2!

where we have assumed thatsphysshould remain finite in the
continuum limit.

A. a5\0 limit

We apply the scaling hypothesis~6.2! to thea5→0 limit
with j fixed at a certain value. As we have stated, we assume
that the one-loop function~5.15! can be extended into the
weak coupling regime. If we move along the line ofj
5const, we change the compactification radiusR. To express
this more precisely, we first derive the scaling law for this
case. To this end, let us consider the lines ofR5const for
variousN5 in the parameter space (b,j), where it is implic-
itly assumed that the constantsC1 andC2 in Eq. ~5.15! are
independent ofN5 ~the consistency of this assumption is
checked forN554 and 6 in Sec. V!:

b52
D1

N5
j1D2 , D1524C1 , D25

2C2

3p
. ~6.3!

Sincea55RC /(2pN5) andRC is assumed to be a physical
quantity, we obtain from Eq.~6.3!

a5}~N5!21}~b2D2!. ~6.4!

Inserting Eq.~6.4! into Eq. ~6.2!, we find that

lns lat52lnub2D2u1const. ~6.5!

Here, we use the value ofD2 obtained by fitting the data
for N554 and 6 simultaneously. The result of this scaling
behavior is shown in Fig. 19, where we have used the 84

34 lattice with g52.0 as for Fig. 11. The bold line corre-

sponds to the theoretical line~6.5!. We see from Fig. 19 that
the scaling law~6.5! is well satisfied for 1.6&b&1.8. Below
;1.5 we enter into the region of the strong coupling, and,
above;1.9, finite size effects due to smallN4a4 presumably
start to become visible. So we may conclude that the data are
consistent with the scaling law~6.5!. This is an important
result, and is indeed the only result which supports the cor-
rectness of the assumption that the lattice spacing has a
physical scale even in the deconfining phase of the transverse
Polyakov loop and of our way how to extend the lines of
R5const into that phase; an evidence for the existence of the
fixed point suggested in thee expansion.

B. a4 ÕR\0 limit

Next, we would like to investigate the scaling behavior of
the longitudinal lattice string tension in thea4 /R→0 limit
with R kept fixed. Since 2pR5N5a5, the lattice spacinga5
is kept fixed in this limit for a givenN5. Then, the string
tension should obey the scaling law

s lat}j2 or lns lat52lnj1const. ~6.6!

We compute on 843N5 lattices withN552, 3, 4, 5, 6
and 8 the longitudinal Creutz ratiox( i , j ) along the theoret-
ical line of R5const on whichN556 is critical. To deter-
mine this line, we used theC1 andC2 in Eq. ~5.15! obtained
from the data ofN556. Note that for a givenN5 the com-
pactification radiusR is N5a5 /(2p)5(N5/6)RC . In Fig. 20,
we plot lnx(i,j) as a function of lnj. If the slope of the
ln x(i,j) is equal to 2, the scaling relation of Eq.~6.6! is
realized. In theN558 case, the results of the ordered start
and disordered start are split, and the longitudinal Creutz
ratio x( i , j ) with large i and j of the ordered start fall dras-
tically when we move from a largej to a smallj. This is in
accord with our expectation, because the lattice system cor-
responds to the uncompactified. In theN556 case~the com-
pactification radiusR is equal toRC) the longitudinal Creutz

FIG. 19. Scaling behavior of the Creutz ratio along theg2

54.0 line on an 8434 lattice. The solid line is ln(x)52 lnub2D2u
11.2 @see Eq.~6.5!#, whereD252.156(23).
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ratios also start to fall down around lnj'1.1. Therefore, the
lattice system above does not correspond to any four-
dimensional theory, rather it describes a full five-
dimensional theory. Keeping this in mind, we continue to
consider theN555, 4, 3, and 2 cases.

The results are also shown in Fig. 20. As we see from
these figures, the longitudinal Creutz ratios no longer fall
drastically. Comparing the slope of these longitudinal Creutz
ratios with the straight lines of the slope 2, we find that the
longitudinal Creutz ratios forN5*3 decrease faster thanj2

FIG. 20. Scaling behavior of the Creutz ratio forN552, 3, 4, 5, 6, and 8 measured on the line expected from the one-loopb function
~5.15!. The open symbols are the results of the ordered start and the filled symbols are those of the disordered start.
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asj decreases. If this continues to smallerj, i.e., smallera4,
we may conclude that forN5*3 the string tensionsphys
decreases asa4 decreases so thatsphys vanishes in the
a4 /R→0 limit.

As we have observed, the slope of the Creutz ratios be-
comes milder asR decreases. This tendency of the milder-
becoming slope with decreasingR is a real effect and not an
effect of a finite N5, at least N5>4 or equivalently R
>(2/3)RC , which we may conclude from the fact that our
data show that the critical lattice systems withN556 and 4
describe the same physical system. Some finite size effects
may be present in the case ofN553 and 2 in Fig. 20. Nev-
ertheless, the tendency can be seen for these cases, too. It is
this tendency of the milder-becoming slope that suggests the
existence of a continuum theory with a nonvanishing string
tension. If we assume that in the present case of setting the
longitudinal Creutz ratio starts to scale according to the scal-
ing law ~6.6! from N552 on, we obtain the maximal com-
pactification radius

RM'
RC

3
'

1

10Asphys

, ~6.7!

below which the compactified theory with a nonvanishing
string tension could exist nonperturbatively.

We would like to notice that, though the qualitative nature
of the milder-becoming slope is real, the scaling behavior of
the longitudinal Creutz ratio itself is sensitive to the choice
of the extrapolation function~5.15! that describes the lines of
R5const. It is therefore clear that for a more definite con-
clusion more refined analyses with a lager size of lattice are
indispensable.

C. ‘‘Simulated’’ N5\` limit

To consider theN5→` limit with R5const, we have to
enlarge the size of our lattice. Instead of enlarging the size,
however, we can simulate the limit with the data that we
have already at hand. We would like to argue below that the
second limiting process,a4 /R→0 with a5 fixed at ana5c
~see Fig. 19! can be interpreted as ana4 ,a5→0 limiting
process withR fixed. (a5→0 with R fixed is the same as
N5→` with R fixed.!

We have been assuming that the theoretical function
given in Eq.~6.3! describes a set of the lines ofR5const in
the b-j plane for differentN5. All lines so obtained are
assumed to be physically equivalent: To each point on a line,
there exists an equivalent point on each line. It follows then
that all the points on a line described by Eq.~6.3! for a given
N5 can be transformed into a line that is parallel to theb axis
in the b-j plane. The mapping can be easily found, because
the values of the gauge couplingg on the physically equiva-
lent points should be the same. Sinceb does not change if
the ratioj/N5 is fixed @see Eq.~6.3!#, the value ofg does not
change if we move along a line parallel to thej axis ~see Eq.
~5.3!#. That is, to find a set of physically equivalent points
we just have to move parallel to thej axis. Therefore, mov-
ing along a line described by Eq.~6.3! for a givenN5 can be
assumed to be physically equivalent to moving along a line

with j5const while changingb and N5: We can simulate
enlargingN5 without changingN5. Since the compactifica-
tion radiusR is assumed to be a physical quantity, it remains
unchanged during the transformation.

Consequently, the scaling behavior of the Creutz ratios
studied in Fig. 20 can be reinterpreted as the scaling behavior
along a line withj andR kept fixed, where the scaling law
appropriate for this limiting process is given in Eq.~6.5!:
The vertical axis lnj in Fig. 20 should be replaced by
lnub2D2u1lnuN5 /D1u and the straight line should be under-
stood as lnx52 lnub2D2u1const, where we have used Eq.
~6.3!. We arrive at the same conclusion as in thea4 /R→0
case, which we do not repeat here again. But as we have
stated there, the tendency of the milder-becoming slope with
decreasingR is a real effect, at least forR>(2/3)RC . This is
so here, too, because our data show that the critical lattice
systems withN554 and 6 describe the same physical system
so that the above mentioned transformation at least between
theN554 and 6 lines is trustful. The simulatedN5→` limit
we have considered here should be regarded as a prediction
of the real limit, at least forR>(2/3)RC .

VII. SUMMARY AND CONCLUSION

Our motivation in this paper has been to see, within the
framework of the lattice gauge theory, whether or not the
nontrivial fixed point found in thee-expansion in the con-
tinuum theory of the pureSU(2) Yang-Mills theory in five
dimensions is spurious in the case that the fifth dimension is
compactified. We have used intensively anisotropic lattices
to take into account the compactification. We have found
that the compactification changes the nature of the phase
transition: A second order phase transition, which does not
exist in the uncompactified case, begins to occur, and turns
to be of first order at a certain point.

Under the assumption that the compactification radiusR
remains constant fixed at the critical valueRC along the criti-
cal lines of the phase transition due to the compactification,
we have computed the latticeb function b̄ lat , and found that
b̄ lat as a function ofs, obtained from the critical line ofN5
54 and 6, is the same~see Fig. 17!. We have also found that
the gauge coupling on these critical lines is the same~see
Fig. 18!. From these observations we have concluded that the
critical lattice system withN554 and 6 describes the same
physical system, and we are led to the assumption that this is
the case for allN5.

As we can see from Fig. 18, the power-law running of the
gauge coupling~the solid line! is consistent with the data,
which has a simple one-loop interpretation. This is the fact
that supports the correctness of the assumption, at least for
N554 and 6, that the compactification radiusR remains con-
stant fixed at the critical valueRC along the critical lines of
the phase transition due to the compactification.

At this point it is the natural thing to extend our findings
into the deconfining phase of the transverse Polyakov loop:
We have assumed that the lattice spacing has a physical scale
even in the deconfining phase and the one-loop ansatz~5.15!
can be used to draw the lines ofR5const in that regime. The
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investigation of the scaling law~6.5! for the longitudinal
Creutz ratio~4.1! shown in Fig. 19 supports the correctness
of this assumption. At this stage, the existence of the non-
trivial fixed point suggested in thee expansion might be
evident.

We have investigated the scaling behavior of the longitu-
dinal Creutz ratio in thea4 /R→0 limit with R kept fixed,
and found that the slope with which the Creutz ratios fall in
the a4 /R→0 limit becomes milder asR decreases~see Fig.
20!. In the case ofN553 and 2 in Fig. 20, there are may be
some finite size effects, but the tendency of the milder-
becoming slope of the Creutz ratio should be real in these
cases, too. It is this tendency that suggests the existence of a
continuum theory with a nonvanishing string tension. From
this behavior of the Creutz ratio, we are led to the interpre-
tation that the compactified theory having a nonvanishing

string tension could exist nonperturbatively if the compacti-
fication radiusR is smaller than the maximal compactifica-
tion radiusRM . Our estimate isRM'RC/3'0.1/Asphys.

It is clear that to make our interpretation more solid, we
need not only refined and detailed numerical analyses but
also analytical investigations. We hope that further studies
will clarify the problems on the quantum realization of the
old Kaluza-Klein idea.
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