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Abstract 

The paper presupposes a team of application developers using an 

application generator served by a relational database (RDB). The 

application grows by including not only routines for input/output, but 

by accumulating new relations, the latter representing data-definition 

activity by the developers. 

A data dictionary (DD) is needed 

(I) to interrelate relations, 

(2) to relate these to routines, input streams and reports, 

(3) to produce auditing reports and clerical procedures manuals. 

The benefits and technical problems of maintaining the DD itself as a 

RDB are treated. 

INTRODUCTION 

This paper assumes a development team using an application generator 

served by a relational database (RDB). The application grows not only 

by adding I/O and processing routines, but also by accumulating new 

relations. Such relations may be derived from already existing 

relations in the database, as well as being inserted independently as 

a set of tup!es. 

We do not want to argue here why we consider an application generator 
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together with a relational data base. Suffice to say that we believe 

this combination to be an attractive one for use by a team of non- 

data-processing professionals. By "non-DP professionals' we shall 

mean a group of highly skilled individuals who wish to innovate within 

their own discipline by making use of the computer, without being 

diverted from their true purpose by considerations of a purely 

technical nature to do with data-processing. In particular such 

individuals will not wish to be deflected by questions of choosing 

data pathways or the best data structure for their particular purpose 

(hence the relational database), nor get involved with the wide choice 

of techniques for doing essentially standard programming operations 

(hence the application generator). 

We shall consider a relational database similar to a research 

prototype developed and used at the IBM UK Scientific Centre, Peterlee, 

called PRTV (i) o The chief feature of PRTV is that of deferred 

operation, that is, a new relation derived from existing relations is 

not materialised into a set of tuples until these tuples are explicitly 

called for; eg, to open the relation as a read-only file, or to find 

out how many tuples it contains. A new relation can be defined during 

a terminal session by entering an expression which contains names of 

existing relations, acted on by the relational operations: 

UNION PROJECTION 

INTERSECTION SELECTION 

DIFFERENCE JOIN 

The result is a named entity within the user's workspace which we shall 

call a ' (relational) value' It is not our purpose to describe how 

this entity is implemented. Suffice to say that it is a character 

string which specifies briefly but conveniently to the routines which 

materialise the tuples just how to go about doing so. Within this 

relational value there exist, as intact substrings in fact, either the 

names, or the values, of the relations from which it was derived. 

However, note that by the term: 'derived relation', we shall mean 

specifically one whose relational value contains the name of another 

relation, say 'A', rather than just the value of A. This is because, 

in PRTV, there is no way of effectively recognising that, say, B has 

been obtained from A in the latter case. If for instance relation A 
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were bulk-loaded from cards, next relation B created and simply 

assigned the value of A, there would be nothing inherently different 

about A and B. Indeed, in PRTV as it stands there would be no way of 

telling which came first~ Moreover either A or B could be reassigned 

another value, leaving the other unchanged. This is clearly not the 

case if B were derived from A. Then whenever A changed its value, B 

would change correspondingly. 

Since relational values are relatively small entities compared with the 

large sets of tuples they can potentially represent, one must not think 

that a computer process which forms new relations at run time out of 

existing relations is necessarily going to be extravagant. Thus PRTV 

allows one to formulate as much of one's application as one cares to in 

a relational algebra, which on the face of it performs set-theoretic 

operations upon whole sets of tuples. However, the operations are 

really performed on t~e relational values we have just described, with 

the result that the operation of forming the union, say, of two large 

sets of tuples is deferred until one actually lists a relation, or 

opens a sequential file based on that relation and scans the file. We 

are going to formulate, in a relational algebra, processes which 

experienced programmers would not consider handling in terms of 

elementary operations which combine entire sets of tuples, or as they 

would see them, sets of records. 

Instead of a relational algebra, a relational calculus may of course be 

used instead, eg the ALPHA language of E F Codd (2). PRTV does not yet 

support ALPHA, nor any such relational calculus. However, as Codd has 

shown elsewhere, it is in principle feasible to translate from one to 

the other in a natural way. An ALPHA expression resembles a theorem in 

the Propositional Calculus. To a logician, this represents a natural 

and general way of making an assertion about a given computer process. 

Other professionals have their own languages within their own 

disciplines. Whether or not they can understand a Propositional 

Calculus expression does not matter: their own languages are likewise 

amenable to machine translation into the relational algebra. 

Consider an application which accepts a batch of input and produces 

reports (invoices, cheques, etc). It is conceivable in principle to 

load the input straight into a number of relations, then print out the 

reports directly from relations derived from the input relations. How 

far one progresses towards this limit depends in practice on whether 
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it appears easier to implement a given step using the relational 

algebra, or a conventional programming language. A non-DP professional 

is unlikely to be predisposed towards the programming solution, 

particularly if provided with an application generator which constructs 

the relational algebra for him out of more familiar specifications. 

The main problems which the application generator will have to handle 

are those of making the work of one team member available to another in 

an orderly fashion, and to stop them unsuspectingly cutting the ground 

away from under each others' feet. 

This can so easily happen if the result of one individual's work, 

embodied in a relation, is passed to another, who incorporates it into 

a derived relation which is in turn passed on. It becomes a heavy 

administrative task to keep track of what changes to the original 

relation are safe, permissible, or are nonsense in terms of the real- 

world application. 

Note that with this remark we do not distinguish between application 

development and operational running of the application. 

One possible way of coping with this task is for the application 

generator to administer a data dictionary. Since the task involves 

much cross-indexing, and the application generator is already served 

with a relational database, it is attractive to investigate maintaining 

the data dictionary itself as a relational database. 

A range of tasks may be undertaken by the data dictionary, from the 

simplest to the most ambitious. Examples are: 

(1) reporting upon all relations which are affected by updating a 

given relation, 

(2) preventing or otherwise qualifying an order to destroy a 

relation upon which further relations are defined, 

(3) enforcing semantic constraints imposed by the nature of the 

application at either application development time, eg, to prevent the 

insertion of 'nonsense' relations into the database, or at run-time, 

eg, to ensure that tuples are not inserted into a given relation 

without corresponding tuples being present in another relation. 
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(4) producing listings of all routines and reports relating to a 

given database relation, for auditing purposes, 

(5) maintaining an up-to-date clerical procedures manual. This 

often requires cross-referenced lists of fields on input documents, 

reports, and domains in the database. 

These tasks are represented in order of increasing severity. We shall 

treat the first three only, discussing some theoretical and technical 

problems which the data dictionary has to face. The remaining two 

topics, although ambitious in practice, are theoretically much simpler 

than the first three. 

(1) REPORTING UPON UPDATE DEPENDENCIES 

For the moment we are primarily concerned with update dependencies 

between relations in the course of application development. The other 

sort of update dependency, that between records, or tuples in our case, 

will be treated later under the heading of 'semantic constraints' 

This facility is straightforwardly achieved by maintaining a DD- 

relation, call i% RDEPEND, on the domains RELIDI, RELID2, DEPTYPE. By 

'DD-relation', we mean 'data dictionary' relation, to distinguish it 

from the relations belonging to the application itself. DD-relations 

may or may not be kept in the same database as application relations: 

for research convenience the former is recommended due to the facility 

for bootstrapping the data dictionary, the latter advisable however for 

security. 

Note that we require some means of referring to distinct occurrences of 

the same domain within the component list of a relation. We do this 

here by postfixing i, 2, etc, to the domain name (eg, RELIDI, RELID2, 

etc, for the domain name RELID). RDEPEND contains a tuple for each 

derived relation, stating what relation it depends on (RELID2) and in 

what capacity (DEPTYPE). Where a relation is derived from a number of 

other relations, that number of tuples is present in RDEPEND. 

Furthermore, if the relation uses another in more than one capacity, 

more than one tuple for that pair of 'RELIDs' Occurs. 

Now comes the advantage of using a relational database for the data 
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dictionary. The relation RDEPEND is transitive in a logical sense. 

Thus by joining it to itself repeatedly we recover a relational value 

which carries a tup!e for all the implicit dependencies, as well as 

those appearing explicitly in RDEPEND. 

Let us introduce notation to present an example. This notation is 

based on the relational algebra, ISBL, used by PRTV, although we modify 

it freely in order to make it better illustrate our points. 

In PRTV a user manipulates relations within his workspace by 

expressions of the form: 

C = A * B 

C = N~A * B 

The first command would construct a relation with a RELID of 'C' (the 

named entity introduced earlier with its symbolic 'value'; no tuples 

are accessed as yet) and a value equal to the 'join' of thevalues of 

'A t and 'B'. 

The second command would incorporate the RELID: 'A' into the 

relational value formed for 'C' instead of the value of A. 'N~A' 

should be read as 'name-A'. 

Suppose we have defined 'F ~ by the following sequence of commands: 

C = N~A 

D = N~B 

E = N~C 

F = N~E * D 

Then RDEPEND would contain the following tuples: 

RDEPEND ( RELIDI RELID2 DEPTYPE ) 
C A N 
D B N 
E C N 
F E N 
F D V 

In order to obtain tuples for every dependency of F one might join 

RDEPEND with itself repeatedly until no further tuples appeared 

(detected by testing its cardinality) o The type of 'join' operation 

required is one called an 'equi-join'. This means that the tuples from 

each relational operand which are to be concatenated are chosen by 

collating equal values within certain specified domains. It is a matter 

of notational design to specify an equi-join elegantly. Here we show 

the required components to 'overlap' by placing component names beneath 

each other. Thus: 
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RDEPEND RELID1 RELID2 DEPTYPE 
* RDEPEND RELID1 RELID2 DEPTYPE 

represents a relational value with five domain occurrences. Each tuple 

in the set so defined is formed by taking a pair of tuples from RDEPEND 

for which RELIDI in one tuple equals RELID2 in the other. There is a 

combined tup!e for all such pairS. 

We may further join to this a relation, DTRANS, which contains a tuple 

matching each pair of values of DEPTYPE which turns up in the above 

relational value. Each tuple of DTRANS contains a third value from the 

domain DEPTYPE, representing the resulting (ie, transitive) dependency. 

After that, we can project out just those domains we wish to see, 

renaming them in the process. Note that in a relation, all duplicates 

of a given tuple are suppressed. A relation simply records that, say, 

three given objects are related in a given way. The ordered set of 

these three objects is what comprises the 'tuple' (3-tuple, or 'triple' 

in this case). Thus it makes no sense to talk about more than one 

'occurrence' of this tuple. The three objects are either related, or 

they are not. 

We may thus construct the relational assignment statement: 

RR = RDEPEND RELIDI RELID2 DEPTYPE 
* RDEPEND RELIDI RELID2 DEPTYPE 
* DTRANS DEPTYPE! DEPTYPE2 DEPTYPE3 
% RELIDI RELID2 DEPTYPE 

The resulting relation RR has precisely the domains and domain-IDs of 

RDEPEND (the final 'project', %, has seen to that), but relates RELIDs 

once-removed. Thus RR contains the following tuples only: 

RR ( RELIDI RELID2 DEPTYPE ) 
E A NN 
F C NN 
F B V 

The relation DTRANS can be visualised as a function with two arguments, 

DEPTYPEI and DEPTYPE2, returning the corresponding object in the domain 

DEPTYPE3. Indeed in PRTV it can be implemented either as a PL/I 

function or as an ordinary relation, with a tuple for every pair of 

values of DEPTYPEI and DEPTYPE2. Thus DTRANS might contain the 

following tuples (among others): 

DTRANS ( DEPTYPEI DEPTYPE2 DEPTYPE3 ) 
N N NN 
N NN NNN 
NN N NNN 
NN NN NNNN 
N V V 
V N V 

Note that the last two tuples say, in effect, that if A depends on the 
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name 'B'r and that B has the value of C, then A has only a current- 

value connection with Co If C is changed, A will not changel and 

therefore this connection will be lost. On the other hand, if B 

depends on the name 'C', assigning the (current) value of B to A 

effectively assigns the current value of C to A. This is a matter of 

choice of convention° 

RR can be incorporated back into RDEPEND (eg, by the expression:) 

RDEPEND = RDEPEND + RR 

and the process repeated until the cardinality of RDEPEND grows no 

more° On the other hand it may be better to derive a new relation, 

FULL RDEPEND~ by this process each time it is called for, so that 

RDEPEND may be maintained more easily by simple insertion and deletion 

of tuples. 

When the owner of the catalogued relation, F, wishes to modify it, the 

command: 

List FULL RDEPEND: RELIDI = ~F ~ 

might be issued. This lists a selection of just those tuples in 

FULL RDEPEND such that RELIDI is equal to 'F'. The relational operator 

'°' stands for 'SELECT'. Thus: 

FULL DEPEND: RELIDI = 'F' 
( RELIDI RELID2 DEPTYPE ) 
F E N 
F D V 
F C NN 
F B V 
F A NNN 

(2) QUALIFYING AN ORDER TO DESTROY A RELATION 

This might be considered to be a special case of enforcing semantic 

constraints imposed by the application model upon the developers 

themselves, a very general topic. However it can also be viewed as a 

basic facility to be expected of a system which claims to inhibit 

members of an application development team from cutting the ground from 

under each others' feet. There is a temptation to build such a facility 

rigidly into the system itself. This ignores the possibility that what 

is satisfactory for one application development team may not be so for 

another. 

The simplest such 'qualification I is of course to refuse to destroy any 

relation from which another relation has been derived, ie, upon which 
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there is a name-dependency, until those dependencies have been 

eliminated. 

(3) ENFORCING SEMANTIC CONSTRAINTS IMPOSED BY THE APPLICATION 
MODEL 

To the theorist this is probably the most interesting use to which a 

relational data dictionary might be put. 

One objection to the use of relational databases stems from the fact 

that certain properties of conventional files, such as demanding a 

unique value in the key field, or being hierarchical, are absent. In 

conventional programming, these 'structural' properties are exploited 

to enforce certain semantic constraints arising out of the application 

model, such as a particular child segment having a single parent. 

However the skills of a database specialist are often needed to exploit 

such restrictions inherent in the available structures. It is up to 

him to ensure that his model of the application in terms of key fields 

and segment deletion rules behaves like the real-world counterpart: 

yet it is often rather hard for a business to find a man with intimate 

knowledge of both realms. Thus it is attractive for our purpose that 

the traditional restrictions of key-fields and many-one mappings have 

to be modelled explicitly in PRTV, since the problem of enforcing 

semantic constraints can then be split off from that of providing a 

structure capable of holding the data in the first place. 

How can one use the relational algebra here discussed to model these 

sorts of update constraints? 

Suppose we have a standing relation, X, in the database, and a 

transient relation, UPD_X, holding today's new additions to X. We want 

to insert into X just those tuples of UPD X whose values of the key- 

domain, KEY, do not already occur as values of KEY in X. 

X % (KEY), is a relational value, with just one domain, of current keys 

occurring in X. By joining it to UPD X we express just those tuples of 

UPD X whose keys already occur in X: 

X % (KEY) I KEY 
* UPD_X I KEY <OTHER_DOMAINS> 

By forming the 'DIFFERENCE' of this expression with the original UPD X 

we express all those tuples of UPD X whose keys do not already occur in 



288 

X. We now simply 'UNION' these with X to get NEW X. Ignoring the 
m 

special domain-overlapping notation, NEW X is given by: 

NEW_X = NiX + (N~UPD_X - (N:UPD_X * (NIX % KEY))) 

Note that we have made NEW X a derived relation by quoting the names of 

relations (N:) instead of their current values. NEW_X, upon being 

materialised, will contain the desired set of tuples, which may be used 

to replace the current value of X in the database. We must then ensure 

that X is only ever updated in this way. A crude way of doing this is 

to have the data dictionary keep a list of permissible assignments into 

given RELIDs, so that the application generator will not accept a 

command changing X except those, explicitly catalogued, which assign 

NEW X into X. 
m 

Clearly a similar technique can be used to insert only those tuples 

into X whose KEYs occur in another relation, W. The tuples which fail 

to get into X can of course be recovered in the expression: UPD_X - X. 

It is a critical business designing facilities for an application 

developer to impose constraints upon himself or his colleagues. It 

presupposes that both he and we know what sort of security we are 

supposed to be offering him. If this question is not resolved, it is 

so easy to end up with a security system which neither deters deliberate 

abuse, nor protects adequately against accidental misuse, but appears 

designed solely to encumber lawful operations. Our intentions with the 

data dictionary are primarily to reduce the incidence of subsequent 

mis-modificati'ons to an application. As time goes on, or one gets 

further away from the designer of a particular component, the modifier 

of the component is unavoidably less well-informed as to the side- 

effects such modifications may have. On the other hand we make no 

attempt as yet to protect against deliberate wrecking. 

Compare this with the ~facility' sometimes found in database packages 

which simply refuses to accept data with duplicate keys. The first 

non-DP user of s~ch software is inevitably engaged in research, even if 

he does not know it, and is in the typical research predicament of 

having a file of grubby data he wishes to load up, precisely to use the 

sophisticated query facilities the database package may offer to report 

on such things as duplicate keys. He quickly has to learn a few DP 

skills, like how to manoeuvre around the trap for duplicate keys. 

The relational data dictionary approach allows just that structure to 
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be put up first inside the database, which suffices to store the raw 

data, and adequate protection to be devised later for the use of the 

various relations of the appl~cation. 

Compared to the task of defining relations to hold and manipulate the 

data of the application, as exemplified by X, it is much harder to 

write a satisfactory UPD X to constrain its use. The latter is as 

demanding as writing a foolproof macro, which is really what UPD X is. 

Later work might concentrate on providing relations like UPD X 'off the 

peg', so to speak, that is as a result of some non-procedural 

specification by the application developer, rather than require him to 

develop the skill to construct them himself. Such 'constraining' 

relations may resemble the facilities available with CODASYL/DBTG (3), 

or IMS. Alternatively the sort of 'semantic constraint' which would be 

useful in practice might be thought out completely afresh. 

Our approach contrasts with the CODASYL/DBTG approach of submitting the 

update constraints as part of the 'data definition', to be carefully 

separated from the 'data manipulation' activity. In the environment 

described it is difficult to distinguish between the two. 

SUMMARY 

We have tried to indicate a relational approach to many well-known 

problems of so-called data definitions. The key to this approach is 

the use of a data dictionary, itself maintained as a relational 

database. 

Many details of this relational data dictionary clearly remain to be 

finalised. However the essence of a relational data dictionary is 

that it can be implemented even before such questions need be resolved. 

Thus the basic structure of, and facilities offered by, such a data 

dictionary can be changed extensively without the need to reload the 

stored data. This allows of considerable experimentation within a 

particular project. 
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