
Relational Data Dicti0nar [Implementation

I A Clark, IBM United Kingdom Scientific Centre, Peterlee, UK

Abstract

The paper presupposes a team of application developers using an

application generator served by a relational database (RDB). The

application grows by including not only routines for input/output, but

by accumulating new relations, the latter representing data-definition

activity by the developers.

A data dictionary (DD) is needed

(I) to interrelate relations,

(2) to relate these to routines, input streams and reports,

(3) to produce auditing reports and clerical procedures manuals.

The benefits and technical problems of maintaining the DD itself as a

RDB are treated.

INTRODUCTION

This paper assumes a development team using an application generator

served by a relational database (RDB). The application grows not only

by adding I/O and processing routines, but also by accumulating new

relations. Such relations may be derived from already existing

relations in the database, as well as being inserted independently as

a set of tup!es.

We do not want to argue here why we consider an application generator

280

together with a relational data base. Suffice to say that we believe

this combination to be an attractive one for use by a team of non-

data-processing professionals. By "non-DP professionals' we shall

mean a group of highly skilled individuals who wish to innovate within

their own discipline by making use of the computer, without being

diverted from their true purpose by considerations of a purely

technical nature to do with data-processing. In particular such

individuals will not wish to be deflected by questions of choosing

data pathways or the best data structure for their particular purpose

(hence the relational database), nor get involved with the wide choice

of techniques for doing essentially standard programming operations

(hence the application generator).

We shall consider a relational database similar to a research

prototype developed and used at the IBM UK Scientific Centre, Peterlee,

called PRTV (i) o The chief feature of PRTV is that of deferred

operation, that is, a new relation derived from existing relations is

not materialised into a set of tuples until these tuples are explicitly

called for; eg, to open the relation as a read-only file, or to find

out how many tuples it contains. A new relation can be defined during

a terminal session by entering an expression which contains names of

existing relations, acted on by the relational operations:

UNION PROJECTION

INTERSECTION SELECTION

DIFFERENCE JOIN

The result is a named entity within the user's workspace which we shall

call a ' (relational) value' It is not our purpose to describe how

this entity is implemented. Suffice to say that it is a character

string which specifies briefly but conveniently to the routines which

materialise the tuples just how to go about doing so. Within this

relational value there exist, as intact substrings in fact, either the

names, or the values, of the relations from which it was derived.

However, note that by the term: 'derived relation', we shall mean

specifically one whose relational value contains the name of another

relation, say 'A', rather than just the value of A. This is because,

in PRTV, there is no way of effectively recognising that, say, B has

been obtained from A in the latter case. If for instance relation A

28I

were bulk-loaded from cards, next relation B created and simply

assigned the value of A, there would be nothing inherently different

about A and B. Indeed, in PRTV as it stands there would be no way of

telling which came first~ Moreover either A or B could be reassigned

another value, leaving the other unchanged. This is clearly not the

case if B were derived from A. Then whenever A changed its value, B

would change correspondingly.

Since relational values are relatively small entities compared with the

large sets of tuples they can potentially represent, one must not think

that a computer process which forms new relations at run time out of

existing relations is necessarily going to be extravagant. Thus PRTV

allows one to formulate as much of one's application as one cares to in

a relational algebra, which on the face of it performs set-theoretic

operations upon whole sets of tuples. However, the operations are

really performed on t~e relational values we have just described, with

the result that the operation of forming the union, say, of two large

sets of tuples is deferred until one actually lists a relation, or

opens a sequential file based on that relation and scans the file. We

are going to formulate, in a relational algebra, processes which

experienced programmers would not consider handling in terms of

elementary operations which combine entire sets of tuples, or as they

would see them, sets of records.

Instead of a relational algebra, a relational calculus may of course be

used instead, eg the ALPHA language of E F Codd (2). PRTV does not yet

support ALPHA, nor any such relational calculus. However, as Codd has

shown elsewhere, it is in principle feasible to translate from one to

the other in a natural way. An ALPHA expression resembles a theorem in

the Propositional Calculus. To a logician, this represents a natural

and general way of making an assertion about a given computer process.

Other professionals have their own languages within their own

disciplines. Whether or not they can understand a Propositional

Calculus expression does not matter: their own languages are likewise

amenable to machine translation into the relational algebra.

Consider an application which accepts a batch of input and produces

reports (invoices, cheques, etc). It is conceivable in principle to

load the input straight into a number of relations, then print out the

reports directly from relations derived from the input relations. How

far one progresses towards this limit depends in practice on whether

282

it appears easier to implement a given step using the relational

algebra, or a conventional programming language. A non-DP professional

is unlikely to be predisposed towards the programming solution,

particularly if provided with an application generator which constructs

the relational algebra for him out of more familiar specifications.

The main problems which the application generator will have to handle

are those of making the work of one team member available to another in

an orderly fashion, and to stop them unsuspectingly cutting the ground

away from under each others' feet.

This can so easily happen if the result of one individual's work,

embodied in a relation, is passed to another, who incorporates it into

a derived relation which is in turn passed on. It becomes a heavy

administrative task to keep track of what changes to the original

relation are safe, permissible, or are nonsense in terms of the real-

world application.

Note that with this remark we do not distinguish between application

development and operational running of the application.

One possible way of coping with this task is for the application

generator to administer a data dictionary. Since the task involves

much cross-indexing, and the application generator is already served

with a relational database, it is attractive to investigate maintaining

the data dictionary itself as a relational database.

A range of tasks may be undertaken by the data dictionary, from the

simplest to the most ambitious. Examples are:

(1) reporting upon all relations which are affected by updating a

given relation,

(2) preventing or otherwise qualifying an order to destroy a

relation upon which further relations are defined,

(3) enforcing semantic constraints imposed by the nature of the

application at either application development time, eg, to prevent the

insertion of 'nonsense' relations into the database, or at run-time,

eg, to ensure that tuples are not inserted into a given relation

without corresponding tuples being present in another relation.

283

(4) producing listings of all routines and reports relating to a

given database relation, for auditing purposes,

(5) maintaining an up-to-date clerical procedures manual. This

often requires cross-referenced lists of fields on input documents,

reports, and domains in the database.

These tasks are represented in order of increasing severity. We shall

treat the first three only, discussing some theoretical and technical

problems which the data dictionary has to face. The remaining two

topics, although ambitious in practice, are theoretically much simpler

than the first three.

(1) REPORTING UPON UPDATE DEPENDENCIES

For the moment we are primarily concerned with update dependencies

between relations in the course of application development. The other

sort of update dependency, that between records, or tuples in our case,

will be treated later under the heading of 'semantic constraints'

This facility is straightforwardly achieved by maintaining a DD-

relation, call i% RDEPEND, on the domains RELIDI, RELID2, DEPTYPE. By

'DD-relation', we mean 'data dictionary' relation, to distinguish it

from the relations belonging to the application itself. DD-relations

may or may not be kept in the same database as application relations:

for research convenience the former is recommended due to the facility

for bootstrapping the data dictionary, the latter advisable however for

security.

Note that we require some means of referring to distinct occurrences of

the same domain within the component list of a relation. We do this

here by postfixing i, 2, etc, to the domain name (eg, RELIDI, RELID2,

etc, for the domain name RELID). RDEPEND contains a tuple for each

derived relation, stating what relation it depends on (RELID2) and in

what capacity (DEPTYPE). Where a relation is derived from a number of

other relations, that number of tuples is present in RDEPEND.

Furthermore, if the relation uses another in more than one capacity,

more than one tuple for that pair of 'RELIDs' Occurs.

Now comes the advantage of using a relational database for the data

284

dictionary. The relation RDEPEND is transitive in a logical sense.

Thus by joining it to itself repeatedly we recover a relational value

which carries a tup!e for all the implicit dependencies, as well as

those appearing explicitly in RDEPEND.

Let us introduce notation to present an example. This notation is

based on the relational algebra, ISBL, used by PRTV, although we modify

it freely in order to make it better illustrate our points.

In PRTV a user manipulates relations within his workspace by

expressions of the form:

C = A * B

C = N~A * B

The first command would construct a relation with a RELID of 'C' (the

named entity introduced earlier with its symbolic 'value'; no tuples

are accessed as yet) and a value equal to the 'join' of thevalues of

'A t and 'B'.

The second command would incorporate the RELID: 'A' into the

relational value formed for 'C' instead of the value of A. 'N~A'

should be read as 'name-A'.

Suppose we have defined 'F ~ by the following sequence of commands:

C = N~A

D = N~B

E = N~C

F = N~E * D

Then RDEPEND would contain the following tuples:

RDEPEND (RELIDI RELID2 DEPTYPE)
C A N
D B N
E C N
F E N
F D V

In order to obtain tuples for every dependency of F one might join

RDEPEND with itself repeatedly until no further tuples appeared

(detected by testing its cardinality) o The type of 'join' operation

required is one called an 'equi-join'. This means that the tuples from

each relational operand which are to be concatenated are chosen by

collating equal values within certain specified domains. It is a matter

of notational design to specify an equi-join elegantly. Here we show

the required components to 'overlap' by placing component names beneath

each other. Thus:

285

RDEPEND RELID1 RELID2 DEPTYPE
* RDEPEND RELID1 RELID2 DEPTYPE

represents a relational value with five domain occurrences. Each tuple

in the set so defined is formed by taking a pair of tuples from RDEPEND

for which RELIDI in one tuple equals RELID2 in the other. There is a

combined tup!e for all such pairS.

We may further join to this a relation, DTRANS, which contains a tuple

matching each pair of values of DEPTYPE which turns up in the above

relational value. Each tuple of DTRANS contains a third value from the

domain DEPTYPE, representing the resulting (ie, transitive) dependency.

After that, we can project out just those domains we wish to see,

renaming them in the process. Note that in a relation, all duplicates

of a given tuple are suppressed. A relation simply records that, say,

three given objects are related in a given way. The ordered set of

these three objects is what comprises the 'tuple' (3-tuple, or 'triple'

in this case). Thus it makes no sense to talk about more than one

'occurrence' of this tuple. The three objects are either related, or

they are not.

We may thus construct the relational assignment statement:

RR = RDEPEND RELIDI RELID2 DEPTYPE
* RDEPEND RELIDI RELID2 DEPTYPE
* DTRANS DEPTYPE! DEPTYPE2 DEPTYPE3
% RELIDI RELID2 DEPTYPE

The resulting relation RR has precisely the domains and domain-IDs of

RDEPEND (the final 'project', %, has seen to that), but relates RELIDs

once-removed. Thus RR contains the following tuples only:

RR (RELIDI RELID2 DEPTYPE)
E A NN
F C NN
F B V

The relation DTRANS can be visualised as a function with two arguments,

DEPTYPEI and DEPTYPE2, returning the corresponding object in the domain

DEPTYPE3. Indeed in PRTV it can be implemented either as a PL/I

function or as an ordinary relation, with a tuple for every pair of

values of DEPTYPEI and DEPTYPE2. Thus DTRANS might contain the

following tuples (among others):

DTRANS (DEPTYPEI DEPTYPE2 DEPTYPE3)
N N NN
N NN NNN
NN N NNN
NN NN NNNN
N V V
V N V

Note that the last two tuples say, in effect, that if A depends on the

286

name 'B'r and that B has the value of C, then A has only a current-

value connection with Co If C is changed, A will not changel and

therefore this connection will be lost. On the other hand, if B

depends on the name 'C', assigning the (current) value of B to A

effectively assigns the current value of C to A. This is a matter of

choice of convention°

RR can be incorporated back into RDEPEND (eg, by the expression:)

RDEPEND = RDEPEND + RR

and the process repeated until the cardinality of RDEPEND grows no

more° On the other hand it may be better to derive a new relation,

FULL RDEPEND~ by this process each time it is called for, so that

RDEPEND may be maintained more easily by simple insertion and deletion

of tuples.

When the owner of the catalogued relation, F, wishes to modify it, the

command:

List FULL RDEPEND: RELIDI = ~F ~

might be issued. This lists a selection of just those tuples in

FULL RDEPEND such that RELIDI is equal to 'F'. The relational operator

'°' stands for 'SELECT'. Thus:

FULL DEPEND: RELIDI = 'F'
(RELIDI RELID2 DEPTYPE)
F E N
F D V
F C NN
F B V
F A NNN

(2) QUALIFYING AN ORDER TO DESTROY A RELATION

This might be considered to be a special case of enforcing semantic

constraints imposed by the application model upon the developers

themselves, a very general topic. However it can also be viewed as a

basic facility to be expected of a system which claims to inhibit

members of an application development team from cutting the ground from

under each others' feet. There is a temptation to build such a facility

rigidly into the system itself. This ignores the possibility that what

is satisfactory for one application development team may not be so for

another.

The simplest such 'qualification I is of course to refuse to destroy any

relation from which another relation has been derived, ie, upon which

287

there is a name-dependency, until those dependencies have been

eliminated.

(3) ENFORCING SEMANTIC CONSTRAINTS IMPOSED BY THE APPLICATION
MODEL

To the theorist this is probably the most interesting use to which a

relational data dictionary might be put.

One objection to the use of relational databases stems from the fact

that certain properties of conventional files, such as demanding a

unique value in the key field, or being hierarchical, are absent. In

conventional programming, these 'structural' properties are exploited

to enforce certain semantic constraints arising out of the application

model, such as a particular child segment having a single parent.

However the skills of a database specialist are often needed to exploit

such restrictions inherent in the available structures. It is up to

him to ensure that his model of the application in terms of key fields

and segment deletion rules behaves like the real-world counterpart:

yet it is often rather hard for a business to find a man with intimate

knowledge of both realms. Thus it is attractive for our purpose that

the traditional restrictions of key-fields and many-one mappings have

to be modelled explicitly in PRTV, since the problem of enforcing

semantic constraints can then be split off from that of providing a

structure capable of holding the data in the first place.

How can one use the relational algebra here discussed to model these

sorts of update constraints?

Suppose we have a standing relation, X, in the database, and a

transient relation, UPD_X, holding today's new additions to X. We want

to insert into X just those tuples of UPD X whose values of the key-

domain, KEY, do not already occur as values of KEY in X.

X % (KEY), is a relational value, with just one domain, of current keys

occurring in X. By joining it to UPD X we express just those tuples of

UPD X whose keys already occur in X:

X % (KEY) I KEY
* UPD_X I KEY <OTHER_DOMAINS>

By forming the 'DIFFERENCE' of this expression with the original UPD X

we express all those tuples of UPD X whose keys do not already occur in

288

X. We now simply 'UNION' these with X to get NEW X. Ignoring the
m

special domain-overlapping notation, NEW X is given by:

NEW_X = NiX + (N~UPD_X - (N:UPD_X * (NIX % KEY)))

Note that we have made NEW X a derived relation by quoting the names of

relations (N:) instead of their current values. NEW_X, upon being

materialised, will contain the desired set of tuples, which may be used

to replace the current value of X in the database. We must then ensure

that X is only ever updated in this way. A crude way of doing this is

to have the data dictionary keep a list of permissible assignments into

given RELIDs, so that the application generator will not accept a

command changing X except those, explicitly catalogued, which assign

NEW X into X.
m

Clearly a similar technique can be used to insert only those tuples

into X whose KEYs occur in another relation, W. The tuples which fail

to get into X can of course be recovered in the expression: UPD_X - X.

It is a critical business designing facilities for an application

developer to impose constraints upon himself or his colleagues. It

presupposes that both he and we know what sort of security we are

supposed to be offering him. If this question is not resolved, it is

so easy to end up with a security system which neither deters deliberate

abuse, nor protects adequately against accidental misuse, but appears

designed solely to encumber lawful operations. Our intentions with the

data dictionary are primarily to reduce the incidence of subsequent

mis-modificati'ons to an application. As time goes on, or one gets

further away from the designer of a particular component, the modifier

of the component is unavoidably less well-informed as to the side-

effects such modifications may have. On the other hand we make no

attempt as yet to protect against deliberate wrecking.

Compare this with the ~facility' sometimes found in database packages

which simply refuses to accept data with duplicate keys. The first

non-DP user of s~ch software is inevitably engaged in research, even if

he does not know it, and is in the typical research predicament of

having a file of grubby data he wishes to load up, precisely to use the

sophisticated query facilities the database package may offer to report

on such things as duplicate keys. He quickly has to learn a few DP

skills, like how to manoeuvre around the trap for duplicate keys.

The relational data dictionary approach allows just that structure to

289

be put up first inside the database, which suffices to store the raw

data, and adequate protection to be devised later for the use of the

various relations of the appl~cation.

Compared to the task of defining relations to hold and manipulate the

data of the application, as exemplified by X, it is much harder to

write a satisfactory UPD X to constrain its use. The latter is as

demanding as writing a foolproof macro, which is really what UPD X is.

Later work might concentrate on providing relations like UPD X 'off the

peg', so to speak, that is as a result of some non-procedural

specification by the application developer, rather than require him to

develop the skill to construct them himself. Such 'constraining'

relations may resemble the facilities available with CODASYL/DBTG (3),

or IMS. Alternatively the sort of 'semantic constraint' which would be

useful in practice might be thought out completely afresh.

Our approach contrasts with the CODASYL/DBTG approach of submitting the

update constraints as part of the 'data definition', to be carefully

separated from the 'data manipulation' activity. In the environment

described it is difficult to distinguish between the two.

SUMMARY

We have tried to indicate a relational approach to many well-known

problems of so-called data definitions. The key to this approach is

the use of a data dictionary, itself maintained as a relational

database.

Many details of this relational data dictionary clearly remain to be

finalised. However the essence of a relational data dictionary is

that it can be implemented even before such questions need be resolved.

Thus the basic structure of, and facilities offered by, such a data

dictionary can be changed extensively without the need to reload the

stored data. This allows of considerable experimentation within a

particular project.

290

REFERENCES

(1) S J P TODD: PRTV Overview,

IBM UK Scientific Centre report No 75, 1975.

(2) E F CODD: A Database Sublanguage founded on the Relational

Calculus,

Proceedings of the 197! ACM SIGFIDET Workshop on Data

Description, Access and Control.

(3) CODASYL DBTG: Data Base Task Group Report April 1971.

Available from ACM, New York.

