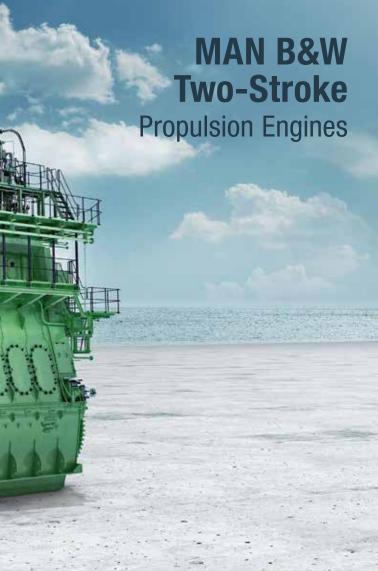


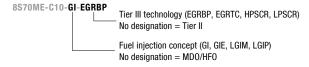
Engineering the Future – since 1758. **MAN Diesel & Turbo**



All data provided in this document is non-binding. This data serves infor- mational purposes only and is especially not guaranteed in any way.
Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.
If this document is delivered in another language than English and doubts arise concerning the translation, the English text shall prevail.

	Contents
MAN B&W Two-Stroke Propulsion Engines	4 – 101
Fuel oil and GI dual fuel engines	16 - 91
Alternative fuels Tier II and Tier III	98 – 107
MAN B&W Two-Stroke Propulsion Systems	108 – 115
MAN Four-Stroke Propulsion Engines	116 – 149
MAN Four-Stroke Marine GenSets	150 – 175
S.E.M.T. Pielstick Four-Stroke Propulsion Engines	176 – 179
MAN Four-Stroke Propulsion Systems	180 – 191
MAN Exhaust Gas Turbochargers	192 – 203
MAN PrimeServ	204 – 207
Contacts	208 – 223
Headquarters	210 – 211
Worldwide Offices	212 – 218
Licensees	219 - 223

Scan the code to get the Engine Programme app.


MAN Diesel & Turbo Tier II and Tier III Engine Programme

The two-stroke engines in this programme are either:

- Tier II engines complying with IMO Tier II
- Tier III engines complying with Tier II when operated in Tier II mode and with Tier III when operated in Tier III mode

Engine Type Designation

To ensure that the engine designation describes the engine with regard to the fuel injection concept and applied Tier III technologies, the engine type designation has been expanded to include these concepts, as described below (full designation, see page 15):

Tier III technologies and fuel injection concepts are explained in detail on page 10 (GI and LGI Dual Fuel Engines) and page 11 (Tier III Technologies).

ME-C engines

The electronic control of ME engines includes flexible control of the cylinder process, i.e. fuel injection timing and actuation of exhaust valves, starting valves and cylinder lubrication.

ME-B engines

On ME-B engines, the injection timing is electronically controlled whereas actuation of the exhaust valves is camshaft operated, but with electronically controlled variable closing timing.

CEAS and Turbocharger Selection (TCS)

CEAS and TCS applications include all available Tier II, Tier III technologies and dual fuel options. These applications include all available engines and variants, and specifications can be further investigated with respect to basic data essential for the design and dimensioning of a ship's engine room (CEAS) and applicable turbochargers (TCS).

CEAS and TCS are available at: www.marine.man.eu \rightarrow Two-Stroke under CEAS Engine Calculations and Turbocharger Selection.

In CEAS and TCS, all engines in this programme are designated '.5' and can be selected from the category 'Official Catalogue'.

Earlier versions of this engine programme have additional engines mentioned. Some of those engine types are still available under the category 'Replaced'. New development will only be implemented in these designs to the extent considered necessary based on service experience. New efficiency enhancing features will not be available on older engine types.

Engine Power

The engine brake power is stated in kW.

The power values stated in the tables are available up to tropical conditions at sea level, i.e.:

- turbocharger inlet air temperature 45°C
- turbocharger inlet air pressure 1,000 mbar
- cooling water (sea/fresh) temperature 32/36°C

Specific Fuel Oil Consumption (SFOC)

The figures in the two-stroke chapter represent the values obtained when the engine and turbocharger are matched to the lowest possible SFOC values while fulfilling the IMO NO_x Tier II or Tier III emission limits.

The SFOC figures are given in g/kWh and are based on the use of a fuel oil with a lower calorific value (LCV) equal to 42,700 kJ/kg at ISO conditions:

- turbocharger inlet air temperature 25°C
- turbocharger inlet air pressure 1,000 mbar
- cooling water temperature 25°C

Most commercially available HFOs with a viscosity below 700 cSt at 50°C can be used.

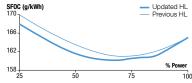
Tolerances

The energy efficiency design index (EEDI) has increased focus on part-load SFOC. Therefore, we offer the option of selecting the SFOC guarantee at a load point in the range from 50% to 100%. It is recommended that the SFOC guarantee point should be limited to the range 50% to 85% for part-load or low-load tuning methods.

All engine design criteria, e.g. heat load, bearing load and mechanical stresses on the construction, are defined at 100% load independent of the selected guarantee point. This means that turbocharger matching, engine adjustment and engine load calibration must also be performed at 100% load independent of the guarantee point.

When choosing an SFOC guarantee at or below 100%, the tolerances, adjustment and calibration at 100% will affect engine running at the lower

SFOC guarantee load point. This includes tolerances on measurement equipment, engine process control and turbocharger performance.


Consequently, SFOC guarantee tolerances are as follows:

- 5% tolerance for 100-85% engine load
- 6% tolerance for <85-65% engine load
- 7% tolerance for <65-50% engine load

Please note that the SFOC guarantee can only be given in one load point for Tier II engines. For Tier III engines see page 11.

Updated fuel consumption on selected engines

As a result of tests, the fuel consumption on G95ME-C9, G90ME-C10, G80ME-C9 and S90ME-C10 engines has been updated. An example illustrating the improvement for a Tier II, L₁ rated G90ME-C10 engine in highload (HL) optimisation is shown in the graph below.

The fuel consumption for tunings, Tier III and dual fuel engines has also been updated. Similar improvements can be realised with part load og low load tuning. A general overview of the changes can be seen on the individual engine pages in this programme. For detailed information, please use the CEAS application.

Turbocharging System

Two-stroke engines can be delivered with MAN, ABB or MHI turbochargers as the standard.

The SFOC figures given in the two-stroke chapter are based on turbo-charging with the best possible turbocharging efficiency generally available, i.e. 67% for all engines with 45-cm bore and above, and 64% for engine bores smaller than 45 cm. Both efficiency figures refer to 100% SMCR.

All engines with high-efficiency (67%) turbochargers can be ordered with a lower (conventional) turbocharging efficiency. Utilising this possibility will result in higher exhaust gas temperatures, lower exhaust gas amounts, and a slight change in SFOC. It is not possible to apply tuning methods (part- or low-load) when making such a conversion.

Fuel Consumption and Optimisation Possibilities for Tier II Engines

Various optimisation possibilities for improved part-load and low-load SFOC are available for the MAN B&W type engines. High-load optimisation is for best possible SFOC at 100% engine load.

Optimisation of SFOC in the part-load range (50-85%) or low-load range (25-70%) requires selection of a tuning method:

EGB: exhaust gas bypass

Also high-pressure tuning (HPT) is available on request for ME engines.

The above tuning methods are available for all SMCR points, but cannot be combined. The SFOC reduction potential of each tuning method at L_1 rating can be seen on each individual engine page.

In cases where part-load or low-load EGB tuning is applied, and a higher exhaust gas temperature is needed, a solution exists for additional automatic control of the EGB, the so-called economiser energy control (EEC). Forcing an open EGB at loads where the EGB is normally closed results in a higher mixed exhaust gas temperature, but with an SFOC penalty on. Calculations with this feature are made on request.

GI and LGI Dual Fuel Engines

This engine programme includes a number of engines designed for gas fuels (GI engines) and liquid gas fuels (LGI engines) operation.

Fuel	Fuel designation	LCV [kJ/kg]
Methane	GI	50,000
Ethane	GIE	47,500
Methanol	LGIM	19,900
LPG*	LGIP	46,000

^{*}LPG is a mixture of liquid propane and butane.

In this engine programme, GI figures are included for most engines where GI is applicable. Figures for GIE and LGIM are included for selected engines (see pages 98-107).

SFOC figures are shown for dual fuel mode operation (i.e. operation on gas or liquid gas fuels). Fuel oil mode SFOC is identical to the SFOC for a similar fuel oil engine. Data for both modes can be found in the CEAS report.

Dual fuel engines are available with standard tuning methods for part-load and low-load optimisation in both fuel oil mode and dual fuel mode.

In dual fuel mode for GI, GIE and LGIP, fuel consumption consists of 3% and 5% for LGIM mass-based pilot liquid fuel of L₁ rating (SPOC = specific pilot oil consumption) and gas fuel (SGC = specific gas consumption).

All types of GI engines can operate with fuel sharing, also referred to as specified dual fuel (SDF) operation, where the ratio between pilot fuel oil and gas fuel can be selected according to preset values.

Guarantee figures for dual fuel engines are given for heat rate, which has the same tolerances as SFOC guarantees, i.e. see page 9.

Heat rate is defined as follows [kJ/kWh] (example for methane as dual fuel): Heat rate $(kJ/kWh) = SGC (g/kWh) \times 50 kJ/g + SPOC (g/kWh) \times 42.7 kJ/g$

The pilot oil amount typically account for about 5% of the heat rate, and the distribution between SGC and SPOC as well as the heat rate over the load range are available in the CEAS report.

Please note that dual fuel engines must have cylinder lubrication systems capable of supplying both low-BN lubricating oils and high-BN lubricating oils.

Tier III Technologies

To ensure compliance with IMO Tier III regulations, one of the two major NO_x reduction technologies must be selected – EGR or SCR. Which technology is preferred depends on market demands, engine size, other requirements and operational pattern.

See Emission Project Guide for more detailed descriptions of these technologies at www.marine.man.eu → Two-Stroke → Project Guides → Other Guides → Emission Project Guide

All Tier III engines have two operating modes:

- Tier III mode fulfilling the IMO Tier III regulations
- Tier II mode fulfilling the IMO Tier II regulations

The Tier III technologies are designed for the use of low-sulphur fuels (0-0.1% sulphur) in Tier III mode. This limitation for sulphur content apply to Tier III operation only. In Tier II operation, the engine is in all cases capable of using fuels with a high sulphur content.

Tier III designs for use of high-sulphur fuels in Tier III mode are available on request. Fuel consumption guarantees can be given for engines for both Tier II and Tier III mode.

EGR

Two EGR-matching concepts are available depending on engine type:

EGR Concept	Description
EGRTC	T/C cut-out matching for engines with bores >= 80 cm and more than one turbocharger applied
EGRBP	Bypass matching for engines with bores <= 70 cm and one high- efficiency turbocharger and for engines with bores <= 40 cm and one conventional efficiency turbocharger

EGR operation applies to ME and ME-B engines, including engine types for dual fuel, except GIE.

For the smallest bore engines, especially with 5 and 6 cylinders, the availability of applicable turbochargers makes it difficult to applicate EGR. Therefore, SCR is recommended for these engines.

SCR

Two SCR concepts are available:

SCR Concept	Description
HPSCR	High-pressure SCR with a static mixer and SCR reactor installed upstream the turbocharger(s)
LPSCR	Low-pressure SCR with a static mixer and SCR reactor installed downstream the turbocharger(s)

SCR operation applies to ME and ME-B engines, including engine types with dual fuel.

The SCR system must be supplied by an approved supplier.

For some large-bore engines (bores >= 90 cm) with a high cylinder number, HPSCR is only available on special request.

Illustrations of the Tier III Technologies

HPSCR

LPSCR

Waste Heat Recovery Systems

Waste heat can be economically recovered on engines with high-efficiency turbochargers by installing equipment for waste heat recovery (WHR) and matching the engine for WHR. WHR systems are available for both Tier II and Tier III engines on request.

The following types of WHR systems have been approved for application:

- Power turbines with a power output equal to 3-5% of the engine shaft power at SMCR.
- Power turbines and steam turbines with a power output corresponding to 8-10% of the engine shaft power at SMCR.
- Steam turbine system with a power output corresponding to 4-6% of the engine shaft power at SMCR.
- Turbochargers with a motor/generator attached to the turbocharger shaft, and with a power output equal to 3-5% of the engine shaft power at SMCR.

Lubricating Oil Consumption

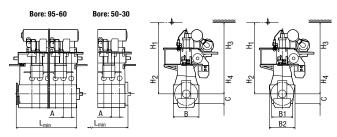
The system oil consumption varies for the different engine sizes and operational patterns. The consumption varies for different engine sizes as well as operational and maintenance patterns.

Specific Cylinder Oil Consumption

Alpha ACC (Adaptive Cylinder-oil Control) is the lubrication mode for MAN B&W two-stroke engines that involves lube oil dosing proportional to the engine load and to the sulphur content in the fuel oil being burned. The specific minimum dosage for low-sulphur fuels is set to 0.6 g/kWh. The typical ACC dosage for a BN 100 cylinder oil is 0.3 g/kWh × S%.

Our Service Letter SL2014-587 offers further information: www.marine.man.eu → Two-Stroke → Service Letters → SL2014-587

Extent of Delivery


The final and binding extent of delivery of MAN B&W two-stroke engines is to be supplied by our licensee, the engine maker, who should be contacted in order to determine the execution for the actual project.

To facilitate negotiations between the yard, the engine maker and the customer, a set of guiding 'Extent of Delivery' (EoD) forms are available in which MAN Diesel & Turbo's recommended basic and optional executions are specified.

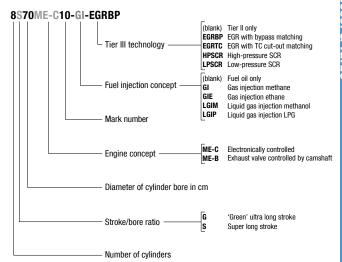
The licensees may select a different extent of delivery as their standard.

Engine Dimensions

The minimum length $L_{\mbox{\tiny min}}$ is stated from the aft end of the crankshaft to the fore end of the engine.

L_{min} Minimum length of engine

- A Cylinder distance
- B Bedplate width
- B1 Bedplate width at foot flange
- B2 Bedplate width at top flange
- C Crankshaft to underside of foot flange
- H₁ Normal lifting procedure
- H₂ Reduced height lifting procedure
- H₃ Reduced height lifting procedure with MAN B&W double-jib crane
- H_a Normal lifting procedure with MAN B&W double-jib crane.


Dry Masses

Dry masses are stated in metric tonnes for engines with MAN turbocharger(s) and a standard turning wheel. Figures will vary depending on the design and options chosen, e.g. moment compensators, tuning wheel, etc.

Dry masses for Tier III engines cover components directly integrated on the engine.

Indicated values are for guidance only and are not binding.

Engine Type Designation

MAN B&W G95ME-C9

Cyl.	L ₁ kW	Stroke: 3,460 mm
5	34,350	
6	41,220	kW/cyl.
7	48,090	L ₃ L ₁ 6,870
8	54,960	6,010
9	61,830	4,520 12
10	68,700	1,100
11	75,570	
12	82,440	70 80 r/min

Fuel Oil

L₁ MEP: 21.0 bar

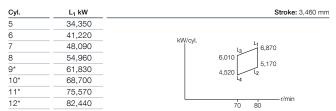
MAN B&W G95ME-C9

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	162.5	161.5	166.0	
Part load	EGB	160.5	160.0	168.5	
Low load	EGB	158.5	161.0	168.5	

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G95ME-C9-GI


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	158.5	157.5	165.0	
Part load	EGB	160.5	160.0	168.5	
Low load	EGB	158.5	161.0	168.5	

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	128.6 (7.9)	129.5 (6.0)	136.7 (5.0)
Part load	EGB	130.2 (8.0)	131.5 (6.1)	139.6 (5.1)
Low load	EGB	128.5 (8.0)	132.4 (6.1)	139.6 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

MAN B&W G95ME-C9

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G95ME-C9-EGRTC

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.0
Tier III mode	164.5	164.5	170.0

MAN B&W G95ME-C9-HPSCR

	OC		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	160.0	162.0	169.0

MAN B&W G95ME-C9-LPSCR

	_			
L. SFO	1:	In/	ĸ١	Νn

Li oi oo [g/kwii]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	159.5	162.0	169.5

^{*} Available on request for HPSCR.

12*

MAN B&W G95ME-C9

Tier III

Cyl.	L ₁ kW		Stroke: 3,460 mm
5	34,350		
6	41,220	kW/cyl.	
7	48,090	KWYCYI.	6,870
8	54,960	6,010	5.470
9*	61,830	4,520	5,170
10*	68,700	1,020 4	=
11*	75,570		

70 80

82,440 **Dual Fuel Mode for GI (Methane)**

L₁ MEP: 21.0 bar

MAN B&W G95ME-C9-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**					
	50%	75%	100%		
Tier II mode	158.5	161.0	168.0		
Tier III mode	164.5	164.5	170.0		

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

Tier II mode	128.4 (8.1)	132.3 (6.2)	139.1 (5.1)
Tier III mode	133.6 (8.1)	135.3 (6.2)	140.8 (5.1)

MAN B&W G95ME-C9-GI-HPSCR

ī	SEUC	Annival	ant age i	nilot fuel //	12.700 k.l/ka)	[a/kWh1**

= 0. 00 oquitation: gao : phot tao: (1=):00 no; ng/ [g/mm]						
	50%	75%	100%			
Tier II mode	158.5	161.0	168.5			
Tier III mode	160.0	162.0	169.0			

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [a/kWh]

Tier II mode	128.4 (8.1)	132.3 (6.2)	139.6 (5.1)
Tier III mode	129.7 (8.1)	133.2 (6.2)	140.0 (5.1)

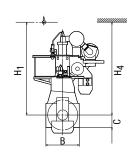
MAN B&W G95ME-C9-GI-LPSCR

L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**

	, ,	, 10	
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	159.5	162.0	169.5

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [a/kWh]

1		J, 1J	
Tier II mode	128.5 (8.1)	132.3 (6.2)	139.6 (5.1)
Tier III mode	129.3 (8.1)	133.2 (6.2)	140.4 (5.1)


^{*} Available on request for HPSCR.

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

^{**} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Engine Dimensions

Specifications

Dimensions:	Α	В	С	H ₁	H ₄
mm	1,574	5,380	2,060	15,925	15,525
Cyl. distance	5-9 cyl.	10 cy	1.	11 cyl.	12 cyl.
mm	1,574	1-6: 1,	574	1-6: 1,574	1-6: 1,574
mm		7-10: 1,	670	7-11: 1,670	7-12: 1,670

Cylinders:		5	6	7	8	9	10	11	12	
L _{min}	mm	11,468	13,042	14,616	16,190	17,804	19,779	21,489	23,159	-

Tier II

Her II									
Dry mass:	t	1,080	1,250	1,430	1,625	1,820	2,010	2,210	2,400

Tier III

Dry mass (added):									
EGR	t	18	19	20	22	35	35	37	38
HP SCR	t	10	15	15	15				
LP SCR	t	-	-	-	-	-	-	-	-

MAN B&W G90ME-C10

Cyl.	L ₁ kW	Stroke: 3,260 mm
5	31,200	
6	37,440	kW/cyl.
7	43,680	L ₃ L ₁ 6,240
8	49,920	5 350
9	56,160	4,010 L ₂ 4,670
10	62,400	4,010 L ₄
11	68,640	
12	74,880	72 84 r/min

Fuel Oil

L₁ MEP: 21.5 bar

MAN B&W G90ME-C10

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	161.5	160.5	165.0	
Part load	EGB	159.5	159.0	167.5	
Low load	EGB	157.5	160.0	167.5	

Dual Fuel Mode for GI (Methane)

MAN B&W G90ME-C10-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	157.5	156.5	164.0	
Part load	EGB	159.5	159.0	167.5	
Low load	EGB	157.5	160.0	167.5	

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	127.8 (7.8)	128.7 (6.0)	135.9 (4.9)
Part load	EGB	129.4 (8.0)	130.7 (6.1)	138.8 (5.0)
Low load	EGB	127.7 (8.0)	131.5 (6.1)	138.8 (5.0)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

MAN B&W G90ME-C10

Fuel Oil

L₁ MEP: 21.5 bar

MAN B&W G90ME-C10-EGRTC

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	157.5	160.0	167.0
Tier III mode	163.5	163.5	169.0

MAN B&W G90ME-C10-HPSCR

L₁ SFOC [a/kWh]

-, -, -, -, -, -, -, -, -, -, -, -, -, -			
	50%	75%	100%
Tier II mode	157.5	160.0	167.5
Tier III mode	159.0	161.0	168.0

MAN B&W G90ME-C10-LPSCR

L₁ SFOC [g/kWh]

L) 51 00 [g/kWii]					
	50%	75%	100%		
Tier II mode	157.5	160.0	167.5		
Tier III mode	158.5	161.0	168.5		

^{*} Available on request for HPSCR.

MAN B&W G90ME-C10

Cyl.	L ₁ kW	Stroke: 3,260 mm
5	31,200	
6	37,440	DAM/e-1
7	43,680	kW/cyl. L ₃
8	49,920	5 350
9	56,160	4,010 4,670
10*	62,400	4,010 4
11*	68,640	
12*	74.880	72 94 r/min

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.5 bar

168.0

MAN B&W G90ME-C10-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**				
	50%	75%	100%	
Tier II mode	157.5	160.0	167.0	
Tier III mode	163.5	163.5	169.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	127.6 (8.1)	131.5 (6.1)	138.3 (5.1)
Tier III mode	132.8 (8.1)	134.5 (6.1)	140.0 (5.1)

MAN B&W G90ME-C10-GI-HPSCR

Tier III mode

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**									
	50%	75%	100%						
Tier II mode	157.5	160.0	167.5						

161.0

L SGC 50.000 k.l/kg (SPOC nilot fuel 42.700 k.l/kg) [g/kWh]

159.0

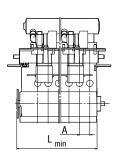
-,,									
Tier II mode	127.6 (8.1)	131.5 (6.1)	138.7 (5.0)						
Tier III mode	128 9 (8 1)	132 4 (6 1)	139 2 (5.0)						

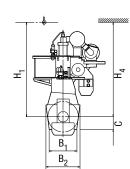
MAN B&W G90ME-C10-GI-LPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**								
	50%	75%	100%					
Tier II mode	157.5	160.0	167.5					
Tior III mode	150 5	161.0	160 5					

L. SGC 50 000 k.l/ka (SPOC nilot fuel 42 700 k.l/ka) [a/kWh1

L ₁ Sac 50,000 kJ/kg (SFOC pilot luei 42,700 kJ/kg) [g/kWil]									
Tier II mode	127.6 (8.0)	131.5 (6.1)	138.7 (5.1)	_					
Tier III mode	128 5 (8 0)	132 4 (6.1)	139 6 (5 1)						


^{*} Available on request for HPSCR.


Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

^{**} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Engine Dimensions

Specifications

mm 1 490 5 110 5 034 1 885 1	Dimensions:	Α	B ₁	B ₂	С	H ₁	H4
1,100 0,110 0,001 1,000	mm	1,490	5,110	5,034	1,885	14,425	13,975

Cylinders:		5	6	7	8	9	10	11	12
L _{min}	mm	9,920	11,410	12,900	14,390*	15,880*	18,040	19,530	21,020

Tier II

Dry mass:	t	876	1,014	1,153	1,295*	1,457*	1,619	1,771	1,915

Tier III

Dry mass (a	dded):								
EGR	t	16	18	19	20	21	33	35	37
HP SCR	t	7	10	15	15	15			
LP SCR	t	-	-	-	-	-	_	-	-

^{* 8-9-}cylinder engines can be ordered with either divided or undivided crankshaft. Data is given for undivided crankshaft.

MAN B&W S90ME-C10

Cyl.	L ₁ kW	Stroke: 3,260 mm
5	30,500	
6	36,600	kW/cyl.
7	42,700	L ₃ L ₁ 6,100
8	48,800	5 230
9	54,900	4,180
10	61,000	4,100 [4
11	67,100	
12	73,200	72 84 r/min

Fuel Oil

L₁ MEP: 21.0 bar

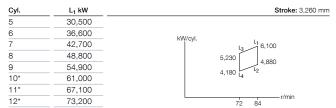
MAN B&W S90ME-C10

L ₁ SFOC [g/kWh]									
SFOC-optimised load range	Tuning	50%	75%	100%					
High load	-	162.5	161.5	166.0					
Part load	EGB	160.5	160.0	168.5					
Low load	EGB	158.5	161.0	168.5					

Dual Fuel Mode for GI (Methane)

L1 MEP: 21.0 bar

MAN B&W S90ME-C10-GI


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*									
SFOC-optimised load range	Tuning	50%	75%	100%					
High load	-	158.5	157.5	165.0					
Part load	EGB	160.5	160.0	168.5					
Low load	EGB	158.5	161.0	168.5					

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	128.6 (7.9)	129.5 (6.0)	136.7 (5.0)
Part load	EGB	130.2 (8.0)	131.5 (6.1)	139.6 (5.1)
Low load	EGB	128.5 (8.0)	132.4 (6.1)	139.6 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

MAN B&W S90ME-C10

Fuel Oil

MAN B&W S90ME-C10-EGRTC

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.0
Tier III mode	164.5	164.5	170.0

MAN B&W S90ME-C10-HPSCR

L₁ SFOC [a/kWh]

- O. OO [g/]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	160.0	162.0	169.0

MAN B&W S90ME-C10-LPSCR

L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	159.5	162.0	169.5

^{*} Available on request for HPSCR.

MAN B&W S90ME-C10

Cyl.	L ₁ kW	Stroke: 3,260 mm
5	30,500	
6	36,600	kW/cyl.
7	42,700	L ₃ L ₁ 6,100
8	48,800	5 230
9	54,900	4,180 4,180
10*	61,000	4,180 L ₄
11*	67,100	
12*	73,200	72 84 r/min

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S90ME-C10-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]**						
50% 75% 100%						
Tier II mode	158.5	161.0	168.0			
Tier III mode 164.5 164.5 170.0						

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	128.4 (8.1)	132.3 (6.2)	139.1 (5.1)
Tier III mode	133.6 (8.1)	135.3 (6.2)	140.8 (5.1)

MAN B&W S90ME-C10-GI-HPSCR

_	SEUC	annivale	nt age i	nilot fuel //	2.700 k.l/ka)	[a/kWh1**

= or or equitation gas : prior tast (12,100 ho, ng) [g. ntm]						
	50%	75%	100%			
Tier II mode	158.5	161.0	168.5			
Tier III mode	160.0	162.0	169.0			

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [a/kWh]

Tier II mode	128.4 (8.1)	132.3 (6.2)	139.6 (5.1)
Tier III mode	129.7 (8.1)	133.2 (6.2)	140.0 (5.1)

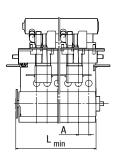
MAN B&W S90ME-C10-GI-LPSCR

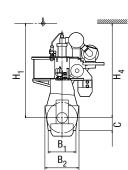
L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh1**

	, ,	J/ LJ· _ 1	
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	159.5	162.0	169.5

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [a/kWh]

Tier II mode	128.5 (8.1)	132.3 (6.2)	139.6 (5.1)
Tier III mode	129.3 (8.1)	133.2 (6.2)	140.4 (5.1)


^{*} Available on request for HPSCR.


Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

^{**} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Engine Dimensions

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H4
mm	1,590	5,160	5,450	1,900	15,000	14,875

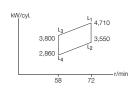
Cylinders:		5	6	7	8	9	10	11	12
L _{min}	mm	10,312	11,902	13,492	16,135	17,725	19,315	20,905	22,495

Tier II

Dry mass:	t	953	1,104	1,255	1,446	1,626	1,771	1,942	2,088

Tier III

IIG III									
Dry mass (added):									
EGR	t	16	18	19	20	21	33	35	37
HP SCR	t	7	10	15	15	15			
LP SCR	t	-	-	-	-	_	-	-	-



MAN B&W G80ME-C9

Tier II

Stroke: 3,720 mm

Cyl.	L ₁ kW
6	28,260
7	32,970
8	37,680
9	42,390

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G80ME-C9

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	162.5	161.5	166.0		
Part load	EGB	160.5	160.0	168.5		
Low load	EGB	158.5	161.0	168.5		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G80ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	158.5	157.5	165.0		
Part load	EGB	160.5	160.0	168.5		
Low load	EGB	158.5	161.0	168.5		

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	128.7 (7.9)	129.5 (6.0)	136.7 (5.0)
Part load	EGB	130.2 (8.0)	131.5 (6.1)	139.6 (5.1)
Low load	EGB	128.5 (8.0)	132.4 (6.1)	139.6 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

MAN B&W G80ME-C9

Cyl.	L ₁ kW	Stroke: 3,720 mm
6	28,260	
7	32,970	kW/cyl.
8	37,680	1 4,710
9	42,390	3,800 3,550
		2,860
		-4

58

72

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G80ME-C9-EGRTC

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.0
Tier III mode	164.5	164.5	170.0

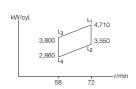
MAN B&W G80ME-C9-HPSCR

	OC		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	160.0	162.0	169.0

MAN B&W G80ME-C9-LPSCR

L₁ SFOC [g/kWh]


	50%	75%	100%
Tier II mode	158.5	161.0	168.5
Tier III mode	159.5	162.0	169.5

MAN B&W G80ME-C9

Tier III

Stroke: 3,720 mm

Cyl.	L ₁ kW
6	28,260
7	32,970
8	37,680
9	42,390

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

169.0

MAN B&W G80ME-C9-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	158.5	161.0	168.0	
Tier III mode	164.5	164.5	170.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	128.5 (8.1)	132.3 (6.2)	139.1 (5.1)
Tier III mode	133.6 (8.1)	135.3 (6.2)	140.8 (5.1)

MAN B&W G80ME-C9-GI-HPSCR

Tier III mode

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	158.5	161.0	168.5	

162.0

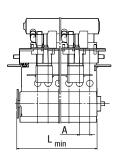
L SGC 50.000 k.l/kg (SPOC nilot fuel 42.700 k.l/kg) [g/kWh]

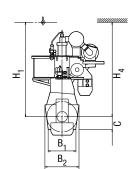
160.0

=,, (p,), [3,]						
Tier II mode	128.5 (8.1)	132.3 (6.2)	139.6 (5.1)			
Tier III mode	129 7 (8 1)	133 2 (6 2)	140 0 (5.1)			

MAN B&W G80ME-C9-GI-LPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh] ⁺				
	50%	75%	100%	
Tier II mode	158.5	161.0	168.5	
Tier III mode	159.5	162.0	169.5	


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


-						
Tier II mode	128.5 (8.1)	132.3 (6.2)	139.6 (5.1)			
Tier III mode	129.3 (8.1)	133.2 (6.2)	140.4 (5.1)			

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

Engine Dimensions

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₄
mm	1,400	5,320	5,680	1,960	16,100	15,825

Cylinder	s:	6	7	8	9
l min	mm	10.735	12.135	13.535*	15.880

Tier II

Dry mass:	t	945	1,055	1,175*	1,350

Tier III

Dry mass (added):						
EGR	t	16	17	18	19	
HP SCR	t	6	10	10	15	
LP SCR	t	-	-	-	-	

^{*} Dry mass and cylinder L_{min} are with undivided crankshaft and chain in aft, with divided crankshaft and chain in mid, dry mass is 1,223 t and cylinder L_{min} is 14,480 mm.

MAN B&W S80ME-C9

Cyl.	L ₁ kW	Stroke: 3,450 mm
6	27,060	
7	31,570	kW/cyl.
8	36,080	L ₃ L ₁ 4,510
9	40,590	4,160 3,610
		3,330 12
		-4
		r/min
		72 78

Fuel Oil

L₁ MEP: 20.0 bar

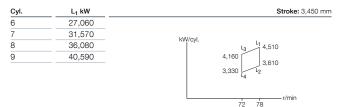
MAN B&W S80ME-C9

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	166.0	
Part load	EGB	161.5	160.5	167.5	
Low load	EGB	159.5	161.5	167.5	

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S80ME-C9-GI


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	160.5	158.0	165.0
Part load	EGB	161.5	160.5	167.5
Low load	EGB	159.5	161.5	167.5

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	130.4 (7.9)	129.9 (6.0)	136.7 (5.0)
Part load	EGB	131.1 (8.0)	132.0 (6.1)	138.8 (5.0)
Low load	EGB	129.4 (8.0)	132.8 (6.1)	138.8 (5.0)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

MAN B&W S80ME-C9

Fuel Oil

L₁ MEP: 20.0 bar

MAN B&W S80ME-C9-EGRTC

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.0
Tier III mode	166.5	165.0	170.0

MAN B&W S80ME-C9-HPSCR

SFO		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	161.0	162.5	168.0

MAN B&W S80ME-C9-LPSCR

L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	160.5	162.5	168.5

MAN B&W S80ME-C9

Cyl.	L ₁ kW		Stroke: 3,450 mm
6	27,060		
7	31,570	kW/cyl.	
8	36,080		4,510
9	40,590	4,160	
		3,330	3,610
		5,555 [4 2	

72 78

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

168.0

MAN B&W S80ME-C9-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	159.5	161.5	167.0	
Tier III mode	166.5	165.0	170.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	129.3 (8.1)	132.7 (6.2)	138.3 (5.1)
Tier III mode	135.3 (8.1)	135.7 (6.2)	140.8 (5.1)

MAN B&W S80ME-C9-GI-HPSCR

Tier III mode

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	50%	75%	100%			
Tier II mode	159.5	161.5	167.5			

162.5

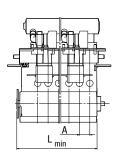
L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

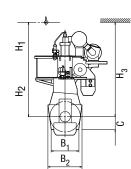
161.0

= 1						
Tier II mode	129.3 (8.0)	132.8 (6.1)	138.7 (5.0)			
Tier III mode	130.6 (8.0)	133 6 (6 1)	139 2 (5.0)			

MAN B&W S80ME-C9-GI-LPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	50%	75%	100%			
Tier II mode	159.5	161.5	167.5			
Tier III mode	160.5	162.5	168.5			


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


-							
Tier II mode	129.4 (8.0)	132.8 (6.1)	138.7 (5.1)				
Tier III mode	130.2 (8.0)	133.6 (6.1)	139.6 (5.1)				

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

Engine Dimensions

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	1,334	5,180	5,374	1,890	15,050	13,925	13,500

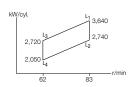
Cylinder	s:	6	7	8	9
L _{min}	mm	10,100	11,434	12,768	14,102

Tier II

Dry mass:	t	833	933	1,043	1,153

Tier III

Dry mass (added):							
EGR	t	16	17	18	19		
HP SCR	t	6	10	10	15		
LP SCR	t	-	-	-	-		



MAN B&W G70ME-C9

Tier II

Stroke: 3,256 mm

Cyl.	L ₁ kW
5	18,200
6	21,840
7	25,480
8	29,120

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G70ME-C9

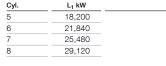
L ₁ SFOC [g/kWh]							
SFOC-optimised load range	Tuning	50%	75%	100%			
High load	-	165.5	163.0	167.0			
Part load	EGB	162.5	161.5	168.5			
Low load	EGB	160.5	162.5	168.5			

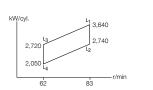
Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G70ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	161.5	159.0	166.0	
Part load	EGB	162.5	161.5	168.5	
Low load	EGB	160.5	162.5	168.5	


L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]


SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	131.2 (7.9)	130.7 (6.0)	137.5 (5.0)
Part load	EGB	131.9 (8.0)	132.8 (6.1)	139.6 (5.1)
Low load	EGB	130.2 (8.0)	133.7 (6.1)	139.6 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W G70ME-C9

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 3,256 mm

MAN B&W G70ME-C9-EGRBP

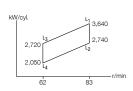
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	160.5	162.5	169.0
Tier III mode	168.5	167.0	172.0

MAN B&W G70ME-C9-HPSCR

	OC		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	160.5	162.5	168.5
Tier III mode	162.0	163.5	169.0

MAN B&W G70ME-C9-LPSCR


L₁ SFOC [a/kWh]

1 - 1 - 10 - 1	50%	75%	100%
Tier II mode	160.5	162.5	168.5
Tier III mode	161.5	163.5	169.5

Tier III

Stroke: 3,256 mm

Cyl.	L ₁ kW
5	18,200
6	21,840
7	25,480
8	29,120

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

169.0

MAN B&W G70ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	160.5	162.5	169.0		
Tier III mode	168.5	167.0	172.0		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	130.1 (8.2)	133.5 (6.3)	139.9 (5.2)
Tier III mode	136.9 (8.2)	137.4 (6.3)	142.5 (5.2)

MAN B&W G70ME-C9-GI-HPSCR

Tier III mode

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	160.5	162.5	168.5		

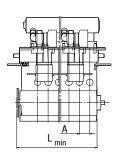
163.5

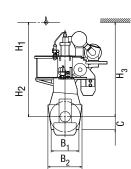
L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

162.0

_,,,	(
Tier II mode	130.2 (8.1)	133.6 (6.2)	139.6 (5.1)	
Tier III mode	131 4 (8 1)	134 5 (6 2)	140 0 (5.1)	

MAN B&W G70ME-C9-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	160.5	162.5	168.5		
Tier III mode	161.5	163.5	169.5		


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	130.2 (8.1)	133.6 (6.2)	139.6 (5.1)		
Tier III mode	131.0 (8.1)	134.5 (6.2)	140.4 (5.1)		

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

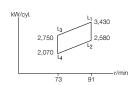
Dimensions:	Α	B ₁	B ₂	C	H ₁	H ₂	H ₃
mm	1,260	4,760	4,900	1,750	14,225	13,250	12,800

Cylinders:		5	6	7	8
L _{min}	mm	8,486	9,596	10,856	12,116

Tier II

Dry mass:	t	585	665	750	855

Tier III


Her III					
Dry mass (added):					
EGR	t	14	16	17	18
HP SCR	t	5	5	6	7
LP SCR	t	-	-	-	-

Stroke: 2,800 mm

Cyl.	L ₁ kW
5	17,150
6	20,580
7	24,010
8	27,440

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S70ME-C10

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	166.0	
Part load	EGB	161.5	160.5	167.5	
Low load	EGB	159.5	161.5	167.5	

Dual Fuel Mode for GI (Methane)

L1 MEP: 21.0 bar

MAN B&W S70ME-C10-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	160.5	158.0	165.0		
Part load	EGB	161.5	160.5	167.5		
Low load	EGB	159.5	161.5	167.5		

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	130.4 (7.9)	129.9 (6.0)	136.7 (5.0)
Part load	EGB	131.1 (8.0)	132.0 (6.1)	138.8 (5.0)
Low load	EGB	129.4 (8.0)	132.8 (6.1)	138.8 (5.0)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Cyl.	L ₁ kW	Stroke: 2,800 mm
5	17,150	
6	20,580	kW/cyl.
7	24,010	L1 3,430
8	27,440	L ₃
		2,750 2,580
		2,070
		-4
		73 91 r/min
		75 91

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S70ME-C10-EGRBP

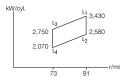
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	159.5	161.5	168.0
Tier III mode	167.5	166.0	171.0

MAN B&W S70ME-C10-HPSCR

SF		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	161.0	162.5	168.0

MAN B&W S70ME-C10-LPSCR


I SEUC La/FMP1

Li oi oo [g/kwii]					
	50%	75%	100%		
Tier II mode	159.5	161.5	167.5		
Tier III mode	160.5	162.5	168.5		

Tier III

2,800 mm

Cyl.	L ₁ kW	Stroke:
5	17,150	
6	20,580	1441/1
7	24,010	kW/cyl. L1 3,430
8	27.440	L ₃

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

168.0

MAN B&W S70ME-C10-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	159.5	161.5	168.0	
Tier III mode	167.5	166.0	171.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	129.3 (8.1)	132.7 (6.2)	139.1 (5.1)
Tier III mode	136.1 (8.1)	136.6 (6.2)	141.7 (5.1)

MAN R&W S70MF-C10-GI-HPSCR

Tier III mode

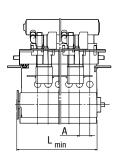
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5

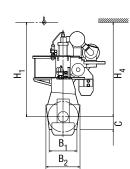
162.5

L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

161.0

= 000 00,000 10,119	= out object he/hg (of ob phot last i= for he/hg/ [g/htm]					
Tier II mode	129.3 (8.0)	132.8 (6.1)	138.7 (5.0)			
Tier III mode	130 6 (8 0)	133.6 (6.1)	139 2 (5.0)			


MAN B&W S70ME-C10-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	159.5	161.5	167.5	
Tier III mode	160.5	162.5	168.5	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

-					
Tier II mode	129.4 (8.0)	132.8 (6.1)	138.7 (5.1)		
Tier III mode	130.2 (8.0)	133.6 (6.1)	139.6 (5.1)		

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

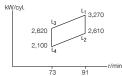
Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₄
mm	1,098	4,012	4,122	1,520	12,500	11,750

Cylinder	s:	5	6	7	8
L _{min}	mm	7,464	8,562	9,660	10,758

Tier II

-					
Dry mass:	t	442	523	593	667


Tier III

Her III					
Dry mass (added):					
EGR	t	14	16	17	18
HP SCR	t	4	5	6	6
LP SCR	- t	_	-	-	-

Cyl.	L ₁ kW	Stroke: 2,800 mm
5	16,350	
6	19,620	kW/cyl.
7	22,890	3,270
8	26,160	L ₃

Fuel Oil

L₁ MEP: 20.0 bar

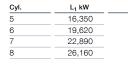
MAN B&W S70ME-C8

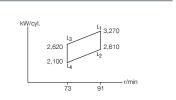
L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	167.5	165.0	169.0		
Part load	EGB	164.5	163.5	170.5		
Low load	EGB	162.5	164.5	170.5		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S70ME-C8-GI


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	163.5	161.0	168.0	
Part load	EGB	164.5	163.5	170.5	
Low load	EGB	162.5	164.5	170.5	


SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	132.8 (8.0)	132.4 (6.1)	139.2 (5.0)
Part load	EGB	133.6 (8.1)	134.4 (6.2)	141.2 (5.1)
Low load	EGB	131.8 (8.1)	135.3 (6.2)	141.2 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S70ME-C8

Fuel Oil

L₁ MEP: 20.0 bar

Stroke: 2,800 mm

MAN B&W S70ME-C8-EGRBP

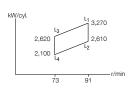
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	162.5	164.5	171.0
Tier III mode	170.5	169.0	174.0

MAN B&W S70ME-C8-HPSCR

	OC		

	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

MAN B&W S70ME-C8-LPSCR


I CEN		

L ₁ SFOC [g/kWil]					
	50%	75%	100%		
Tier II mode	162.5	164.5	170.5		
Tier III mode	163.5	165.5	171.5		

Stroke: 2,800 mm

Cyl.	L ₁ kW		
5	16,350		
6	19,620		
7	22,890		
8	26,160		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S70ME-C8-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	162.5	164.5	171.0	
Tier III mode	170.5	169.0	174.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

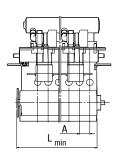
Tier II mode	131.7 (8.3)	135.2 (6.3)	141.6 (5.2)
Tier III mode	138.5 (8.3)	139.0 (6.3)	144.1 (5.2)

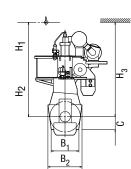
MAN B&W S70ME-C8-GI-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	162.5	164.5	170.5		
Tier III mode	164.0	165.5	171.0		

L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

		. 37 13	
Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	133 1 (8 2)	136 1 (6.2)	141 7 (5 1)


MAN B&W S70ME-C8-GI-LPSCR


L ₁ SFOC equivalent ga	s + pilot fuel (42,700 kJ/l	kg) [g/kWh]*	
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	163.5	165.5	171.5

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

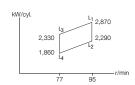
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	1,190	4,390	4,454	1,521	12,550	11,725	11,500

Cylinder	rs:	5	6	7	8
Lmin	mm	7.781	8.971	10.161	11.351

Tier II

-					
Dry mass:	t	451	534	605	681

Tier III


Dry mass (a	dded):				
EGR	t	15	16	17	18
HP SCR	t	4	5	6	6
LP SCR	t	-	-	-	-

Tier II

Stroke: 2,730 mm

Cyl.	L ₁ kW
5	14,350
6	17,220
7	20,090
8	22,960

Fuel Oil

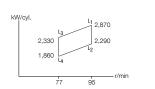
L₁ MEP: 20.0 bar

MAN B&W S65ME-C8

L ₁ SFOC [g/kWh]				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	167.5	165.0	169.0
Part load	EGB	164.5	163.5	170.5
Low load	EGB	162.5	164.5	170.5

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar


MAN B&W S65ME-C8-GI

L ₁ SFOC equivalent gas + pilot	fuel (42,700 kJ	/kg) [g/kWh]*		
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	164.5	162.0	168.0
Part load	EGB	164.5	163.5	170.5
Low load	EGB	162.5	164.5	170.5

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	133.7 (8.0)	133.2 (6.1)	139.2 (5.0)
Part load	EGB	133.5 (8.1)	134.4 (6.2)	141.2 (5.1)
Low load	EGB	131.8 (8.1)	135.3 (6.2)	141.2 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Cyl.	L ₁ kW
5	14,350
6	17,220
7	20,090
8	22,960

Fuel Oil

L₁ MEP: 20.0 bar

Stroke: 2,730 mm

MAN B&W S65ME-C8-EGRBP

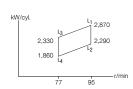
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	162.5	164.5	171.0
Tier III mode	170.5	169.0	174.0

MAN B&W S65ME-C8-HPSCR

SF		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

MAN B&W S65ME-C8-LPSCR


L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	163.5	165.5	171.5

Tier III

Stroke: 2,730 mm

Cyl.	L ₁ kW			
5 14,350				
6	17,220			
7	20,090			
8	22,960			

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S65ME-C8-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	162.5	164.5	171.0		
Tier III mode	170.5	169.0	174.0		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	131.7 (8.3)	135.2 (6.3)	141.6 (5.2)
Tier III mode	138.5 (8.3)	139.0 (6.3)	144.1 (5.2)

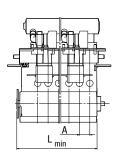
MAN B&W S65ME-C8-GI-HPSCR

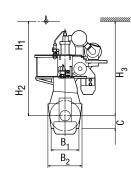
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	162.5	164.5	170.5		
Tier III mode	164.0	165.5	171.0		

L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

_,,,	(
Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	133 1 (8 2)	136 1 (6 2)	141 7 (5 1)

MAN B&W S65ME-C8-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	162.5	164.5	170.5		
Tier III mode	163.5	165.5	171.5		


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

1	(F	J, LJ 1	
Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

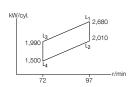
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	1,084	4,124	4,170	1,410	11,950	11,225	11,025

Cylinders:		5	6	7	8
L _{min}	mm	7,148	8,232	9,316	10,400

Tier II

Dry mass:	t	382	451	512	575

Tier III


Dry mass (added):							
EGR	t	14	15	16	17		
HP SCR	t	4	5	6	6		
LP SCR	t	-	-	-	-		

Tier II

Stroke: 2,790 mm

Cyl.	L ₁ kW
5	13,400
6	16,080
7	18,760
8	21.440

Fuel Oil

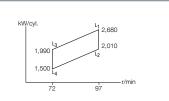
L₁ MEP: 21.0 bar

MAN B&W G60ME-C9

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	165.5	163.0	167.0		
Part load	EGB	162.5	161.5	168.5		
Low load	EGB	160.5	162.5	168.5		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar


MAN B&W G60ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	161.5	159.0	166.0	
Part load	EGB	162.5	161.5	168.5	
Low load	EGB	160.5	162.5	168.5	

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	131.2 (7.9)	130.7 (6.0)	137.5 (5.0)
Part load	EGB	131.9 (8.0)	132.8 (6.1)	139.6 (5.1)
Low load	EGB	130.2 (8.0)	133.7 (6.1)	139.6 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Cyl.	L ₁ kW
5	13,400
6	16,080
7	18,760
8	21,440

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 2,790 mm

MAN B&W G60ME-C9-EGRBP

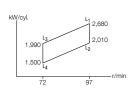
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	160.5	162.5	169.0
Tier III mode	168.5	167.0	172.0

MAN B&W G60ME-C9-HPSCR

L ₁ SFOC		
L1 STUG	IU/K	wn

- O. OO [g/]			
	50%	75%	100%
Tier II mode	160.5	162.5	168.5
Tier III mode	162.0	163.5	169.0

MAN B&W G60ME-C9-LPSCR


L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	160.5	162.5	168.5
Tier III mode	161.5	163.5	169.5

Tier III

Stroke: 2,790 mm

Cyl.	L ₁ kW
5	13,400
6	16,080
7	18,760
8	21,440

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G60ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	100%				
Tier II mode	160.5	162.5	169.0		
Tier III mode	168.5	167.0	172.0		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	130.1 (8.2)	133.5 (6.2)	139.9 (5.2)	
Tier III mode	136.9 (8.2)	137.4 (6.2)	142.5 (5.2)	

MAN B&W G60ME-C9-GI-HPSCR

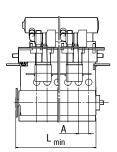
L ₁ SFOC equivalent gas +	pilot fuel (42,700 kJ/	'kg) [g/kWh]*	
	50%	75%	

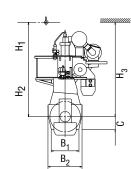
	50%	75%	100%
Tier II mode	160.5	162.5	168.5
Tier III mode	162.0	163.5	169.0

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

Tier II mode	130.2 (8.1)	133.6 (6.2)	139.6 (5.1)
Tier III mode	131.4 (8.1)	134.5 (6.2)	140.0 (5.1)

MAN B&W G60ME-C9-GI-LPSCR


L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*


L1 SPOC equivalent gas + phot fuel (42,700 kg/kg) [g/kwii]					
	50%	75%	100%		
Tier II mode	160.5	162.5	168.5		
Tier III mode	161.5	163.5	169.5		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

	(p,,,			
Tier II mode	130.2 (8.1)	133.6 (6.2)	139.6 (5.1)	
Tier III mode	131.0 (8.1)	134.5 (6.2)	140.4 (5.1)	

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

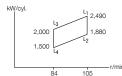
Specifications

mm 1,080 4,090 4,220 1,500 12,175 11,400 11,0	Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
	mm	1,080	4,090	4,220	1,500	12,175	11,400	11,075

Cylinder	5:	5	6	7	8
L _{min}	mm	7,390	8,470	9,550	10,630

Tier II

Dry mass:	t	395	439	491	543


Tior III

Her III							
Dry mass (added):							
EGR	t	14	14	15	16		
HP SCR	t	3	4	5	5		
LP SCR	t	-	-	-	-		

Cyl.	L ₁ kW		Stroke: 2,400 mm
5	12,450		
6	14,940	kW/cyl.	
7	17,430	L 2,49	0
8	19,920	L ₃	

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S60ME-C10

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	166.0	
Part load	EGB	161.5	160.5	167.5	
Low load	EGB	159.5	161.5	167.5	

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S60ME-C10-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range Tuning 50% 75% 100%						
High load	-	160.5	158.0	165.0		
Part load	EGB	161.5	160.5	167.5		
Low load	EGB	159.5	161.5	167.5		

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	130.4 (7.9)	129.9 (6.0)	136.7 (5.0)
Part load	EGB	131.1 (8.0)	132.0 (6.1)	138.8 (5.0)
Low load	EGB	129.4 (8.0)	132.8 (6.1)	138.8 (5.0)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S60ME-C10

Cyl.	L ₁ kW	Stroke: 2,400 mm
5	12,450	
6	14,940	kW/cyl.
7	17,430	2,490
8	19,920	2,000 L ₂ 1,880 1,500 L ₂ 1,7/min
		84 105

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S60ME-C10-EGRBP

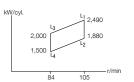
L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	159.5	161.5	168.0		
Tier III mode	167.5	166.0	171.0		

MAN B&W S60ME-C10-HPSCR

	OC		

- O. OO [g/]			
	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	161.0	162.5	168.0

MAN B&W S60ME-C10-LPSCR


I CEN		

	50%	75%	100%
Tier II mode	159.5	161.5	167.5
Tier III mode	160.5	162.5	168.5

Tier III

Stroke: 2,400 mm

Cyl.	L ₁ kW
5	12,450
6	14,940
7	17,430
8	19,920

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

168.0

MAN B&W S60ME-C10-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	159.5	161.5	168.0		
Tier III mode 167.5 166.0 171.0					

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	129.3 (8.1)	132.7 (6.2)	139.1 (5.1)
Tier III mode	136.1 (8.1)	136.6 (6.2)	141.7 (5.1)

MAN B&W S60ME-C10-GI-HPSCR

Tier III mode

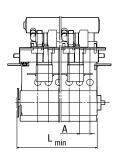
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	159.5	161.5	167.5	

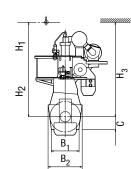
162.5

L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

161.0

_,,,			
Tier II mode	129.3 (8.0)	132.8 (6.1)	138.7 (5.0)
Tier III mode	130.6 (8.0)	133 7 (6.1)	139 2 (5.0)


MAN B&W S60ME-C10-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	159.5	161.5	167.5	
Tier III mode	160.5	162.5	168.5	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

- ,						
Tier II mode	129.4 (8.0)	132.8 (6.1)	138.7 (5.1)			
Tier III mode	130.2 (8.0)	133.7 (6.1)	139.6 (5.1)			

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	970	3,500	3,580	1,325	*	*	*

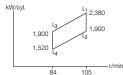
Cylinders:		5	6	7	8
T .	mm	6 455	7 425	8.395	9.365

Tier II

Dry mass: t - - -

Tier III

HICH III					
Dry mass (added):					
EGR	t	=	-	=	=
HP SCR	t	=	-	=	=
LP SCR	t	-	-	-	-


^{*} Data is available on request.

19,040

Cyl.	L ₁ kW		Stroke: 2,400 mm
5	11,900		_
6	14,280	kW/cyl.	
7	16,660	KW/Gyi.	2,380

Fuel Oil

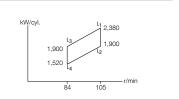
L₁ MEP: 20.0 bar

MAN B&W S60ME-C8

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	167.5	165.0	169.0		
Part load	EGB	164.5	163.5	170.5		
Low load	EGB	162.5	164.5	170.5		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar


MAN B&W S60ME-C8-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	168.0	
Part load	EGB	164.5	163.5	170.5	
Low load	EGB	162.5	164.5	170.5	

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	133.7 (8.0)	133.2 (6.1)	139.2 (5.0)
Part load	EGB	133.6 (8.1)	134.4 (6.2)	141.2 (5.1)
Low load	EGB	131.8 (8.1)	135.3 (6.2)	141.2 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Cyl.	L ₁ kW
5	11,900
6	14,280
7	16,660
8	19,040

Fuel Oil

L₁ MEP: 20.0 bar

Stroke: 2,400 mm

MAN B&W S60ME-C8-EGRBP

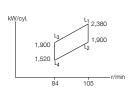
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	162.5	164.5	171.0
Tier III mode	170.5	169.0	174.0

MAN B&W S60ME-C8-HPSCR

	OC		

-, -, -, -, -, -, -, -, -, -, -, -, -, -			
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

MAN B&W S60ME-C8-LPSCR


L. SFOC [a/kWh]

	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	163.5	165.5	171.5

Stroke: 2,400 mm

Cyl.	L ₁ kW
5	11,900
6	14,280
7	16,660
8	19,040

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S60ME-C8-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	162.5	164.5	171.0
Tier III mode	170.5	169.0	174.0

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

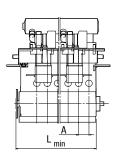
Tier II mode	131.7 (8.3)	135.2 (6.3)	141.6 (5.2)
Tier III mode	138.5 (8.3)	139.0 (6.3)	144.1 (5.2)

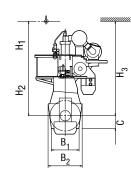
MAN B&W S60ME-C8-GI-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

= 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)	
Tier III mode	133 1 (8 2)	136 1 (6 2)	141 7 (5 1)	


MAN B&W S60ME-C8-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	163.5	165.5	171.5

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

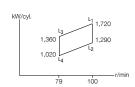
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	1,020	3,770	3,840	1,300	10,800	10,000	9,775

Cylinder	s:	5	6	7	8
L _{min}	mm	6,668	7,688	8,708	9,728

Tier II

Dry mass:	t	308	350	393	452

Tior III


Her III					
Dry mass (added):					
EGR	t	14	14	15	16
HP SCR	t	3	4	5	5
LP SCR	t	-	-	-	-

Tier II

Stroke: 2,500 mm

Cyl.	L ₁ kW	
5	8,600	
6	10,320	
7	12,040	
8	13,760	
9	15.480	

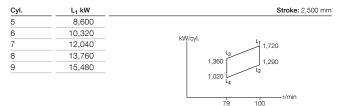
Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9

L ₁ SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	166.5	164.0	168.0	
Part load	EGB	163.5	162.5	169.5	
Low load	EGB	161.5	163.5	169.5	

Dual Fuel Mode for GI (Methane)


L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]* L ₁ MEP: 21.0 bar					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	162.5	160.0	167.0	
Part load	EGB	163.5	162.5	169.5	
Low load	EGB	161.5	163.5	169.5	

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	132.0 (8.0)	131.6 (6.1)	138.3 (5.0)
Part load	EGB	132.7 (8.1)	133.6 (6.2)	140.4 (5.1)
Low load	EGB	131.0 (8.1)	134.5 (6.2)	140.4 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-EGRBP

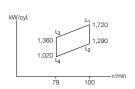
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	161.5	163.5	170.0
Tier III mode	169.5	168.0	173.0

MAN B&W G50ME-C9-HPSCR

SFOC	

- O. OO [g/]			
	50%	75%	100%
Tier II mode	161.5	163.5	169.5
Tier III mode	163.0	164.5	170.0

MAN B&W G50ME-C9-LPSCR


L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	161.5	163.5	169.5
Tier III mode	162.5	164.5	170.5

Tier III

Stroke: 2,500 mm

Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15.480

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

170.0

MAN B&W G50ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	161.5	163.5	170.0	
Tier III mode	169.5	168.0	173.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	130.9 (8.2)	134.4 (6.3)	140.7 (5.2)
Tier III mode	137.7 (8.2)	138.2 (6.3)	143.3 (5.2)

MAN B&W G50ME-C9-GI-HPSCR

Tier III mode

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	161.5	163.5	169.5		

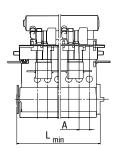
164.5

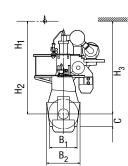
L SGC 50.000 k.l/kg (SPOC nilot fuel 42.700 k.l/kg) [g/kWh]

163.0

=,, (p					
Tier II mode	131.0 (8.1)	134.4 (6.2)	140.4 (5.1)		
Tier III mode	132 2 (8 1)	135.3 (6.2)	140.8 (5.1)		

MAN B&W G50ME-C9-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	161.5	163.5	169.5	
Tier III mode	162.5	164.5	170.5	


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

	= , (p						
Tier II mode	131.0 (8.1)	134.4 (6.2)	140.4 (5.1)				
Tier III mode	131.8 (8.1)	135.3 (6.2)	141.2 (5.1)				

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

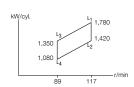
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	872	3,776	3,652	1,205	10,775	10,075	9,775

Cylinder	s:	5	6	7	8	9
L _{min}	mm	6,260	7,132	8,004	8,876	9,748

Tier II

Dry mass:	t	210	245	275	310	345

Tier III


Dry mass (added):						
EGR	t	6	8	9	10	12
HP SCR	t	4	4	5	6	6
LP SCR	t	-	-	-		-

Tier II

Stroke: 2,214 mm

Cyl.	L ₁ kW
5	8,900
6	10,680
7	12,460
8	14,240
9	16,020

Fuel Oil

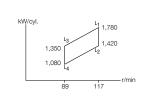
L₁ MEP: 21.0 bar

MAN B&W S50ME-C9

L ₁ SFOC [g/kWh]				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	167.5	165.0	169.0
Part load	EGB	164.5	163.5	170.5
Low load	EGB	162.5	164.5	170.5

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar


MAN B&W S50ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	163.5	161.0	168.0	
Part load	EGB	164.5	163.5	170.5	
Low load	EGB	162.5	164.5	170.5	

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	132.8 (8.0)	132.4 (6.1)	139.2 (5.0)
Part load	EGB	133.5 (8.1)	134.4 (6.2)	141.2 (5.1)
Low load	EGB	131.8 (8.1)	135.3 (6.2)	141.2 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Cyl.	L ₁ kW	
5	8,900	
6	10,680	
7	12,460	
8	14,240	
9	16,020	

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 2,214 mm

MAN B&W S50ME-C9-EGRBP

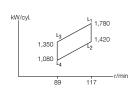
L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	162.5	164.5	171.0
Tier III mode	170.5	169.0	174.0

MAN B&W S50ME-C9-HPSCR

L ₁ SFOC		
L1 STUG	IU/K	wn

-, o. oo [g/]			
	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

MAN B&W S50ME-C9-LPSCR


L₁ SFOC [g/kWh]

	50%	75%	100%
Tier II mode	162.5	164.5	170.5
Tier III mode	163.5	165.5	171.5

Tier III

Stroke: 2,214 mm

Cyl.	L ₁ kW	
5	8,900	
6	10,680	
7	12,460	
8	14,240	
9	16.020	

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S50ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	162.5	164.5	171.0	
Tier III mode 170.5 169.0 174.0				

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	131.7 (8.3)	135.2 (6.3)	141.6 (5.2)
Tier III mode	138.5 (8.3)	139.0 (6.3)	144.1 (5.2)

MAN B&W S50ME-C9-GI-HPSCR

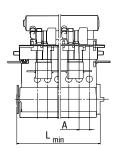
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
50%	75%	100%	

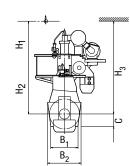
Tier II mode	162.5	164.5	170.5
Tier III mode	164.0	165.5	171.0

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	133.1 (8.2)	136.1 (6.2)	141.7 (5.1)

MAN B&W S50ME-C9-GI-LPSCR


L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*


-;					
	50%	75%	100%		
Tier II mode	162.5	164.5	170.5		
Tier III mode	163.5	165.5	171.5		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

1	(F	J, LJ 1	
Tier II mode	131.8 (8.2)	135.3 (6.2)	141.2 (5.1)
Tier III mode	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	875	3,350	3,290	1,190	9,775	9,200	8,900

Cylinder	s:	5	6	7	8	9
L _{min}	mm	6,073	6,948	7,823	8,698	9,573

Tier II

Dry mass: t	190	220	255	285	315


Tier III

Dry mass (a	dded):					
EGR	t	7	8	9	11	12
HP SCR	t	4	4	5	6	7
LP SCR	t	-	-	-	-	-

Stroke: 2,000 mm

Cyl.	L ₁ kW		
5	8,300		
6	9,960		
7	11,620		
8	13,280		
g	14 940		

Fuel Oil

L₁ MEP: 20.0 bar

MAN B&W S50ME-C8

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	168.5	166.0	170.0		
Part load	EGB	165.5	164.5	171.5		
Low load	EGB	163.5	165.5	171.5		

Dual Fuel Mode for GI (Methane)

MAN B&W S50ME-C8-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	169.0	
Part load	EGB	165.5	164.5	171.5	
Low load	EGB	163.5	165.5	171.5	

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	133.6 (8.0)	133.2 (6.1)	140.0 (5.1)
Part load	EGB	134.4 (8.2)	135.3 (6.2)	142.1 (5.1)
Low load	EGB	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S50ME-C8

Cyl.	L ₁ kW	Stroke: 2,000 mm
5	8,300	
6	9,960	kW/cyl.
7	11,620	L ₁ 1,660
8	13,280	1040 4 000
9	14,940	1,340 1,330
		1,070

102

127

Fuel Oil

L₁ MEP: 20.0 bar

MAN B&W S50ME-C8-EGRBP

L ₁ SFOC [g/kWh]				
	50%	75%	100%	
Tier II mode	163.5	165.5	172.0	
Tier III mode	171.5	170.0	175.0	

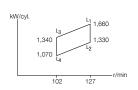
MAN B&W S50ME-C8-HPSCR

	OC		

-, -, -, -, -, -, -, -, -, -, -, -, -, -			
	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	165.0	166.5	172.0

MAN B&W S50ME-C8-LPSCR

L. SEOC (a/kWh)


Li Si OO [g/kWiii]				
	50%	75%	100%	
Tier II mode	163.5	165.5	171.5	
Tier III mode	164.5	166.5	172.5	

MAN B&W S50ME-C8

Tier III

Stroke: 2,000 mm

Cyl.	L ₁ kW	
5 8,300		
6	9,960	
7	11,620	
8	13,280	
9	14 940	

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S50ME-C8-GI-EGRTC

L ₁ SFOC equivalent gas + pilot fuel ((42,700 kJ/kg) [g/kWh]*
---	-------------------------

50%	75%	100%
163.5	165.5	172.0
171.5	170.0	175.0
		163.5 165.5

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	132.5 (8.3)	136.0 (6.4)	142.4 (5.3)
Tier III mode	139.3 (8.3)	139.9 (6.4)	145.0 (5.3)

MAN B&W S50MF-C8-GI-HPSCR

L. SEOC equivalent gas + pilot fuel (42,700 k.l/kg) [g/kWh]*

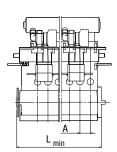
= or or order and the processor (12) roo not hay [3/1011]				
	50%	75%	100%	
Tier II mode	163.5	165.5	171.5	
Tier III mode	165.0	166.5	172.0	

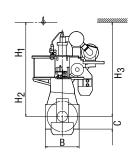
L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	132.6 (8.2)	136.1 (6.3)	142.1 (5.2)
Tier III mode	133.9 (8.2)	136.9 (6.3)	142.5 (5.2)

MAN B&W S50ME-C8-GI-LPSCR

L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*


	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	164.5	166.5	172.5


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

1		37 13 1	
Tier II mode	132.6 (8.2)	136.1 (6.3)	142.0 (5.2)
Tier III mode	133.5 (8.2)	136.9 (6.3)	142.9 (5.2)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, LGIM and LGIP, except GIE and EGR, see pages 10-12.

Specifications

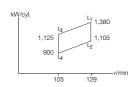
Dimensions:	Α	В	С	H ₁	H ₂	H ₃
mm	850	3,150	1,085	9,050	8,500	8,250

Cylinder	s:	5	6	7	8	9
L _{min}	mm	5,924	6,774	7,624	8,474	9,324

Tier II

-						
Dry mass:	t	180	210	240	270	295

Dry mass (added):						
EGR	t	6	7	9	10	11
HP SCR	t	3	4	5	5	6
LP SCR	t	-	-	-	-	-



MAN B&W S46ME-B8

Stroke: 1,932 mm

Cyl.	L ₁ kW
5	6,900
6	8,280
7	9,660
8	11,040

Fuel Oil

L₁ MEP: 20.0 bar

MAN B&W S46ME-B8

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	169.5	167.0	170.0		
Part load	EGB	166.5	165.5	171.5		
Low load	EGB	164.5	166.5	171.5		

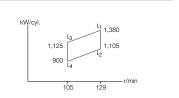
Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S46ME-B8-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	169.5	167.0	170.0
Part load	EGB	166.5	165.5	171.5
Low load	EGB	164.5	166.5	171.5

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]


SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	137.8 (8.1)	137.6 (6.2)	140.8 (5.1)
Part load	EGB	135.2 (8.2)	136.2 (6.2)	142.1 (5.1)
Low load	EGB	133.5 (8.2)	137.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S46ME-B8

Cyl.	L ₁ kW
5	6,900
6	8,280
7	9,660
8	11,040

Fuel Oil

L₁ MEP: 20.0 bar

Stroke: 1,932 mm

MAN B&W S46ME-B8-EGRBP

L ₁ SF	OC [g/kWh]	

	50%	75%	100%
Tier II mode	164.5	166.5	172.0
Tier III mode	172.5	171.0	175.0

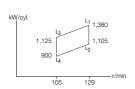
MAN B&W S46ME-B8-HPSCR

L₁ SFOC [a/kWh]

-, o. oo [g/]			
	50%	75%	100%
Tier II mode	164.5	166.5	171.5
Tier III mode	166.0	167.5	172.0

MAN B&W S46ME-B8-LPSCR

L. SEOC [n/kWh]


L ₁ SFOC [g/kWii]							
	50%	75%	100%				
Tier II mode	164.5	166.5	171.5				
Tier III mode	167.5	167.5	172.5				

MAN B&W S46ME-B8

Tier III

Stroke: 1,932 mm

Cyl.	L ₁ kW
5	6,900
6	8,280
7	9,660
8	11.040

Dual Fuel Mode for GI (Methane)

L₁ MEP: 20.0 bar

MAN B&W S46ME-B8-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	50%	75%	100%			
Tier II mode	164.5	166.5	172.0			
Tier III mode 172.5 171.0 175.0						

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	133.4 (8.3)	137.0 (6.4)	142.4 (5.3)
Tier III mode	140.2 (8.3)	140.8 (6.4)	145.0 (5.3)

MAN B&W S46ME-B8-GI-HPSCR

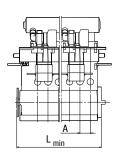
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	50%	75%	100%			
Tier II mode	164.5	166.5	171.5			
Tier III mode 166.0 167.5 172.0						

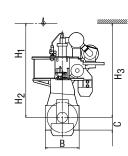
L SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

-,,							
Tier II mode	133.4 (8.2)	137.0 (6.3)	142.1 (5.2)				
Tier III mode	134 7 (8 2)	137 9 (6.3)	142 5 (5 2)				

MAN B&W S46ME-B8-GI-LPSCR

L₁ MEP: 20.0 bar


L ₁ SPOC equivalent gas + phot fuel (42,700 kJ/kg) [g/kWn]						
	50%	75%	100%			
Tier II mode	164.5	166.5	171.5			
Tier III mode	167.5	167.5	172.5			


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

-							
Tier II mode	133.4 (8.3)	137.0 (6.3)	142.0 (5.2)				
Tier III mode	135.9 (8.3)	137.9 (6.3)	142.9 (5.2)				

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, except GIE with EGR, see pages 10-12.

Specifications

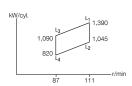
Dimensions:	Α	В	С	H ₁	H ₂	H ₃
mm	782	2,924	986	9,000	8,175	7,900

Cylinde	rs:	5	6	7	8
Lmin	mm	5.528	6.310	7.092	7.874

Tier II

Dry mass:	t	159	177	199	219

Her III						
Dry mass (added):						
EGR	t	5	6	7	8	
HP SCR	t	3	3	4	5	
LP SCR	- t	-	_	-	-	



MAN B&W G45ME-C9

Tier II

Stroke: 2,250 mm

Cyl.	L ₁ kW		
5	6,950		
6	8,340		
7	9,730		
8	11,120		

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G45ME-C9

L ₁ SFOC [g/kWh]						
SFOC-optimised load range	Tuning	50%	75%	100%		
High load	-	168.5	166.0	170.0		
Part load	EGB	165.5	164.5	171.5		
Low load	EGB	163.5	165.5	171.5		

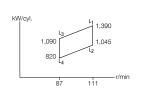
Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G45ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	164.5	162.0	169.0	
Part load	EGB	165.5	164.5	171.5	
Low load	EGB	163.5	165.5	171.5	

L₁ SGC 50.000 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]


SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	133.6 (8.0)	133.2 (6.1)	140.0 (5.1)
Part load	EGB	134.4 (8.2)	135.3 (6.2)	142.1 (5.1)
Low load	EGB	132.7 (8.2)	136.1 (6.2)	142.1 (5.1)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W G45ME-C9

Cyl.	L ₁ kW	
5	6,950	
6 7	8,340	140/4
	9,730	kW/cyl.
8	11,120	1,090
		820

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 2,250 mm

MAN B&W G45ME-C9-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	163.5	165.5	172.0
Tier III mode	171.5	170.0	175.0

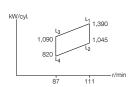
MAN B&W G45ME-C9-HPSCR

L	SF0	C	[q/	/kV	۷h

- O. OO [g/]			
	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	165.0	166.5	172.0

MAN B&W G45ME-C9-LPSCR

L₁ SFOC [a/kWh]


	50%	75%	100%
Tier II mode	163.5	165.5	171.5
Tier III mode	164.5	166.5	172.5

MAN B&W G45ME-C9

Stroke: 2,250 mm

Cyl.	L ₁ kW
5	6,950
6	8,340
7	9,730
8	11,120

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G45ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	50%	75%	100%			
Tier II mode	163.5	165.5	172.0			
Tier III mode 171.5 170.0 175.0						

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	132.5 (8.3)	136.0 (6.4)	142.4 (5.3)
Tier III mode	139.3 (8.3)	139.9 (6.4)	145.0 (5.3)

MAN B&W G45ME-C9-GI-HPSCR

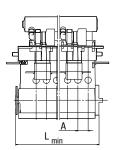
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	163.5	165.5	171.5	
Tier III mode	165.0	166.5	172.0	

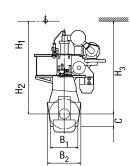
L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	132.6 (8.2)	136.1 (6.3)	142.1 (5.2)
Tier III mode	133 0 (8 2)	136 9 (6 3)	1/12 5 (5.2)

MAN B&W G45ME-C9-GI-LPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	163.5	165.5	171.5	
Tier III mode	164.5	166.5	172.5	


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


= odo oo,ooo ko,kg (o. oo phot last 12,100 ko,kg) [g/klin]					
Tier II mode	132.6 (8.2)	136.1 (6.3)	142.0 (5.2)		
Tier III mode	133.5 (8.2)	136.9 (6.3)	142.9 (5.2)		

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, except GIE with EGR, see pages 10-12.

Specifications

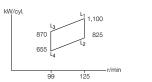
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	784	3,350	3,260	1,169	9,725	9,525	9,250

Cylinder	s:	5	6	7	8
L _{min}	mm	5,638	6,464	7,290	8,116

Tier II

Dry mass:	t	163	183	206	234

Dry mass (added):						
EGR	t	5	6	7	8	
HP SCR	t	3	3	4	5	
LP SCR	t	-	-	-	-	



MAN B&W G40ME-C9

Tier II

Stroke: 2,000 mm

Cyl.	L ₁ kW
5	5,500
6	6,600
7	7,700
8	8,800

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W G40ME-C9

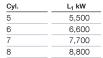
L ₁ SFOC [g/kWh]				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	173.5	171.0	175.0

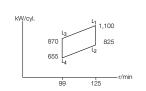
Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G40ME-C9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range Tuning 50% 75% 100%						
High load	EGB	169.5	167.0	174.0		


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


SFOC-optimised load range	Tuning	50%	75%	100%
High load	EGB	137.7 (8.3)	137.3 (6.3)	144.1 (5.2)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W G40ME-C9

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 2,000 mm

MAN B&W G40ME-C9-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	169.5	172.0	180.0
Tier III mode	176.5	175.0	180.0

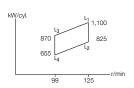
MAN B&W G40ME-C9-HPSCR

L₁ SFOC [a/kWh]

	50%	75%	100%
Tier II mode	173.5	171.0	175.0
Tier III mode	175.0	172.0	175.5

MAN B&W G40ME-C9-LPSCR

L₁ SFOC [g/kWh]


	50%	75%	100%
Tier II mode	173.5	171.0	175.0
Tier III mode	174.0	171.5	175.5

MAN B&W G40ME-C9

Stroke: 2,000 mm

Cyl.	L ₁ kW		
5 5,500			
6	6,600		
7	7,700		
8	8,800		

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W G40ME-C9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	169.5	172.0	180.0	
Tier III mode	176.5	175.0	180.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	137.4 (8.6)	141.4 (6.5)	149.1 (5.4)
Tier III mode	143.4 (8.6)	144.0 (6.5)	149.1 (5.4)

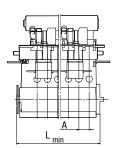
MAN B&W G40ME-C9-GI-HPSCR

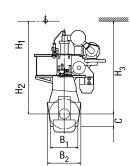
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	173.5	171.0	175.0		
Tier III mode	175.0	172 0	175.5		

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

1			
Tier II mode	141.0 (8.4)	140.7 (6.4)	145.0 (5.3)
Tier III mode	142 3 (8 4)	141 5 (6.4)	1/15 / (5/3)

MAN B&W G40ME-C9-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	173.5	171.0	175.0		
Tior III mode	174.0	171.5	175.5		


L. SGC 50.000 k.l/kg (SPOC nilot fuel 42.700 k.l/kg) [g/kWh]

Li oue co,oco ko/kg (ci co phot luci 42,700 ko/kg/ [g/kmi]						
Tier II mode	141.0 (8.4)	140.7 (6.4)	145.0 (5.3)			
Tier III mode	141.5 (8.4)	141.1 (6.4)	145.4 (5.3)			

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, except GIE with EGR, see pages 10-12.

Specifications

Dimensions:	A				n	п2	
mm	700	3,020	2,942	1,039	8,700	*	*

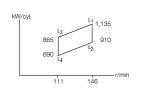
Cylinders:	5	6	7	8
L _{min} r	nm 5,012	5,712	6,412	7,112

Tier II

Dry mass:	t	119	135	153	173

Dry mass (added):							
EGR	t	4	5	6	7		
HP SCR	t	2	3	3	4		
LP SCR	t	-	-	-	-		

^{*} Data is available on request.



MAN B&W S40ME-B9

Tier II

Stroke: 1,770 mm

Cyl.	L ₁ kW			
5	5,675			
6	6,810			
7	7,945			
8	9,080			
9	10,215			

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S40ME-B9

L ₁ SFOC [g/kWh]				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	173.5	171.0	174.0

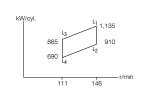
Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S40ME-B9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*							
SFOC-optimised load range Tuning 50% 75% 100%							
High load	EGB	173.5	171.0	174.0			

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


Li odo objeto korky (or ob pilot raci 42,700 korky) [g/kwiii]						
SFOC-optimised load range Tuning 50% 75% 100%						
High load	EGB	141.1 (8.3)	140.8 (6.3)	144.1 (5.2)		

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S40ME-B9

Cyl.	L ₁ kW
5	5,675
6	6,810
7	7,945
8	9,080
9	10,215

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 1,770 mm

MAN B&W S40ME-B9-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	169.5	172.0	179.0
Tier III mode	176.5	175.0	179.0

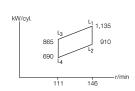
MAN B&W S40ME-B9-HPSCR

SF		

-, -, -, -, -, -, -, -, -, -, -, -, -, -			
	50%	75%	100%
Tier II mode	173.5	171.0	174.0
Tier III mode	175.0	172.0	174.5

MAN B&W S40ME-B9-LPSCR

L ₁ SFOC	ıu/	K١	VII


L ₁ of oo [g/kWill]					
	50%	75%	100%		
Tier II mode	173.5	171.0	174.0		
Tier III mode	174.0	171.5	174.5		

MAN B&W S40ME-B9

Stroke: 1,770 mm

Cyl.	L ₁ kW
5	5,675
6	6,810
7	7,945
8	9,080
9	10.215

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S40ME-B9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
	75%	100%				
Tier II mode	169.5	172.0	179.0			
Tier III mode 176.5 175.0 179.0						

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	137.5 (8.5)	141.5 (6.5)	148.3 (5.4)
Tier III mode	143.5 (8.5)	144.1 (6.5)	148.3 (5.4)

MAN B&W S40ME-B9-GI-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		

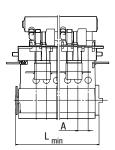
Tier II mode	173.5	171.0	174.0
Tier III mode	175.0	172.0	174.5

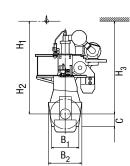
L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	141.0 (8.4)	140.8 (6.4)	144.1 (5.2)
Tier III mode	142.3 (8.4)	141.7 (6.4)	144.6 (5.2)

MAN B&W S40ME-B9-GI-LPSCR

L₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*


Li Si Oo equivalent gas + phot fuel (42,700 k3/kg) [g/kwii]						
	50%	75%	100% 174.0			
Tier II mode	173.5	171.0				
Tier III mode	174.0	171.5	174.5			


L_1 SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

	-1							
Tier II mode	141.1 (8.3)	140.8 (6.3)	144.1 (5.2)					
Tier III mode	141.5 (8.3)	141.3 (6.3)	144.6 (5.2)					

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, except GIE with EGR, see pages 10-12.

Specifications

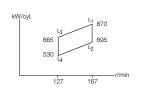
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	700	2,650	2,610	950	7,800	7,475	7,200

Cylinder	s:	5	6	7	8	9
L _{min}	mm	5,000	5,700	6,400	7,100	7,800

Tier II

Dry mass:	t	112	131	148	163	195

Dry mass (added):						
EGR	t	4	5	6	7	7
HP SCR	t	2	3	3	4	4
LP SCR	t	-	-	-	-	-



MAN B&W S35ME-B9

Tier II

Stroke: 1,550 mm

Cyl.	L ₁ kW
5	4,350
6	5,220
7	6,090
8	6,960

Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S35ME-B9

L, SFOC [g/kWh]					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	-	174.5	172.0	175.0	

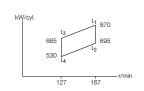
Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S35ME-B9-GI

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range	Tuning	50%	75%	100%	
High load	EGB	174.5	172.0	175.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]


SFOC-optimised load range	Tuning	50%	75%	100%
High load	EGB	141.9 (8.3)	141.7 (6.4)	145.0 (5.3)

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Tier III

MAN B&W S35ME-B9

Cyl.	L ₁ kW
5	4,350
6	5,220
7	6,090
8	6,960

Fuel Oil

L₁ MEP: 21.0 bar

Stroke: 1,550 mm

MAN B&W S35ME-B9-EGRBP

L ₁ SFOC [g/kWh]					
	50%	75%	100%		
Tier II mode	170.5	173.0	180.0		
Tier III mode	177.5	176.0	180.0		

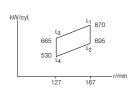
MAN B&W S35ME-B9-HPSCR

L₁ SFOC [a/kWh]

-1 [3,]				
	50%	75%	100%	
Tier II mode	174.5	172.0	175.0	
Tier III mode	176.0	173.0	175.5	

MAN B&W S35ME-B9-LPSCR

L₁ SFOC [a/kWh]


L ₁ of ou [g/kWii]					
	50%	75%	100%		
Tier II mode	174.5	172.0	175.0		
Tier III mode	175.0	172.5	175.5		

MAN B&W S35ME-B9

Stroke: 1,550 mm

Cyl.	L ₁ kW
5	4,350
6	5,220
7	6,090
8	6,960

Dual Fuel Mode for GI (Methane)

L₁ MEP: 21.0 bar

MAN B&W S35ME-B9-GI-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	170.5	173.0	180.0	
Tier III mode	177.5	176.0	180.0	

L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	138.3 (8.6)	142.4 (6.5)	149.1 (5.4)
Tier III mode	144.3 (8.6)	144.9 (6.5)	149.1 (5.4)

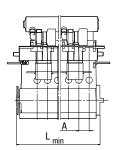
MAN B&W S35ME-B9-GI-HPSCR

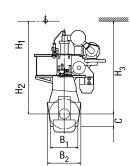
L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	174.5	172.0	175.0	
Tier III mode	176.0	173.0	175.5	

L+ SGC 50.000 kJ/kg (SPOC nilot fuel 42.700 kJ/kg) [g/kWh]

1		37 13 1	
Tier II mode	141.8 (8.4)	141.6 (6.4)	145.0 (5.3)
Tier III mode	143 1 (8 4)	142 5 (6.4)	145 4 (5.3)

MAN B&W S35ME-B9-GI-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	174.5	172.0	175.0
Tier III mode	175.0	172.5	175.5


L₁ SGC 50,000 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

-				
Tier II mode	141.9 (8.4)	141.7 (6.4)	145.0 (5.3)	
Tier III mode	142.3 (8.4)	142.1 (6.4)	145.4 (5.3)	

^{*} Gas fuel LCV (50,000 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with fuel oil operated engine.

Note: Also available for GIE, except GIE with EGR, see pages 10-12.

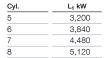
Specifications

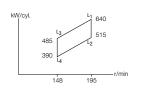
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	612	2,300	2,288	830	6,925	6,625	6,275

Cylinde	'S:	5	6	7	8
L _{min}	mm	4,378	4,990	5,602	6,214

Tier II

Dry mass:	t	81	90	99	111


Dry mass (added):					
EGR	t	3	4	5	5
HP SCR	t	2	2	3	3
LP SCR	t	-	-	-	-



MAN B&W S30ME-B9

Tier II Tier III

Stroke: 1,328 mm

Tier II Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S30ME-B9

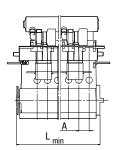
L ₁ SFOC [g/kWh]				
SFOC-optimised load range	Tuning	50%	75%	100%
High load		175.5	173.0	176.0

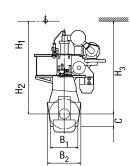
Tier III Fuel Oil

L₁ MEP: 21.0 bar

MAN B&W S30ME-B9-EGRBP

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	171.5	174.0	181.0
Tior III mode	179.5	177 0	191 0


MAN B&W S30ME-B9-HPSCR


L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	175.5	173.0	176.0
Tier III mode	177.0	174.0	176.5

MAN B&W S30ME-B9-LPSCR

L ₁ SFOC [g/kWh]			
	50%	75%	100%
Tier II mode	175.5	173.0	176.0
Tier III mode	176.0	173.5	176.5

Specifications

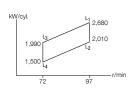
Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	538	1,980	2,020	712	6,025	5,950	5,625

Cylinde	'S:	5	6	7	8
L _{min}	mm	4,087	4,625	5,163	5,701

Tier II

Dry mass:	t	61	69	77	86

Her III						
Dry mass (added):						
EGR	t	2	3	3	4	
HP SCR	t	1	2	2	2	
LP SCB		-		-	-	



MAN B&W G60ME-C9

Tier II

Stroke: 2,790 mm

Cyl.	L ₁ kW
5	13,400
6	16,080
7	18,760
8	21,440

Dual Fuel Mode for GIE (Ethane)

L₁ MEP: 21.0 bar

MAN B&W G60ME-C9-GIE

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range Tuning 50% 75% 100%						
High load	-	168.5	168.0	172.0		
Part load	EGB	165.5	166.5	173.5		
Low load	EGB	163.5	167.5	173.5		

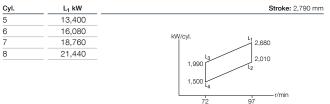
L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	144.1 (8.2)	145.5 (6.2)	150.0 (5.2)
Part load	EGB	141.3 (8.3)	144.1 (6.3)	151.3 (5.2)
Low load	EGB	139.5 (8.3)	145.0 (6.3)	151.3 (5.2)

Dual Fuel Mode for LGIM (Methanol)

L₁ MEP: 21.0 bar

MAN B&W G60ME-C9-LGIM


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*						
SFOC-optimised load range Tuning 50% 75% 100%						
High load	-	165.5	163.0	167.0		
Part load	EGB	162.5	161.5	168.5		
Low load	EGB	160.5	162.5	168.5		

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	326.7 (13.3)	328.3 (10.1)	340.4 (8.4)
Part load	EGB	320.0 (13.4)	324.9 (10.2)	343.5 (8.4)
Low load	EGB	315.7 (13.4)	327.1 (10.2)	343.5 (8.4)

Gas fuel LCV (47,500/19,900 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with a fuel oil operated engine.

MAN B&W G60ME-C9

Dual Fuel Mode for GIE (Ethane)

L₁ MEP: 21.0 bar

MAN B&W G60ME-C9-GIE-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
	50%	75%	100%	
Tier II mode	163.5	167.5	173.5	
Tier III mode	165.0	168.5	174.0	

L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	139.5 (8.3)	145.0 (6.3)	151.3 (5.2)
Tier III mode	140.8 (8.3)	145.9 (6.3)	151.7 (5.2)

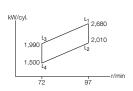
MAN B&W G60ME-C9-GIE-LPSCR

	SFOC equivalent		fuel (40 700	L 1/L	F= /1-14/1-1*
L ₁	SPUC equivalent	uas + piioi	IUEI (42./UU	KJ/KU)	IQ/KWIII

= o. oo oquitaioni gao : piiot iaoi (i=), oo no/ng/ [g/niiii]						
	50%	75%	100%			
Tier II mode	163.5	167.5	173.5			
Tier III mode	164.5	168.5	174.5			

L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

L1 000 47,500 k0/kg (01 00 pilot luci 42,700 k0/kg) [g/kwii]							
Tier II mode	139.5 (8.3)	145.0 (6.3)	151.3 (5.2)				
Tier III mode	140.4 (8.3)	145.9 (6.3)	152.2 (5.2)				


^{*} Gas fuel LCV (47,500 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with a fuel oil operated engine.

MAN B&W G60ME-C9

Stroke: 2,790 mm

Cyl.	L ₁ kW
5	13,400
6	16,080
7	18,760
8	21,440

Dual Fuel Mode for LGIM (Methanol)

L₁ MEP: 21.0 bar

MAN B&W G60ME-C9-LGIM-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
50% 75% 100%					
Tier II mode	160.5	162.5	169.0		
Tier III mode 168.5 167.0 172.0					

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

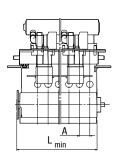
Tier II mode	315.1 (13.7)	326.6 (10.4)	344.2 (8.6)
Tier III mode	332.3 (13.7)	336.3 (10.4)	350.6 (8.6)

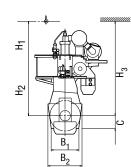
MAN B&W G60ME-C9-GI-LGIM-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	160.5	162.5	168.5		
Tier III mode	162.0	163.5	169.0		

L₁ SGC 19.900 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

Tier II mode	315.4 (13.5)	326.9 (10.3)	343.4 (8.5)
Tier III mode	318.7 (13.5)	329.1 (10.3)	344.5 (8.5)


MAN B&W G60ME-C9-LGIM-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
	50%	75%	100%		
Tier II mode	160.5	162.5	168.5		
Tier III mode	161.5	163.5	169.5		

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

=							
Tier II mode	315.5 (13.5)	326.9 (10.3)	343.4 (8.5)				
Tier III mode	317.7 (13.5)	329.1 (10.3)	345.5 (8.5)				

^{*} Liquid gas fuel LCV (19,900 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with a fuel oil operated engine.

Specifications

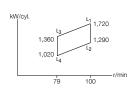
Dimensions:	Α	B1	B2	С	H ₁	H ₂	H ₃
mm	1,080	4,090	4,220	1,500	12,175	11,400	11,075

Cylinde	rs:	5	6	7	8
L _{min}	mm	7,390	8,470	9,550	10,630

Tier II

Dry mass:	t	395	439	491	543

norm					
Dry mass (added):					
EGR	t	14	14	15	16
HP SCR	t	3	4	5	5
LP SCR	t	-	-	-	-



MAN B&W G50ME-C9

Tier II

Stroke: 2,500 mm

Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15.480

Dual Fuel Mode for GIE (Ethane)

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-GIE

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*					
SFOC-optimised load range Tuning 50% 75% 100%					
High load	-	169.5	169.0	173.0	
Part load	EGB	166.5	167.5	174.5	
Low load	EGB	164.5	168.5	174.5	

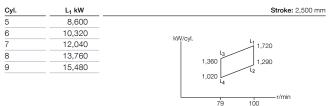
L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	145.0 (8.2)	146.4 (6.3)	150.9 (5.2)
Part load	EGB	142.2 (8.3)	145.0 (6.3)	152.2 (5.2)
Low load	EGB	140.4 (8.3)	145.9 (6.3)	152.2 (5.2)

Dual Fuel Mode for LGIM (Methanol)

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-LGIM


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*				
SFOC-optimised load range	Tuning	50%	75%	100%
High load	-	166.5	164.0	168.0
Part load	EGB	163.5	162.5	169.5
Low load	EGB	161.5	163.5	169.5

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

SFOC-optimised load range	Tuning	50%	75%	100%
High load	=	328.6 (13.3)	330.3 (10.2)	342.5 (8.4)
Part load	EGB	321.9 (13.5)	326.9 (10.3)	345.5 (8.5)
Low load	EGB	317.7 (13.5)	329.0 (10.3)	345.5 (8.5)

^{*} Gas fuel LCV (47,500/19,900 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with a fuel oil operated engine.

MAN B&W G50ME-C9

Dual Fuel Mode for GIE (Ethane)

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-GIE-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*			
	50%	75%	100%
Tier II mode	164.5	168.5	174.5
Tier III mode	166.0	169.5	175.0

L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

Tier II mode	140.3 (8.4)	145.8 (6.4)	152.1 (5.3)
Tier III mode	141.7 (8.4)	146.7 (6.4)	152.6 (5.3)

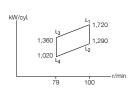
MAN B&W G50ME-C9-GIE-LPSCR

L	SFOC	equivalent	aas +	pilot fuel	(42,700 kJ	/ka)	[a/kWh]*

= or oo equitation; gas : prior iac. (i=); oo no, ng/ [g/ nim.]			
	50%	75%	100%
Tier II mode	164.5	168.5	174.5
Tier III mode	165.5	169.5	175.5

L₁ SGC 47,500 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

2 000 47,000 kg/kg (01 00 phot 1001 42,100 kg/kg) [g/kWii]				
Tier II mode	140.4 (8.4)	145.8 (6.4)	152.1 (5.3)	
Tier III mode	141.3 (8.4)	146.7 (6.4)	153.0 (5.3)	


^{*} Gas fuel LCV (47,500 kJ/kg) is converted to diesel fuel LCV (42,700 kJ/kg) for comparison with a diesel operated engine.

MAN B&W G50ME-C9

Tier III

Stroke: 2,500 mm

Cyl.	L ₁ kW
5	8,600
6	10,320
7	12,040
8	13,760
9	15.480

Dual Fuel Mode for LGIM (Methanol)

L₁ MEP: 21.0 bar

MAN B&W G50ME-C9-LGIM-EGRBP

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*							
	50%	75%	100%				
Tier II mode	161.5	163.5	170.0				
Tier III mode	169.5	168.0	173.0				

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

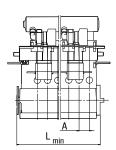
Tier II mode	317.1 (13.7)	328.6 (10.5)	346.2 (8.7)
Tier III mode	334.2 (13.7)	338.3 (10.5)	352.7 (8.7)

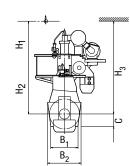
MAN B&W G50ME-C9-GI-LGIM-HPSCR

L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*							
	50%	75%	100%				
Tier II mode	161.5	163.5	169.5				
Tier III mode	163.0	164.5	170.0				

L₁ SGC 19.900 kJ/kg (SPOC pilot fuel 42.700 kJ/kg) [g/kWh]

Tier II mode	317.4 (13.6)	328.9 (10.3)	345.5 (8.5)
Tier III mode	320.6 (13.6)	331.1 (10.3)	346.5 (8.5)


MAN B&W G50ME-C9-LGIM-LPSCR


L ₁ SFOC equivalent gas + pilot fuel (42,700 kJ/kg) [g/kWh]*							
	50%	75%	100%				
Tier II mode	161.5	163.5	169.5				
Tier III mode	162.5	164.5	170.5				

L₁ SGC 19,900 kJ/kg (SPOC pilot fuel 42,700 kJ/kg) [g/kWh]

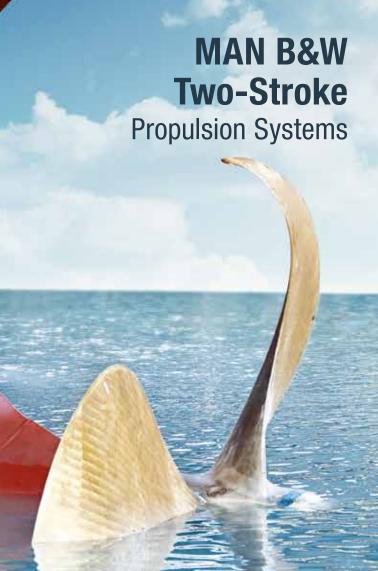
- ,	(p,,		
Tier II mode	317.5 (13.5)	328.9 (10.3)	345.4 (8.5)
Tier III mode	319.6 (13.5)	331.1 (10.3)	347.6 (8.5)

^{*} Liquid gas fuel LCV (19,900 kJ/kg) is converted to fuel oil LCV (42,700 kJ/kg) for comparison with a fuel oil operated engine.

Specifications

Dimensions:	Α	B ₁	B ₂	С	H ₁	H ₂	H ₃
mm	872	3,776	3,652	1,205	10,775	10,075	9,775

Cylinders:	5	6	7	8	9
L _{min} mm	6,260	7,132	8,004	8,876	9,748


Tier II

Dry mass:	t	210	245	275	310	345

Dry mass (added):									
EGR	t	6	8	9	10	12			
HP SCR	t	4	4	5	6	6			
LP SCR	t	-	-	-	-	-			

MAN Alpha

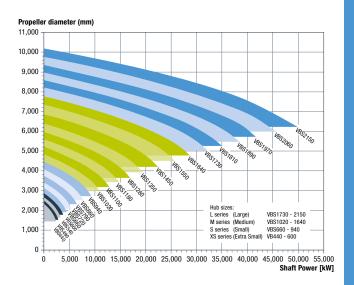
Propeller Programme - FPP and CPP

6.9-metre MAN Alpha Kappel propeller for a 105,000 dwt crude oil carrier

The MAN Alpha FPP portfolio covers:

- power range of 4-40 MW per shaft
- blade configurations for 3, 4, 5 and 6-bladed propellers
- propellers with integrated shaft line and stern tube solutions
- wide range of stern tube lube and sealing systems
 oil, water, biodegradable oils.

The MAN Alpha FPPs are characterised by the following benefits:

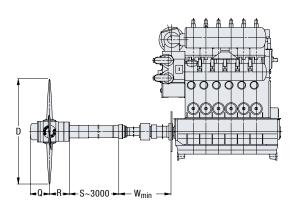

- High-efficient, hydrodynamically optimised blade profiles
 Kappel designs available
- High reliability: robust approach with ample mechanical design margins
- High-efficient aft-ship integration with rudder, rudder bulb, ducts, etc.
- Layouts for complete two-stroke propulsion systems, e.g. with PTO solutions
- Plant calculations with upfront consideration to TVC, alignment and control systems.

MAN B&W Two-Stroke Propulsion Systems

MAN Alpha Controllable Pitch Propeller

- Standard Mk 5 versions are 4-bladed 3 and 5-bladed propellers are available upon request
- The figures stated after the VBS indicate the propeller hub diameter
- Standard blade/hub materials are Ni-Al-bronze; stainless steel is optional
- Propellers are available up to the highest ice classes; however the below standard programme is based on 'no ice'.

VBS Mk 5 CPP Programme



MAN B&W Standard Package Examples

	Prop.	D 1)	Hub VRS	0	R	Wmin	Prop. mass
kW	r/min	mm	mm	mm	mm	mm	t 2)
-C9/-GI							
18,200	83	8,100	1,890	1,436	1,496	3,700	90.0
21,840	83	8,450	2,060	1,565	1,593	3,700	93.5
25,480	83	8,750	2,150	1,634	1,645	3,700	102.0
29,120	83						3)
-C8/-GI							
16,350	91	7,450	1,810	1,375	1,413	3,700	72.8
19,620	91	7,750	1,890	1,436	1,500	3,700	84.0
22,890	91	8,050	1,970	1,497	1,550	3,700	93.4
26,160	91	8,250	2,060	1,565	1,630	3,700	101.3
-C8/-GI							
14,350	95	7,150	1,730	1,315	1,339	3,400	66.1
17,220	95	7,450	1,810	1,375	1,385	3,400	73.0
20,090	95	7,700	1,890	1,436	1,466	3,400	81.2
22,960	95	7,900	1,970	1,497	1,512	3,400	89.3
	18,200 21,840 25,480 29,120 .cs/-6i 16,350 19,620 22,890 26,160 .cs/-6i 14,350 17,220 20,090	kW r/min -C9/-G1 18,200 83 21,840 83 25,480 83 29,120 83	kW speed r/min D 1) mm -C9/-GI 18,200 83 8,100 21,840 83 8,450 25,480 83 8,750 29,120 83	kW speed r/min D 1) mm VBS mm -CS/-GI 18,200 83 8,100 1,890 21,840 83 8,450 2,060 25,480 83 8,750 2,150 29,120 83 -CS/-GI 16,350 91 7,450 1,810 19,620 91 7,750 1,890 22,890 91 8,050 1,970 26,160 91 8,250 2,060 -CS/-GI 14,350 95 7,150 1,730 17,220 95 7,450 1,810 20,090 95 7,700 1,890	kW speed r/min D 1) mm VBS mm Q mm CSY-GI 18,200 1,436 1,890 1,436 21,840 83 8,450 2,060 1,565 25,480 83 8,750 2,150 1,634 29,120 83 7,450 1,810 1,375 19,620 91 7,450 1,890 1,436 22,890 91 8,050 1,970 1,497 26,160 91 8,250 2,060 1,565 CS/-GI 14,350 95 7,150 1,730 1,315 17,220 95 7,450 1,810 1,375 20,090 95 7,700 1,890 1,436	kW speed r/min D 1) mm VBS mm Q mm R mm C69/-Gi 18,200 83 8,100 1,890 1,436 1,496 21,840 83 8,450 2,060 1,565 1,593 25,480 83 8,750 2,150 1,634 1,645 29,120 83 **CeS/-Gi 16,350 91 7,450 1,810 1,375 1,413 19,620 91 7,750 1,890 1,436 1,500 22,890 91 8,050 1,970 1,497 1,550 26,160 91 8,250 2,060 1,565 1,630 **CeS/-Gi 14,350 95 7,150 1,730 1,315 1,339 17,220 95 7,450 1,810 1,375 1,385 20,090 95 7,700 1,890 1,436 1,466	kW speed r/min D 1) mm VBS mm Q mm R mm Wmin mm CS/F-GI 18,200 83 8,100 1,890 1,436 1,496 3,700 21,840 83 8,450 2,060 1,565 1,593 3,700 25,480 83 8,750 2,150 1,634 1,645 3,700 29,120 83 8 8,750 2,150 1,634 1,645 3,700 26,460 91 7,450 1,810 1,375 1,413 3,700 19,620 91 7,750 1,890 1,436 1,500 3,700 22,890 91 8,050 1,970 1,497 1,550 3,700 26,160 91 8,250 2,060 1,565 1,630 3,700 26/-GI 14,350 95 7,150 1,730 1,315 1,339 3,400 17,220 95 7,450 1,810 1,375 1,385 3,400

¹⁾ For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

³⁾ Available on request

²⁾ The masses are stated for 4,000 mm stern tube and 8,000 mm propeller shaft

MAN B&W Standard Package Examples

		Prop. speed	D 1)	Hub VBS	Q	R	Wmin	Prop. mass
Cyl.	kW	r/min	mm	mm	mm	mm	mm	t 2)
G60ME	-C9/-GI							
5	13,400	97	6,950	1,640	1,246	1,287	3,300	60.0
6	16,080	97	7,250	1,730	1,315	1,339	3,300	64.2
7	18,760	97	7,450	1,810	1,375	1,420	3,300	70.3
8	21,440	97	7,700	1,890	1,436	1,496	3,100	74.6
S60ME-	-C8/-GI							
5	11,900	105	6,500	1,550	1,278	1,289	3,000	53.4
6	14,280	105	6,750	1,640	1,367	1,362	3,000	59.7
7	16,660	105	6,950	1,730	1,367	1,367	3,000	63.2
8	19,040	105	7,150	1,810	1,458	1,450	3,000	72.0
G50ME	-C9/-GI							
5	8,600	100	6,150	1,450	1,102	1,174	3,100	42.7
6	10,320	100	6,450	1,550	1,178	1,231	3,100	45.1
7	12,040	100	6,650	1,550	1,178	1,231	3,100	48.1
8	13,760	100	6,850	1,640	1,246	1,287	2,900	50.9
9	15,480	100	7,050	1,730	1,315	1,339	3,100	58.1
S50ME-	-C9/-GI							
5	8,900	117	5,650	1,460	1,100	1,141	2,700	35.7
6	10,680	117	5,850	1,560	1,175	1,202	2,700	41.3
7	12,460	117	6,050	1,560	1,175	1,202	2,700	44.5
8	14,240	117	6,200	1,680	1,278	1,279	2,700	50.5
9	16,020	117	6,350	1,800	1,367	1,332	2,900	58.0
S50ME-	-C8/-GI ³⁾							
5	8,300	127	5,400	1,350	1,030	1,082	2,690	31.7
6	9,960	127	5,600	1,350	1,100	1,145	2,690	35.4
7	11,620	127	5,800	1,450	1,175	1,233	2,690	39.9
8	13,280	127	5,950	1,450	1,175	1,248	2,690	42.0

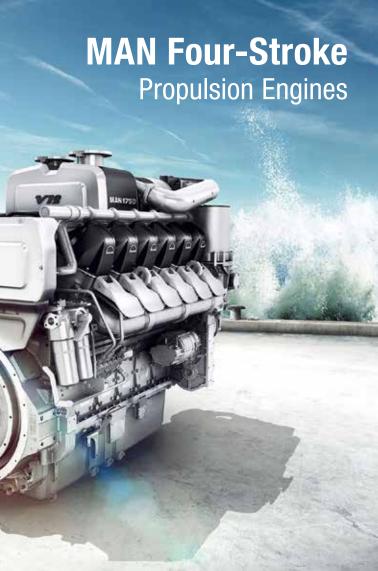
¹⁾ For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

²⁾ The masses are stated for 4,000 mm stern tube and 8,000 mm propeller shaft

³⁾ Data for 9 cylinder is available on request

MAN B&W Standard Package Examples

Cyl.	kW	Prop. speed r/min	D 1) mm	Hub VBS mm	Q mm	R mm	Wmin mm	Prop. mass t ²⁾
S46ME-		1/111111	111111	111111	111111	111111	111111	[2]
5	6,900	129	5,200	1,260	975	1,035	2,650	27.4
6	8,280	129	5,400	1,350	1,030	1,082	2,650	29.9
7	9,660	129	5,550	1,350	1,100	1,145	2,650	34.0
8	11,040	129	5,700	1,450	1,175	1,233	2,650	38.9
G45ME-	-C9/-GI							
5	6,950	111	5,650	1,350	1,026	1,109	2,700	28.8
6	8,340	111	5,900	1,350	1,026	1,109	2,700	30.6
7	9,730	111	6,100	1,450	1,102	1,197	2,700	35.1
8	11,120	111	6,250	1,550	1,178	1,236	2,700	37.6
G40ME-	-C9/-GI							
5	5,500	125	5,000	1,180	897	1,054	2,520	24.1
6	6,600	125	5,250	1,260	975	1,070	2,600	28.0
7	7,700	125	5,400	1,260	975	1,170	2,520	29.7
8	8,800	125	5,550	1,350	1,026	1,138	2,520	32.9
S40ME-	-B9/-GI							
5	5,675	146	4,650	1,100	885	972	2,500	22.1
6	6,810	146	4,800	1,180	957	1,025	2,500	24.6
7	7,945	146	4,950	1,180	957	1,025	2,500	26.0
8	9,080	146	5,050	1,260	975	1,081	2,500	29.8
9	10,215	146	5,550	1,350	1,026	1,140	2,700	34.4
S35ME-	-B9/-GI							
5	4,350	167	4,050	940	821	920	2,500	16.3
6	5,220	167	4,200	1,020	821	920	2,500	16.9
7	6,090	167	4,350	1,100	885	946	2,500	19.4
8	6,960	167	4,450	1,100	885	946	2,500	20.4
S30ME-	-B9/-GI							
5	3,200	195	3,500	860	653	750	2,350	10.5
6	3,840	195	3,600	860	653	750	2,350	11.0
7	4,480	195	3,700	940	714	886	2,350	12.3
8	5,120	195	3,800	940	714	886	2,350	13.0


¹⁾ For optimal Kappel blades, the propeller diameter is reduced by an average of 3-10% compared to the listed standard diameters

²⁾ The masses are stated for 3,000 mm stern tube and 8,000 mm propeller shaft

We are the world's leading designer of large-bore diesel engines. Our engines have unit power outputs of up to 103,000 horsepower.

The MAN B&W 11G95ME-C9.5 is the largest and most powerful engine from the MAN Diesel & Turbo portfolio ever designed and built.

The diesel engine has always been the most efficient system for converting fuel into mechanical energy.

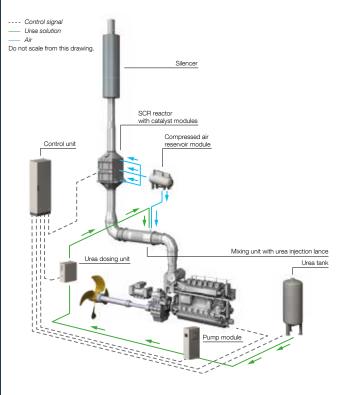
MAN Diesel & Turbo will ensure it stays that way. Advanced inhouse technologies for efficiency and ecology enable MAN diesel engines to comply with the most stringent emission limits.

MAN Four-Stroke Propulsion Engines - All Emission Requirements

Besides focus on power density and fuel economy, MAN Diesel & Turbo is committed to a steady reduction of the environmental impact of our engines.

IMO Tier II

Applying well-proven methods to achieve a cleaner and more efficient combustion process, MAN Diesel & Turbo has significantly decreased NO $_{\!x}$ emissions. Our four-stroke propulsion engines are IMO Tier II compliant with internal engine measures alone.


IMO Tier III

For operation in emission control areas (ECA), MAN Diesel & Turbo has developed a comprehensive range of selective catalytic reduction (SCR) systems that tremendously reduce NO_x levels surpassing IMO Tier III requirements.

MAN Diesel & Turbo is the first manufacturer to successfully produce and offer IMO Tier III compliant four-stroke marine engines based on a fully modular SCR kit covering our entire four-stroke engine portfolio. In 2014 MAN Diesel & Turbo was awarded the first IMO Tier III EIAPP certificate together with the classification society DNV-GL.

MAN Diesel & Turbo's standard SCR system is available in fourteen different sizes covering our entire portfolio of four-stroke engines. Customised SCR systems are offered on demand.

MAN has developed a complete range of SCR systems that work perfectly with our engines for maximum system efficiency. The intelligent exhaust gas temperature control allows for significant savings in fuel consumptions as compared to third-party supplier systems. MAN SCR systems work with MGO, MDO and HFO with up to 3.5% sulphur.

Our modular system comes in 14 different sizes to match all power demands. Some notable benefits of standardisation are significant cost reduction and simplification of installation.

The modular SCR component kit

Urea Consumption

The urea consumption depends on engine type, selected performance characteristics (engine map) in case of an engine with ECOMAP capability, operating profile, fuel type, ambient conditions, type of reduction agent, etc.

For more detailed information on the expected level of urea consumption, please contact MAN Diesel & Turbo with your project specific request.

Conventional Injection Engines

Our well-established engine types are used in a vast array of applications all over the world. Based on long-term experience of historical proportions, our engines are in continuous development to increase power, reduce emissions, increase reliability, reduce fuel oil consumption, and increase longevity. Our engines are the prime movers of choice in the maritime sector.

Common Rail (CR) Engines

The flexibility of our CR technology enables a substantial improvement of the combustion process that improves the fuel economy and reduces emission levels. It is particularly advantageous in the low-load and mid-load ranges where our unique ECOMAP system applies different engine maps to reduce fuel consumption while observing IMO emission limits. Another feature is our patented Boost Injection. Our engine control system senses a load increase at a very early stage and tremendously improves the load response with the activation of boost injection in our common rail control. In addition, exhaust gas opacity is markedly reduced, far below the visibility limit. Our CR engines run efficiently on liquid fuels complying with ISO 8217-2012 DMA, DMZ, and DMB, and on residual fuels (HFO) up to 700 cSt (in compliance with ISO-F-RMK 700).

Diesel Oil (D) Engines

The V28/33D STC features very favourable ratios of power-to-weight and power-to-installation space. The combination of low fuel consumption, low emissions and reduced life cycle costs makes this engine the ideal solution for propulsion in high speed ferries, naval and offshore patrol vessels. The V28/33D STC engine operates on distillates according to ISO 8217 DMA or equivalent fuel types.

Sequential Turbocharging (STC)

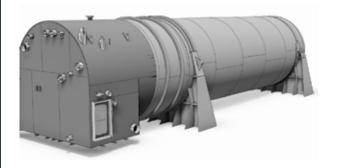
The MAN Diesel & Turbo sequential turbocharging system operates with two high-efficiency turbochargers. Depending on the amount of charge air required, the second turbocharger is switched on or off. In this way, the engine is operated at its optimum operating point over the whole applicable load range.

The result is an extended operating envelope at low engine speeds, which gives a power reserve for ship acceleration, ship turning, sprints or towing. Furthermore, the STC system is characterised by a low thermal signature, decreased smoke emission, low vibrations and continuous low-load operation with reduced fuel consumption, which makes it the ideal solution for propulsion in naval applications and offshore patrol vessels.

Dual Fuel (DF) Engines

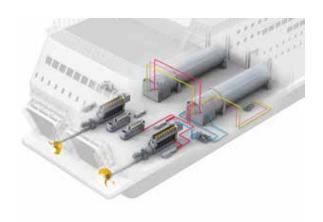
Dual fuel engines from MAN Diesel & Turbo run efficiently on liquid fuels or natural gas with very low emissions that are compliant with IMO limits. On gaseous fuel, the engines comply with IMO Tier III without the need of additional aftertreatment, and on liquid fuel they either fulfill IMO Tier II, or IMO Tier III together with an SCR system. The possibility to switch over seamlessly from gas to HFO or diesel operation and vice versa provides full flexibility in multiple applications.

All dual fuel engines can run on natural gas with a methane number higher than 80 without adjustments. For lower methane numbers, MAN Diesel & Turbo can deliver well-adapted solutions. The optimised combustion chamber ensures very low fuel consumption in both operational modes.


MAN Cryo Fuel Gas Supply Systems

MAN Cryo fuel gas systems are the world's leading solution for safely storing energy on board gas fuelled ships and reliably providing it to the engines.

After pioneering in the market for LNG-fuelled ships in 1999, MAN Cryo fuel gas systems have since then been installed on a major part of today's gas fuelled ship fleet, either standardised or tailor-made. The references range from passenger ferries to offshore platform supply vessels, tug boats, bunker barges and even ice breakers.


MAN Diesel & Turbo provides one-stop solutions with complete packages consisting of main engines, auxiliary gensets, propulsion train, LNG fuel tank, coldbox, control system and bunkering station.

In order to deliver cost-optimised systems with shortest delivery times, MAN Diesel & Turbo offers a broad range of standard cryo packages in all required sizes. Beyond this standard scope and for larger tank sizes, customised solutions are engineered in the most efficient way in order to meet all our customers' demands.

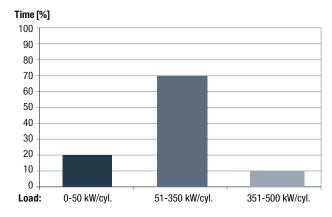
MAN Cryo LNG Standard Packages (example sizes)

Volume [m³]	Diameter [m]	Length [m]
75	3.6	10.8
100	3.6	13.9
125	3.6	17.0
150	4.2	14.8
175	4.2	17.0
200	4.2	19.2
250	5.3	16.2
300	5.3	19.1
350	5.3	22.0
400	6.0	20.0
450	6.0	22.3
500	6.0	24.6
500	6.9	19.8
600	6.9	23.2
700	6.9	26.6

Engine Power

Engine brake power is stated in kW.

Ratings are given according to ISO 3046-1:2002.


According to ISO 15550:2002, the power figures in the tables are valid within a range of ±3% up to tropical conditions at sea level, i.e.:

- compressor inlet temperature 45 °C
- compressor inlet pressure 1,000 mbar
- sea water temperature 32 °C

For all four-stroke propulsion engines, the power is defined according to the ICN¹ (MCR) definition (ISO 3046-1:2002:ISO standard power) with one exception.

For the load profile type Navy, of the engine types V28/33D STC, the rated power of the engine is stated according to the ICFN¹ power definition (ISO 3046:2002:ISO standard fuel stop power).

Load profile type: Navy (ICFN)

Typical use: fast yachts, corvettes, frigates and OPV

¹ I = ISO power

C = continuous power output

[[]F = fuel stop power]

N = net

Specific Fuel Oil Consumption (SFOC) and Heat Rate

The stated consumption figures refer to the following reference conditions according to ISO 3046-1:

ambient air pressure 1,000 mbar
 ambient air temperature 25 °C (77 °F)

charge air temperature according to engine type, corresponding to

25 °C cooling water temperature before CAC

The figures are given with a tolerance of +5% and without engine driven pumps. Attached pumps and engines running in suction dredger operation will require additional fuel.

In accordance with the NO_x Technical Code 2008 of the International Maritime Organization, DM-grade fuel oil is used as reference fuel oil for engine tests and, thus, also forms the basis for the SFOC figures stated for engines in liquid fuel operation.

Unless otherwise specifically stated, SFOC figures are based on a lower calorific value of the fuel oil of 42,700 kJ/kg and, in addition for engines with common rail injection (CR-engines), on DMA-grade fuel oil (ISO 8217-2012). For engines with conventional fuel injection, SFOC figures are based on DMB-grade fuel oil (ISO 8217-2012). For further details, please refer to our engine specific project guides available from MAN Diesel & Turbo.

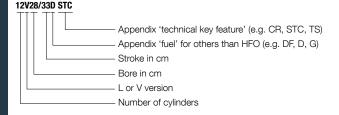
Specific Lube Oil Consumption (SLOC)

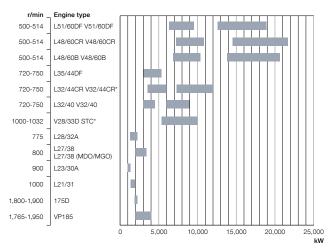
The specific lube oil consumption is specified at MCR (maximum continuous rating) with a tolerance of 20%.

Blocking of Output

Blocking of output is made for engines driving a propeller at 100% of the rated output. For engines powering an alternator, blocking of output is made at 110%. However, operation above 100% load is only recommended for a short period of time for recovery and prevention of a frequency drop.

Weights and Dimensions


For marine main engines, the weights stated refer to engines without a flywheel.


For auxiliary engines (GenSets), weights refer to the unit (including alternator). The weight of the GenSet may vary depending on the alternator make. All weights given are without lube oil and cooling water.

The length of the GenSet unit depends on the alternator make. For a twin engine installation, the centreline distance is stated for each engine type.

The centreline distance for twin engine installation is given as a minimum value. Specific requirements to the passageway (e.g. of classification societies or flag state authority), seating type or a gallery can lead to higher values.

Engine Type Designation

^{*} The engine complies with EPA Tier 2

MAN V51/60DF

Tier III in gas mode

Bore: 510 mm, Stroke: 600 mm

Speed	r/min	514	500
mep	bar	20.0	20.6
		kW	kW
12V51/60E	DF	12,600	12,600
14V51/60E	DF	14,700	14,700
16V51/60E	V51/60DF 16,800		16,800
18V51/60E	DF	18,900	18,900

LHV of fuel gas ≥ 28,000 kJ/Nm3

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

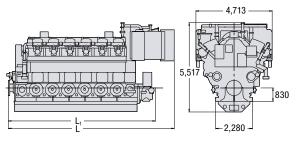
Specific Fuel Oil Consumption (SFOC) and Heat Rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	182.0 g/kWh ³⁾	177.0 g/kWh ³⁾
Heat rate ²⁾	7,190 kJ/kWh ³⁾	7,200 kJ/kWh ³⁾
0 15 11 11 11 11 01	0.140	

Specific lube oil consumption 0.4 g/kWh

Engine type specific reference charge air temperature before cylinder 43 °C

1) Liquid fuel operation


 $^{2)}$ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

3) Electric propulsion

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,254	11,254	12,254	13,644
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	187	213	240	265

Minimum centreline distance for twin engine installation: 4,800 mm

Tier III in gas mode

Bore: 510 mm, Stroke: 600 mm

Speed	r/min	514	500	
mep	bar	20.0	20.6	
		kW	kW	
6L51/60DF		6,300	6,300	
7L51/60DF		7,350	7,350	
8L51/60DF		8,400	8,400	
9L51/60DF		9 450	9.450	

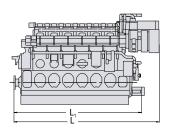
LHV of fuel gas ≥ 28,000 kJ/Nm3

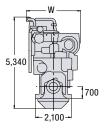
(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

Specific Fuel Oil Consumption (SFOC) and Heat Rate to ISO conditions

MCR	100%	85%
Specific fuel oil consumption ¹⁾	182.0 g/kWh ³⁾	177.0 g/kWh ³⁾
Heat rate ²⁾	7,190 kJ/kWh ³⁾	7,200 kJ/kWh ³⁾

Specific lube oil consumption 0.4 g/kWh


Engine type specific reference charge air temperature before cylinder 43 °C


1) Liquid fuel operation

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,494	9,314	10,134	11,160
L ₁	mm	7,455	8,275	9,095	9,915
W	mm	3,165	3,165	3,165	3,283
Dry mass	t	106	119	135	148

Minimum centreline distance for twin engine installation: 3,200 mm

²⁾ Gas operation (including pilot fuel), gas fuel: methane no. \geq 80

³⁾ Electric propulsion

MAN V48/60CR

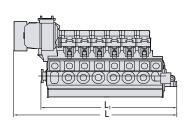
Tier III with SCR

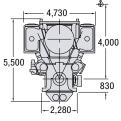
Bore: 480 mm, Stroke: 600 mm

Speed	r/min	514	500	
mep	bar	25.8	26.5	
		kW	kW	
12V48/60CR		14,400	14,400	
14V48/60	CR	16,800	16,800	
16V48/60CR		19,200	19,200	
18V48/60CR		21,600	21,600	

Specific Fuel Oil Consumption (SFOC) to ISO conditions

0 :6 "	1: 0.5 // 114//	
V48/60CR	181 g/kWh	173 g/kWh
MCR	100%	85%


Specific lube oil consumption 0.5 g/kWh


Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,790	11,790	13,140	14,140
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	189	213	240	265

Minimum centreline distance for twin engine installation: 4,800 mm

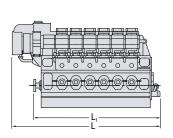
Tier III with SCR

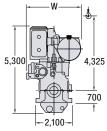
Rore:	48 0	mm	Stroke	የሀሀ	mm

Speed	r/min	514	500
mep	bar	25.8	26.5
		kW	kW
6L48/60C	R	7,200	7,200
7L48/60CR		8,400	8,400
8L48/60CR		9,600	9,600
9I 48/60CR		10.800	10.800

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
L48/60CR	183 g/kWh	175 g/kWh


Specific lube oil consumption 0.5 g/kWh


Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,760	9,580	10,540	11,360
L ₁	mm	7,455	8,275	9,095	9,915
W	mm	3,165	3,165	3,280	3,280
Dry mass	t	106	119	135	148

Minimum centreline distance for twin engine installation: 3,200 mm

MAN V48/60B

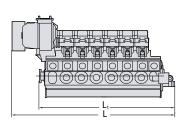
Tier III with SCR

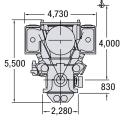
Bore: 480 mm, Stroke: 600 mm

Speed	r/min	514	500
mep	bar	24.7	25.4
		kW	kW
12V48/60I	3	13,800	13,800
14V48/60I	3	16,100	16,100
16V48/60B		18,400	18,400
18V48/60B		20,700	20,700

Specific Fuel Oil Consumption (SFOC) to ISO conditions

0		
V48/60B	184 g/kWh	180 g/kWh
MCR	100%	85%


Specific lube oil consumption 0.6 g/kWh


Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		12	14	16	18
L	mm	10,790	11,790	13,140	14,140
L ₁	mm	9,088	10,088	11,088	12,088
Dry mass	t	186	209	240	259

Minimum centreline distance for twin engine installation: 4,800 mm

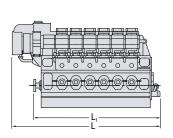
Tier III with SCR

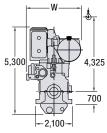
Bore:	480	mm.	Stroke:	600	mm

Speed	r/min	514	500	
mep bar		24.7	25.4	
		kW	kW	
6L48/60B		6,900	6,900	
7L48/60B		8,050	8,050	
8L48/60B		9,200	9,200	
9I 48/60B		10.350	10.350	

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
L48/60B	186 g/kWh	182 g/kWh


Specific lube oil consumption 0.6 g/kWh


Engine type specific reference charge air temperature before cylinder 37 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	8,760	9,580	10,540	11,360
L ₁	mm	7,455	8,275	9,095	9,915
W	mm	3,165	3,165	3,280	3,280
Dry mass	t	104	118	134	146

Minimum centreline distance for twin engine installation: 3,200 mm

Tier III in gas mode

Dave.	250		Chualcas	440	
Bore:	350	mm.	Stroke:	440	mm

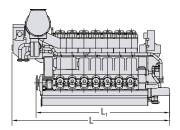
Speed	r/min	750	720
mep	bar	20.0	20.1
		kW	kW
6L35/44I	DF	3,180	3,060
7L35/44DF		3,710	3,570
8L35/44DF		4,240	4,080
9L35/44DF		4,770	4,590
10L35/44DF		5.300	5.100

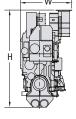
LHV of fuel gas ≥ 28,000 kJ/Nm3

(Nm³ corresponds to one cubic meter of gas at 0 °C and 1.013 bar)

Specific Fuel Oil Consumption (SFOC) and Heat Rate to ISO conditions

MCR	100%	85%
Specific fuel oil con- sumption ¹⁾	175.5 g/kWh	175.5 g/kWh
Heat rate ²⁾	7,470 kJ/kWh	7,515 kJ/kWh
Specific lube oil consump	otion 0.5 a/kWh	


Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions

Cyl. No.		6	7	8	9	10
L	mm	6,485	7,015	7,545	8,075	8,605
L ₁	mm	5,265	5,877	6,407	6,937	7,556
W	mm	2,539	2,678	2,678	2,678	2,678
Н	mm	4,163	4,369	4,369	4,369	4,369
Dry mass ³⁾	t	43.1	48.2	53.3	57.6	62.3

Minimum centreline distance for twin engine installation: 2,500 mm

³⁾ Including built-on lube oil automatic filter, fuel oil filter and electronic equipment Speed 720 r/min for generator drive only

¹⁾ Liquid fuel operation

²⁾ Gas operation (including pilot fuel), gas fuel: methane no. ≥ 80

MAN V32/44CR

Tier II Tier III EPA Tier 2

Tier III with SCR

Bore: 320 mm, Stroke: 440 mm

Speed	r/min	750	720
mep	bar	27.1	28.3
		kW	kW
12V32/44CR		7,200	7,200
14V32/44CR ¹⁾		7,840	7,840
16V32/44CR		9,600	9,600
18V32/44CR ²⁾		10,800	10,800
20V32/44CR		12,000	12,000

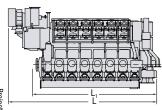
Specific Fuel Oil Consumption (SFOC) to ISO conditions

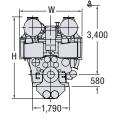
MCR	100%	85%
V32/44CR	174.0 g/kWh	172.0 g/kWh
14V32/44CR	177.5 g/kWh	175.0 g/kWh
V32/44CR FPP	179.0 g/kWh	173.0 g/kWh

Specific lube oil consumption 0.5 g/kWh

Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions


Dillicitatoria						
Cyl. No.		12	14	16	18	20
L	mm	7,195	7,970	8,600	9,230	9,860
L ₁	mm	5,795	6,425	7,055	7,685	8,315
W	mm	3,100	3,100	3,100	3,100	3,100
Н	mm	4,039	4,262	4,262	4,262	4,262
Dry mass ³⁾	t	70	79	87	96	104


Minimum centreline distance for twin engine installation: 4,000 mm Speed 720 r/min for generator drive/constant speed operation only

1) 560 kW/cvl

2) 18V 32/44CR available rigidly mounted only

³⁾ Including built-on lube oil automatic filter, fuel oil filter and electronic equipment Fixed pitch propeller: 510 kW/cyl, 750 r/min

Tier III with SCR

Bore: 320 mm, Stroke: 440 mm

Speed	r/min	750	720
mep	bar	27.1	28.3
		kW	kW
6L32/44CR		3,600	3,600
7L32/44CR ¹⁾		3,920	3,920
8L32/44CR		4,800	4,800
9L32/44CR		5,400	5,400
10L32/44CR		6,000	6,000

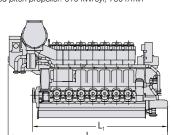
Specific Fuel Oil Consumption (SFOC) to ISO conditions

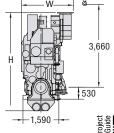
MCR	100%	85%
L32/44CR	174.0 g/kWh	172.0 g/kWh
7L32/44CR	177.5 g/kWh	175.0 g/kWh
L32/44CR FPP	179.0 g/kWh	173.0 g/kWh

Specific lube oil consumption 0.5 g/kWh

Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions


Dillionolono						
Cyl. No.		6	7	8	9	10
L	mm	6,312	6,924	7,454	7,984	8,603
L ₁	mm	5,265	5,877	6,407	6,937	7,556
W	mm	2,174	2,359	2,359	2,359	2,359
Н	mm	4,163	4,369	4,369	4,369	4,369
Dry mass ²⁾	t	39.5	44.5	49.5	53.5	58.0


Minimum centreline distance for twin engine installation: 2,500 mm

Speed 720 r/min for generator drive/constant speed operation only

1) 560 kW/cyl

²⁾ Including built-on lube oil automatic filter, fuel oil filter and electronic equipment Fixed pitch propeller: 510 kW/cyl. 750 r/min

MAN V32/40

Tier III with SCR

Bore: 320 mm, Stroke: 400 mm

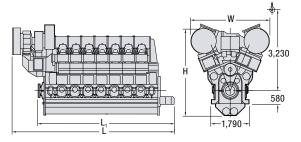
Speed	r/min	750	720
mep	bar	24.9	25.9
		kW	kW
12V32/40		6,000	6,000
14V32/40		7,000	7,000
16V32/40		8,000	8,000
18V32/40		9,000	9,000

Specific Fuel Oil Consumption (SFOC) to ISO conditions

V32/40 FPP	187 g/kWh	183 g/kWh
V32/40	184 g/kWh	182 g/kWh
MCR	100%	85%

Specific lube oil consumption 0.5 g/kWh

Engine type specific reference charge air temperature before cylinder 43 $^{\circ}\mathrm{C}$


Dimensions

Cyl. No.		12	14	16	18
L	mm	6,915	7,545	8,365	8,995
L ₁	mm	5,890	6,520	7,150	7,780
W	mm	3,140	3,140	3,730	3,730
Н	mm	4,100	4,100	4,420	4,420
Dry mass	t	61	68	77	85

Minimum centreline distance for twin engine installation: 4,000 mm Speed 720 r/min for generator drive/constant speed operation only

Fixed pitch propeller: 450 kW/cyl, 750 r/min

V32/40 as marine main engine to be applied for multi-engine plants only

Tier III with SCR

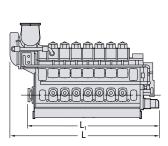
Bore: 320 mm, Stroke: 400 mm

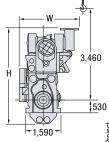
Speed	r/min	750	720
opeeu	1/111111	730	120
mep	bar	24.9	25.9
		kW	kW
6L32/40		3,000	3,000
7L32/40		3,500	3,500
8L32/40		4,000	4,000
9L32/40		4,500	4,500

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
L32/40	186 g/kWh	183 g/kWh
L32/40 FPP	189 g/kWh	184 g/kWh
0 :6 1 :1	1: 0.5 (1)4/1	

Specific lube oil consumption 0.5 g/kWh


Engine type specific reference charge air temperature before cylinder 43 °C


Dimensions

Cyl. No.		6	7	8	9
L	mm	5,940	6,470	7,000	7,530
L ₁	mm	5,140	5,670	6,195	6,725
W	mm	2,630	2,630	2,715	2,715
Н	mm	4,010	4,010	4,490	4,490
Dry mass	t	38	42	47	51

Minimum centrelline distance for twin engine installation: 2,500 mm¹⁾ Speed 720 r/min for generator drive/constant speed operation only Fixed pitch propeller: 450 kW/cyl, 750 r/min

¹⁾ Please contact MAN Diesel & Turbo for the precise information about the centreline distance for two engines with the same cylinder number standing near each other

MAN V28/33D STC

Load profile 'Nova'

Tier III with SCR

Bore: 280 mm, Stroke: 330 mm

				Load profile in	avy
Speed	r/min	1000		1032	
mep	bar	26.9		28.6	
Rated pov	wer output	- ICN (MCR)	kW	- ICFN kV	V
12V28/33	D STC	5,460		6,000	
16V28/33D STC		7,280		8,000	
20V28/33D STC		9,100		10,000	

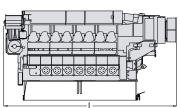
Specific Fuel Oil Consumption (SFOC) to ISO conditions

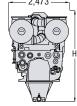
ICFN fuel stop power	-	194.0 g/kWh
MCR 100%	189.0 g/kWh (193.0 g/kWh ¹⁾)	189.0 g/kWh
MCR 85%	184.5 g/kWh (189.5 g/kWh ¹⁾)	194.5 g/kWh
Coopific lubo oil coopu	motion 0.4 a/ldMh	

Specific lube oil consumption 0.4 g/kWh

Engine type specific reference charge air temperature before cylinder 40 °C

Figures on theoretical propeller curve for distillates according to ISO 8217 DMA, with all attached pumps


Dimensions


Cyl. No.		12	16	20
L	mm	6,217	7,137	8,057
H 2)	mm	3,417	3,417	3,417
H 3)	mm	3,683	3,683	3,683
Dry mass *	t	36.3	43.5	52.3

¹⁾ Engine is EPA Tier 2 compliant

Weight and performance parameters refer to engine with flywheel, TC silencer, attached pumps, oil filters and lube oil cooler

V28/33D STC as marine main engine to be applied for multi-engine plants only

²⁾ With low oil sump

³⁾ With deep oil sump

^{*} Tolerance: 5%

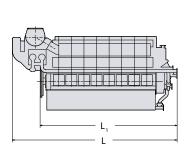
Tier III with SCR

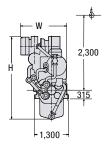
Bore: 280 mm. Stroke: 320 mm

Speed	r/min	775
mep	bar	19.3
		kW
6L28/32	A	1,470
7L28/32	A *	1,715
8L28/32A		1,960
9L28/32A		2,205

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
L28/32A	194 g/kWh	192 g/kWh
L28/32A FPP	194 g/kWh	192 g/kWh


Specific lube oil consumption 1.0 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	5,330	5,810	6,290	6,770
L ₁	mm	4,340	4,750	5,230	5,780
W	mm	1,732	1,732	1,732	1,844
Н	mm	3,186	3,186	3,186	3,242
Dry mass	t	18.0	20.5	23.0	25.5

Minimum centreline distance for twin-engine installation: 2,000 mm

^{*} Not available for fixed pitch propeller (FPP)

MAN L27/38

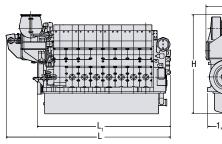
Tier III with SCR

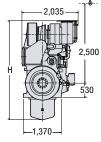
Bore: 270 mm, Stroke: 380 mm

Speed	r/min	800	800 (MDO*/MGO)
mep	bar	23.5	25.2
		kW	kW
6L27/38		2,040	2,190
7L27/38		2,380	2,555
8L27/38		2,720	2,920
9L27/38		3,060	3,285

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	10	100%		85%	
kW	340 kW	365 kW	340 kW	365 kW	
L27/38	188 g/kWh	191 g/kWh	185 g/kWh	186 g/kWh	
L27/38 FPP	187 g/kWh	191 g/kWh	181 g/kWh	185 g/kWh	


Specific lube oil consumption 0.8 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

Cyl. No.		6	7	8	9
L	mm	5,070	5,515	5,960	6,405
L ₁	mm	3,962	4,407	4,852	5,263
Н	mm	3,555	3,687	3,687	3,687
Dry mass	t	29.0	32.5	36.0	39.5

Minimum centreline distance for twin engine installation: 2,500 mm

^{*} MDO viscosity must not exceed 6 mm2/s = cSt at 40 °C.

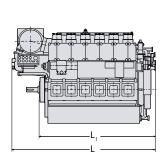
Tier III with SCR

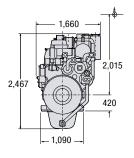
_					
Bore:	225	mm.	Stroke:	300	mm

Speed	r/min	900
mep	bar	17.1
		kW
6L23/30A	4	960
8L23/30A	4	1,280

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCB 100% 85%	F						
WCh 100% 65%							
L23/30A 194 g/kWh 193 g/kWh							
L23/30A FPP 194 g/kWh 193 g/kWh							


Specific lube oil consumption 1.0 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C

Dimensions

Cyl. No.		6	8
L	mm	3,737	4,477
L ₁	mm	3,062	3,802
Dry mass	t	11.0	13.5

Minimum centreline distance for twin engine installation: 1,900 mm

MAN L21/31

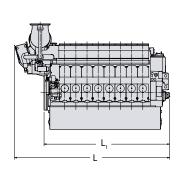
Tier III with SCR

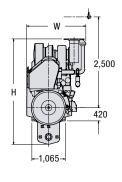
Bore: 210 mm, Stroke: 310 mm

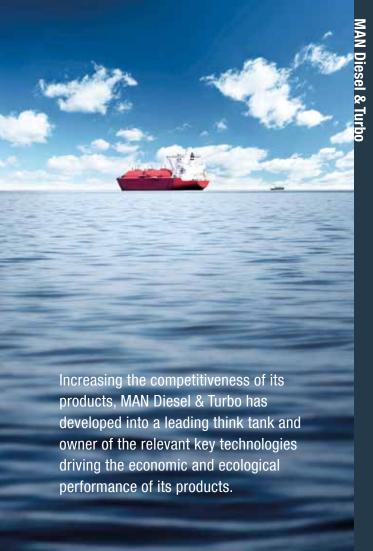
Speed	r/min	1000
mep	bar	24.0
		kW
6L21/31		1,290
7L21/31		1,505
8L21/31		1,720
9L21/31		1.935

Specific Fuel Oil Consumption (SFOC) to ISO conditions

LZ 1/01	195 g/KVVII	132 9/10011	
1 21/31	195 a/kWh	192 a/k/M/h	
MCR	100%	85%	


Specific lube oil consumption 0.8 g/kWh


Engine type specific reference charge air temperature before cylinder 40 °C


Dimensions

Cyl. No.		6	7	8	9
L	mm	4,544	4,899	5,254	5,609
L ₁	mm	3,424	3,779	4,134	4,489
Н	mm	3,113	3,267	3,267	3,267
W	mm	1,695	1,695	1,820	1,820
Dry mass	t	16.0	17.5	19.0	20.5

Minimum centreline distance for twin engine installation: 2,400 mm

Bore: 185 mm, Stroke: 196 mm

Engine Model Rating Definition	kW	rpm	SFOC at 100% MCR	SFOC at 75% MCR
12VP185TM B: Unrestricted Marine	2,000	1,765	208 g/kWh	202 g/kWh
12VP185TM A2: Unrestricted Marine	2,300	1,860	211 g/kWh	203 g/kWh
12VP185TM A1: Limited Time	2,720	1,950	216 g/kWh	205 g/kWh
18VP185TM B: Unrestricted Marine	3,000	1,765	208 g/kWh	202 g/kWh
18VP185TM A2: Unrestricted Marine	3,500	1,860	211 g/kWh	203 g/kWh
18VP185TM A1: Limited Time	4,000	1,950	216 g/kWh	205 g/kWh

Specific fuel oil consumption according to ISO3046-1:2002 based on a lower calorific value of fuel of 42,700 kJ/kg with all driven lube oil, HT and LT water pumps attached, fulfilling IMO Tier II emissions limitations of +5% SFOC tolerance. 45°C ambient 32°C sea water.

Rating definitions:

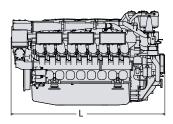
A1 Rating

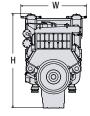
For fast patrol craft where the rated power is only required for approximately 15% of the operating profile.

A2 Rating

For fast patrol or displacement craft where 90% to 100% of rated power is likely to be used for 70% of the operating profile.

B Rating


Typically for longer range displacement vessels where 70% to 100% of the rated power is likely to be used for >70% of the operating profile.


Dimensions

Cyl. No.		12	18
L	mm	3,200	4,039
Н	mm	2,312	2,447
W	mm	1,692	1,692
Dry mass*	t	7.8	11.1

^{*} Approximately

Engine dry weight includes the engine mounted sea water heat exchanger and oil cooler. The dimensions given are for guidance only.

Tier III with SCR

Bore: 175 mm, Stroke: 215 mm

Engine Model	Rating Definition	kW	rpm	SFOC at 100% MCR	SFOC at 75% MCR
12V175D-MH	Heavy Duty	1,740	1,800	=	-
12V175D-MM	Medium Duty	2,220	1,900	199 g/kWh	203 g/kWh

For multi-engine arrangement only.

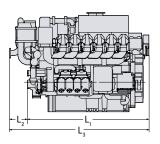
SFOC figures for distillates according to ISO 8217 DMA, with attached lube oil, HT and LT-cooling water pumps and engine specification fulfilling IMO Tier II emission limitations.

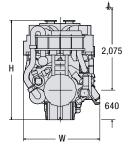
Rating definitions:

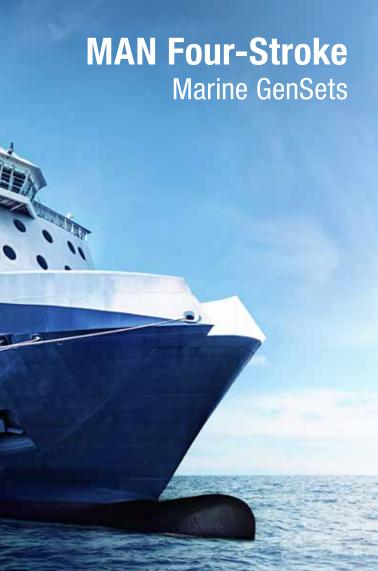
Marine Heavy Duty

- Recommended for vessels with an annual operating time of up to 5,000 hours
- Typical applications include, but are not limited to, work boats, offshore vessels and ferries
- Average load: up to 85%

Marine Medium Duty


- Recommended for vessels with an annual operating time of up to 3,000 hours
- Typical applications include, but are not limited to, work boats, offshore vessels, patrol boats and vachts
- Average load: up to 65%


Dimensions


L ₁	mm	2,678
L ₂	mm	334
L ₃	mm	3,012
Н	mm	2,115
W	mm	1,633
Dry weight*	t	8.5

^{*} Approximately

Engine dry weight does not include optional sea water cooler and may vary due to various configurations. The dimensions given are for guidance only.

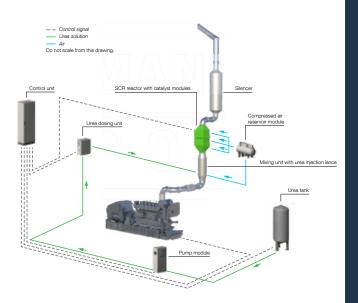
MAN Four-Stroke Marine GenSets - All Emission Requirements

Besides focus on power density and fuel economy, MAN Diesel & Turbo is committed to a steady reduction of the environmental impact of our engines.

IMO Tier II

MAN Diesel & Turbo has decreased NO_x emissions significantly by applying well-proven methods that ensure a cleaner and more efficient combustion process. Our four-stroke propulsion engines are IMO Tier II compliant by internal engine measures alone.

IMO Tier III


For operation in emission control areas (ECA), MAN Diesel & Turbo has developed a comprehensive range of selective catalytic reduction (SCR) systems that provides a tremendous reduction in NO_x levels surpassing IMO Tier III requirements.

MAN Diesel & Turbo is the first manufacturer to successfully produce and offer IMO Tier III compliant four-stroke marine engines based on a fully modular SCR kit covering our entire four-stroke engine portfolio.

In 2014 MAN Diesel & Turbo was awarded the first IMO Tier III EIAPP certificate together with the classification society DNV-GL.

MAN Diesel & Turbo's standard SCR system is available in fourteen different sizes covering our entire portfolio of four-stroke engines. Customised SCR systems are offered on demand.

MAN has developed a complete range of SCR systems that work perfectly with our engines for maximum system efficiency. The intelligent exhaust gas temperature control enables significant savings in fuel consumption as compared to third party supplier systems. MAN SCR systems work with MGO, MDO and HFO with up to 3.5% sulphur.

MAN GenSet plant with complete SCR system

100% MCR PTO-solutions for L21/31 and L27/38 GenSets

Optimised for both new and existing ship designs

PTO on alternator - external pump

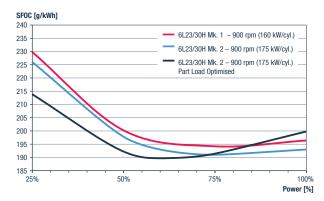
Pump on alternator - common base frame

PTO on front end - external pump (new feature)

Pump on front end - common base frame (new feature)

Fuel oil saving for small bore GenSet (part load optimised)

GenSets can be delivered with improved fuel oil consumption at low load and part load. The penalty will be higher SFOC at high load. The part-load optimised engine complies with the IMO Tier II limit.


The new tuning method, referred to as part-load optimisation, optimises the engine performance at approx. 60-65% MCR, as this is often the load range in which the GenSet is operating, but it can also be customised to other specific operating conditions.

With part load optimisation, fuel oil savings of up to 12 g/kWh can be obtained, depending on the engine type/model and load point.

Traditionally, GenSets are optimised at 85% MCR, because the power management system will engage additional GenSets when more power is needed.

With part-load optimisation, there is a fuel oil penalty when the load exceeds approx. 80% MCR, but this has no practical consequence as the GenSet rarely exceeds 85% MCR.

This is illustrated in the figure below. For further information, please contact MAN Diesel & Turbo.

Based on Project Guide figures for IMO Tier II engines – 60Hz: ISO reference condition, HFO/MDO, without pumps, tolerance +5% (not included)

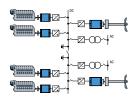
Diesel-Electric and Hybrid Propulsion Power Trains (HyProp ECO)

MAN Diesel & Turbo offers a full range of diesel-electric and hybrid propulsion power trains. Our solutions are designed and optimised to meet the highest efficiencies of a complete propulsion plant system covering the complete operational profile of the vessel. Our propulsion systems provide a well-balanced and tailormade solution with emphasis on flexibility and performance.

Our comprehensive propulsion packages include the complete array of required components from GenSets to propulsors, including switchboards, variable speed drives and propulsion motors. Full diesel-electric propulsion power trains as well as hybrid systems ensure the optimal technical and economical solution while maximising power demand flexibility.

With HyProp ECO, a new hybrid propulsion system has been developed combining the best propulsion performance with low investment costs.

High-efficient and customised power trains for diesel-electric and hybrid propulsion applications


HyProp ECO: Hybrid propulsion system

Energy Saving Electric Propulsion (EPROX)

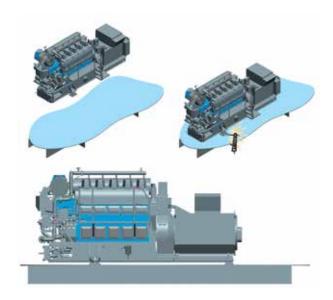
Recent developments in diesel-electric propulsion have resulted in electric systems where engines can operate at variable speed. The "classic" constant speed operation of GenSets is no longer a constraint. Utilising an enlarged engine operation map with a speed range of 60% to 100% paves the way to a high potential in fuel oil savings. Each speed set point of the engines can be adjusted independently in order to achieve a minimum fuel oil consumption according to the system load. The electric system using DC distribution enables a decoupled operation of the engines, propulsion drives, and other consumers of energy.

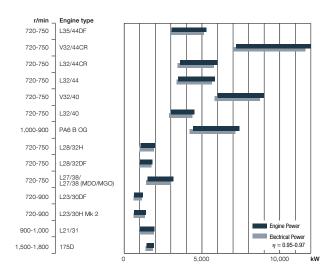
Another major advantage is the possible integration of energy storage sources, like batteries. They can reduce the transient loads on the engines and improve the dynamic response of the propulsion system. Fast load application is removed from the engines and load peaks are shaved. Also, emission free propulsion can be realized when running on the batteries. In addition, the energy storage sources will have a positive effect on engine maintenance.

MAN Diesel & Turbo offers this advanced package solution in close cooperation with leading E-suppliers.

EPROX energy-saving diesel electric propulsion plant

EPROX propulsion solution on anchor handling tug supply vessel


MAN L23/30H Monocoque GenSet - Continued development


The monocoque GenSet includes several updates of the tried and tested L23/30H engine, which are focused on weight reduction, vibration optimisation and simplified installation.

The most significant update is that the alternator is now a load-bearing component, with a 'top brace' connection to the engine. This enables up to 63% weight reduction of the base frame, which again results in weight reduction of up to 13% of the GenSet and a lower vibration level.

The three and four point 'deck-level' supports significantly simplify the GenSet installation process. This design is installed on a flat deck, which is a major reduction of the vessels foundation structure. Furthermore, applying only three conicals makes the GenSets self-leveling.

The monocoque GenSet application is available for all variants of the L23/30H engine.

GenSets

GenSets can be applied as auxiliary GenSets, GenSets for diesel-electric propulsion or for offshore applications.

Project specific demands can be clarified at an early project stage.

Tier III GenSets

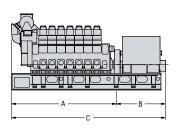
Four-stroke GenSets are Tier III compatible when a downstream SCR is added to clean the exhaust gas on a Tier II engine. The additional SCR will only have an impact on SFOC if the backpressure is increased.

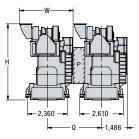
MAN Diesel & Turbo has been building auxiliary engines since 1929.

More than 20,000 GenSets, both from own production and from licensees, have been delivered over the years. Ever since, these engines have set the benchmark for the whole industry as an example of reliability and user friendliness.

Tier III in gas mode

Bore: 350 mm, Stroke: 440 mm


Speed	r/min	750		720		
Frequency	Hz	50		60		
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	
6L35/44DF	-	3,180	3,069	3,060	2,953	
7L35/44DF		3,710	3,580	3,570	3,445	
8L35/44DF	:	4,240	4,092	4,080	3,937	
9L35/44DF	:	4,770	4,603	4,590	4,429	
10L35/44DF		5.300	5.115	5.100	4.922	


Dimensions***

Cyl. No.		6	7	8	9	10
A	mm	6,270	6,900	7,480	8,110	8,690
B**	mm	3,900	4,100	4,400	4,600	4,800
C**	mm	10,170	11,000	11,880	12,710	13,490
W	mm	2,958	3,108	3,108	3,108	3,108
Н	mm	4,631	4,867	4,867	4,867	4,867
Dry mass**	t	85	94	103	110	118

^{*} Based on nominal generator efficiencies of 96.5%

^{***} Dimensions are not finally fixed

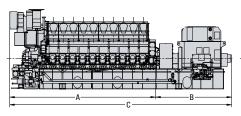
P Free passage between the engines, width 600 mm and height 2,000 mm

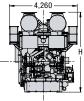
Q ~Min. distance between centre of engines: 3,400 mm (with gallery)

^{**} Depending on alternator applied

MAN V32/44CR

Tier III with SCR


Bore: 320 mm, Stroke: 440 mm


Speed	r/min	750		nin 750 720		20
Frequency	Hz	5	50		80	
		Eng. kW	Eng. kW Gen. kW1)		Gen. kW1)	
12V32/44CR		7,200	6,984	7,200	6,984	
14V32/44CF	R2)	7,840	7,605	7,840	7,605	
16V32/44CF	3	9,600	9,312	9,600	9,312	
18V32/44CF	R3)	10,800	10,476	10,800	10,476	
20V32/44CR		12,000	11,640	12,000	11,640	

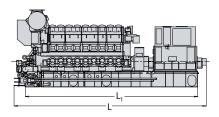
Dimensions

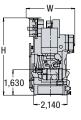
Cyl. No.		12	14	16	18	20
A	mm	5,382	6,012	6,642	7,272	7,902
В	mm	4,201	4,201	4,201	4,201	4,201
С	mm	11,338	11,968	12,598	13,228	13,858
Н	mm	5,014	5,014	5,014	5,014	5,014
Dry mass	t	117	131	144	159	172

- 1) Based on nominal generator efficiencies of 97%
- 2) 560 kW/cyl
- 3) 18V 32/44CR available rigidly mounted only

Tier III with SCR

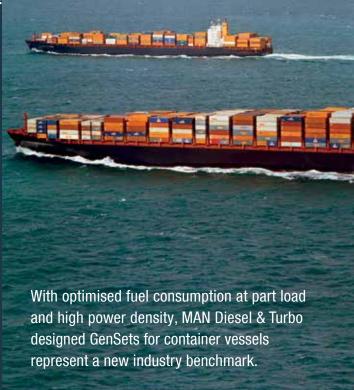
Bore: 320 mm, Stroke: 440 mm


Speed	r/min	7	750		720		
Frequency	Hz	50		60			
		Eng. kW	Gen. kW1)	Eng. kW	Gen. kW1)		
6L32/44CF	R	3,600	3,474	3,600	3,474		
7L32/44CF	(2)	3,920	3,783	3,920	3,783		
8L32/44CF	?	4,800	4,632	4,800	4,632		
9L32/44CF	R	5,400	5,211	5,400	5,211		
10L32/44CB		6.000	5.790	6.000	5.790		


Dimensions

Cyl. No.		6	7	8	9	10
L	mm	10,738	11,268	11,798	12,328	12,858
L ₁	mm	10,150	10,693	11,236	11,779	12,309
W	mm	2,490	2,490	2,573	2,573	2,573
Н	mm	4,768	4,768	4,955	4,955	4,955
Dry mass	t	71	78	84	91	97

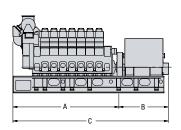
¹⁾ Based on nominal generator efficiencies of 96.5%

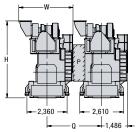

^{2) 560} kW/cyl

P Free passage between the engines, width 600 mm and height 2,000 mm

Q ~Min. distance between centre of engines: 2,835 mm (without gallery) ~3,220 mm (with gallery)

Exclusively for auxiliary GenSet operation. High power density and space saving GenSet with conventional injection and optimised SFOC for part-load operation.


Rore: 320 mm Stroke: 440 mm


Bore: 320 mm	i, Stroke: 4	40 MM				
Speed	r/min	7	750		20	
Frequency	Hz	5	50	60		
		Eng. kW	Gen. kW1)	Eng. kW	Gen. kW1)	
6L32/44		3,498	3,375	3,498	3,375	
8L32/44		4,664	4,500	4,664	4,500	
9L32/44		5,247	5,063	5,247	5,063	
101.32/44		5 830	5.625	5.830	5.625	

Dimensions

Dillicitatoria					
Cyl. No.		6	8	9	10
A	mm	6,470	7,531	8,061	8,590
В	mm	3,990	4,229	4,529	4,530
С	mm	10,460	11,760	12,590	13,120
W	mm	2,845	3,054	3,105	3,105
Н	mm	4,701	4,887	4,887	4,887
Dry mass	t	82	98	107	113

¹⁾ Based on nominal generator efficiencies of 96.5%

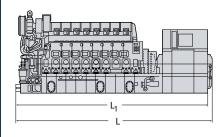
P Free passage between the engines, width 600 mm and height 2,000 mm

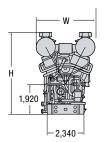
Q ~Min. distance between centre of engines: 2,835 mm (with gallery)

MAN V32/40

Tier II Tier III

Tier III with SCR


Bore: 320 mm, Stroke: 400 mm


Speed	r/min	<u>/min</u> 750 Hz 50		7:	20
Frequency	Hz			60	
		Eng. kW	Eng. kW Gen. kW*		Gen. kW*
12V32/40		6,000	5,820	6,000	5,820
14V32/40		7,000	6,790	7,000	6,790
16V32/40		8,000	7,760	8,000	7,760
18V32/40		9,000	8,730	9,000	8,730

Dimensions

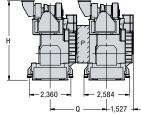
Cyl. No.		12	14	16	18
L	mm	11,045	11,710	12,555	13,185
L ₁	mm	10,450	11,115	11,950	12,580
W	mm	3,365	3,365	3,730	3,730
Н	mm	4,850	4,850	5,245	5,245
Dry mass	t	101	113	126	138

^{*} Based on nominal generator efficiencies of 97%

Tier III with SCR

Bore: 320 mm. Stroke: 400 mm


Speed	r/min	7	750		720		
Frequency	Hz	5	50	60			
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*		
6L32/40		3,000	2,895	3,000	2,895		
7L32/40		3,500	3,380	3,500	3,380		
8L32/40		4,000	3,860	4,000	3,860		
91.32/40		4.500	4.345	4.500	4.345		


Dimensions

Cyl. No.		6	7	8	9
A	mm	6,340	6,870	7,400	7,930
В	mm	3,415	3,415	3,635	3,635
С	mm	9,755	10,285	11,035	11,565
Н	mm	4,622	4,622	4,840	4,840
Dry Mass	t	75.0	79.0	87.0	91.0

^{*} Based on nominal generator efficiencies of 96.5%

GenSet also available with L32/40CR engine

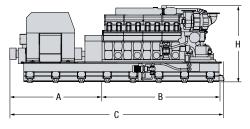
P Free passage between the engines, width 600 mm and height 2,000 mm

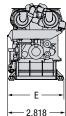
Q ~Min. distance between centre of engines: 2,835 mm (without gallery) ~3,220 mm (with gallery)

MAN PA6 B OG

Tier III with SCR

Bore 280 mm, Stroke 330 mm


Speed	r/min	1,000		9	00
Frequency	Hz	50		6	30
		Eng. kW	Eng. kW Gen. kW*		Gen. kW*
12PA6 B		4,440	4,307	4,200	4,074
16PA6 B		5,920	5,742	5,600	5,432
18PA6 B		6,660	6,460	6,300	6,111
20PA6 B		7,400	7,178	7,000	6,790


Dimensions**

Cyl. No.		12	16	18	20
A	mm	4,070	4,427	4,432	4,470
В	mm	4,600	5,637	6,097	6,557
C	mm	8,987	10,283	10,748	11,247
Н	mm	3,695	3,695	3,695	3,679
E	mm	2,670	2,670	2,670	2,740
Dry mass***	t	60	72	80	85

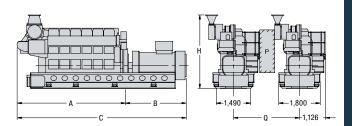
^{*} Nominal generator efficiencies: 97%

Permissible overload of 10% for 1 hour every other 12 hours of operation

^{**} Dimensions are based on operation under inclination up to 25 degrees in any direction

^{***}Incl. 5% tolerance, weight may vary due to different configurations Engine fuel: Distillate according to ISO 8217 DMA and DMZ

Tier III with SCR


Rore.	ኃደበ	mm	Stroke	330	mm

Speed	r/min	7	50	720		
Frequency	Hz		50	6	30	
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	
5L28/32H		1,100	1,045	1,050	1,000	
6L28/32H		1,320	1,255	1,260	1,200	
7L28/32H		1,540	1,465	1,470	1,400	
8L28/32H		1,760	1,670	1,680	1,600	
9L28/32H		1.980	1.880	1.890	1.800	

Dimensions

Cyl. No.		5	6	7	8	9
A	mm	4,279	4,759	5,499	5,979	6,199
В	mm	2,400	2,510	2,680	2,770	2,690
С	mm	6,679	7,269	8,179	8,749	8,889
Н	mm	3,184	3,184	3,374	3,374	3,534
Dry Mass	t	32.6	36.3	39.4	40.7	47.1

^{*} Based on nominal generator efficiencies of 95%

P Free passage between the engines, width 600 mm and height 2,000 mm

Q ~Min. distance between centre of engines: 2,655 mm (without gallery) ~2,850 mm (with gallery)

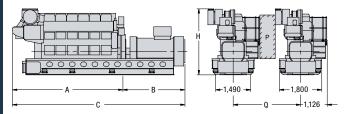
MAN L28/32DF

Tier III in gas mode

Bore: 280 mm, Stroke: 320 mm

Speed	r/min	7	50	720			
Frequency	Hz	5	50		60		
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*		
5L28/32DF		1,000	950	1,000	950		
6L28/32DF		1,200	1,140	1,200	1,140		
7L28/32DF		1,400	1,330	1,400	1,330		
8L28/32DF		1,600	1,520	1,600	1,520		
9L28/32DF		1,800	1,710	1,800	1,710		

Dimensions


Cyl. No.		5	6	7	8	9
A	mm	4,321	4,801	5,281	5,761	6,241
В	mm	2,400	2,510	2,680	2,770	2,690
С	mm	6,721	7,311	7,961	8,531	8,931
Н	mm	2,835	3,009	3,009	3,009	3,009
Dry Mass	t	32.6	36.3	39.4	40.7	47.1

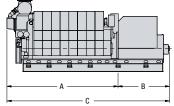
^{*} Based on nominal generator efficiencies of 95%

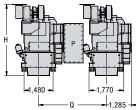
Gas / fuel ratio:

at load: 20-100% 93 / 7 (Tier II)
 at load: 20-100% 99 / 1 (Tier III)

Gas methane number ≥ 80

- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q ~Min. distance between centre of engines: 2,655 mm (without gallery) ~2,850 mm (with gallery)


Rore: 270 mm Stroke: 380 mm


Borc. 270 mm, Stroke. 300 mm									
Speed	r/min	750	/720	750/720 (MDO**/MGO) 50/60					
Frequency	Hz	50	/60						
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*				
5L27/38		1,600/1,500	1,536/ 1,440	-	-				
6L27/38		1,980	1,900	2,100	2,016				
7L27/38		2,310	2,218	2,450	2,352				
8L27/38		2,640	2,534	2,800	2,688				
9L27/38		2,970	2,851	3,150	3,024				

Dimensions

Cyl. No.		5	6	7	8	9
A	mm	4,346	4,791	5,236	5,681	6,126
В	mm	2,486	2,766	2,766	2,986	2,986
С	mm	6,832	7,557	8,002	8,667	9,112
Н	mm	3,712	3,712	3,899	3,899	3,899
Dry Mass	t	40.0	44.5	50.4	58.2	64.7

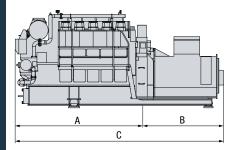
^{*} Based on nominal generator efficiencies of 96%

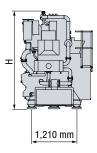
- P Free passage between the engines, width 600 mm and height 2,000 mm
- Q ~Min. distance between centre of engines: 2,900 mm (without gallery) ~3,100 mm (with gallery).

^{**} MDO viscosity must not exceed 6 mm2/s = cSt @ 40 °C

MAN L23/30H Mk 2

Tier III with SCR


Bore: 225 mm, Stroke: 300 mm


Speed r/min	750		720		900	
Frequency Hz	5	50	60		60	
	Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	Eng. kW	Gen. kW*
5L23/30H ECR	525	500	525	500	-	-
5L23/30H	675/740	641/703	650/710	618/675	-	-
6L23/30H	888	844	852	809	1,050	998
7L23/30H	1,036	984	994	944	1,225	1,164
8L23/30H	1,184	1,125	1,136	1,079	1,400	1,330

D	im	er	ısi	0	ns

Cyl. No.		5	6	6	7	7	8	8
	r/min	720/750	720/750	900	720/750	900	720/750	900
A	mm	3,415	3,785	3,785	4,155	4,276	4,525	4,896
В	mm	2,130	2,130	2,130	2,130	2,130	2,130	2,130
С	mm	5,545	5,915	5,915	6,285	6,406	6,655	7,025
Н	mm	2,625	2,625	2,625	2,625	2,625	2,625	2,625
Dry Mass	t	16.8	18.3	18.3	20.1	20.1	21.4	21.4

^{*} Based on nominal generator efficiencies of 95%

P Free passage between the engines, width 600 mm and height 2,000 mm

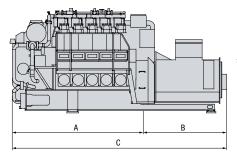
Q \sim Min. distance between centre of engines: 2,250 mm (without gallery) 2,600 mm (with gallery)

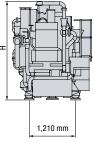
Tier III in gas mode

Bore: 225 mm. Stroke: 300 mm

Speed	r/min	750		7.	20	900		
Frequency	Hz	5	0 60		60			
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	
5L23/30DF		625	590	625	590	-	-	
6L23/30DF		750	710	750	710	900	855	
7L23/30DF		875	830	875	830	1,050	995	
8L23/30DF		1,000	950	1.000	950	1.200	1,140	

Dimensions


Cyl. No.		5	6	6	7	7	8	8
	r/min	720/750	720/750	900	720/750	900	720/750	900
A	mm	3,469	3,839	3,839	4,209	4,276	4,579	4,896
В	mm	2,202	2,252	2,252	2,302	2,302	2,352	2,352
С	mm	5,671	6,091	6,091	6,511	6,578	6,931	7,241
Н	mm	2749	2749	2749	2749	2749	2749	2749
Dry Mass	t	17.3	19.0	19.2	21.4	21.4	23.3	23.4


^{*} Based on nominal generator efficiencies of 95%

Gas / fuel ratio:

■ at load: 20-100% 99 / 1 (Tier III)

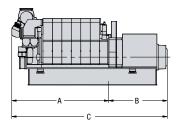
Gas methane number ≥ 80

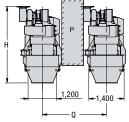
P Free passage between the engines, width 600 mm and height 2,000 mm

Q ~Min. distance between centre of engines: 2,250 mm (without gallery) 2,600 mm (with gallery)

MAN L21/31

Tier III with SCR


Bore: 210 mm, Stroke: 310 mm


Speed	r/min	1,000 50		900		
Frequency	Hz					
		Eng. kW	Gen. kW*	Eng. kW	Gen. kW*	
5L21/31		1,000	950	1,000	950	
6L21/31		1,320	1,254	1,320	1,254	
7L21/31		1,540	1,463	1,540	1,463	
8L21/31		1,760	1,672	1,760	1,672	
9L21/31		1,980	1,881	1,980	1,881	

Dimensions

	5	6	7	8	9
mm	3,959	4,314	4,669	5,572	5,927
mm	1,870	2,000	1,970	2,110	2,135
mm	5,829	6,314	6,639	7,682	8,062
mm	3,183	3,183	3,289	3,289	3,289
t	22.5	26.0	29.5	33.0	36.5
	mm mm	mm 1,870 mm 5,829 mm 3,183	mm 1,870 2,000 mm 5,829 6,314 mm 3,183 3,183	mm 1,870 2,000 1,970 mm 5,829 6,314 6,639 mm 3,183 3,183 3,289	mm 3,959 4,314 4,669 5,572 mm 1,870 2,000 1,970 2,110 mm 5,829 6,314 6,639 7,682 mm 3,183 3,183 3,289 3,289

Based on nominal generator efficiencies of 95%

P Free passage between the engines, width 600 mm and height 2,000 mm Q \sim Min. distance between centre of engines: 2,400 mm (without gallery) \sim 2,600 mm (with gallery).

Tier III with SCR

Engine Model	Rating Definition	kWm	kWe*	rpm (freq.)	SFOC at 100% MCR	SFOC at 75% MCR
12V175D-MEM	Diesel-Electric	1,440	1,376	1,500 (50 Hz)	192	197
12V1/5D-MEM	Medium Duty	1,800	1,720	1,800 (60 Hz)	195	203
12V175D-MEL	Diesel-Electric Light Duty	1,620	1,548	1,500 (50 Hz)	191	194
		1,920	1,834	1,800 (60 Hz)	195	201
12V175D-MA		1,620	1,548	1,500 (50 Hz)	191	194
12V1/5D-IVIA	Auxiliary Duty	1.920	1.834	1,800 (60 Hz)	195	201

^{* 3-}phase, 0.8 p.f., assumes alternator efficiency of 95.5%.

SFOC figures related to mechanical output and for distillates according to ISO 8217 DMA, with attached lube oil, HT and LT-cooling water pumps and engine specification fulfilling IMO Tier II emission limitations

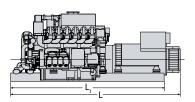
Rating definitions:

Marine Diesel-Electric Medium Duty

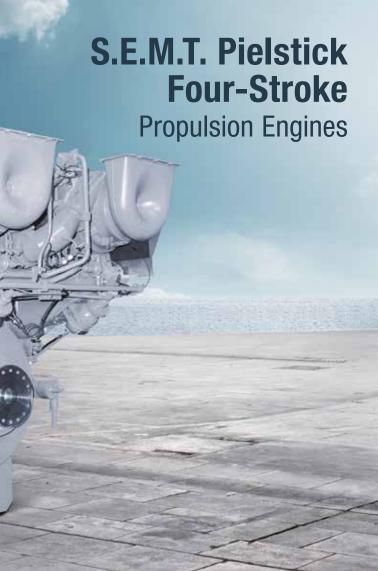
- For continuous power generation with variable load aboard vessels for diesel-electric drives
- Typical applications include, but are not limited to navy, offshore vessels and ferries
- Average load: up to 75%

Marine Diesel-Electric Light Duty

- For continuous power generation with variable load aboard vessels for diesel-electric drives
- Typical applications include, but are not limited to navy, offshore vessels and yachts
- Average load: up to 50%


Marine Auxiliary

- For continuous power generation with variable load aboard vessels for auxiliary use
- Average load: up to 50%


Dimensions

Dilliononono		
L,	mm	5,350
L	mm	5,530
W	mm	1,641
Н	mm	2,365
Dry weight	t	15.95

GenSet dimensions and weight shown are for guidance only. Details may vary due to different configurations.

S.E.M.T. Pielstick PA6 B STC

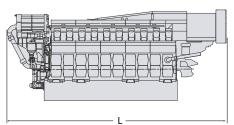
Tier III with SCR

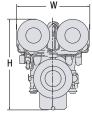
Bore: 280 mm, Stroke: 330 mm

Speed	r/min	1,050
mep	bar	22.8
		kW*
12PA6 B STC		4,860
16PA6 B STC		6,480
20PA6 B STC		8,100

Specific Fuel Oil Consumption (SFOC) to ISO conditions

MCR	100%	85%
PA6 B STC	<u>-1)</u>	-1)


Dimensions


Cyl. No.		12	16	20
L	mm	5,830	6,780	7,960
W	mm	2,340	2,340	2,640
Н	mm	3,124	3,124	3,166
Dry mass	t	31	37	43

Engine fuel: distillate according to ISO 8217 DMA

Engine rating: engine rating according to ISO 3046 conditions

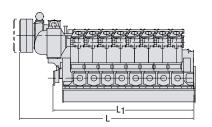
- * 110% load for one in six operating hours on navy vessels, with approval according to HSVR from DNV, available on special request
- SFOC values are project specific. Please contact MAN Diesel & Turbo for further information.

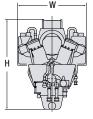
S.E.M.T. Pielstick PC2.6 B

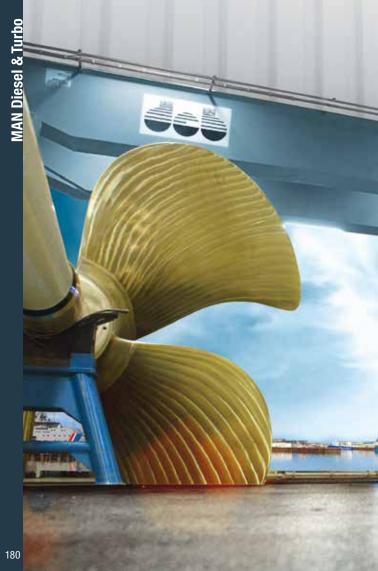
Tier III with SCR

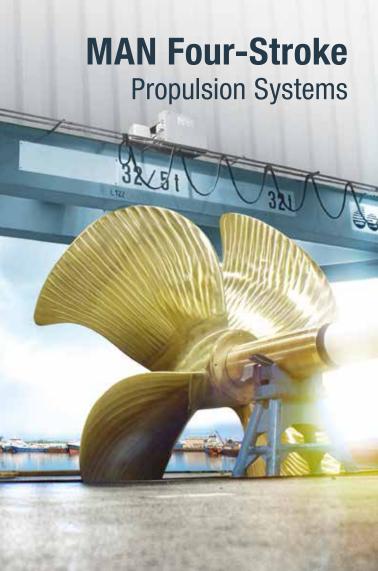
Bore: 400 mm, Stroke: 500 mm

Speed	r/min	600
mep	bar	23.9
		kW
12PC2.6 E	3	9,000
14PC2.6 E	3	10,500
16PC2.6 B		12,000


Specific Fuel Oil Consumption (SFOC) to ISO conditions


MCR	100%	85%
PC2.6 B	-1)	-1)


Dimensions


Cyl. No.		12	14	16
L	mm	9,100	9,840	10,580
L ₁	mm	5,960	6,700	7,440
W	mm	3,780	3,780	3,780
Н	mm	4,800	4,800	4,800
Dry mass	t	94	104	114

¹⁾ SFOC values are project specific. Please contact MAN Diesel & Turbo for further information.

MAN Alpha

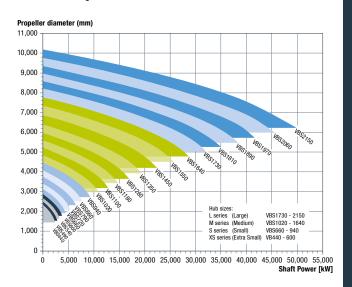
Propeller Programme - FPP and CPP

MAN Alpha Kappel propeller - four-bladed CP with fairing cone for rudder bulb

The MAN Alpha FPP portfolio covers:

- power range of 4-40 MW per shaft
- blade configurations for 3, 4, 5 and 6-bladed propellers
- propellers with integrated shaft line and stern tube solutions
- a wide range of stern tube lube and sealing systems
 oil, water, biodegradable oils.

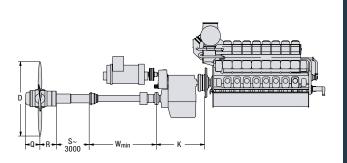
The MAN Alpha FPPs are characterised by the following benefits:


- High-efficient hydrodynamically optimised blade profiles
 Kappel designs available
- High reliability: robust approach with ample mechanical design margins
- High-efficient aft ship integration with rudder, rudder bulb, ducts, etc.
- Layouts for complete propulsion systems
- Plant calculations with upfront consideration to TVC, alignment and control systems.

MAN Four-Stroke Propulsion Systems

MAN Alpha Controllable Pitch Propeller

- As standard Mk 5 versions are 4-bladed optionally 3- and 5-bladed propellers are available on request
- The figures stated after VBS indicate the propeller hub diameter
- Standard blade/hub materials are Ni-Al-bronze, stainless steel is optional
- The propellers are available up to the highest ice classes. However the below standard programme, is based on 'no ice'.


VBS Mk 5 CPP Programme

		Prop. speed	D	Hub VBS	Q	R	Wmin	K	Gear mass	Prop. mass
Cyl.		r/min	mm	mm	mm	mm	mm	mm	t	t 1)
L51/6		100	4.050	1 000	705	070	1.050			15.2
6	6,000	160	4,250	1,020	795 914	879	1,650			
6 6	6,000	100	4,800	1,180		964	1,650			18.6
- 0	7,000	160	5,600 4,400	1,100	975 851	1,036	1,700			17.3
<u>'</u>				1,180	914					21.3
' 7	7,000	130	5,000			989 1,096	1,700			26.7
8	8,000	160	5,850 4,550	1,350	1,037 914	989	1,700			20.7
8	8,000	130	5,150	1,260	975		1,700			23.8
-8	8,000	100	6,000	1,450	1,114	1,036	1,750			30.1
9	9,000	160	4,700	1,180	914	989	1,700			21.9
9	9,000	130	5,300	1,260	975	1,036	1,700			25.4
9	9,000	100	6,200	1,450	1,114	1,148	1,800			33.4
9	9,000	100	0,200	1,450	1,114	1,140	1,000			33.4
V48/6	60CR									
12	14,400	160	4,950	1,350	1,037	1,096	1,800	2,620	19.9	26.7
12	14,400	130	5,600	1,450	1,114	1,163	1,850	2,770	27.0	33.2
12	14,400	100	6,600	1,640	1,260	1,256	1,900	3,140	42.9	42.2
14	16,800	160	5,100	1,450	1,114	1,163	1,850	2,775	23.5	31.7
14	16,800	130	5,850	1,550	1,187	1,208	1,900	2,905	31.9	38.1
14	16,800	100	6,850	1,730	1,330	1,307	1,950	3,355	48.2	48.5
16	19,200	160	5,260	1,450	1,114	1,163	1,850	2,805	26.8	32.9
16	19,200	130	6,050	1,640	1,260	1,256	1,950	3,155	37.1	43.9
16	19,200	100	7,100	1,730	1,330	1,367	2,000	3,455	57.8	56.3
18	21,600	160	5,400	1,550	1,187	1,213	1,900	2,905	30.9	37.3
18	21,600	130	6,200	1,640	1,260	1,266	1,950	3,155	37.4	45.5
18	21,600	100	7,300	1,810	1,390	1,420	2,000	3,655	68.3	61.4
L48/6										
_6	7,200	172	4,250	1,100	851	970	1,700			19.1
_6	7,200	143	4,800	1,180	914	989	1,700			23.0
_6	7,200	112	5,600	1,350	1,037	1,096	1,700			29.9
_7	8,400	169	4,400	1,100	851	995	1,700			21.4
7	8,400	141	5,000	1,260	975	1,036	1,700			26.4
7	8,400	110	5,850	1,350	1,037	1,096	1,750			32.3
- 8	9,600	166	4,550	1,180	914	989	1,700			24.2
_8	9,600	139	5,150	1,260	975	1,036	1,700			28.2
8	9,600	110	6,000	1,450	1,114	1,148	1,800			37.9
9	10,800	163	4,700	1,260	975	1,036	1,700			27.2
9	10,800	137	5,300	1,350	1,037	1,096	1,800			33.2
_9	10,800	108	6,200	1,450	1,114	1,163	1,800			40.2

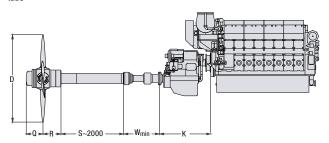
		Prop. speed	D	Hub VBS	Q	R	Wmin	K	Gear mass	Prop. mass
Cyl.	kW	r/min	mm	mm	mm	mm	mm	mm	t	t 1)
L35/44	IDF									
6	3,180	208	3,300	790	600	692	1,400			6.4
6	3,180	167	3,800	940	714	886	1,530			8.7
6	3,180	130	4,400	1,020	775	896	1,530			10.9
7	3,710	198	3,500	860	653	750	1,530			7.9
7	3,710	161	4,000	940	714	886	1,530			9.5
7	3,710	128	4,600	1,100	836	1,001	1,560			12.7
8	4,240	197	3,600	860	653	750	1,530			8.4
8	4,240	165	4,050	940	714	886	1,530			10.0
8	4,240	127	4,750	1,100	836	1,001	1,560			13.6
9	4,770	202	3,600	940	714	886	1,530			9.3
9	4,770	167	4,100	1,020	775	896	1,560			11.9
9	4,770	130	4,800	1,100	836	1,001	1,630			14.7
10	5,300	199	3,700	940	714	886	1,560			10.2
10	5,300	166	4,200	1,020	775	896	1,560			12.5
10	5,300	126	5,000	1,180	897	1,004	1,630			16.8

¹⁾ Smin and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

7,200 7,200	r/min	mm	mm		R	Wmin	K	mass	mass
7,200	007			mm	mm	mm	mm	t	t 1)
		0.000	1 000	705	070	4.050			
7,200	207	3,800	1,020	795	879	1,650			14.4
	167	4,400	1,100	851	920	1,700			17.4
7,200	128	5,250	1,260	975	1,036	1,700			22.9
7,840	199	3,950	1,020	795	879	1,650			15.2
									19.7
7,840		5,400			1,036	1,700			24.4
9,600	205	4,050	1,100	851	945	1,700			18.1
9,600	165	4,650	1,180	914	989	1,700			21.8
9,600	127	5,550	1,350	1,037	1,096	1,750			28.2
10,800	205	4,150	1,180	914	989	1,700			20.2
10,800	164	4,750	1,260	975	1,036	1,700			24.2
10,800	126	5,700	1,450	1,114	1,148	1,800			32.7
12,000	204	4,250	1,180	914	989	1,700			21.2
12,000	163	4,850	1,260	975	1,036	1,750			25.8
12,000	124	5,850	1,450	1,114	1,163	1,800			34.7
CR									
3,600	206	3,350	860	653	750	1,400			8.9
3,600	170	3,800	940	714	886	1,520			10.4
3,600	130	4,450	1,020	775	896	1,520			12.4
4,200	200	3,500	860	653	750	1,520			9.7
4,200	167	3,950	940	714	886	1,520			11.2
4,200	130	4,600	1,100	836	1,001	1,550			14.3
4,800	199	3,600	940	714	886	1,520			10.9
4,800	167	4,050	1,020	775	896	1,520			12.5
4,800	129	4,750	1,100	836	1,001	1,630			16.2
5,400	200	3,650	940	714	886	1,520			11.3
5,400	166	4,150	1,020	775	896	1,550			13.6
5,400	128	4,900	1,180	897	1,004	1,630			17.9
6,000	201	3,700	940	714	886	1,550			12.3
6,000	164	4,250	1,020	775	896	1,630			15.1
6,000	128	5,000	1,180	897	1,004	1,650			18.9
1	9,600 9,600 10,800 10,800 12,000 12,000 12,000 12,000 12,000 12,000 12,000 14,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 5,400 5,400 6,000 6,000	7,840 125 9,600 205 9,600 165 9,600 127 10,800 164 10,800 126 12,000 204 12,000 124 28 3,600 206 3,600 170 3,600 130 4,200 167 4,200 167 4,800 199 4,800 199 4,800 199 4,800 106 5,400 201 6,000 201 6,000 164	7,840 125 5,400 9,600 205 4,050 9,600 165 4,650 9,600 127 5,550 10,800 164 4,750 10,800 164 4,750 12,000 204 4,250 12,000 124 5,850 28 3,600 206 3,350 3,600 170 3,800 3,600 170 3,800 4,200 200 3,500 4,200 167 3,950 4,200 167 3,950 4,800 199 3,600 4,800 199 3,600 4,800 199 3,600 4,800 199 4,750 5,400 200 3,650 5,400 128 4,900 6,000 201 3,700 6,000 164 4,250	7,840 125 5,400 1,260 9,600 205 4,050 1,100 9,600 165 4,650 1,180 9,600 127 5,550 1,350 10,800 205 4,150 1,180 10,800 164 4,750 1,260 12,000 204 4,250 1,180 12,000 124 5,850 1,260 12,000 124 5,850 1,450 1,450 1,200 204 4,250 1,180 12,000 124 5,850 1,450 1,200 124 5,850 1,450 1,200 124 5,850 1,450 1,200 124 5,850 1,450 1,200 1,100 1,100 1,100 1,100 1,100 1,200 1,100 1,100 1,200 1,100 1,100 1,200 1,100 1,100 1,200 1,100 1,100 1,200 1,100 1,100 1,200 1,100 1,100 1,200	7,840 125 5,400 1,260 975 9,600 205 4,050 1,100 851 9,600 165 4,650 1,180 914 9,600 127 5,550 1,350 1,037 10,800 205 4,150 1,180 914 10,800 164 4,750 1,260 975 10,800 126 5,700 1,450 1,114 12,000 204 4,250 1,180 914 12,000 163 4,850 1,260 975 12,000 124 5,850 1,450 1,114 12,000 124 5,850 1,450 1,114 12,000 124 5,850 1,450 1,114 12,000 124 5,850 1,450 1,114 20 130 3,800 940 714 3,600 206 3,350 860 653 3,600 130 4,450	7,840 125 5,400 1,260 975 1,036 9,600 205 4,050 1,100 851 945 9,600 165 4,650 1,180 914 989 9,600 127 5,550 1,350 1,037 1,096 10,800 205 4,150 1,180 914 989 10,800 164 4,750 1,260 975 1,036 10,800 126 5,700 1,450 1,114 1,148 12,000 204 4,250 1,180 914 989 12,000 163 4,850 1,260 975 1,036 12,000 124 5,850 1,450 1,114 1,163 20 12,200 163 4,850 1,260 975 1,036 12,000 124 5,850 1,450 1,114 1,163 3,600 206 3,350 860 653 750 3,600	7,840 125 5,400 1,260 975 1,036 1,700 9,600 205 4,050 1,100 851 945 1,700 9,600 165 4,650 1,180 914 989 1,700 9,600 127 5,550 1,350 1,037 1,096 1,750 10,800 205 4,150 1,180 914 989 1,700 10,800 164 4,750 1,260 975 1,036 1,700 10,800 126 5,700 1,450 1,114 1,148 1,800 12,000 204 4,250 1,180 914 989 1,700 12,000 163 4,850 1,260 975 1,036 1,750 12,000 124 5,850 1,450 1,114 1,163 1,800 28 3,600 206 3,350 860 653 750 1,400 3,600 170 3,800	7,840 125 5,400 1,260 975 1,036 1,700 9,600 205 4,050 1,100 851 945 1,700 9,600 165 4,650 1,180 914 989 1,700 9,600 127 5,550 1,350 1,037 1,096 1,750 10,800 205 4,150 1,180 914 989 1,700 10,800 164 4,750 1,260 975 1,036 1,700 10,800 126 5,700 1,450 1,114 1,148 1,800 12,000 204 4,250 1,180 914 989 1,700 12,000 163 4,850 1,260 975 1,036 1,750 12,000 124 5,850 1,450 1,114 1,163 1,800 **B **B **3,600 **20 **1,000 **20 **3,850 **3,850 **1,450 **1,450 **1,114 **1,14 **1,163 **1,800 **20 **3,600 **3,600 **3,600 **3,600 **3,600 **3,600 **3,600 *	7,840 125 5,400 1,260 975 1,036 1,700 9,600 205 4,050 1,100 851 945 1,700 9,600 165 4,650 1,180 914 989 1,700 9,600 127 5,550 1,350 1,037 1,096 1,750 10,800 205 4,150 1,180 914 989 1,700 10,800 164 4,750 1,260 975 1,036 1,700 10,800 126 5,700 1,450 1,114 1,148 1,800 12,000 204 4,250 1,180 914 989 1,700 12,000 163 4,850 1,260 975 1,036 1,750 12,000 124 5,850 1,450 1,114 1,163 1,800 **B **B **3,600 **20 **20 **3,500 **B **B **6 **6 **53 **750 **1,400 **3,600 **14 **86 **1,520 **4,200 **13,500 **3,500 **86 **6 **6 **53 **750

¹⁾ Smin and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

		Prop. speed	D	Hub VBS	Q	R	Wmin	K	Gear mass	Prop.
Cyl.	kW	r/min	mm	mm	mm	mm	mm	mm	t	t 1)
V32/40)									
12	6,000	187	3,950	1,020	775	896	1,560			15.2
12	6,000	159	4,400	1,100	836	970	1,630			18.3
12	6,000	128	5,050	1,180	914	989	1,700			22.6
14	7,000	183	4,100	1,020	775	901	1,630			17.1
14	7,000	158	4,550	1,100	836	970	1,650			19.8
14	7,000	127	5,250	1,260	975	1,036	1,700			26.1
16	8,000	183	4,200	1,100	836	970	1,650			19.3
16	8,000	155	4,700	1,180	914	989	1,700			23.6
16	8,000	126	5,400	1,260	975	1,036	1,700			27.8
18	9,000	181	4,300	1,100	836	995	1,700			21.0
18	9,000	153	4,850	1,260	975	1,036	1,700			26.2
18	9,000	123	5,600	1,350	1,037	1,096	1,740			31.6
L32/40										
_6	3,000	205	3,300	790	639	692	1,400			8.8
6	3,000	171	3,700	860	653	745	1,400			9.9
_6	3,000	137	4,200	940	714	886	1,520			12.0
_ 7	3,500	199	3,450	860	653	745	1,400			9.8
7	3,500	168	3,850	940	714	886	1,520			11.8
7	3,500	134	4,400	1,020	775	896	1,520			13.9
8	4,000	198	3,550	860	653	745	1,400			10.3
8	4,000	165	4,000	940	714	906	1,520			12.5
8	4,000	133	4,550	1,100	836	1,001	1,560			16.3
9	4,500	195	3,650	940	714	906	1,520			12.2
9	4,500	164	4,100	1,020	775	896	1,520			14.1


⁸³⁶ 1) Smin and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

1,006

1,560

4,500 134 4,650

1,100

17.1

		Prop. speed	D	Hub VBS	Q	R	Wmin	K	Gear mass	Prop. mass
Cyl.	kW	r/min	mm	mm	mm	mm	mm	mm	t	t 1)
V28/3	33D STC									
12	6,000	187	3,700	940	735	828	1,600			10.9
12	6,000	155	4,000	1,020	795	879	1,650			13.1
12	6,000	140	4,300	1,100	851	920	1,650			14.5
16	8,000	211	3,700	1,020	795	879	1,650			13.1
16	8,000	184	4,000	1,100	851	920	1,650			14.7
16	8,000	159	4,300	1,100	851	945	1,700			16.2
20	10,000	228	3,700	1,100	851	920	1,650			14.6
20	10,000	199	4,000	1,100	851	945	1,700			16.3
20	10,000	176	4,300	1,180	914	989	1,700			18.3

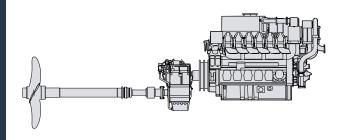

¹⁾ Smin and propeller mass are based on 6,000 mm propeller shaft and 3,000 mm stern tube

L27/3	8							
6	2,040	258	2,650	660	501	631	1,320	4.9
6	2,040	218	2,950	720	547	650	1,350	5.7
6	2,040	191	3,200	790	639	692	1,350	6.6
6	2,040	163	3,500	790	639	692	1,350	7.0
6	2,040	152	3,650	860	653	745	1,350	7.8
7	2,380	247	2,800	720	547	513	1,350	5.7
7	2,380	211	3,100	720	547	513	1,350	6.1
7	2,380	186	3,350	790	639	692	1,350	7.0
7	2,380	161	3,650	860	653	745	1,400	8.1
7	2,380	150	3,800	860	653	745	1,400	8.4
8	2,720	242	2,900	720	547	513	1,350	6.1
8	2,720	209	3,200	790	639	692	1,350	6.9
8	2,720	186	3,450	790	639	692	1,400	7.5
8	2,720	173	3,600	860	653	745	1,400	8.3
8	2,720	147	3,950	940	714	886	1,400	9.7
9	3,060	243	2,950	720	547	513	1,350	6.3
9	3,060	206	3,300	790	639	692	1,400	7.5
9	3,060	184	3,550	860	653	745	1,400	8.5
9	3,060	172	3,700	860	653	745	1,400	8.7
9	3,060	147	4,050	940	714	886	1,530	10.5

¹⁾ Smin and propeller mass are based on 4,000 mm propeller shaft and 2,000 mm stem tube for 21/31, 27/38 and 6,000 mm propeller shaft and 3,000 mm stem tube for the other types

0.4	LAM	Prop.	D	Hub VBS	Q	R	Wmin	K	Gear mass	Prop.
Cyl. L21/3	kW 1	r/min	mm	mm	mm	mm	mm	mm	t	t 1)
		074	0.050	000	450	500	4.000			
_6	1,290	274	2,350	600	456	566	1,320			3.8
6	1,290	232	2,600	600	456	566	1,320			4.1
6	1,290	205	2,800	660	501	631	1,320			4.4
6	1,290	181	3,000	660	501	631	1,320			4.7
7	1,505	260	2,500	600	456	566	1,320			4.1
7	1,505	223	2,750	660	501	631	1,320			4.6
7	1,505	198	2,950	660	501	631	1,320			4.8
7	1,505	176	3,150	720	547	650	1,320			5.4
8	1,720	261	2,550	600	456	581	1,320			4.4
8	1,720	219	2,850	660	501	631	1,320			4.8
8	1,720	196	3,050	720	547	650	1,320			5.1
8	1,720	176	3,250	720	547	650	1,350			5.6
9	1,935	262	2,600	660	501	631	1,320			4.7
9	1,935	221	2,900	720	547	650	1,320			5.4
9	1,935	199	3,100	720	547	650	1,350			5.9
9	1,935	188	3,200	720	547	650	1,350			6.0

¹⁾ Smin and propeller mass are based on 4,000 mm propeller shaft and 2,000 mm stern tube for 21/31, 27/38 and 6,000 mm propeller shaft and 3,000 mm stem tube for the other types

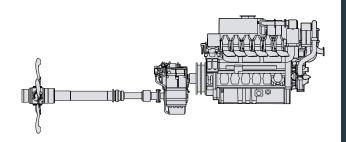


MAN Alpha FPP solutions for MAN 175D

Engine rating 1)	Engine power	Engine speed	Propeller speed	Propeller diameter	Propeller 4-bladed	Shaft diameter	Design speed
12V175D	kW	r/min	r/min	mm	type	mm	knots
MH	1,740	1,800	884	1,300	FPP	155	25
MH	1,740	1,800	702	1,400	FPP	155	25
MH	1,740	1,800	620	1,450	FPP	165	25
MH	1,740	1,800	523	1,600	FPP	175	25
MH	1,740	1,800	450	1,750	FPP	175	20
MH	1,740	1,800	400	1,850	FPP	185	20
MH	1,740	1,800	360	2,000	FPP	185	20
MH	1,740	1,800	331	2,100	FPP	195	20
MH	1,740	1,800	302	2,250	FPP	195	15
MH	1,740	1,800	288	2,300	FPP	205	15
MH	1,740	1,800	261	2,450	FPP	215	15
MH	1,740	1,800	247	2,500	FPP	215	15
MM	2,220	1,900	741	1,300	FPP	165	25
MM	2,220	1,900	654	1,450	FPP	175	25
MM	2,220	1,900	552	1,550	FPP	185	25
MM	2,220	1,900	475	1,750	FPP	185	20
MM	2,220	1,900	422	1,850	FPP	195	20
MM	2,220	1,900	380	2,000	FPP	205	20
MM	2,220	1,900	350	2,100	FPP	205	20
MM	2,220	1,900	319	2,200	FPP	215	15
MM	2,220	1,900	304	2,250	FPP	215	15
MM	2,220	1,900	275	2,500	FPP	225	15

¹⁾ Engine rating designations: MH = Marine 'Heavy Duty' and MM = Marine 'Medium Duty'

Propellers for the MAN 12V175D engines are optimized for a diesel-mechanical twin screw vessel operating at 85% engine rating. The standard propeller programme is dimensioned according to Lloyd's Register No Ice.



MAN Alpha CPP solutions for MAN 175D

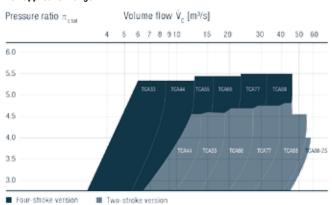
Engine rating 1)	Engine power	Engine speed	Propeller speed	Propeller diameter	Propeller hub diam.	Shaft diameter	Design speed
12V175D	kW	r/min	r/min	mm	mm	mm	knots
MH	1,740	1,800	884	1,250	440	155	25
MH	1,740	1,800	702	1,350	440	155	25
MH	1,740	1,800	620	1,450	440	165	25
MH	1,740	1,800	523	1,600	490	175	25
MH	1,740	1,800	450	1,750	490	175	20
MH	1,740	1,800	400	1,850	490	185	20
MH	1,740	1,800	360	2,000	540	185	20
MH	1,740	1,800	331	2,100	540	195	20
MH	1,740	1,800	302	2,200	540	195	15
MH	1,740	1,800	288	2,300	600	205	15
MH	1,740	1,800	261	2,450	600	215	15
MH	1,740	1,800	247	2,500	600	215	15
MM	2,220	1,900	741	1,350	440	165	25
MM	2,220	1,900	654	1,450	440	175	25
MM	2,220	1,900	552	1,550	490	185	25
MM	2,220	1,900	475	1,750	490	185	20
MM	2,220	1,900	422	1,850	540	195	20
MM	2,220	1,900	380	2,000	540	205	20
MM	2,220	1,900	350	2,100	600	205	20
MM	2,220	1,900	319	2,250	600	215	15
MM	2,220	1,900	304	2,300	600	215	15
MM	2,220	1,900	275	2,500	660	225	15

¹⁾ Engine rating designations: MH = Marine 'Heavy Duty' and MM = Marine 'Medium Duty'

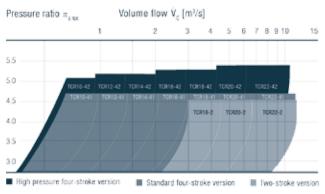
Propellers for the MAN 12V175D engines are optimized for a diesel-mechanical twin screw vessel operating at 85% engine rating. The standard propeller programme is dimensioned according to Lloyd's Register No Ice.

MAN Exhaust Gas Turbochargers

MAN Diesel & Turbo has a long and successful track record in the development of exhaust gas turbochargers for low, medium and high-speed diesel and gas engines. Drawing on its unrivalled expertise in the design and manufacture of this crucial engine component, MAN Diesel & Turbo can offer you world-leading technology that helps you maximise the efficiency of your operations.


MAN turbochargers are designed to deliver peak performance throughout their working lives – in some of the harshest conditions encountered anywhere in the world. This is achieved by combining three elements: simplicity, flexibility and reliability. For example, we develop and build our turbochargers to make installation, operation, servicing and maintenance as easy and efficient as possible. This reduces your initial capital investment and results in lower lifecycle costs.

Applications

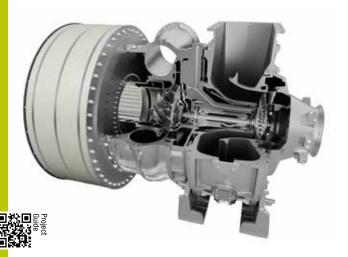

- Marine propulsion
- Marine gensets
- Power generation
- Excavators
- Mining
- Off-road vehicles
- Locomotives
- industrial
- Offshore

MAN Exhaust Gas Turbochargers

TCA application range

TCR application range

MAN TCA Series


Technical data

Turbine type	Axial flow turbine
Max. permissible temp.	500 °C two-stroke / 650 °C four-stroke
Pressure ratio	up to 5.5
Suitable for HFO, MDO,	pas

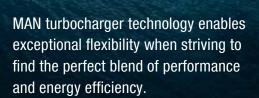
Turbocharger programme

		narged engine ut kW	Max. permissible	
Type	Two-stroke	Four-stroke	Speed	Mass
	le* = 8.0 kg/kWh	le* = 6.5 kg/kWh	rpm	kg
TCA33	-	5,400	27,800	1,370
TCA44	7,000	7,900	22,500	1,950
TCA55	9,600	10,400	20,000	3,200
TCA66	13,700	14,800	16,900	5,300
TCA77	19,400	21,000	14,200	8,330
TCA88	30,000	30,000	12,000	14,000

^{*} Specific air consumption

MAN TCR Series

Technical data

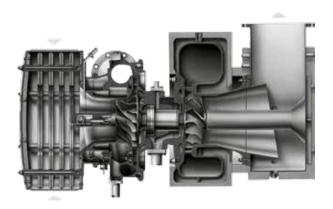

Turbine type	Radial flow turbine
Max. permissible temp.	650 °C
Pressure ratio	up to 5.4
Suitable for HEO MDO	nas

Turbocharger programme

	Max. supercharged engine output kW		Max. permissible	
Type	Two-stroke	Four-stroke	Speed	Mass
	le* = 7.0 kg/kWh	le* = 6.5 kg/kWh	rpm	kg
TCR10	=	600	85,000	50
TCR12	-	880	70,900	100
TCR14	=	1,300	58,700	110
TCR16	-	1,850	48,800	180
TCR18	2,700	2,750	40,300	300
TCR20	4,000	4,000	33,400	500
TCR22	7,000	6,850	25,600	1,050

^{*} Specific air consumption

MAN NR/S Series


Technical data

Turbine type	Radial flow turbine			
Max. permissible temp.	650 °C (opt. 720 °C)			
Pressure ratio	up to 4.5			
Suitable for HFO, MDO,	gas			

Turbocharger programme

	Max. supercharged	Max. permissible	Mass
Type	engine output kW	speed rpm	kg
NR12/S	670	75,000	155
NR14/S	950	64,000	190
NR17/S	1,350	52,600	260
NR20/S	1,870	44,700	350
NR24/S	2,690	37,300	505
NR29/S	3,820	31,300	780
NR34/S	5,400	26,300	1,450

Specific air consumption le = 7 kg/kWh

MAN ECOCHARGE

MAN ECOCHARGE two-stage turbocharging is suitable for high and medium-speed engines of all fuel types and for application in all engine power ranges. Extremely high efficiencies and pressure ratios enable increased power density and improved key engine parameters. For example, it is possible to use a smaller engine for the same required power output or to achieve lower NO_x emissions and lower specific fuel oil consumptions (SFOC).

As a compact two-stage unit, the MAN ECOCHARGE delivers outstanding turbocharging efficiency. A variety of product types and sizes are available, ensuring the perfect turbocharger-to-engine-fit. MAN ECOCHARGE always consists of a clever combination of high and low-pressure turbochargers. While MAN TCX has been specifically designed for high-pressure applications, MAN TCA and MAN TCR round up the package as low-pressure turbochargers.

MAN TCX Series

Technical data

Turbine type	Mixed flow turbine
Max. permissible temp.	650 °C
Pressure ratio (two stages)	up to 10.5
Suitable for HEO MDO gas	

TCX turbocharger programme

	Max. engine output*	Max. permissible speed	
Туре	kW	rpm	Mass kg
TCX17	8,500	40,980	470
TCX19	11,900	34,550	785
TCX21	16,900	29,000	1,325
TCX23	23,900	24,390	2,230

^{*} le = 6 kg/kWh; pHPCin = 3 bar; THPCin = 45 °C

MAN ETB

The EGR blower MAN ETB is suitable for exhaust gas recirculation (EGR) engines of all fuel types in all application ranges. Specifically designed for EGR systems, the MAN ETB's active control plays an important role in enabling these systems to reach IMO Tier III emission standards. The required EGR operating conditions are achieved by using a high-speed electric motor directly coupled to the compressor wheel and controlled by a frequency converter.

The MAN ETB features a highly efficient blower wheel, optimised for low-pressure ratios. The materials used are designed to withstand corrosive agents. High blower availability and variable speed operation ensure IMO Tier III compliance in emission controlled areas (ECAs).

MAN PrimeServ

MAN | PrimeServ

Service with Passion

MAN Diesel & Turbo is offering a strong after sales service with a clear performance commitment, qualified and reliable experts and tailor-made solutions – all combined in our global service brand MAN PrimeServ.

Our approach is simple, yet effective: Premium service performed with passion meeting **every customer's needs**. We take the best people, qualify them professionally, listen to our customers, and provide optimum flexibility and reliability in the services we offer.

We provide our customers with outstanding services, we apply the three MAN PrimeServ key-concepts in everything we do: Customer Proximity, Solution Orientation and Technical Competence.

Customer Proximity

MAN PrimeServ provides excellent global support through a worldwide network of service facilities. Our local presence ensures the best possible customer proximity. Our aim is to consistently meet and exceed your expectations. Whenever you require spares, technical expertise or qualified repair assistance, feel free to contact your nearest MAN PrimeServ partner.

Solution Orientation

For more than one hundred years, MAN PrimeServ has been a reliable partner for service solutions. We offer tailor-made service and first class technical support for every customer – 365 days a year, 24 hours per day. Your requirements are the benchmark for our activities. Furthermore, we are committed to qualify our customers in the best way possible, so that the equipment and installations we supply can be operated and maintained in the most efficient and safest way.

Technical Competence

Our global network consists of highly-skilled experts using state-of-the-art technology. Performance according to the highest safety and quality standards has caused our technology-leadership as OEM.

Our unique efficiency in service and technical competence shows that we know how to keep our products reliable and productive.

Environment

Environmental protection plays a crucial role to us – as it does for our customers. Our engineers develop technologies to reduce emissions and are working on new ways to increase the efficiency of your installations. MAN PrimeServ provides integral solutions to encounter and embrace complex regulations. We sharply focus on fulfilling all emission standards. Integration comes into play when existing engines need to be retrofitted to modern and clean dual fuel engines.

MAN | PrimeServ

MAN Diesel & Turbo provides dual-fuel retrofit solutions based on the latest state-of-the-art technology.

Our Heritage Brands

MAN PrimeServ is our brand label for high quality after sales support for the complete product portfolio of MAN Diesel & Turbo. Through refinements to our products and repair techniques, we ensure and build on our technological leadership and technical expertise as an original equipment manufacturer (OEM) for the brands united under MAN Diesel & Turbo. Our aim is to consistently meet and exceed your expectations with innovative solutions tailored to your needs. We are the OEM for all MAN Diesel & Turbo brands and heritage brands such as:

- Burmeister & Wain (B&W)
- Mirrlees
- PaxmanRuston
- Pielstick
- Alpha Diesel
- Holeby GenSets

MAN | PrimeServ HOMEPAGE

MAN | PrimeServ LOCATION FINDER

Headquarters

Germany

Four-stroke Propulsion Engines, Propulsion Systems and Exhaust

Gas Turbochargers:

MAN Diesel & Turbo SE

Stadtbachstrasse 1 D-86153 Augsburg Tel.: +49 821 322 0 Fax: +49 821 322 3382

info-aug@mandieselturbo.com www.dieselturbo.man.eu

Germany

Turbomachine development, production and maintenance

MAN Diesel & Turbo SE Steinbrinkstraße 1

D-46145 Oberhausen Tel.: +49 208 692 1

turbomachinery@mandieselturbo.com

Denmark

Two-stroke Engines and Marine GenSets:

MAN Diesel & Turbo

Teglholmsgade 41 DK-2450 Copenhagen SV

Tel.: +45 3385 1100 Fax +45 3385 1030

info-cph@mandieselturbo.com

Propellers, Aft Ship and Propulsion Control Systems:

MAN Diesel & Turbo

Niels Juels Vej 15

DK-9900 Frederikshavn Tel.: +45 9620 4100 Fax: +45 9620 4030

info-frh@mandieselturbo.com

Czech Republic

Exhaust Gas Turbochargers: PBS Turbo s.r.o.

Velká Bíteš

Vlkovská 279

CZ-595 01 Velká Bíteš

Tel.: +420 566 822 201 Fax: +420 566 822 272 pbst sales@pbsvb.cz

France

Four-stroke Propulsion Engines, Propulsion Systems and Marine GenSets:

MAN Diesel & Turbo France SAS

Bât. Le Ronsard Paris Nord 2 22 Avenue des Nations CS 84013 Villepinte

F-95931 Roissy Ch de Gaulle Cedex

Tel.: +33 1 48 17 63 00 Fax: +33 1 48 17 63 49 info-fr@mandieselturbo.com

Four-stroke Propulsion Engines, Propulsion Systems and Marine GenSets:

MAN Diesel & Turbo France SAS

Avenue de Chatonay Porte nº 7

BP 427

F-44615 Saint-Nazaire Tel.: +33 2 40 90 65 00

Fax: +33 2 40 90 65 00 Fax: +33 2 40 90 65 89 info-fr@mandieselturbo.com

Headquarters

United Kingdom

Aftermarket Support of High and Four-stroke Engines for Marine, Power and Traction (Original Brands of: Mirrlees Blackstone, Ruston and Paxman):

MAN Diesel & Turbo UK Ltd.

1 Mirrlees Drive.

Hazel Grove

UK-Stockport, SK7 5BP Tel.: +44 161 419 3105 Fax: +44 161 426 4596

primeserv-uk@mandieselturbo.com

Switzerland

Turbomachine development, production and maintenance Diesel & Turbo Schweiz AG Hardstraße 319 8005 Zürich

Tel. +41 44 278 20 71 Fax: +41 44 278 22 61 info-zur@mandieselturbo.com

Argentina

MAN Diesel & Turbo Argentina S.A.

Mariano Moreno 4476 CP B1605BOH - Munro, Prov. Buenos Aires,

Tel.: +54 11 5236 6006/07 Fax: +54 11 5353 0279 quillermo.lemo@ar.man.eu

Australia

MAN Diesel & Turbo Australia Pty., Ltd.

396, Lane Cove Road North Ryde NSW 2113

Sydney

Tel.: +61 2 8874 0700 Fax: +61 2 9889 5337 jeffrey.moloney@au.man.eu

Bangladesh

MAN Diesel & Turbo Bangladesh Ltd.

Crystal Palace, 9th Floor SE (D) 22, Road 140 Gulshan South Avenue, Gulshan-1

Dhaka-1212

Tel.: +880 96 12112211 atif.siddique@bd.man.eu

Belgium

MAN Diesel & Turbo Benelux N.V.

Noorderlaan 181 2030 Antwerpen Tel.: +32 3 543 8500 Fax: +32 3 541 7508 dirk willems@man.eu

Brazil

MAN Diesel & Turbo Brasil Ltda. General José Cristino, 31

São Cristóvão BR-20921-400 Rio de Janeiro, RJ

Tel.: +55 21 3506 2151 Fax: +55 21 3506 2150 gerson.sonego@br.man.eu

Bulgaria

MAN Diesel & Turbo Bulgaria EOOD

7 Al. Dyakovich, Floor 5, Office 1

9000 Varna

Tel.: +359 52 33 59 60 valentin.yankov@man.eu

Canada

MAN Diesel & Turbo Canada Ltd.

708-1111 West Hastings Street Vancouver, British Columbia Y6E 3T5

Tel.: +1 905 842 2020 Fax: +1 604 684 1132 dave.samson@ca.man.eu

Chile

MAN Diesel & Turbo Chile Ltda.

Parcela 291

- sector Placilla de Peñuelas

Ruta 68 - Km. 98 Valparaíso

Tel.: +56 32 235 1500 christian.h.mueller@cl.man.eu

China

MAN Diesel & Turbo Shanghai Co. Ltd.

Zhangjiang Hi-Tech Park, East Area, No 279 Ren Qing Road Heqing - Pudong 201201 Shanghai

Tel.: +86 21 3891 9600 Fax: +86 21 5897 6552 jeffrev.ang@man.eu

China

MAN Diesel & Turbo

Shanghai Co. Ltd. Branch Office Dalian

Rm1806

Pearl River Internatioal Building

No.99 Xinkai Rd Dalian 116011

Tel.: +86 411 3967 6780 Fax: +86 411 3967 6700 yan.guiwang@cn.man.eu

China

MAN Diesel & Turbo Shanghai Co. Ltd.

Branch Office Zhejiang Liuheng Putuo, Zhoushan, Zhejiang 316131

Tel: +86 0580 6189 520 Fax: +86 0580 6189 520 peter.zhang@cn.man.eu

China

MAN Diesel & Turbo Shanghai Co. Ltd.

Shanghai Co. Ltd.
Branch Office Guangzhou
No. 828 Mao Gang Road,
Huangpu District
Guangzhou 510700
Tel.: +86 20 3238 7997

Tel.: +86 20 3238 7997 Fax: +86 20 3238 7997 jane.tan@hk.man.eu

China

MAN Diesel & Turbo China Production Co., Ltd.

Fengming Road 9 Jiangsu Wujin High-Tech Industrial Zone 213164, Changzhou, P.R. China

Tel.: +86 519 8622 7888 Fax: +86 519 8622 7999 stjepan.kucifer@cn.man.eu

Colombia

MAN Diesel & Turbo Colombia

Branch Office of Chile Av. Cra. 7 No. 127-48, Oficina 1009 Centro Empresarial 128 Bogotá D.C.

Tel.: +57 312 432 5521 gabriel.guevara@co.man.eu

Cyprus

MAN Diesel & Turbo

Cyprus

Office 403, Taitou Court 2M Koutsofta Str.

3031 Limassol

Tel.: +357 25 342 379/746/082

Fax: +357 25 746 083 hans.odgaard@man.eu

Ecuador

MAN Diesel & Turbo

Ecuador

Branch office of Chile

Edificio Ambar, Piso 10 Oficina 1002 Av. Portugal E10-77 y República del Salvador

Quito

Tel.: +593 233 31344 carlos.solano@ec.man.eu

Ecuador

MAN Diesel & Turbo Ecuador

Branch Office of Chile

Avenida Juaquin Orrantia y Juan Tanca Marengo

Torres Mall del Sol, Piso 4 Torre B Guayaquil

Tel.: +593 437 16739 carlos.solano@ec.man.eu

Germany

MAN Diesel & Turbo SE

Representative Office Baumwall 5

20459 Hamburg Tel.: +49 40 7409 360

Fax: +49 40 7409 366 manfred.hohlweg@man.eu

Greece

MAN Diesel & Turbo Hellas Ltd.

Akti Miaouli 89 185 38 Piraeus

Tel.: +30 210 45 87 900 Fax: +30 210 45 87 928/29

dionissis.christodoulopoulos@man.eu

Guatemala

MAN Diesel & Turbo Guatemala Ltda.

6a. avenida 1-36 Zona 14 Edificio Plaza Los Arcos Of. 4B Guatemala City, C.A.

Tel.: +502 2368 2744 Fax: +502 2366 2836 abner.aquilar@qt.man.eu

Hong Kong

MAN Diesel & Turbo Hong Kong Ltd.

ralf.klaunig@man.eu

5/F, No. 1-7, Sai Tso Wan Road Tsing Yi Island, N.T. Hong Kong SAR Tel.: +852 2527 1368 Fax: +852 2861 2594

India

MAN Diesel & Tubo India Private Ltd.

402, 4th Floor, Building No. 2 Star Hub, Sahar Road Andheri (E), Mumbai - 400159 Tel.: +91 265 3016 400 sanjeev.sinha@in.man.eu

India

MAN Diesel & Tubo India Private Ltd.

Branch Office Aurangabad E-73, MIDC Waluj 431 136 Aurangabad Maharashtra

Tel.: +91 240 2566 700 Fax: +91 240 2554 621 akhileshwar.Singh@in.man.eu

India

MAN Diesel & Tubo India Private Ltd.

Branch Office New Delhi 407. DLF Tower-B Jasola

New Delhi-110025 Tel.: +919 5604 32555 anjan.roy@in.man.eu

Italy

MAN Diesel & Turbo s.r.l. Via dei Pescatori - Porto Antico

16129 Genova (GE) Tel.: +39 010 209 1637 Fax: +39 010 251 6588 marco.colombo@man.eu

Japan

MAN Diesel & Turbo Japan Ltd.

MAN Diesel & Turbo Japan Ltd. PMO Nihonbashi-Odemmma Bldg. 5F 6-8 Nihonbashi-Odemmma-cho, Chuo-ku

Tokyo 103-0011
Tel.: +81 3 6667 2461
kimihiko.sugiura@jp.man.eu

Malaysia

MAN Diesel & Turbo Malaysia Sdn Bhd

Branch office of Singapore Suite 3.01, 3rd Floor Kenanga International Jalan Sultan Ismail

50250 Kuala Lumpur, Malaysia Tel.: + 603 2162 0410

Fax: + 603 2162 0410 Fax: + 603 2162 0411 ernst.geyer@my.man.eu

Mexico

MAN Diesel & Turbo

Mexico

Sierra Candela #111 Floor 4 int. 414-415 Col Lomas de Chapultepec CP. 11000 Mexico. D.F. Tel: +52 1 55 1333 1906

jaime.zubillaga@mx.man.eu

Netherlands

MAN Diesel & Turbo

Benelux B.V.

Schiekade 36

3125 KJ Schiedam (Port of Rotterdam)

Tel.: +31 10 272 4500 Fax: +31 10 437 6115 dirk willems@man.eu

New Zealand

MAN Diesel & Turbo

New Zealand Ltd.

Naval Dockyard PO Box 32-061 Queens Parade, Devonport

Auckland 0744

Tel.: +61 2 8874 0701 Fax +61 2 9889 5337 ieffrev.molonev@au.man.eu

Norway

MAN Diesel & Turbo Norge A/S

Haakon VII's gate 1 0161 Oslo

Tel.: +47 2201 7190 Fax: +47 2283 2416 mikael.adler@man.eu

Pakistan

MAN Diesel & Turbo Operations

Pakistan. Private Limited

6-Km Raiwind Road Lahore-55150

Tel.: +92 42 3533 0091 3

Fax: +92 42 3533 0094 imran.ghani@mandiesel.com.pk

Panama

MAN Diesel & Turbo Panama Enterprises Inc

Calle Arturo del Valle. Final Local 0-02

Urb. La Loceria

Tel.: +507 236 1594

Fax: +507 236 8229 oscar.martinez@man.eu

Peru

MAN Diesel & Turbo

Peru S.A.C.

Centro Empresarial Burgos Av. Enrique Palacios 335, oficina 604

Miraflores, Lima 18 Tel: +51 1 6284756

carlos.constante@pe.man.eu

Philippines

MAN Diesel & Turbo

Philippines Inc.

Branch Office Paranague City Km. 17. West Service Road Cervantes Compound Bray.

Marcelo Green South Superhighway

Paranague City, 1700

Tel.: +63 2 776 3369/3347 Fax: +63 2 776 3384

sebastien marchand@man.eu

Poland

MAN Diesel & Turbo Poland Sp. z o.o.

ul. Lubowidzka 43 80-174 Gdansk

Tel.: +48 58 325 33 90 Mob: +48 502 536 800 andrzej.krupa@man.eu

Portugal

MAN Diesel & Turbo Portugal, Unipessoal, Lda.

Avenida do Rio Tejo, lote 3 Parque Industrial Sapec Bay 2910-440 Setúbal

Tel.: +351 265 799 500 Fax: +351 265 751 460 antonio.penaforte@man.eu

Qatar

MAN Diesel & Turbo Qatar LLC

P.O Box 153

23rd floor, Al Jazeera Tower, West Bay State of Doha, Qatar Tel.: +974 4015 9150

oleb.nielsen.a@man.eu

Russia

MAN Diesel & Turbo

Russia Ltd.

Preobrazhenskaya square 8, block A, 13 floor

107061 Moskow Tel.: +7 495 258 36 70 Fax: +7 495 258 36 71 goetz.kassing@man.eu

Russia

MAN Diesel & Turbo

Russia Ltd.

Branch Office St. Petersburg Vozdukhoplavatelnaya dom 19 196084 St. Petersburg

Tel.: +7 812 449 2655 Fax: +7 812 449 2645 alexander.danilenko@man.eu

Saudi Arabia

MAN Diesel & Turbo Saudi Arabia LLC

Madina Road, Al Thinayyan Building P.O.Box: 55990 Jeddah 21544

Tel.: +966 2 639 4346 Fax: +966 2 639 5482 abdullah.kuzkaya@man.eu

Senegal

MAN Diesel & Turbo Senegal SARL

Bd de la République, 2eme étage Cabinet Géni & Kébé

Dakar-47

Tel.: +221 33 867 79 77 abdou.fofana@man.eu

Singapore

MAN Diesel & Turbo Singapore Pte. Ltd. 29 Tuas Avenue 2

Singapore 639460 Tel.: +65 6349 1600 Fax: +65 6862 1409 olaf.gunia@sg.man.eu

South Africa

MAN Diesel & Turbo South Africa (Pty) Ltd.

14 North Reef Road, Elandsfontein, 1406

PostNet Suite 233, Private Bag X19 Gardenview. 2047

Tel.: +27 11 842 0700 Fax: +27 86 506 8878 robin watson@za-man.co.za

Worldwide Offices

South Africa

MAN Diesel & Turbo South Africa (Pty) Ltd.

Branch Office Durban 14 Hopson Avenue Glenwood 3630

Durban

Tel: +27 31 301 2999 Fax: +27 31 201 0854

derick.swanepoel@za.man.eu

South Africa

MAN Diesel & Turbo South Africa (Ptv) Ltd.

Branch Office Cape Town 1 Table Bay Industrial Park, Milner St. Paarden Filand 7405

Cape Town

Tel.: +27 21 514 3360 Fax: +27 21 510 0174 norman.hall@za.man.eu

South Korea

MAN Diesel & Turbo Korea Ltd.

54. Noksansandan 261-ro 74beon-ail.

GangSeo-Gu, Busan 46754

Tel: +82 51 635 6644 Fax: +82 51 635 4004 tommyr.rasmussen@man.eu

Spain

MAN Diesel & Turbo Espana, S.A.U.

Calle Pedro Teixeira 8. 10th floor

28020 Madrid

Tel.: +34 91 411 1413 Fax: +34 91 411 7276 pablo.montes@man.eu

Spain

MAN Diesel & Turbo Canarias, S.L.

Branch Office Gran Canaria Muelle Reina Sofia s/n Puerto de Las Palmas

Las Palmas de Gran Canaria 35008

Tel.: +34928 935 959 Fax: +34928 494 199 pablo.montes@man.eu

Sri Lanka

MAN Diesel & Turbo Lanka (Pvt) Ltd.

No. 57/8. Sir Ernest De Silva Mawatha

Colombo 00700 Tel.: +94 11 2678930

Fax: +94 11 2678810 karthik.nithivanandam@man.eu

Sweden

MAN Diesel & Turbo Sverige AB

Importgatan 15F 422 46 Hisings Backa Tel.: +46 31 176 295 Fax: +46 31 131 564 linda.ahl@man.eu

Taiwan

MAN Diesel & Turbo Singapore Pte, Ltd.

Branch Office Taipei 8F-1, No. 15, Sec. 2, Tiding Blvd.

Nei-Hu District.

Taipei 11493

Tel.: +886 2 8752 4043 Fax: +886 2 8752 4053 lance.phang@tw.man.eu

Worldwide Offices

Turkey

MAN Diesel ve Turbo Satis Servis Limited Sirketi (Hizmetleri Limited Sirketi) Orhanli Deri Org. Yan San

Sitesi YB-25

34956 Tuzla – Istanbul Tel.: +90 4444 5 626 Fax: +90 216 591 0854 timur.iyi@man.eu

Turkey

MAN Diesel ve Turbo Satis Servis Limited Sirketi

Akaretler Mahallesi, Süleyman Seba Cd. No 48 BJK Plaza A-Blok D.38 34357 Besiktas - Istanbul Tel.: +90 4444 5 626 Fax: +90 212 296 5506 timur.iyi@man.eu

United Arab Emirates MAN Diesel & Turbo

Middle East LLC

Jumeira Beach road at Dry docks World Dubai P.O. BOX 57091 Dubai, U.A.E

Tel.: +971 4 345 40 45 Fax: +971 4 345 40 48 patrice.mauger@ae.man.eu

United Kingdom MAN Diesel & Turbo UK Ltd.

1 Mirrlees Drive, Hazel Grove UK-Stockport, SK7 5BP Tel.: +44 161 419 3105 Fax: +44 161 426 4596 richard.guest@man.eu

United Kingdom MAN Diesel & Turbo UK Ltd.

Branch Office Redhill Betchworth House 57-65 Station Road Redhill

Surrey, RH 1 1 DL

Tel.: +44 1737 779 429 Fax: +44 1737 781 299 howard.white@man.eu

USA

MAN Diesel & Turbo North America Inc.

Branch Office Ft. Lauderdale 551 S.W. 13th Terrace Pompano Beach, FL 33069 Tel.: +1 954 960 6700 Fax: +1 954 782 5426 angel.colon-perez@us.man.eu

USA

MAN Diesel & Turbo North America Inc.

Branch Office Houston 1600A Brittmoore Road Houston, TX 77043 Tel.: +1 832 209 3400

Fax: +1 713 939 0105 anthony.ruegger@us.man.eu

Vietnam

MAN Diesel & Turbo Singapore Pte. Ltd. Branch Office Hanoi

Unit 9, Second Floor, International Central 17 Ngo Quyen, Hoan Kiem Hanoi

Tel.: +84 4 3936 9728 Fax: +84 4 3936 9727 hoanghai.tran@man.eu

Symbols used:

MAN Diesel & Turbo Two-stroke licence F: MAN Diesel & Turbo Four-stroke licence

FS: MAN Diesel & Turbo Four-stroke SEMT Pielstick licence

TC: MAN Diesel & Turbo Turbocharger licence

China, The People's Republic of

CNPC Jichai Power Equipment Company (F)

Tel.: +86 (531) 8742 2692 Fax: +86 (531) 8742 3189 xuchuanquo@cnpc.com.cn

CSSC Marine Power Co., Ltd. (T, F)

Tel.: +86 (511) 845 11 273 Fax: +86 (511) 845 10 033 cssc-cmp@cssc-cmp.cn

CSSC-MES Diesel Co., Ltd. (T)

Tel.: +86 (21) 6118 6666 +86 (21) 6118 6656 Fax: +86 (21) 6118 8088 +86 (21) 6118 6655 market@shcmd.com.cn

Dalian Marine Diesel Co. Ltd. (T)

Tel.: +86 (411) 8441 77 24 Fax: +86 (411) 8441 74 99

dmd@online.in.cn

FHI Fushun Zhongxing Heavy Industry Co., Ltd. (F)

Tel.: +86 (24) 576 42451 Fax: +86 (24) 576 43930 gzkang@hanmachine.com

Hefei Rong An Power Machinery Co., Ltd. (T, F)

Tel.: +86 (551) 87 88888-9977 Fax: +86 (551) 87 88888-1001

Henan Diesel Engine Industry Co., Ltd. (F)

Tel.: +86 (379) 6407 6362 Fax: +86 (379) 6422 5395 hnd@hnd.com.cn

List of Licensees

China, The People's Republic of

Hudong Heavy Machinery Co., Ltd. (T, F, FS) Tel.: +86 (21) 51 31 00 00

+86 (21) 58 71 30 07 Fax: +86 (21) 58 46 20 23

tech@hhm.com.cn

Jing Jiang Dakai Heavy Machinery Co., Ltd. (T)

Tel: +86 (523) 8235 5998 Fax: +86 (523) 8235 5955

Qingdao Haixi Marine Diesel Engine Co., Ltd. (T)

Tel.: +86 (532) 8670 8080 Fax: +86 (532) 8670 8080-788

Shaanxi Diesel Engine Heavy Industry Co., Ltd. (F, FS)

Tel.: +86 (29) 3831 3596 +86 (29) 3831 4380 Fax: +86 (29) 3831 4626

yinxiaozhongxin@sxdinfo.com.cn

Shanghai Qiyao Engine Co., Ltd. (SQE) (F, TC)

Tel.: +86 (21) 3131 0688 Fax: +86 (21) 3131 0150 admin@chsae.com

Weichai Heavy Machinery Co., Ltd. (F)

Tel.: +86 (536) 209 8105 Fax: +86 (536) 209 8138 julidi@weichai.com

Yichang Marine Diesel Engine Co., Ltd. (T)

Tel.: +86 (717) 646 89 50 Fax: +86 (717) 646 91 52 jsb-sj1@ymd.com.cn

Yuchai Marine Power Co. Ltd. (T)

Tel: + 86 756 5888600 Fax: + 86 756 5888985

Croatia

Adriadiesel d. d. (F) Tel.: +385 (47) 843 370 Fax: +385 (47) 434 380 adriadiesel@adriadiesel.hr

Croatia

Brodosplit - Diesel Engine Factory d.o.o. (T, F)

Tel.: +385 (21) 382 863 Fax: +385 (21) 382 323 strobrod@brodost.tel.hr

Uljanik Strojogradnja d.d. (T)

Tel.: +385 (52) 373 309 Fax: +385 (52) 373 821 diesel@uljanik.hr

Czech Republic

PBS Turbo s.r.o. (TC) Tel.: +420 (566) 822 201 Fax: +420 (566) 822 272

India

MAN Diesel & Turbo India Ltd. (F)

Tel.: +91 (240) 2566 700 Fax: +91 (240) 2554 621

Japan

Hitachi Zosen Corporation (T) Machinery Division

Tel.: +81 (6) 6569 0206 Fax: +81 (6) 6569 0218 de-info@hitachizosen.co.jp

JFE Engineering Corporation (FS)

Tel.: +81 (45) 505 7914 Fax: +81 (45) 505 8960 toda.shinichi@jfe-eng.co.jp www.ife-eng.co.jp

Kawasaki Heavy Industries Ltd. (T, F, TC, FS)

Tel.: +81 (78) 682 5340 +81 (78) 682 5025 Fax: +81 (78) 682 5558 +81 (78) 682 5530

hashimoto h@khi.co.jp / ikeda kenji@khi.co.jp

Kawasaki Sub-licensee:

The Hanshin Diesel Works Ltd. (T)

Tel.: +81 (78) 332 2081 Fax: +81 (78) 332 2080

List of Licensees

Japan

Mitsubishi Heavy Industries Ltd. (F)

Tel: +81 42 761 3723 Fax: +81 42 761 8018

GMMP382621B10P01@mhiet.mhi.co.jp

Mitsui Engineering & Shipbuilding Co., Ltd. (T, TC)

Tel.: +81 (3) 5202 3600 Fax: +81 (3) 5202 3610 suemasu@mes.co.jp

Mitsui Sub-licensee:

Makita Corporation (T)

Tel.: +81 (87) 821 5501 Fax: +81 (87) 821 5510 webmaster@makita-corp.com

Mitsui Sub-licensee:

Diesel United, Ltd. (T)

Tel.: +81 (79) 124 2650 Fax: +81 (79) 124 2648 info@du.ihi.co.ip

Niigata Power Systems Co., Ltd. (FS)

Tel.: +81 (3) 6214 2800 +81 (3) 6214 2812

Fax: +81 (3) 6214 2809 +81 (3) 6214 2819

info1@niigata-power.com / wakahart@niigata-power.com

Diesel United, Ltd. (FS)

Tel.: +81 (79) 124 2650 Fax: +81 (79) 124 2648

info@du.ihi.co.jp / hidehiro_yokota@du.ihi.co.jp

Poland

H. Cegielski - Poznan S.A. (T)

Tel.: +48 (61) 831 1958 Fax: +48 (61) 831 1391

H. Cegielski - Fabryka Silników (F)

Agregatowych i Trakcyjnych Sp z o.o.

Tel.: +48 (61) 831 1941 Fax: +48 (61) 831 1757

South Korea

Doosan Engine Co., Ltd. (T, F, FS)

Tel.: +82 (55) 260 6211 Fax: +82 (55) 260 6381 wonseokl.jang@doosan.com

Hyundai Heavy Industries Co., Ltd. (T)

Engine & Machinery Division

Domestic Sales Dep't Tel.: +82 (52) 202 7291 Fax: +82 (52) 202 7300

k110@hhi.co.kr

32 (52) 202 7291 Tel.: +82 (52) 202 7281 32 (52) 202 7300 Fax: +82 (52) 202 7427 hi.co.kr k150@hhi.co.kr

Overseas Sales Dep't

STX Engine Co., Ltd. (F, T)

Tel.: +82 (55) 280 0568 Fax: +82 (55) 280 0539 sowy@onestx.com

STX Heavy Industries Co., Ltd. (T)

Tel.: +82 (55) 278 9663 Fax: +82 (55) 278 9500 mschoe@onestx.com

STX Heavy Industries Co., Ltd. (TC)

Tel.: +82 (55) 280 8029 Fax: +82 (55) 282 1938 jounguk@onestx.com

Spain

Navantia S.A. (F)

Fábrica De Motores Cartagena Tel.: +34 (968) 128 200

Fax: +34 (968) 500 902 navantia@navantia.es

USA

Fairbanks Morse Engine (F, FS)

Tel.: +1 (608) 364 8119 Fax: +1 (608) 364 8444

patrick.bussie@fairbanksmorse.com

Notes			

_
_
-
_
_
_
a
3.
200
37
a
32
-
Do
20
~ ≓
~ ≓
~ ≓
~ ≓
~ ≓
% Turb
Turb
₹ Turbα
₹ Turbα
₹ Turbα

Notes

Notes			

Copyright 2017 © MAN Diesel & Turbo, branch of MAN Diesel & Turbo SE, Germany, registered with the Danish Commerce and Companies Agency under CVR Nr.: 31611792, (herein referred to as "MAN Diesel & Turbo").

This document is the product and property of MAN Diesel & Turbo and is protected by applicable copyright laws.

Subject to modification in the interest of technical progress.

Reproduction permitted provided source is given.

4510-0016-00ppr Mar 2017