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1. Introduction
1.1. Definition. A simplicial object in a category C is a contravariant functor
from the simplex category ∆ to C. We denote the category C∆op of simplicial
objects in C by sC. E.g., sSet is the category of simplicial sets and sAb is the
category of simplicial abelian groups.
1.2. Recall we have a functor Sing : Top sSet, sending X homTop(|∆•|, X).
Lately we’ve been talking about Sing for two reasons:

(a) It’s a right adjoint to geometric realisation |−| : sSet Top.
(b) Sing(X) is a Kan complex for all X ∈ Top—this was the start of the slogan

“Kan complexes are like spaces”.
But this isn’t the first place one sees Sing, probably. Indeed, the singular homology
functors are essentially defined by a composition

Hn(−;Z) : Top sSet sAb Ch≥0 Ab.Sing Z
∑

(−1)idi Hn

Here Z denotes the functor which takes free abelian groups level-wise, from which
we get the singular chain complex by letting the boundary map be given by
∂ :=

∑
(−1)idi.

This was just to remind us that we’ve seen a natural functor sAb Ch relating
simplicial abelian groups and chain complexes. We’ll look at it a bit more carefully
in a second, and develop this relationship much further.

2. Stating the correspondence
We fix A any abelian category—but we’ll probably be imagining A = Ab, or

more generally A = Mod(R) for some commutative ring R.1

2.1. Notation. We denote the category of nonnegatively graded chain complexes
in A (and chain maps) by Ch≥0(A).

Let’s now make precise the ∂ :=
∑

(−1)idi business with which we started this
discussion.
2.2. Definition. Let A ∈ sA a simplicial object in A (e.g., a simplicial abelian
group). We define the associated chain complex C(A) ∈ Ch≥0(A) by

Cn(A) := An, ∂n :=
∑n
i=0(−1)idi : Cn(A) Cn−1(A)

for n ≥ 0. Note that the simplicial identities clearly imply ∂2 = 0, so C(A) is indeed
a chain complex. Moreover, this evidently defines a functor C : sA Ch≥0(A).

This is perhaps the most natural—or familiar, at least—functor sA Ch≥0(A),
but it turns out not to be the cleanest to use when discussing the relationship
between the two categories. In fact, we will want to use the following alternative.

1In a couple of arguments, we won’t be totally categorical and will use elements here to make
things clearer. But it’s not all that hard to see how one would get rid of them, and in any case
we can appeal to Freyd-Mitchell.

1



2.3. Definition. Again let A ∈ sA a simplicial object in A. We define the nor-
malised chain complex N(A) ∈ Ch≥0(A) by N0(A) := A0 and

Nn(A) :=
⋂n−1
i=0 ker(di) ⊆ An, ∂n := (−1)ndn : Nn(A) Nn−1(A)

for n ≥ 1. The simplicial identities imply both that dn(Nn(A)) ⊆ Nn−1(A),
assumed in the above definition of ∂n, and that ∂2 = 0. Again this gives a functor
N : sA Ch≥0(A).

What is this unmotivated nonsense? Well, let’s at least see an example.
2.4. Example. Recall there is a functor B : Ab sAb which associates to an
abelian group G it’s “classifying space” BG, which is constructed as the nerve of
the groupoid with one object and morphisms G. In particular, we have

• BGn ' Gn for n ≥ 0;
• the face map di : BGn BGn−1 sends

(g1, . . . , gn) (g1, . . . , gi−1, gi + gi+1, gi+2, . . . , gn),

where we have let g0 := 0 and gn+1 := 0.
Let’s compute the normalised chain complex N(BG).

• Of course N0(BG) ' BG0 ' 0 is the trivial group.
• Thus N1(BG) = ker(d0 : BG1 BG0) = BG1 ' G.
• Let n ≥ 2. Let g := (g1, . . . , gn) ∈ BGn. Observe that by definition g ∈

ker(d0) =⇒ g2 = · · · = gn = 0 and thus g ∈ ker(d1) =⇒ g1 + g2 = 0 =⇒
g1 = 0. So then Nn(BG) ' 0.

It follows also of course that the homology of N(BG) is just G concentrated in
degree 1. (Perhaps this reminds you of the homotopy groups of BG! We will see
why this is so in §4.)

Ok that’s an example, but maybe the definition of N still seems crazy. Have no
fear, for C and N are intimately related! For instance we can note immediately
from the definitions that the natural inclusion N(A) C(A) is in fact a chain
map for A ∈ sA. But there’s more!
2.5. Definition. Let A ∈ sA. We define the degenerate subcomplex D(A) of C(A)
by D0(A) := 0 and Dn(A) :=

∑n−1
i=0 im(si) for n ≥ 1. That is, D(A) is generated

by the images of the degeneracy maps. Note that by the simplicial identities

∂sj =
∑n
i=0(−1)idisj =

∑j−1
i=0 (−1)isj−1di +

∑n
i=j+2(−1)isjdi,

so D(A) is indeed a subcomplex.
2.6. Proposition. Let A ∈ sA. For n ≥ 0 the natural map

φ : Nn(A)⊕Dn(A) An = Cn(A)

induced by the inclusions is an isomorphism. Therefore we have a natural iso-
morphism N(A) ' C(A)/D(A). Furthermore, the inclusion N(A) C(A) is a
natural chain homotopy equivalence.
Proof. When n = 0 we have by definition that D0(A) ' 0 and N0(A) A0 an
isomorphism, so the claim is tautological. So fix n ≥ 1. We first show Nn(A) ∩
Dn(A) ' 0 (we use elements here). Suppose y ∈ Nn(A) ∩Dn(A). We will show
inductively that we can write y =

∑n−1
j=i sj(xj). The base case is the assumption

y ∈ Dn(A) and when we reach i = n we will have y = 0, as desired. Assume the
claim holds for i. We first reduce to the case that dixj = 0 for j > i. This reduction is
tautological if n = 1. If n ≥ 2 we have a canonical splitting An−1 ' ker(di)⊕ im(si)
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as a consequence of the simplicial identity disi = idAn−2 . Writing xj = uj + vj in
this splitting, with vj = siwj , we have by the simplicial identities that

sjxj = sjuj + sjsiwj = sjuj + sisjwj .

Moving all the sisjwj into the sixi term proves the reduction step. Now since
dixj = 0 for j > i and y ∈ ker(di) ⊂ Nn(A), the simplicial identities give

0 = diy = disixi +
∑
j>i

disjxj = xi +
∑
j>i

sjdixj = xi,

which proves the induction step.
Now we’re just left to show that φ is surjective. We prove by downward induction

on 0 ≤ j ≤ n− 1 that
im(φ) ⊇ Nj :=

⋂j
i=0 ker(di).

The base case j = n − 1 is tautological and the final case j = 0 will proved the
desired splitting. Now consider the map ψ := idAn

− sjdj : An An. Observe by
the simplicial identities that

djψ = dj − djsjdj = dj − dj = 0 and diψ = di − disjdj = di − sj−1dj−1di

for i < j, implying that ψ(Nj) ⊆ Nj+1. By induction im(φ) ⊇ Nj+1, and since
im(sjdj) ⊇ Dn(A) it follows that im(φ) ⊇ Nj .

The proof of the last statement regarding the chain homotopy equivalence is
omitted here; see [GJ99] or [Wei94]. �

So there’s the relationship between C and N : the normalised chain complex
somehow tells us the nondegenerate information of the associated chain complex,
and moreover loses no homological information. With these definitions in hand, we
can now state our main goal, the Dold-Kan correspondence.
2.7. Theorem (Dold-Kan). The functor N : sA Ch≥0(A) is an equivalence of
categories.

3. Proving the correspondence
3.1. Definition. Let C ∈ Ch≥0(A). Define

Γn(C) :=
⊕

[n] [k]

Ck,

where the direct sum is over all surjections σ : [n] [k] in the category ∆.
Let ν : [m] [n] a morphism in ∆. Let τ : [n] [k] an indexing surjection. We

can factor τν as a composition [m] [j] [k] of a surjection σ and an injection
ι. Then we define a map2

Ck Cj as


idCn

, if j = k;
(−1)n∂n, if j = k − 1 and ι = dk;
0, otherwise.

Then composition with the inclusion Cj Γm(C) of the factor with index
σ : [m] [j] gives a map Ck Γm(C). Finally, the direct sum of these maps
gives us an induced morphism ν∗ : Γn(C) Γm(C).

2This definition is not so random: compare it with our definition of the normalised chain
complex N .
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Suppose µ : [l] [m] is another morphism in ∆. Factoring σµ as ρθ : [l]
[i] [j], we have a commutative diagram

[l] [m] [n]

[i] [j] [k].

µ

ρ

ν

σ τ

θ ι

It’s easy to see then that (νµ)∗ = µ∗ν∗.
It is also evident that a chain map C D in Ch≥0(A) gives rise to a simplicial

map Γ(C) Γ(D) in sA via factor-wise application. So finally we have constructed
a functor

Γ: Ch≥0(A) sA,
which to each chain complex in A gives an associated simplicial object in A.

To prove Dold-Kan, we’re going to show that Γ is a quasi-inverse to N : sA
Ch≥0(A).
3.2. Definition. Observe that there is a natural transformation Φ: Γ ◦N idsA
defined by the maps

Φn(A) : Γn(N(A)) =
⊕

[n] [k]

Nk(A) An

for A ∈ sA and n ≥ 0, which restrict to the factor indexed by σ : [n] [k] as the
composition

Nk(A) Ak An.
σ∗

(It is clear this defines a simplicial map Γ(N(A)) A which is natural in A.)
3.3. Lemma. In fact Φ: Γ ◦N idsA, defined above, is a natural isomorphism.
Proof. Fix A ∈ sA. We will prove by induction on n ≥ 0 that

Φn(A) : Γn(N(A)) An

is an isomorphism, and then we will be done. Since the only surjection [0] [k] in
∆ is id[0], and the inclusion N0(A) A0 is an isomorphism, the base case n = 0
is tautological.

First, surjectivity. Recall from (2.6) that we have a splitting An ' Nn(A) ⊕
Dn(A). From the factor id[n] : [n] [n] of Γn(N(A)) we im(Φn(A)) ⊇ Nn(A).
By induction Φn−1(A) is surjective, so we must have im(Φn(A)) ⊇ Dn(A) by
definition. Hence Φn(A) is surjective.

Next, injectivity (we use elements here). Assume we have (xσ) ∈ ker(Φn(A)).
Fix 0 ≤ k < n. Observe that to each surjection σ : [n] [k] we can assign a section
of σ,

νσ : [k] [n], νσ(i) := max{j ∈ [n] | σ(j) = i}.
If we have σ, σ′ : [n] [k], we say

σ ≤ σ′ ⇐⇒ νσ(i) ≤ νσ′(i) for all i ∈ [k].
In particular, σ′νσ = id[k] =⇒ σ ≤ σ′. If there exists τ : [n] [k] such that
xτ 6= 0, choose a maximal such τ (with respect to the ordering just defined). By
definition of the simplicial structure on Γ(N(A)), it follows that the component
of ν∗τ (xσ) in the factor of Γk(N(A)) indexed by id[k] is precisely xτ . But then, by
induction,

(xσ) ∈ ker(Φn(A)) =⇒ ν∗τ (xσ) ∈ ker(Φk(A)) =⇒ xτ = 0,
contradiction.
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So we must have xσ = 0 for all σ 6= id[n]. But the restriction of Φn(A) to the
factor indexed by id[n] is just the inclusion Nn(A) An. So then xid[n] = 0 too,
and hence Φn(A) is injective. �

3.4. Lemma. Let C ∈ Ch≥0(A). For n ≥ 0, the natural inclusion

Ψn(C) : Nn(Γ(C)) Cn(Γ(C)) = Γn(C) =
⊕

[n] [k]

Ck

has image the factor Cn indexed by id[n]. This of course gives a natural isomorphism

Ψ: N ◦ Γ idCh≥0(A).

Proof. By definition of the simplicial structure on Γ(C) we have

Cn ⊆
⋂n−1
i=0 ker(di) = im(Ψn(C)).

Now note for σ : [n] [k] with k < n, we must have a factorisation of σ as a
composition

[n] [n− 1] [k],si

so it follows that the factor of Γn(C) indexed by σ lies in the image of the
degeneracies Dn(Γ(C)). Then we’re done, since by (2.6) we have a splitting

Γn(C) ' Nn(Γ(C))⊕Dn(Γ(C)). �

Proof of (2.7). The natural isomorphisms Φ: Γ ◦ N idsA and Ψ: N ◦ Γ
idCh≥0(A) of Lemmas 3.3 and 3.4 exhibit N (and Γ) as an equivalence of categories,
thus proving the Dold-Kan correspondence. �

4. Applying the correspondence
4.1. Notation. For the remainder we will fix some commutative ring R and
actually set A := Mod(R).
4.2. Recall that if X ∈ sSet is fibrant (i.e., a Kan complex) with basepoint v ∈ X0
then we can define its homotopy groups for n ≥ 0,

πn(X, v) := [(∆n, ∂∆n), (X, v)],

that is, homotopy classes [α] of maps α : ∆n X which fit in the commutative
diagram

∆n X

∂∆n ∆0.

α

v

We now state a couple of facts about the homotopy groups.
4.3. Lemma. Let X ∈ sSet fibrant, v ∈ X0, and n ≥ 0. Denote all degeneracies
of v also by v, so that [v] ∈ πn(X, v) is the identity element. Let [α] ∈ πn(X, v)
represented by α : ∆n X. Then [α] = [v] if and only if there exists ω ∈ Xn+1
such that

dn+1ω = α and diω = v for 0 ≤ i ≤ n.
Proof. Omitted. �

4.4. Lemma. Let G ∈ sGrp a simplical group and v ∈ G0. Then the following
hold.

(a) The simplicial set underlying G is fibrant, so the homotopy groups πn(G, v)
are well-defined.
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(b) The group structure on Gn induces a natural group structure on πn(G, v)
which agrees with the homotopy group structure.

Proof. Omitted. See [GJ99] for (1), and (2) can be proved by an Eckmann-Hilton
argument. �

We can now state a relationship between the homotopy theory of sA and that
of Ch≥0(A).
4.5. Proposition. Let A ∈ sA a simplicial R-module and 0 ∈ A0 the identity
element. Then for n ≥ 0 we have natural isomorphisms

πn(A, 0) ' Hn(N(A)) ' Hn(C(A)).

In particular, the functors N and Γ correspond quasi-isomorphisms in Ch≥0(A)
with weak equivalences in sA.
Proof. The second isomorphism is immediate from (2.6), so we just prove the
first. Let x ∈ Nn(A) ⊆ An. For n ≥ 1 we have by definition that

x ∈ ker(∂n) ⇐⇒ x ∈
⋂n
i=0 ker(dn),

which says precisely that x represents an element [x] ∈ πn(A, 0). And by (refnull-
homotopic) we have for all n ≥ 0 that [x] = 0 ∈ πn(A, 0) precisely when x ∈
im(∂n+1). Finally by (4.4) we can take the group structure on πn(A, 0) to be the one
induced by the R-module structure of An, whence the above discussion immediately
gives us a (manifestly natural) isomorphism πn(A, 0) ' Hn(N(A)). �

4.6. Remark. Recall that in (2.4) we computed the homology of N(BG) for an
abelian group G to be G concentrated in degree 1. Then (4.5) gives, as expected,

πn(BG, 0) '
{
G, if n = 1;
0, otherwise.

The same observation motivates more generally the following definition.
4.7. Definition. Let A an R-module and n ≥ 0. Define A[n] ∈ Ch≥0(A) the
complex with A concentrated in degree n. Define the Eilenberg-Maclane space
K(A,n) := Γ(A[n]) ∈ sA.
4.8. Remark. If one remembers that geometric realisation preserves homotopy
groups, in the sense that πn(|X|, v) ' πn(X, v) for fibrant X ∈ sSet, then |K(A,n)|
with the definition above really is an Eilenberg-Maclane space, in the ordinary
topological sense.

We’ll end with an interesting consequence of (4.5). Assume that R is a PID.
4.9. Lemma. Let C ∈ Ch≥0(A). Then there is a quasi-isomorphism

C '
∏
n≥0

Hn(C)[n].

Proof. Let n ≥ 0. Let Zn := ker(∂n) and Bn := im(∂n+1) the cycles and bound-
aries, respectively, in Cn. Let Fn a free R-module with a surjection Fn Zn.
Let

F ′n := ker(Fn Zn Hn(C)),
which is free since it is a submodule of a free R-module and R is a PID. There
is then an induced map F ′n Bn, which lifts to a map F ′n Cn+1 since F ′n is
free and ∂n+1 : Cn+1 Bn is surjective. Define Fn(C) ∈ Ch≥0(A) the complex
with just Fn in degree n and F ′n in degree n + 1. The maps Fn Zn Cn
and F ′n Cn+1 give a chain map Fn(C) C which induces an isomorphism
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Hn(Fn(C)) ' Fn/F
′
n ' Hn(C). And the map Fn Hn(C) induces a quasi-

isomorphism Fn(C) ' Hn(C)[n].
Since homology commutes with products, there are then quasi-isomorphisms

C '
∏
n≥0

Fn(C) '
∏
n≥0

Hn(C)[n]. �

4.10. Proposition. Let A ∈ sA a simplicial R-module. Then A is weakly equiva-
lent to a product of Eilenberg-Maclane spaces:

A '
∏
n≥0

K(πn(A, 0), n).

Proof. In light of (4.5) and the fact that Γ preserves products (as an equivalence
of categories), this is immediate from applying Γ to (4.9) with C := N(A). �
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