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7 Review of SLODEs

Throughout this section, if y denotes a function (of time, say), then y [k] or y(k) denotes the
k’th derivative of the function y,

y[k] =
dky

dtk

In the case of k = 1 and k = 2, it will be convenient to also use ẏ and ÿ.

7.1 Linear, Time-Invariant Differential Equations

Often, in this class, we will analyze a closed-loop feedback control system, and end up with
an equation of the form

y(n)(t) + a1y
(n−1)(t) + · · · + any(t) = v(t) (39)

where y is some variable of the plant that is of interest to us, and v is a forcing function,
usually either a reference signal (ydes(t)) or a disturbance (ie., inclination of hill), or a
combination of such signals. One job of the control designer is to analyze the resulting
equation, and determine if the behavior of the closed-loop system is acceptable.

The differential equation in (39) is called a forced, linear, time-invariant differential equation.
For now, associate the fact that the {ai}n

i=1 are constants with the term time-invariant, and
the fact that the left-hand side (which contains all y terms) is a linear combination of y and
its derivatives with the term linear.

The right-hand side function, v, is called the forcing function. For a specific problem, it will
be a given, known function of time.

Sometimes, we are given an initial time t0 and initial conditions for differential equation,
that is, real numbers

y0, ẏ0, ÿ0, . . . , y
(n−1)
0 (40)

and we are looking for a solution, namely a function y that satisfies both the differential
equation (39) and the initial condition constraints

y(t0) = y0, ẏ(t0) = ẏ0, ÿ(t0) = ÿ0, . . . , y(n−1)(t0) = y
(n−1)
0 . (41)

For essentially all differential equations (even those that are not linear, and not time-
invariant), there is a theorem which says that solutions always exist, and are unique:

Theorem (Existence and Uniqueness of Solutions): Given a forcing function v, defined
for t ≥ t0, and initial conditions of the form (41). Then, there exists a unique function y

which satisfies the initial conditions and the differential equation (39).
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7.2 Importance of Linearity

Suppose that yP is a function which satisfies (39) so that

y
(n)
P (t) + a1y

(n−1)
P (t) + · · · + anyP (t) = v(t) (42)

and yH is a function which, for all t satisfies

y
(n)
H (t) + a1y

(n−1)
H (t) + · · · + anyH(t) = 0 (43)

yH is called a homogeneous solution of (39), and the differential equation in (43) is called
the homogeneous equation. The function yP is called a particular solution to (39), since it
satisfies the equation with the forcing function in place.

The derivative of yP + yH is the sum of the derivatives, so we add the equations satisfied by
yP and yH to get

[yP + yH ](n) (t) + a1 [yP + yH ](n−1) (t) + · · · an [yP + yH ] (t) = v(t)

This implies that the function yP +yH also satisfies (39). Hence, adding a particular solution
to a homogeneous solution results in a new particular solution.

Conversely, suppose that yP1
and yP2

are two functions, both of which solve (39). Consider
the function yd := yP1

− yP2
. Easy manipulation shows that this function yd satisfies the

homogeneous equation. It is a trivial relationship that

yP1
= yP2

+ (yP1
− yP2

)
= yP2

+ yd

We have shown that any two particular solutions differ by a homogeneous solution. Hence
all particular solutions to (39) can be generated by taking one specific particular solution,
and adding to it every homogeneous solution. In order to get the correct initial conditions,
we simply need to add the “right” homogeneous solution.

Remark: The main points of this section rely only on linearity, but not time-invariance.

7.3 Solving Homogeneous Equation

Let’s try to solve (43). Take a fixed complex number r ∈ C, and suppose that the function
yH , defined as

yH(t) = ert

is a solution to (43). Substituting in, using the fact that for any integer k > 0, y
(k)
H (t) = rkert,

gives (

rn + a1r
n−1 + · · · + an

)

ert = 0
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for all t. Clearly, ert 6= 0, always, so it can be divided out, leaving

rn + a1r
n−1 + · · · + an = 0 (44)

Thus, if ert is a solution to the homogeneous equation, it must be that the scalar r satisfies
(44).

Conversely, suppose that r is a complex number which satisfies (44), then simple substitution
reveals that ert does satisfy the homogeneous equation. Moreover, if r is a repeated root,
say l times, then substitution shows that the functions

{

ert, tert, . . . , tl−1ert
}

all satisfy the
homogeneous differential equation. This leads to the following nomenclature:

Let r1, r2, . . . , rn be the roots of the polynomial equation

λn + a1λ
n−1 + · · · + an = 0

This polynomial is called the characteristic polynomial associated with (39).

Fact 1 (requires proof): If the {λi}n

i=1 are all distinct from one another , then yH satisfies
(43) if and only if there exist complex constants c1, c2, . . . , cn such that

yH(t) =
n∑

i=1

cie
rit

Fact 2 (requires proof): If the {λi}n

i=1 are not distinct from one another, then group the
roots {r1, r2, · · · , rn} as

p1, p1, . . . , p1
︸ ︷︷ ︸

l1

, p2, p2, . . . , p2
︸ ︷︷ ︸

l2

, · · · , pf , pf , . . . , pf
︸ ︷︷ ︸

lf

Hence, p1 is a root with multiplicity l1, p2 is a root with multiplicity l2 and so on. Then yH

satisfies (43) if and only if there exist complex constants cij (i = 1, . . . f , j = 0, . . . li − 1)
such that

yH(t) =
f
∑

i=1

li−1∑

j=0

cije
pittj

So, Fact 2 includes Fact 1 as a special case. Both indicate that by solving for the roots of the
characteristic equation, it is easy to pick n linearly independent functions which form a basis
for the set of all homogeneous solutions to the differential equation. Here, we explicitly have
used the time-invariance (ie., the coefficients of the ODE are constants) to generate a basis
(the exponential functions) for all homogeneous solutions. However, the fact that the space
of homogenous solutions is n-dimensional only relies on linearity, and not time-invariance.

Basic idea: Suppose there are m solutions to the homogeneous differential equation, labeled
y1,H , y2,H , . . . , ym,H , with m > n. Then, look at the n ×m matrix of these solutions initial



ME 132, Spring 2005, UC Berkeley, A. Packard 58

conditions,

M :=










y
(0)
1,H y

(0)
2,H · · · y

(0)
m,H

y
(1)
1,H y

(1)
2,H · · · y

(1)
m,H

...
...

. . .
...

y
(n−1)
1,H y

(n−1)
2,H · · · y

(n−1)
m,H










Since m > n, this must have linearly dependent columns, so there is a nonzero m× 1 vector
α such that Mα = 0n×1. Define yz := α1y1,H + α2y2,H + · · · + αmym,H . Since this is a sum
of homogeneous solutions, it itself is a homogeneous solution. Moreover, yz satisfies

y(0)
z (t0) = 0, y(1)

z (t0) = 0, · · · , y(n−1)
z (t0) = 0

Note that the function yI(t) ≡ 0 for all t also satisfies the same initial conditions as yz, and
it satisfies the homogeneous differential equation as well. By uniqueness of solutions, it must
be that yz(t) = yI(t) for all t. Hence, yz is actually the identically zero function. Hence, we
have shown that the set of homogeneous solutions is finite dimensional, and of dimension at
most n. Moreover, by the simple substitutions above, we already know how to construct n
linearly independent solutions to the homogeneous differential equation, so those must form
a basis for all homogeneous solutions.

7.4 General Solution Technique

The general technique (conceptually, at least) for finding particular solutions of (39) which
also satisfy the initial conditions is a combination of all of the above ideas. It is very
important conceptually, and somewhat important in actual use.

1. Find any particular solution yP

2. Choose constants cij so that the function

yP (t) +
f
∑

i=1

li−1∑

j=0

cijt
jepit

satisfies the initial conditions.

The resulting function is the solution. Note that in step 2, there are n equations, and n

unknowns.

7.5 Behavior of Homogeneous Solutions as t→ ∞

In this section, we study the behavior of the class of homogeneous solutions as t→ ∞. If we
can show that all homogeneous solutions decay to 0 as t→ ∞, then it must be that for a give
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forcing function, all particular solutions, regardless of the initial conditions, approach each
other. This will be useful in many contexts, to quickly understand how a system behaves.

Suppose r is a complex number, r ∈ C, and we decompose it into its real and imaginary
parts. Let α := Real(r) and β := Imag(r). Hence, both α and β are real numbers, and
r = α+ jβ. We will always use j :=

√
−1. The exponential function ert can be expressed as

ert = eαt [cos βt+ j sin βt]

Note that the real part of r, namely α, determines the qualitative behavior of ert as t→ ∞.
Specifically,

• if α < 0, then limt→∞ ert = 0

• if α = 0, then ert does not decay to 0, and does not “explode,” but rather oscillates,
with |ert| = 1 for all t

• if α > 0, then limt→∞ ert = ∞

Since all homogeneous solutions are (essentially) of the form ert where r is a root of the
characteristic polynomial, we see that the roots of the characteristic polynomial determine
the qualitative nature of the homogeneous solutions.

We summarize this as follows:

• If all of the roots, {ri}n

i=1, of the characteristic polynomial satisfy

Real(ri) < 0

then every homogeneous solution decays to 0 as t→ ∞

• If any of the roots, {ri}n

i=1, of the characteristic polynomial satisfy

Real(ri) ≥ 0

then there are homogeneous solutions which do not decay to 0 as t→ ∞

7.6 Response of stable system to constant input (Steady-State
Gain)

Suppose the system (input u, output y) is governed by the SLODE

y[n](t) + a1y
[n−1](t) + · · · + an−1y

[1](t) + any(t)
= b0u

[n](t) + b1u
[n−1](t) + · · · + bn−1u

[1](t) + bnu(t)



ME 132, Spring 2005, UC Berkeley, A. Packard 60

Suppose initial conditions for y are given, and that the input u is specified to be a constant,
u(t) ≡ ū for all t ≥ t0. What is the limiting behavior of y?

If the system is stable, then this is easy to compute. First notice that the constant function
yP (t) ≡ bn

an
ū is a particular solution, although it does not satisfy any of the initial conditions.

The actual solution y differs from this particular solution by some homogeneous solution,
yH . Hence for all t,

y(t) = yP (t) + yH(t)

=
bn

an

ū+ yH(t)

Now, take limits, since we know (by the stability assumption) that limt→∞ yH(t) = 0, giving

lim
t→∞

y(t) =
bn

an

ū

Hence, the steady-state gain of the system is
bn

an

.
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7.7 Example

Consider the differential equation

ÿ(t) + 4ẏ(t) + y(t) = 1 (45)

subject to the initial conditions y(0) = y0, ẏ(0) = ẏ0. The characteristic equation is λ2 +
4λ+ 1 = 0, which has roots at

λ = −2 ±
√

3 ≈ {−3.7,−0.3}

Hence, all homogeneous solutions are of the form

yH(t) = c1e
−3.7t + c2e

−0.3t

Terms of the form e−3.7t take about 0.8 time units to decay, while terms of the form e−0.3t

take about 10 time units to decay. In general then (though not always - it depends on the
initial conditions) homogeneous solutions will typically take about 10 time units to decay.

A particular solution to (45) is simply yP (t) = 1 for all t ≥ 0. Note that this choice of yP

does not satisfy the initial conditions, but it does satisfy the differential equation.

As we have learned, all solutions to (45) are any particular solution plus all homogeneous
solutions. Therefore, the general solution is

y(t) = 1 + c1e
(−2−

√
3)t + c2e

(−2+
√

3)t

which has as its derivative

ẏ(t) = (−2 −
√

3)c1e
(−2−

√
3)t + (−2 +

√
3)c2e

(−2+
√

3)t

Evaluating these at t = 0, and equating to the given initial conditions yields

y(0) = 1 + c1 + c2
= y0

ẏ(0) =
(

−2 −
√

3
)

c1 +
(

−2 +
√

3
)

c2

= ẏ0

In matrix form, we have

[

1 1

−2 −
√

3 −2 +
√

3

] [

c1
c2

]

=

[

y0 − 1
ẏ0

]

This is easy to invert. recall

[

a b

c d

]−1

=
1

ad− bc

[

d −b
−c a

]
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Hence
[

1 1

−2 −
√

3 −2 +
√

3

]−1

=
1

2
√

3

[

−2 +
√

3 −1

2 +
√

3 1

]

so that
[

c1
c2

]

=

[

1 1

−2 −
√

3 −2 +
√

3

]−1 [

y0 − 1
ẏ0

]

For the case at hand, let’s take y0 := 0, ẏ0 := 0, hence

[

c1
c2

]

=
1

2
√

3

[

2 −
√

3

−2 −
√

3

]

A plot of y(t) is shown in the figure below.
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Note that indeed, as we had guessed, the homogeneous solution (which connects the initial
values at t = 0 to the final behavior at t→ ∞ takes about 10 time units to decay.

7.8 Stability Conditions for 2nd order differential equation

Given real numbers a0, a1 and a2, with a0 6= 0, we wish to determine if the roots of the
equation

a0λ
2 + a1λ+ a2 = 0

have negative real parts. This question is important in determining the qualitative nature
(exponential decay versus exponential growth) of the homogeneous solutions to

a0ÿ(t) + a1ẏ(t) + a2y(t) = 0
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Since a0 6= 0 (so that we actually do have a quadratic, rather than linear equation) divide
out by it, giving

ÿ(t) +
a1

a0

ẏ(t) +
a2

a0

y(t) = 0

Call b1 := a1

a0

, b2 := a2

a0

. The characteristic equation is λ2 + b1λ+ b2 = 0. The roots are

λ1 =
−b1 +

√

b21 − 4b2

2
, λ2 =

−b1 −
√

b21 − 4b2

2

Consider 4 cases:

1. b1 > 0, b2 > 0. In this case, the term b21 − 4b2 < b21, hence either

•
√

b21 − 4b2 is imaginary

•
√

b21 − 4b2 is real, but
√

b21 − 4b2 < b1.

In either situation, both Re(λ1) < 0 and Re(λ2) < 0.

2. b1 ≤ 0: Again, the square-root is either real or imaginary. If it is imaginary, then

Re(λi) = −b1
2

≥ 0. If the square-root is real, then then Re(λ1) =
−b1+

√
b2
1
−4b2

2
≥ 0. In

either case, at least one of the roots has a nonnegative real part.

3. b2 ≤ 0: In this case, the square root is real, and hence both roots are real. However,
√

b21 − 4b2 ≥ |b1|, hence λ1 ≥ 0. so one of the roots has a non-negative real part.

This enumerates all possibilities. We collect these ideas into a theorem.

Theorem: For a second order polynomial equation λ2+b1λ+b2 = 0, the roots have negative
real parts if and only if b1 > 0, b2 > 0.

If the leading coefficient is not 1, then we have

Theorem: For a second order polynomial equation b0λ
2 + b1λ + b2 = 0, the roots have

negative real parts if and only if all of the bi are nonzero, and have the same sign (positive
or negative).

WARNING: These theorems are not true for polynomials with order higher than 2. We
will study simple methods to determine if all of the roots have negative real parts later. For
instance;

Theorem: For a third order polynomial equation λ3 + b1λ
2 + b2λ+ b3 = 0, all of the roots

have negative real parts if and only if b1 > 0, b3 > 0 and b1b2 > b3.

Note that the condition b1b2 > b3, coupled with the first two conditions, certainly implies
that b2 > 0. However, that is only necessary, not sufficient, as an example illustrates: the
roots of λ3 + λ2 + λ+ 3 are {−1.575, 0.2874 ± j1.35}.
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Theorem: For a fourth order polynomial equation λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0, all of the
roots have negative real parts if and only if b1 > 0, b4 > 0, b1b2 > b3 and (b1b2 − b3)b3 > b21b4.

7.9 Important 2nd order example

It is useful to study a general second order differential equation, and interpret it in a different
manner. Start with

ÿ(t) + a1ẏ(t) + a2y(t) = bv(t)

with y(0) = 0, ẏ(0) = 0 and v(t) = 1 for all t ≥ 0. Assume that the homogeneous solutions
are exponentially decaying, which is equivalent to a1, a2 > 0. Rewrite using new variables
(instead of a1 and a2) ξ, ωn as

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = bv(t)

where both ξ, ωn > 0. In order to match up terms here, we must have

2ξωn = a1, ω2
n = a2

which can be inverted to give

ξ =
a1

2
√
a2

, ωn =
√
a2

Note that since a1, a2 > 0, we also have ξ, ωn > 0. With these new variables, the homoge-
neous equation is

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = 0

which has a characteristic polynomial

λ2 + 2ξωnλ+ ω2
n = 0

The roots are at
λ = −ξωn ± ωn

√
ξ2 − 1

= −ξωn ± jωn

√
1 − ξ2

There are three cases to consider:

• ξ > 1: Roots are distinct, and both roots are real, and negative. The general homoge-
neous solution is most easily written in the form

yH(t) = c1e

(

−ξωn+ωn

√
ξ2−1

)

t
+ c2e

(

−ξωn−ωn

√
ξ2−1

)

t

• ξ = 1, which results in repeated real roots, at λ = −ξωn, so that the general form of
homogeneous solutions are

yH(t) = c1e
−ξωnt + c2te

−ξωnt
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• 0 < ξ < 1: Roots are distinct, and complex (complex-conjugate pair), with negative
real part, and the general homogeneous solution is easily expressable as

yH(t) = c1e

[

−ξωn+jωn

√
1−ξ2

]

t
+ c2e

[

−ξωn−jωn

√
1−ξ2

]

t

This can be rewritten as

yH(t) = e−ξωnt

[

c1e
jωn

√
1−ξ2t + c2e

−jωn

√
1−ξ2t

]

Recall ejβ = cos β + j sin β. Hence

yH(t) = e−ξωnt

[

c1 cosωn

√
1 − ξ2t + jc1 sinωn

√
1 − ξ2t

+c2 cosωn

√
1 − ξ2t − jc2 sinωn

√
1 − ξ2t

]

which simplifies to

yH(t) = e−ξωnt

[

(c1 + c2) cosωn

√

1 − ξ2t + j(c1 − c2) sinωn

√

1 − ξ2t

]

For a general problem, use the initial conditions to determine c1 and c2. Usually,
the initial conditions, y(0), ẏ(0), are real numbers, the differential equation coefficients
(a1, a2 or ξ, ωn) are real, hence the solution must be real. Since cosωn

√
1 − ξ2t and

sinωn

√
1 − ξ2t are linearly independent functions, it will always then work out that

c1 + c2 = purely real
c1 − c2 = purely imaginary

In other words, Im(c1) = −Im(c2), and Re(c1) = Re(c2), which means that c1 is the
complex conjugate of c2.

Under this condition, call c := c1. The homogeneous solution is

yH(t) = e−ξωnt

[

2Re(c) cosωn

√

1 − ξ2t − 2Im(c) sinωn

√

1 − ξ2t

]

Use A := 2Re(c), and B := −2Im(c), and the final form of the real homogeneous
solution is

yH(t) = e−ξωnt

[

A cosωn

√

1 − ξ2t + B sinωn

√

1 − ξ2t

]

A and B are two, free, real parameters for the real homogeneous solutions when 0 <
ξ < 1.

The solution is made up of two terms:

1. An exponentially decaying envelope, e−ξωnt. Note that this decays to zero in
approximately 3

ξωn

2. sinosoidal oscillation terms, sinωn

√
1 − ξ2t and cosωn

√
1 − ξ2t. The period of

oscillation is 2π

ωn

√
1−ξ2

.
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Comparing these times, we expect “alot of oscillations before the homogeneous solution
decays” if

2π

ωn

√
1 − ξ2

<<
3

ξωn

Clearly ωn drops out of this comparison, and the above condition is equivalent to

2π

3

ξ√
1 − ξ2

<< 1

This quantity is very small if and only if ξ is very small, in which case there are
many oscillations in the homogeneous solutions, and the system associated with the
differential equation is called “lightly damped.” The quantity ξ is called the damping

ratio.

If 2π
3

ξ√
1−ξ2

<< 1, then homogeneous solutions “look like”

Typical Lightly Damped Response
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Conversely, if 2π
3

ξ√
1−ξ2

>> 1, then then homogeneous solutions “look like”
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A moderate value of ξ, say ξ ≈ 0.7 gives homogeneous responses that “look like” the
figure below.

Typical Moderately Damped Response

Time

R
es

po
ns

e

Finally, note that ωn enters yH very simply,

yH(t) = e−ξωnt

[

A cosωn

√

1 − ξ2t + B sinωn

√

1 − ξ2t

]

Note, everywhere ωn or t appear, they appear together in a term ωnt. Hence, ωn simply
“scales” the response yH(t) in t. The larger value of ωn, the faster the response.

For a constant input v(t) ≡ v̄, it is easy to write down a particular solution to

ÿ(t) + a1ẏ(t) + a2y(t) = bv(t)

Note that yP (t) = b
a2

v̄ satisfies the differential equation. Hence, the actual solution
(which must also satisfy the initial conditions) is of the form

b

a2

v̄ + e−ξωnt

[

A cosωn

√

1 − ξ2t + B sinωn

√

1 − ξ2t

]

where A and B are chosen suitably to satisfy the initial conditions. So, the homoge-
neous solutions connect the initial conditions to the final conditions. In this case,

lim
t→∞

y(t) =
b

a2

v̄, lim
t→∞

ẏ(t) = 0

Shown below are plots for b = ω2
n (so that a2 = b), v̄ = 1, with ξ taking on values

between 0.1 and 10.
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7.10 Problems

1. Suppose a < 0, and consider the function teat for t ≥ 0.

(a) For what value of t does the maximum occur?

(b) At what value(s) of t is the function equal to 0.05 of its maximum value. For
comparison, recall that for the function eat, the function is equal to 0.05 of the
maximum value at about 3

−a
.

2. Consider the example equation from Section 7.7, ÿ(t) + 4ẏ(t) + y(t) = 1, with initial
conditions y(0) = y0, ẏ(0) = v0. Consider all possible combinations of initial conditions
from the lists below:

y0 = {−2,−1, 0, 1, 2}
and

v0 = {−2,−1, 0, 1, 2}
(Now, do part (a) first!)

(a) Note that without explicitly solving the differential equation, one can easily com-
pute 4 things: limiting value of y (as t → ∞), time constant of the “slowest”
homogeneous solution, initial value (given) and initial slope (given). With these
numbers, carefully sketch on graph paper how you think all 25 solutions will look.

(b) In the notes, the solution is derived for general initial conditions. Use Matlab (or
similar) to plot these expressions. Compare to your simplistic approximations in
part 2a.

3. The response (with all appropriate initial conditions set to 0) of the systems listed
below is shown. Match the ODE with the solution graph. Explain your reasoning.

(a) ẏ(t) + y(t) = 1

(b) ẏ(t) + 5y(t) = 5

(c) ÿ(t) + 2ẏ(t) + y(t) = 1

(d) ÿ(t) − 2ẏ(t) − y(t) = −1

(e) ÿ(t) − 2ẏ(t) + 9y(t) = 9

(f) ÿ(t) + 0.4ẏ(t) + y(t) = 1

(g) ÿ(t) + 0.12ẏ(t) + 0.09y(t) = 0.09

(h) ÿ(t) + 11ẏ(t) + 10y(t) = 10

(i) ÿ(t) + 0.3ẏ(t) + 0.09y(t) = 0.09

(j) ÿ(t) + 3ẏ(t) + 9y(t) = 9

(k) ÿ(t) + 4.2ẏ(t) + 9y(t) = 9

(l) ÿ(t) + 0.2ẏ(t) + y(t) = 1
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4. Consider the homogeneous differential equation

y[3](t) + 9ÿ(t) + 24ẏ(t) + 20y(t) = 0

(a) What is the characteristic polynomial of the ODE?

(b) What are the roots of the characteristic polynomial.

(c) Write the general form of a homogeneous solution. Explain what are the free
parameters.
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(d) Show, by direct substitution, that yH(t) = te−2t is a solution.

(e) Show, by direct substitution, that yH(t) = t2e−2t is not a solution.

(f) Find the solution which satisfies initial conditions y(0) = 3, ẏ(0) = 1, y [2](0) = 0.

(g) Find the solution which satisfies initial conditions y(0) = 3, ẏ(0) = 1, y [3](0) = 0.

5. In section 7.9, we considered differential equations of the form

ÿ(t) + a1ẏ(t) + a2y(t) = bv(t).

If a1 > 0 and a2 > 0, and a1 < 2
√
a2, then we chose to write the solution in terms of

the (ωn, ξ) parameters, which are derived from a1 and a2.

If the forcing function v is a constant, v(t) ≡ v̄, we derived that all particular solutions
are of the form

b

a2

v̄ + e−ξωnt

[

A cosωn

√

1 − ξ2t + B sinωn

√

1 − ξ2t

]

where A and B are free parameters.

Suppose the initial conditions are y(0) = y0 and ẏ(0) = ẏ0. Find the correct values for
A and B so that the initial conditions are satisfied. Your answer should be in terms of
the given initial conditions, and system parameters (ωn, ξ, b).

6. Suppose that 0 < ξ < 1, and ω > 0. Let λ be the complex number

λ := −ξωn + jωn

√

1 − ξ2

(a) Show that |λ| = ωn, regardless of 0 < ξ < 1.

(b) The complex number λ is plotted in the complex plane, as shown below.

-

6
λ×

A
A

A
A

Re

Im C

ψ

Express sinψ in terms of ξ and ωn.

7. The cascade of two systems is shown below. The relationship between the inputs and
outputs are given. Differentiate and eliminate the intermediate variable v, obtaining a
differential equation relationship between u and y.

S1 S2
- - -u v y

S1 : v̈(t) + a1v̇(t) + a2v(t) = b1u̇(t) + b2u(t)

S2 : ẏ(t) + c1y(t) = d1v(t)
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Repeat the calculation for the cascade in the reverse order, as shown below.

S2 S1
- - -u v y

S1 : ÿ(t) + a1ẏ(t) + a2y(t) = b1v̇(t) + b2v(t)

S2 : v̇(t) + c1v(t) = d1u(t)

8. Compute (by analytic hand calculation) and plot the solutions to the differential equa-
tions below. Before you explicitly solve each differential equation, make a table listing

• each root of the characteristic equation

• the damping ratio ξ, and natural frequency ωn for each pair (if there is one) of
complex roots.

• the final value of y, ie., limt→∞ y(t).

for each case. For the plots, put both cases in part (a) on one plot, and put both cases
for part (b) on another plot.

(a) i. d3

dt3
y(t) +

(

1 + 10
√

2
)

ÿ(t) +
(

100 + 10
√

2
)

ẏ(t) + 100y(t) = 100u(t), subject

to the initial conditions ÿ(0) = ẏ(0) = y(0) = 0, and u(t) = 1 for all t > 0.
Hint: One of the roots to the characteristic equation is −1. Given that you
can easily solve for the other two.

ii. ẏ(t) + y(t) = u(t) subject to the initial conditions y(0) = 0, and u(t) = 1 for
all t > 0.

(b) i. d3

dt3
y(t) + 10.6ÿ(t) + 7ẏ(t) + 10y(t) = 10u(t), subject to the initial conditions

ÿ(0) = ẏ(0) = y(0) = 0, and u(t) = 1 for all t > 0. Hint: One of the roots to
the characteristic equation is −10.

ii. ÿ(t) + 0.6ẏ(t) + y(t) = u(t), subject to the initial conditions ẏ(0) = y(0) = 0,
and u(t) = 1 for all t > 0.

9. We have studied the behavior of the first-order differential equation

ẋ(t) = − 1
τ
x(t) + 1

τ
u(t)

v(t) = x(t)

which has a “time-constant” of τ , and a steady-state gain (to step inputs) of 1. Hence,
if τ is “small,” the output v of system follows u quite closely. For “slowly-varying”
inputs u, the behavior is approximately v(t) ≈ u(t).

(a) With that in mind, decompose the differential equation in (8)(a)(i) into the cas-
cade of

i. a “fast” 2nd order system, with steady-state gain equal to 1

ii. “slow” first order system whose steady-state gain is 1.

Is one of these decomposed systems similar to the system in (8)(a)(ii)? Are the
two plots in (8)(a) consistent with your decomposition?

(b) Do a similar decomposition for (8)(b)(i), and again think/comment about the
response of the 3rd order system in (8)(b)(i) and the 2nd order system’s response
in (8)(b)(ii).


