
A Framework for Distributed Evolutionary Algorithms⋆

M. G. Arenas3, Pierre Collet2, A. E. Eiben1, Márk Jelasity1, J. J. Merelo3, Ben

Paechter4, Mike Preuß5, and Marc Schoenauer2

1 Free University of Amsterdam, Amsterdam, The Netherlands
2 Ecole Polytechnique, Palaiseau, France
3 Universidad de Granada, Granada, Spain
4 Napier University, Edinburgh, Scotland

5 University of Dortmund, Dortmund, Germany

Abstract. This paper describes the recently released DREAM (Distributed Re-

source Evolutionary Algorithm Machine) framework for the automatic distribu-

tion of evolutionary algorithm (EA) processing through a virtual machine built

from large numbers of individual machines linked by standard Internet proto-

cols. The framework allows five different user entry points which depend on the

knowledge and requirements of the user. At the highest level, users may specify

and run distributed EAs simply by manipulating graphical displays. At the lowest

level the framework turns becomes a P2P (Peer to Peer) mobile agent system, that

may be used for the automatic distribution of a class of processes including, but

not limited to, EAs.

1 Introduction

The Distributed Resource Evolutionary Algorithm Machine (DREAM) [1] was first de-

scribed in [12]. It provides a framework for the production of evolutionary algorithm

systems and systems of evolving agents which use the Internet to allow distributed pro-

cessing in a peer-to-peer scalable fashion. The system also allows the secure sharing of

the spare CPU resources of a large number of computers. The scalability of the system

will allow new types of problems to be studied which require either very large amount

of processing power, or vast numbers of evolving agents competing and co-operating

to find a solution to some problem together. The first public release of the software has

recently been made, and this paper describes the architecture and functionality of that

system.

2 System Architecture

The system architecture is split into five modules, and each provides a user interface at

a different level interaction and abstraction. The architecture is shown in Fig. 1 along

⋆ The original publication is available at www.springerlink.com. In PPSN VII, LNCS 2439, pp.

665–675, Springer-Verlag, 2002. (doi:10.1007/3-540-45712-7 64) This work is funded as part

of the European Commission Information Society Technologies Program (Future and Emerg-

ing Technologies). The authors have sole responsibility for this work, it does not represent the

opinion of the European Community, and the European Community is not responsible for any

use that may be made of the data appearing herein. The authors are listed in alphabetical order.

DRM

EASEA

GUIDE

JEO

CONSOLE

User B

User A

User C

User E

User D

EA

Fig. 1. The DREAM architecture and its user entry points

with the user entry points. The entry points give a variety of interfaces, with different

levels of ease-of-use and power. The upper levels are easier to use, but flexibility is

more limited, the lower levels require greater expertise, but give the user greater control

over the system. Some of the modules or groups of modules can be used independently

of the others, providing additional functionality outside the context of the integrated

DREAM system. The five types of user can be categorised as follows:

– User A does not wish to use the DREAM for conducting experiments, but simply

wishes to donate their spare CPU time or monitor the experiments of others. This

type of user, interacts with the DREAM only through the Console, other types of

user use the console and (normally) one other user entry point.

– User B is either not an experienced programmer or wishes to rapidly prototype a

system without the need for textual programming. This type of user interacts with

the GUIDE layer which allows distributed evolutionary algorithms to be defined

using a fully graphical interface. The GUIDE interfaces with the EASEA layer

through the use of the EASEA language. This user should have a knowledge of the

workings of evolutionary algorithms.

– User C programs the system through the EASEA layer, which provides a high

level textual language in which to program distributed evolutionary algorithms.

This layer produces Java code through a compiler. The code it produces uses the

objects and methods of the JEO (Java Evolutionary Object) library.

– User D programs directly in Java and makes use of the JEO library. The library

not only provides useful objects and methods for evolutionary computing, but also

provides an API (Application Programming Interface) to the DRM (Distributed

Resource Machine) core layer. This layer is intended for users with a knowledge of

evolutionary algorithms and the Java language.

– User E is an expert user, who programs using the DRM API directly. This level

of user can use the DRM for many useful distributed processing purposes beyond

evolutionary computing, but is not fully protected from the complexities of this type

of programming.

The following sections describe each of the architecture layers in turn.

3 GUIDE Layer

The Graphic User Interface for DREAM Experiments is the entry point at the highest

possible level of interaction and abstraction. The idea is that even a non-expert pro-

grammer should be able to use the DREAM through GUIDE, specifying the algorithm

by means of point-and-click in a number of panels referring to different parts of the

evolutionary algorithm.

An Evolutionary Algorithm is made of two parts that are almost completely orthog-

onal: on the one hand are the problem dependent components, including the genotype

structure, its initialization, the variation operators (crossover, mutation and the like)

that will be applied on the genotypes and of course the evaluation (computation of the

fitness value). On the other hand, the evolution engine implements the artificial Dar-

winism part of the algorithm and should be able to handle any population of objects

that have a fitness, regardless of the actual genotype. Evolution engines are made up

of two steps, the selection of some parents to become actual genitors and generate off-

spring, and the replacement of some individuals by some offspring to build up the next

generation.

The structure of GUIDE reflects this point of view, and offers four panels to the

user: the Problem Specification panel to define the problem dependent components,

the Evolution Engine panel for the Darwinian components, the Distribution Control

panel to define the way the different islands will communicate (see section 5) and the

Experiment Monitor panel, from where the user can run his experiment and view the

temporary and final results.

3.1 Evolution engine specification

As far as the ultimate end user is concerned, writing the evolution engine part has noth-

ing to do with the problem being solved – and this is where GUIDE can handle the work

completely.

Any decent book about EAs describes the main evolutionary engines, namely Gen-

erational or Steady-State GA, Plus or Comma Evolution Strategy selection, It should

be possible for a user to say “I want to solve my problem with Generational GA evolu-

tion, using 100 generations of 50 infohabitants, initially evenly distributed in 5 different

islands, with such and such parameters.”

Fig. 2. The Evolution Engine panel of the GUIDE.

This is part of the functionality offered by the GUIDE. However, restricting the

choice to the five mainstream paradigms cited above would have been very restrictive:

experience shows that most real-world EAs in fact deviate one way or another from the

strict historical paradigms.

The Evolutionary Engine panel of GUIDE (Figure 2) therefore offers a generic set

of primitives from which the user can define a huge variety of implementation artifi-

cial Darwinism implementations. The already-mentioned “classical” evolution engines

are simple instantiations of GUIDE parameters. The pedagogic interest is immense,

as one can see the parameters changing when selecting any of the predefined engines.

Alternatively, thousands of unexplored engines can be tested, simply by arranging the

parameters in an original way.

3.2 Problem-dependent components

When using the DREAM, the user refers to a specific problem to be solved. This means

that the notion of programming cannot, unfortunately, be completely removed from the

description of experiments – at least the computation of the fitness of infohabitants has

to be typed in textually. At the moment, this is also true in GUIDE for all problem-

dependent parts.

GUIDE therefore provides a panel that allows the user to type in the specificities

of his problem in terms of genome structure, genome initialiser, genome recombinator,

genome mutator and genome evaluator. This is done thanks to a very high level lan-

guage with a C/C++/Java like syntax that completely hides the very complex notion of

classes/objects that is required to handle populations of genomes. The user can hence

concentrate on his problem, not on making the whole thing work in some complex

library.

4 EAsy Specification of Evolutionary Algorithms

GUIDE turns mouse driven diagrams representing some complex evolutionary algo-

rithm into runnable code using the genome structure, genetic operators and evaluator

specified by the user thanks to a powerful intermediate language associated with a com-

piler.

The fact that at some point, some representation must be used to, at least, save

and reload user experiments, implies that this same representation should be capable

of describing virtually any kind of evolutionary algorithm. Rather than designing some

obscure internal representation, specific to the DREAM, the decision was taken to create

a fully independent human-readable language that could have an existence of its own.

Among other advantages, this meant that EASEA [5, 11] could be developed com-

pletely independently from the evolutionary library specific to the DREAM project,

simply by using already existing off the shelf evolutionary libraries.

As a result, an evolutionary algorithm specified in the EASEA language (or spec-

ified and saved by GUIDE with an EASEA syntax) can be compiled in a C++ source

file using the GALib evolutionary library[13], or the EO [2, 10] fully templatised object

oriented library; or of course in Java source files using the JEO library of the DREAM.

As a matter of fact, the EASEA language compatible with GALib or EO has been

downloaded more than one thousand times in the last 12 months, with the result that

even before the DREAM was released, many users around the world have been unknow-

ingly developing potential DREAM applications, that would only need a fully working

DREAM system to exploit the distributed resources of the Internet.

The genome structure, as well as its initialiser, recombinator, mutator, and evaluator

described in the GUIDE are compiled by the EASEA compiler into a pure Java classes

meeting the JEO requirements. The resulting files are ready for compilation by the JAVA

compiler. Compiling as well as launching the experiment can be carried out from within

the GUIDE Experiment Monitor panel as well as from the command line, depending

on the type of user (B or C).

5 JEO Layer

This section explains the Evolutionary Computation layer in DREAM. This layer is

called Java Evolutionary Objects, JEO for short.

5.1 JEO from the User’s Point of View

JEO is a framework for building evolutionary computation experiments, which sits on

top of the DRM layer, but can be used independently from it if no parallel execution

is required. It provides a DREAM entry point to User D so it is flexible, powerful and

extensible enough to allow the users to design, develop and control their experiments in

the easiest way. JEO output is an experiment specification that can be run in distributed

fashion using the DRM module (see section 6). JEO can also act as the bridge between

the EASEA and DRM modules. It hides the physical DRM details, like communication

protocols or threads, letting the user concentrate on evolutionary computation concepts.

User D must be familiar with EC concepts. This type of user prefers to work with

Java classes to have direct control over the experiment. The procedure to build an ex-

periment is simple. The user implements a Java class to create the objects that will be

placed in each Island. The set of Islands that constitutes the experiment will be launched

in DRM to distribute the experiment.

For each task to be performed on an island, the user must create one specific object.

The requirement on those objects is to meet the corresponding JEO interface, e.g. an

operator must implement the operators interface, an individual the individuals inter-

face. . . Moreover, JEO provides several classes that actually implement each interface

and can be used as examples. However, JEO provides no implementation for the evalu-

ator interface, as it is totally problem-dependent.

5.2 Islands and Island Components

JEO provides a general Island class: an island holds one or more environments. An

environment groups one population and the objects that will be used to evolve that pop-

ulation (i.e. a complete evolutionary algorithm). The different environments possibly

interact through the assessor objects, that perform the evaluation of all environments

simultaneously.

First of all, all populations of the island are initialised using the corresponding ini-

tialisers. The following cycle is the run:

1. Stopping test and statistics calculation are carried out by Terminators: different

stopping criteria are available, as well as different on-line or cumulated statistics.

These values are sent to the DRM console, passed to GUIDE Experiment Monitor

panel, or simply displayed on the screen in the case of JEO being used stand-alone.

2. Each island population then undergoes a single step of evolution through the corre-

sponding Breeder. This includes (fitness-based) selection and variation operators.

3. The assessor is then called upon all environments (i.e. all populations). This step

can be a simple evaluation in the case of evolutionary optimisation experiment, or

can correspond to a few life steps in the case of artificial life simulations. Neverthe-

less, at the end of this step, all infohabitants are Rewarded . This reward mechanism

leaves room for forthcoming large-scale simulation of sociological and economical

evolution, where every operation (from mating and mutating to being evaluated)

will have a cost, and infohabitants will simply fight for survival, without explicit

fitness function being defined.

4. Migration is then performed by two objects, Immigrator and Emigrator. Immigra-

tor reads from the input immigrant’s buffer the recently arrived individuals from

some neighbouring island and decides how to include them into the Island popula-

tions. Emigrator selects the individuals that will emigrate, and selects the neighbour

target island.

5. Clean is the method that eliminates the “poorest” infohabitants (in term of the re-

wards mentioned above), the remaining infohabitants becoming the initial popula-

tion of the next generation.

The experiment can be submitted to the DRM module using the DREAM Console

or DRM command line and subsequently the DRM module distributes the experiment

through the DREAM machine. The distribution mechanism is completely transparent

to the user. The user identifies the experiment using an experiment name and identifies

each island using the island name set into the experiment specification.

Parallel evolution is performed asynchronously; every island writes to another is-

land’s buffer at any time it is required to; every island reads from its own buffer. There

is a thread that receives immigrants and places them in a buffer, from where the thread

that runs the evolutionary algorithm can read them.

5.3 JEO as Java Tool

JEO is developed using jdk 1.3, like the rest of the DREAM project. JEO classes and in-

terfaces are organized into packages [4, 3]. The main one is the dream.evolution

which includes the main classes and interfaces as Island class or operators interface.

Other important packages are for example dream.evolution.genomes, includ-

ing interfaces and classes to build genomes as linear, tree or graph structures, and

dream.evolution.operators, that includes variation operators and selectors.

All classes have javadoc comments to help the user to understand all variables

and methods. Moreover each package includes a package.html file where package

elements are described.

JEO today includes some basic evolutionary algorithms examples, that solve easy

toy problems (e.g. OneMax and Symbolic Regression).

6 DRM Layer

The distributed resource machine (DRM) is composed of (a possibly very large number

of) machines all over the Internet forming an environment for distributed applications.

At this level of abstraction it is no longer assumed that the application is from the

field of evolutionary computation. This section summarizes the basic concepts and the

algorithms which implement these concepts. For a more detailed description of the

different aspects of the DRM please refer to [8, 9].

6.1 Application Model

In a traditional single-machine environment, an application is composed of one or more

threads which are run by an operating system (OS). The OS controls the threads, it

assigns resources and takes care of different security aspects. When adapting this ap-

proach to very large scale distributed environments, not all aspects can be implemented

in exactly the same way due to the relatively high costs of information exchange.

A key feature of our model is that we think of an application as a set of cooperat-

ing autonomous agents. For instance, an evolutionary algorithm is implemented in this

framework by a set of agents which all host an island. An agent is analogous to a thread

in an OS: running an application is done through launching one or more agents that

can communicate with each other, can make decisions based on the state of the system

as a whole (e.g. available computational resources) or based on the state of each other.

The agents can also launch new agents themselves. The DRM controls the agents, the

resources they have access to, security, etc.

However these agents have much more freedom: they are also mobile, they can

change their physical location while performing computations. On the new location

they can continue their task.

Despite the similarities, the applications we have in mind are rather special. Usual

things like quickly accessible shared memory are a luxury in the world of large dis-

tributed systems. Another problem is the unreliable nature of both the communication

channels between the nodes of the environment and the unreliability of the nodes them-

selves. This restricts the application area to tasks that are robust (not sensitive to loos-

ing a subset of the agents they are composed of) and massively parallel (i.e. only little

communication is necessary between the agents). Fortunately evolutionary computation

fulfills these requirements and there are additional possible applications as well.

6.2 Implementation

An important implementation decision was that we do not use central servers at all.

This is to maximize scalability and robustness. With this restriction even maintaining

the connectivity of the network becomes a major challenge. This problem and also

the problem of information distribution through the DRM is solved using epidemic

protocols [6, 7].

In our system this protocol works as follows: each node in the DRM has an incom-

plete database which contains entries on other nodes. These entries contain information

over the available resources and the agents there are running on the node. Each node

chooses a random node from its database regularly to exchange information. If the size

of the database exceeds a given limit, randomly chosen entries are removed to keep the

communication costs affordable.

Theoretical and practical results show [7–9] that this protocol is a very effective and

scalable way of distributing information over the network. For example if the database

of each node contains only 100 random entries then a network of 1033 such nodes is

partitioned only with a probability of at most 10−10.

The question of mobility and security was solved by choosing the Java environment

to implement the DRM. This environment offers a natural solution for moving exe-

cutable code as well as data between hosts and it offers a rich set of security features.

7 DREAM console

The DREAM console is the primary tool for managing a computer connected to a DRM.

It utilises the metaphor of a file manager view onto the DRM to present its known com-

ponents and the output they produce (see Figure 3) . The list of components is mainly

retrieved from the incomplete database kept by the underlying DRM layer (see sec-

tion 6.2), so that the console usually only listens to the ongoing communication rather

than inducing network traffic of its own. Different component types include nodes, ex-

periments, users, islands and agents. Although the console is designed to help the user

during execution of an experiment, it does not completely hide DRM layer information.

Fig. 3. The Console View.

As stated before, agents are analogous to threads in an operating system and islands

are always implemented as agents (see section 6.1). However, there are agents perform-

ing operating system tasks like shutting down experiments or searching for a piece of

information specified by the user. These are visually separated from the island agents.

7.1 Supported user tasks

User actions supported by the console include, but are not limited to, component in-

spection and search; experiment startup and control; and visualization and analysis of

experiment results. Regardless of the way an experiment has been constructed6, it can

be started using the console. Thereafter, the user may watch creation and evolution of

the islands belonging to the new experiment. Actual status or output of a known compo-

nent can be retrieved by simply clicking on it. If an island is able to change its behaviour

during runtime, the experimenter may use the console to send new setup information,

for example parameter changes. Finally, it is also possible to shutdown one or multiple

components via the console. There are issues relating to the access rights policy for

different users, but these are beyond the scope of this paper.

7.2 Interfaces to user/DRM code

For component information retrieval or messaging, the console uses interfaces defined

by the DRM layer that are implemented by the experiment code. Depending on the user

entry point, this implementation is done with varying degrees of automation.

8 Conclusion

We have described a system for the easy specification and implementation of highly

distributed evolutionary algorithms. This system has already been implemented and the

6 The procedure of experiment construction is different for users of types B-E, depending on the

tools and libraries they chose.

first version released. It includes several independent modules which can be used in an

integrated fashion or as stand-alone units. The system allows for the sharing of CPU

resources in a secure and scalable fashion. Future work will concentrate on developing

algorithms and applications that work particularly well with this architecture. This will

not only include applications that require vast amounts of CPU time, but is expected

to include solutions to problems that can more easily be partitioned in some way (for

example some data mining or scheduling problems). Systems which involve the co-

operating and competing of evolving agents, either to solve real world problems, or to

model aspects of society, will also be studied.

Acknowledgments

The authors would like to thank the other members of the DREAM project for fruitful

discussions, the early pioneers [12] as well as Hans-Paul Schwefel, Emin Aydin and

Daniele Denaro.

References

1. http://www.dcs.napier.ac.uk/ benp/dream/dream.htm

2. http://eodev.sourceforge.net.

3. M. Arenas, L. Foucart, J. Merelo, and P. A. Castillo. Jeo: a framework for evolving objects

in java. In Actas Jornadas de Paralelismo. Universidad Politécnica de Valencia, 2001.

4. M. Arenas, L. Foucart, M. Schoenauer, and J. Merelo. Computacin evolutiva en java: Jeo.

pages 46–53. Universidad de Extremadura, Febrero 2002.

5. P. Collet, E. L. M. Schoenauer, and J. Louchet. Take it easea. In Parallel Problem Solving

from Nature VI, pages 891–901. Springer Verlag, LNCS 1917, 2000.

6. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-

hart, and D. Terry. Epidemic algorithms for replicated database management. In Proc. 6th

Annual ACM Symposium on Principles of Distributed Computing (PODC’87), pages 1–12,

Vancouver, Aug. 1987. ACM.

7. P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec, and P. Kouznetsov.

Lightweight probablistic broadcast. In Proc. International Conference on Dependable Sys-

tems and Networks (DSN 2001), Göteborg, Sweden, 2001.

8. M. Jelasity, M. Preuß, and B. Paechter. A scalable and robust framework for distributed

applications. In CEC2002, pages 1540–1545. IEEE, IEEE Press, 2002.

9. M. Jelasity, M. Preuß, M. van Steen, and B. Paechter. Maintaining connectivity in a scalable

and robust distributed environment. In H.E. Bal et al., eds, Proc. 2nd IEEE Intl Symposium

on Cluster Computing and the Grid (CCGrid2002), Berlin, Germany, pages 389–394, 2002.

10. M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: a general purpose

evolutionary computation library. In P. Collet et al., eds, Artificial Evolution’01. pages 229–

241, Springer Verlag, LNCS 2310, 2002.

11. E. Lutton, P. Collet, and J. Louchet. Easea comparisons on test functions : Galib versus eo.

In P. Collet et al., eds, Artificial Evolution’01. pages 217–228, Springer Verlag, LNCS 2310,

2002.

12. B. Paechter, T. Bäck, M. Schoenauer, M. Sebag, A. E. Eiben, J. J. Merelo, and T. C. Fogarty.

A distributed resoucre evolutionary algorithm machine (DREAM). In CEC2000, pages 951–

958. IEEE, IEEE Press, 2000.

13. M. Wall. http://lancet.mit.edu/ga/.

