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Abstract - This paper presents a design for parallel processing 
of synthetic aperture radar (SAR) data using one or more 
Graphics Processing Units (GPUs). Our design supports real-
time reconstruction of a two-dimensional image from a matrix 
of echo pulses and their corresponding response values. Key to 
our design is a dual partitioning scheme that divides the output 
image into tiles and divides the input matrix into sets of pulses. 
Pairs comprised of an image tile and a pulse set are distributed 
to thread blocks in a GPU, thus facilitating parallel 
computation. Memory access latency is masked by the GPU’s 
low-latency thread scheduling. Our performance analysis 
quantifies latency as a function of the input and output 
parameters. Experimental results were generated with an 
nVidia Tesla C1060 GPU having maximum throughput of 972 
Gflop/s. Our design achieves peak throughput of 136 Gflop/s, 
which scales well for output image sizes from 512 x 512 pixels to 
2,048 x 2,048 pixels. Higher throughput can be obtained by 
distributing the pulse matrix across multiple GPUs and 
combining the results at a host device.   
 

I. INTRODUCTION 
     The use of electromagnetic waves to produce images that 
depict detail beyond the response of human vision is of keen 
research interest for applications such as computed 
tomography, meteorology and geology (e.g., remote 
sensing). In particular, radar-based mapping of ground 
objects can benefit from high performance parallel 
computing techniques.  
     In practice, radar mapping involves the reconstruction of 
a two-dimensional image of an object from a collection of 
radar pulses, together with parameters of the radar sensor.  
As shown in Figure 1, a device at a known location L emits a 
pulse at time T0. Reflections (echoes) of this pulse from the 
target are collected as a function of time over a given 
interval. Echoes associated with objects further from the 
emitter will arrive at the sensor later than those closer to the 
emitter. In Figure 1, the response for P1 will appear at an 
earlier time than P2, and P2 will appear earlier than P3. The 
exact time these responses should arrive can be estimated by 
dividing the distance between L and Px by the speed of light 
c. 
     Unfortunately, while predicting the arrival time for a 
given point Pi is relatively simple, the inversion of multiple 
echoes to determine Pi can be challenging due to 
ambiguities.  For example, as shown in Figure 2, an 
additional point P4 can have the same distance from L as P1, 
and can cause an equal response time as P1. Given the 
response data for a single pulse, one cannot disambiguate the 
echoes from P1 versus P4, thus confounding reconstruction 
of P1 versus P4. Instead, one can only approximate the 
location within the concentric circle centered on L, shown as  

  
Figure 1: A radar pulse is 
transmitted, and response 
intensity is measured as a function 
of time. Responses from more 
distant objects traverse a longer 
path and will return to the sensor 
at a later time. 

Figure 2. Configuration 
of Figure 1 shown in 
top view. An object at 
P4 is the same distance 
from L as P1, and will 
have the same response 
time.    
 

a dotted line in Figure 2. 
     Synthetic aperture radar provides a technique for 
resolving these spatial ambiguities, based on the exploitation 
of multiple pulses taken at multiple locations over time, to 
increase radar sampling density and thus the effective 
aperture. In the example shown in Figures 1 and 2, the 
sampling process could be repeated with L in different 
locations with respect to P1, P2, and P3. Via solution of an 
inversion equation, the ambiguity between P1 and P4 can be 
approximately resolved, allowing a more accurate 
approximation of sensed objects in their reconstructed versus 
truthed locations. Additionally, the effect of sampling error 
due to interference and environmental factors is reduced by 
averaging of multiple replicates. Unfortunately, SAR-based 
image reconstruction becomes more expensive 
computationally as the number of pulses and range bins per 
pulse increases. For example, our experiments showed that a 
512x512-pixel image having 42,208 pulses and 4096 range 
bins per pulse took over four hours to reconstruct on a 
consumer-grade 2 GHz Centrino processor. 
     Fortunately, the emergence of less expensive parallel 
architectures offers support for fast but computationally 
expensive SAR reconstruction, for example, with Graphics 
Processing Units (GPUs). In addition to efficiency, a GPU’s 
data partitioning scheme, as well as our optimization 
strategies for peak throughput, can be generalized to a 
variety of problems with data access pattern characteristics 
similar to SAR reconstruction. In particular, our scheme can 
be effectively applied to generate an effective GPU solution 
to any problem where spatial locality of output data implies 
spatial locality of the required input data (for example, in 
computed tomography). Due to space limitations, we focus 
the remainder of this paper on SAR reconstruction with one 
or more GPUs. 
 



II. PRELIMINARIES 
 
1. The Backprojection Algorithm  
    Several algorithms are available for SAR reconstruction 
from pulse response data, and instances of these algorithms 
have been optimized to perform well on sequential systems 
with relatively low throughput. In designing these 
algorithms, computational performance, rather than quality 
of the reconstructed image, tended to be the primary 
evaluation metric. An algorithm that was rated poorly by this 
metric is the backprojection (BP) algorithm [3].  BP, known 
for its large computational cost and high output quality, 
examines the pairing of every received (postprocessed) pulse 
with every reconstructed pixel to estimate object reflectivity 
at each point in the spatial representation. The details of this 
algorithm are beyond the scope of this paper, but the 
algorithm is summarized as follows. 
     The pulse response data, or pulse response matrix, is 
partitioned into range bins. Each range bin corresponds to a 
measured response during a given interval of time after the 
pulse was emitted. As mentioned in Section 1, responses that 
arrive later are further from the emitter location, and are thus 
placed into a higher-numbered  range bin. For each pixel in 
the output image, every pulse, and every range bin in that 
pulse, is considered separately, with the value in a given 
range bin being added to the value of the associated pixel of 
the reconstructed SAR image. Thus, areas of higher 
reflectivity will be associated with brighter output pixels or 
regions.  
     More formally, the main computational loop of the 
backprojection algorithm features the pairing of each pulse 
in the pulse response matrix with each pixel of the output 
image. Let P denote the set of pulses, with P[i].bin[j] 
denoting the jth range bin of pulse i after phase correction, 
and (P[i].x, P[i].y, P[i].z) denoting the source of pulse i with 
respect to some fixed reference point. If each pulse has a 
range of Rstart to Rend, then the intensity of the output image 
pixel at (x,y) can be written: 
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Surprisingly, this model captures the data movement patterns 
of the backprojection algorithm, although our 
implementation includes several enhancements to improve 
output quality. For instance, in Equation (1), it was assumed 
that pixel (x,y) maps to a range bin indexed by an integer. In 
practice, pixels often fall between range bins, mapping to 
bins that have a fractional index. In such cases, an 
interpolated (smoother) image can be generated by 
examining range bins adjacent to a fractionally-indexed bin, 
then computing their weighted average based on their 
distance from this bin. Such enhancements are not the focus 
of this paper; we view any implementation of the 
backprojection algorithm with a data access pattern as 
shown in Equation 1 as being logically equivalent. 

Additional detail regarding the backprojection algorithm, 
and its enhancements, can be found in [3]. 
 
 2. Related Work 

    The algorithm and design presented herein are tailored to 
the fast parallel processing of synthetic aperture radar data,as 
well as reconstruction of a corresponding two-dimensional 
SAR output image. However, these techniques could also be 
applied to any domain where pulse response data is 
projected back to form an image of a surface, object, or area. 
One such application is computer aided tomography, or the 
construction of three-dimensional models from a set of 
cross-sectional views, for example, for the purpose of 
obtaining a three dimensional view of tissue in vivo. Here, 
each atomic volumetric unit or voxel demonstrates the same 
properties derived from a reconstructed SAR pixel. Namely, 
for a given cross-sectional view, each voxel will be 
associated with a response value that is spatially near the 
response of its neighboring voxel. Similarly, a given volume 
of output data will require a predictable quantity of response 
data for each cross section. The preservation of these 
properties ensures that the proposed partitioning scheme 
would also provide an efficient data access mechanism for 
generating tomograms [2,9]. 
     Other potential applications of our algorithm depart 
entirely from the domain of image sampling. Network 
tomography, for example, involves the inference of network 
characteristics from observations taken at a variety of known 
locations. In this case, each node in the network core is 
analogous to a pixel in the output image, where each sample 
location is analogous to a pulse. The latency or reliability of 
a channel can be inferred from the repeated transfer of 
packets between locations. The projection of this data back 
onto the nodes through which packets travelled can produce 
a visual representation of the network at any point in time, 
without requiring explicit assistance from core nodes. In this 
paradigm, spatial locality follows from the route 
optimization properties of routing protocols [8]. A similar 
problem involves estimation of ocean temperatures from 
acoustic wave propagation latencies, because the speed of 
sound in water is directly related to water temperature. By 
measuring the propagation time of the wave between a 
variety of sources and destinations, a set of cross sectional 
images can be reconstructed that is analogous to the images 
obtained in computer aided tomography. Small three 
dimensional units of water, not unlike the voxels of 
computer aided tomography, become the unit onto which 
acoustic sensor response data is projected. Spatial locality of 
input data follows from the output partitioning scheme [10]. 
 
3. Graphics Processing Unit (GPU) 

     A Graphics Processing Unit is a parallel computing 
device having high throughput and relatively low cost. GPUs 
can be purchased for less than 100 USD, and are found 
inside many modern desktop computers. Performance of 



GPUs, despite their price, has been measured at over 900 
GFLOPs. Comparatively, high end consumer-grade CPUs 
have not achieved more than 150 GFLOPs per chip [4]. 
     The throughput of GPUs can be attributed to their high 
degree of parallelism, or more specifically, their ability to 
operate efficiently as single instruction, multiple data 
(SIMD) devices.  The nVidia Tesla C1060 GPU, which was 
used in our experiments, has 30 streaming multiprocessors, 
each consisting of 8 streaming processors or cores, for a 
total of 240 cores. Generally, GPUs execute threads by 
arranging them into thread blocks. Each thread block 
corresponds to the execution of a single piece of code across 
multiple parallel threads, with each thread acting on a 
different unit of data. The code running on each thread is 
referred to as a kernel. During the design phase, a 
programmer can specify which parts of an application are 
suited for this type of execution, labeling them as kernels 
using syntax specified by the GPU language (e.g., CUDA for 
our nVidia Tesla processor). At runtime, each thread block is 
capable of accessing a common shared memory device, 
which allows for a form of inter-thread communication. A 
much slower device, global memory, is accessible from all 
thread blocks, and is used to transfer data to and from the 
host [4].  As in other hierarchically-configured memory 
systems, high performance implies concentration on local 
(on-chip) memory operations, with minimal transfer to and 
from slower storage devices.  
     The GPU is intended to operate efficiently with 
thousands of threads running simultaneously, since thread 
scheduling is implemented directly in GPU hardware and 
has negligible overhead compared to program execution 
time. In GPUs, the support for numerous  threads allows 
memory access latencies to be masked, since other threads 
may operate while paused threads wait for IO operations to 
complete. 
     With respect to SAR, the backprojection algorithm 
described in the preceding section is an ideal candidate for 
GPU implementation, since (a) each output pixel can be 
viewed as the sum of the contribution of each input pulse, 
and (b) the set of operations used to calculate this 
contribution is not dependent on the value of the input. 
 

III. DATA MOVEMENT ISSUES IN SAR 
 
     The backprojection algorithm described in Equation 1 
requires the computational pairing of each pixel in the output 
image with each pulse in the pulse response matrix. This 
requires that each pixel and its corresponding range bin from 
each pulse must be available on-chip at the same time. Since 
both the output image and pulse response matrix can be 
quite large in size, it is often impossible to fit the entirety of 
either structure in shared memory, constant memory or 
register memory. Fortunately, the data access pattern of the 
backprojection algorithm ensures two properties that are 
helpful in reducing the global memory access. We will 
appeal to these properties in Section 4.4 when we examine a  

 
Figure 3. The minimum number of range bins needed 
corresponds to a look angle that is parallel to any side of the 
square region (L1). The maximum number of range bins 
occurs at an angle whose incident line forms a 45O angle 
with each side of the square region (L2). 
 
partitioning scheme that attains data access locality in 
backprojection. 

     Let the function N(P, S) be the number of range bins for a 
given pulse required to completely generate a square 
subregion S of the output image. For any square subregion S 
and pair of pulses (P1 , P2), we have Property 1: 

 Lemma 1: ( ) ( )SPNSPN 2,1 2, ≤  

     This property can be explained by recalling that the range 
bin needed for a given pixel is linearly related to its distance 
from the pulse location. For any two points, the factor 
relating the difference in their physical locations to the 
difference D in their corresponding range bins is constant.  
In particular, D equals the total distance sampled divided by 
the number of range bins. Observe that the least number of 
range bins will be required when the look angle is either 
parallel or perpendicular to the base of the square subregion. 
Likewise, the maximum number of range bins is required 
when the look angle equals 45O, such that 
 DB=Bins *      (2) 
where B denotes the length of the square base. For the 45O 
case, 
 DB=ngthDiagonalLeB=Bins 2*   (3) 
The final step is proven using the Pythagorean Theorem. 
     A related property involves the relationship between the 
number of bins needed by two square subregions. Consider 
two such regions S1 and S2 with base lengths of b1 and b2. 
Letting P be a pulse in the pulse response matrix, we obtain 
the following lemma that states Property 2:  

 Lemma 2: ( ) ( ) ( )
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Observe that the distance between any two points on 
opposite boundaries of S1 is less than or equal to 21B . 
This follows directly from the Pythagorean Theorem. The 
upper bound on the number of range bins required to render 
this image is then proportional to 21B , with a 
proportionality constant (C, as distinct from the speed of 
light c) determined by the sampling resolution:  



 ( ) 211 CBSP,N ≤  (5) 
Likewise, observe that the distance between any two points 
on opposite boundaries of S2 is greater than or equal to B2. 
The number of range bins required is then proportional to 
B2. Since the input pulse data P remains constant, so does the 
sampling resolution and the (constant) factor C. As a result, 
we have 
 ( ) 22 CBSP,N ≥   (6) 
Observing that B2 is a positive number,  
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and the upper bound of Property 2 follows from substitution 
of C. The lower bound of Property 2 follows directly from 
the upper bound. By swapping the roles of S1 and S2, and 
noting that b1 and b2 are positive, we have 
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and the result follows. 
 
IV. APPROACHES FOR DESIGNING A PARALLEL 
IMPLEMENTATION  
 
     The Backprojection Algorithm can be implemented on a 
GPU by defining the kernel as the pairing of one pixel with 
one pulse. The steps involved in performing this operation 
are the same for all pixel/pulse pairs, so it is inherently 
SIMD in nature. However, challenges arise in the mapping 
of pair/pulse combinations to thread groups. 
 
1. A Naive Approach 

     First, let us consider the simplest approach, where kernels 
are grouped arbitrarily. (See Figure 4.) Using this scheme, 
each pulse/pair combination is assigned to a thread in an 
unspecified sequence. This will produce a correct result, 
because the backprojection algorithm does not specify an 
order in which contributions must be summed. It is also 
relatively easy to implement, as the programmer does not 
have to concern himself with the details of grouping kernels 
efficiently. This approach is also practical if the size of the 
pulse response matrix is small enough to be copied to each 
shared memory, where each thread has rapid access to the 
entire pulse response matrix, so it can perform the necessary 
computations without incurring data movement penalties. 
When the pulse response matrix is large, it cannot be copied 
to each shared memory; however, it may still be possible to 
store the pulse response matrix in global memory. If shared 
memory is used as a local cache, and the pulse response 
matrix memory is divided into pages equal to the cache size, 
a cache hit will occur with an average frequency equal to the 
size of shared memory divided by the pulse response matrix 
size. Our analysis shows that this results in only a few cache 
sits in several thousand projections, even when the image 

memory accesses are not considered. Noting that the time 
required to access a cache page is larger than the time 
required to read a single byte from global memory, it is 
preferable to access global memory directly.  Global 
memory access latencies are roughly two orders of 
magnitude slower than shared memory, so this is not a 
feasible approach for the implementation of a backprojection 
algorithm. While this approach achieves the minimum 
computational requirements of backprojection, it does not 
take advantage of the GPU memory hierarchy. The cost of 
moving data from global memory to the GPU multiprocessor 
is then one pixel load, one range bin load, and one pixel 
write-back per pixel/pulse combination. Assuming an image 
size of N x N pixels, rendered using P pulses, this process 
requires 3PN2 global memory operations. 
     We have found that the only remaining solution is to 
achieve access locality by partitioning the data and 
corresponding pixel/pulse combinations, ensuring that only a 
small subset of the data needs to be copied to shared 
memory at any one time. For each of the following proposed 
partitioning schemes, we shall present a global memory 
access cost in terms of N and P as defined above. Omitting 
the bookkeeping calculations needed to implement 
partitioning, all schemes are computationally equivalent. 
 
2. Pulse Response Matrix Partitioning 

     In contrast, if the pulse response matrix is partitioned into 
blocks row- and column-wise, as shown in Figure 5, then 
each block and the output pixels associated with this block 
can be copied to the shared memory, processed, then written 
back to global memory. This approach initially appears 
promising, as it results in minimal transfer of the pulse 
response matrix data: range bins are loaded from memory, 
projected onto the image, and then discarded as they are not 
needed in shared memory again.  
     The challenges of this approach are best characterized by 
considering the requirements of partitioning in each 
dimension: the range bin dimension and the pulse 
dimension. Of these, the former is notably more 
troublesome. The key problem with dividing a pulse's range  
bins across multiple blocks is the output image data access 
pattern. In order to fully process the pulse, all pixels to 
which the elements of this pulse contribute must be stored in 
memory and updated. Since a single range bin contributes to 
all pixels at a certain distance from the pulse source, a 
relatively small number of range bins may correspond to a 
large number of pixels, as shown in Figure 5. In addition, 
images are represented in memory as a two-dimensional 
array of pixels, where the upper left pixel is defined as the 
starting point, and subsequent pixels are stored in row-major 
order. Using this scheme, the pixels accessed by each 
partition of the pulse response matrix rarely occupy adjacent 
locations in memory. Since the GPU is optimized to load 
data from memory in vector form, the fact that these pixels 
are not adjacent and thus cannot be efficiently grouped into 



vectors results in high access latencies. For these reasons, it 
is preferable not to partition along this dimension. Pulse 
response matrix partitioning should only be considered as a 
technique that divides the data structure into groups of 
pulses. 
     If pulses are blocked in this manner, access locality on 
the pulse response matrix is achieved within each block. 
However, each pulse contributes to every pixel in the 
reconstructed image. There is no access locality on the 
output image. It follows that the global memory access cost 
of this scheme is a single transfer of the pulse response 
matrix followed by one pixel load and one pixel store for 
each pixel/pulse combination. Referring back to our 
definitions of N and P, and defining R to be the number of 
range bins per pulse, this cost is PR + 2PN2. Fortunately, it is 
possible to reduce the burden of the pixel load and write-
back steps if enough space is available to locally store an 
independent copy of the output image for each pulse block. 
After completing the block, the output can be summed with 
the image already residing in global memory in a single pair 
of load and write-back memory transactions. This final step 
represents a reduction operation that produces a single 
output image from the output of each pulse block. The 
global memory access cost of this improved scheme, where 
S is the number of pulse blocks, is PR + 2SN2. 
     Although this technique is helpful in reducing the I/O 
cost of backprojection, it imposes global memory access 
requirements and on-chip memory requirements that are 
sensitive to the size of the output image. Additional 
partitioning is necessary to achieve reasonable performance 
when the size of the output image is large. 

3. Output Image Partitioning 

     Rather than perform a block partition on the pulse 
response matrix, another approach involves partitioning the 
output image, as shown notionally in Figure 6. Using this 
approach, the output image is divided into tiles, and each tile 
is rendered by a single processing element. In [5], we have 
shown this is an efficient means of implementing the  
Proximality means that, for a pair of nearby pixels X and Y, 
the range bins needed to compute X are proximal (near) in 
the pulse response matrix to those range bins required to 
compute Y. This permits FPGA implementations to route 
data through a spatially-mapped algorithm in nearly systolic 
fashion, facilitating high throughput with relatively low 
hardware costs. It also encourages the selection of a tile size 
that is relatively small with respect to the size of the output 
image. This advantage occurs because the underlying data 
structure benefited from the property of proximality, and 
performed more effectively when all pixels in the tile were 
reasonably close together.  
     This property is not helpful in a GPU due to its shared 
memory architecture, and due to the fact that a small tile size 
results in pulse data being loaded from memory more 
frequently.  In contrast, GPU implementation tends to favor  
large tile sizes, which reduce the amount of unnecessary  

 
Figure 4. Data access pattern when each thread block is 
assigned an arbitrary collection of pixels. There are is no 
locality of access to be exploited on either the pulse response 
matrix or the output image, so each thread must have 
random access to the entirety of both data structures. 
 

 
 
Figure 5. Partitioning the pulse response matrix data is an 
effective technique that permits pulse data to be loaded into 
shared memory, used, and then discarded. However, the 
required image pixels are within a specfic distance interval 
of a given pulse. These pixels do not occupy adjacent 
memory locations, and demonstrate poor access locality. 
 

 
 
Figure 6. Partitioning the output image into small tiles 
supports locality of access for input and output data. Each 
small subimage corresponds to a vertical strip of the pulse 
response matrix. 
 
pulse data movement.  
     The global memory access cost of this scheme is the cost 
of transferring a subset of the range bins from each pulse to 
the processing element rendering each tile, followed by a 
write-back of the tile to global memory after generation is 
complete. There is no reduction step because each tile 
represents the contribution of all pulses in the pulse response 
matrix, rather than a subset of pulses. As shown above, each 
tile requires a number of bins that is proportional to K/N, so 
the global memory access cost scales with PRN/K + N2. A 
factor of 2 does not precede the N2 term because the write-
back operation does not require a load step, as no reduction 



operation is occurring. This equation shows that larger tile 
sizes inherently incur lower global memory access costs. A 
range bin is copied from global memory each time it is 
needed by a tile. As the set of pixels contributed to by a 
range bin increases, the number of times that bin must be 
copied from global memory also increases. 
 
 4. Output Image and Pulse Response Matrix Partitioning  

     While large tile sizes help reduce I/O cost, they also 
reduce algorithmic parallelism. When the image size is small 
relative to the tile size, there are fewer partitions to be 
distributed across the available processing cores. An 
inefficient partitioning scheme results. Memory access 
delays that would be masked by a larger number of partitions 
instead adversely impact device throughput. This challenge 
can be overcome by splitting the pulses into pulse sets, then 
distributing the computation of a single image tile across 
several cores. Using output partitioning only, each thread 
handles the computation of a set of pixels across all pulses. 
Thus, a thread now computes a set of pixels across 1/S 
pulses, where S is the number of pulse sets. Figures 9 and 10 
illustrate this approach notionally, comparing it with a pure 
output partitioning scheme. Thus, the previous approach is 
simply a specialization of this approach with S=1. Because 
this approach partitions the pulse response matrix, each tile 
of the output image is further distributed across processing 
devices. This requires a load and write-back reduction step 
as described in Section 4.2, increasing the global memory 
access cost to PRN/K + 2SN2. In this equation, the value of 
P, R and N are input parameters to backprojection, while the 
values of K and S are variable and can be configured to 
maximize throughput. 
      An ideal tile size (K) balances unnecessary global 
memory access (incurred by small tile sizes) against 
decreased parallelism (observed for large tile sizes). 
Unnecessary global memory access occurs when the same 
range bin from a given pulse is transferred from global 
memory to shared memory more than once, as occurs when 
a range bin is used for multiple pixels in different tiles (as 
shown in Figure 9). Here, two pixels equidistant from the 
emitter are assigned to the same range bin. In general, if 
there are R range bins, and NxN output pixels, then a range 
bin is accessed, on average, by RN /2 pixels.  
     In a simple worst case analysis, the tile size K = 1 is 
equivalent to rendering each pixel independently, thereby 
accessing global memory each time a range bin is accessed, 
which results in each bin being loaded RN /2  times. 
Considering an image size of 512 x 512 pixels, and our 
sample data set having 4096 range bins per pulse after 
oversampling, this results in the pulse response matrix being 
loaded from memory 64 times. In contrast, a simple best-
case analysis uses K = N, where the entire pulse matrix is 
loaded from global memory once, used for every pixel of the 
output image, then permanently discarded, such that the  
 

 
Figure 7. The output image, represented by the cube face, is 
partitioned into K x K tiles for distribution across multiple 
processing units. Each processing unit renders a single tile 
for each pulse sequentially. 
 

 
Figure 8. A generalization of the approach described in 
Figure 7. The pulse set is divided into three groups. Each 
thread group renders a K x K tile of the output image with 
respect to 1/3 of the pulses. 
 
pulse response matrix is loaded only once.   
     An intermediate case employs Lemma 2, and redefines R 
as the number of bins needed to render the NxN–pixel image 
for an arbitrarily chose pulse.  In practice, this new value of 
R may be less than the total number of range bins in that 
pulse. Without loss of generality, since unused range bins are 
not transferred to shared memory, they can be ignored when 
optimizing implementation parameters. If an NxN image is 
partitioned into KxK tiles, then loading each tile from global 
memory accesses a predictable number of bins. In particular, 
consider the case of an image whose x or y axis is incident to 
the look angle.  Here, the number of bins accessed 
is NRK / .  Lemma 2 claims that for any other image tile, 
the number of range bins required to render this pulse is less 
than NRK /2 . Observe that Lemma 2 does not require 
that the subregions on which it operates (S1 and S2) be 
contained within the NxN image, nor does it require that 
they have the same orientation. As a result, for every pulse, 
there exists a region S1 whose x- or y-axis is incident to the 
look angle. Therefore we have an upper bound on the 
number of bins required to render any tile using any pulse. 
Applying this concept to the processing of every tile in an 



NxN image results in a total transfer of bins that is contained 
within the following interval: 
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 as shown in Figure 9 using 4096 range bins and 512 x 512 
output pixels.  
     From the previous relationship, it would appear that an 
optimal tile size is K = N, subject to memory constraints. 
However, we have already shown this is not the case. Large 
values of K, even in environments where memory is not 
limited, reduce the inherent parallelism of the tiled approach. 
On a GPU, where many processing cores are available for 
parallel operation, this situation is inefficient.  In particular, 
since only one thread block is being rendered at a time, the 
reconstruction operation is restricted to a single 
multiprocessor, and the GPU is forced to pause computation 
during the  
operations that read and write from global memory. If a 
larger number of thread blocks were available, then the GPU 
could interleave computation and memory access, 
significantly masking these latencies. Thus, a second 
partitioning scheme was introduced on the pulse dimension 
of the pulse response matrix.  
     The characteristics of this partitioning scheme can be 
observed graphically. Figure 10 describes the observed 
latency when tile size is selected to be the size of the output 
image. This results in minimal parallelism, since only one 
block is being rendered by a single multiprocessor. It also 
results in minimal pulse response matrix data transfer, as 
described in the preceding analysis. The shape of this graph 
indicates that increasing the number of pulse partitions 
initially has the effect of decreasing latency. Beyond some 
optimal point, latency begins to increase at a rate that is 
linear with respect to the number of pulse sets. 
     In order to maximize throughput, we analyze in greater 
depth the shape of Figure 10. Firstly, we consider the 
downward slope of the graph caused by increased 
parallelism from larger numbers of threads. As shown in 
Figure 11, this graph can be divided into three distinct 
regions.  In Region 1, the GPU is underutilized, as there are 
not enough thread blocks to distribute to the multiprocessors. 
Increasing the number of blocks results in a linear decrease 
in the latency.  
     In Region 2, there are enough thread blocks to distribute 
to every multiprocessor. However, some multiprocessors 
have only a small number of blocks assigned to them. When 
the threads in these blocks block to wait for global memory 
access, the multiprocessor has no other work to do and must 
wait until memory access is complete. During this time, the 
multiprocessor is idle, yielding suboptimal latencies.   
    In Region 3, ample work is distributed among the device, 
so multiprocessors rarely go idle. The upward-sloping 
element of the graph results from the reduction operation at 
the completion of each image block. When the pulse 
response matrix is distributed to several blocks, the images 

 
Figure 9. The pulse response matrix data transfer bounds 
(Equation 9) are modeled as a function of tile size K. The 
required number of range bins  is 4096, and the output image 
is 512x512 pixels. Larger tile sizes result in less movement 
of pulse response matrix data. 

 
Figure 10. Latency response for reconstructing an N x N 
image, where K = N, and the number of pulse sets is varied 
from 1 to the logical maximum of 1 pulse per pulse set. 
Latency decreases sharply as parallelism improves, then 
increases as the latency to reduce output images overtakes 
improvements from increased parallelism. 
 
generated by each block must be combined to form a final 
output image, using the transfer medium of global memory. 
This global memory access cost increases with the number 
of output images, which results in a linear increase in latency 
as the number of pulse sets is increased, per Figure 12. 
  
4.5 - The Effect of Input and Output Size 

     From the preceding analysis, when image sizes are large 
with respect to the pulse response matrix, it is desirable to 
use a smaller tile size and recycle the pulse response matrix 
through global memory. When image sizes are small with 
respect to the pulse response matrix, large tile sizes are 
preferred, and pulse partitioning is the preferred means of 



achieving parallelism. This follows from the notion that 
small tile sizes result in more unnecessary global memory 
access on the pulse response matrix, per Figure 9, and large 
tile sizes dictate the need for pulse partitioning and image 
reduction, per Figures 13 and 15. 
    Modern GPU devices contain a relatively small block of 
low latency memory. This provides an upper bound on the 
tile size that does not limit computation parallelism on the 
smallest image size of 512 x 512. As a result, pulse 
partitioning is not used to obtain our experimental results. 
However, we anticipate this optimization will be of 
increased importance in future devices. 
 

V. EXPERIMENTAL GPU IMPLEMENTATION 
 

     GPUs are convenient architectures for implementing tile-
based partitioning, since most GPUs provide native support 
for two-dimensional block partitioning by allowing thread 
groups to be indexed on a two dimensional grid. This 
supports logical correspondence between the thread 
partitioning and image partitioning schemes. Also, each 
thread group evaluates one tile of the output image, as 
shown in Figure 6.  
     A GPU can also permit thread indexing within each 
thread group. This provides an equally simple approach for 
assigning pixels to threads. In particular, the index of each 
thread is equal to the index of each image pixel, when pixels 
are traversed in normal scanning order (left to right, top to 
bottom). Unfortunately, the GPU employed in our 
experiments supports a  
maximum of only 512 threads per block. If one thread 
evaluates each pixel, then this limits the size of the tile to  
K = 5121/2 = 22, which yields high I/O latency for typical 
output size, since pulse data is recycled from global memory 
several times. A better approach assigns each thread multiple 
pixels to be evaluated sequentially, as summarized in Figure 
14.      
     Distribution of the pulse data is facilitated by the fact that 
the reconstruction of a given output pixel with respect to 
each pulse is an independent event. As a result, no benefit is 
gained from loading multiple pulses into shared memory at a 
single time. Except in the rare instance that there are not 
enough pixels to occupy the group threads, there is no 
possibility of rendering two pulses in parallel within a single 
thread group. Even in such an instance, there is no 
performance benefit to be seen from loading multiple pulses, 
since greater efficiency could be achieved by increasing the 
tile size or reducing the number of threads in the group. As a 
result, a more effective technique allows each thread to 
render each set of pixels with respect to every pulse. When 
the computation of each pixel-pulse pair is treated as a tuple 
in three dimensional space, this technique can be depicted as 
shown in Figure 8. The approach benefits from its 
simplicity: each pixel can be stored either in a register or in 
shared memory, so at the completion of the thread, there is 
no additional work to be done. A completed pixel value is  

  
Figure 11. The latency of 
increasing the number of pulse 
sets being computed in parallel, 
excluding the reduction 
operation used to generate a 
final result.  Regions 1-3 are 
illustrated notionally. 
 

Figure 12. Reduction 
latency increases as the 
number of pulse sets 
computed in parallel is 
increased. The slope of the 
increase is the size of the 
image divided by the 
bandwidth of global 
memory. 

 

 
Figure 14. Output image decomposed into two-dimensional 
KxK-pixel tiles, where each tile is evaluated by one thread 
block. To accommodate tile sizes larger than K = 5121/2, each 
thread can process a set of pixels sequentially. 

 
available for immediate copying back to global memory. 
    In order to achieve maximal throughput, other factors 
affecting GPU performance were considered. In particular, 
performance is maximized when global memory accesses 
occur in a pattern that facilitates memory coalescing. 
Coalescing describes the ability of the GPU to group 
multiple memory requests into a single memory transaction 
when certain criteria are satisfied. GPU devices of compute 
capability 1.2 or higher, which include the device on which 
our experiments were performed, are capable of coalescing 
16 transactions of transfer from global memory when all 
threads in a half warp access 4 byte or 8 byte words and all 
words are located in the same memory segment. To satisfy 
this requirement, the contribution of each pulse to a tile is 
split into three parts. Each thread in a block performs the 
following steps: 
 
   for each pulse { 
      // compute the minimum and maximum   
      //    range bin needed by the pulse 
      // copy the range bins from global  
      //    memory to shared memory 
      // compute the contribution of the  
      //    pulse to the pixels handled by       
      // this thread 
   } 



     The second step is ensures that the requirements for 
coalescing are met. Each thread accesses the bin equal to the 
minimum range bin summed with its thread id. If the number 
of bins needed exceeds the number of threads in the block, a 
pointer is moved to the last bin read and the process is 
repeated. 
     This approach is effective in ensuring that pulse data is 
coalesced. However, it does not achieve coalescing for pulse 
meta-data. This includes the pulse location, frequency, and 
range. The pulse location consists of an x, y, and z 
coordinate, each represented by a single float. Likewise, the 
frequently and range also occupy a single float. Each of 
these five data items are stored in separate arrays. This 
excludes the possibility of coalescing unless the meta-data 
for multiple pulses are loaded in a single transaction. For 
that reason, the loop in the code segment above is split into 
two loops as follows: 
 
   for each set of 64 pulses { 
      //load x position for all pulses in set 
      //load y position for all pulses in set 
      //load z position for all pulses in set 
      //load frequency for all pulses in set 
      //load range for all pulses in set 
 
      for each pulse in set { 
         // compute the minimum and maximum  
         //    range bin needed by the pulse 
         // copy the range bins from global  
         //    memory to shared memory 
         // compute the contribution of the  
         //    pulse to the pixels handled by  
         //    this thread 
      } 
   }   
 
     In modern GPU devices, the performance of coalescing 
can be improved by increasing the word size of the data 
being coalesced. In particular, by packaging pulse data and 
pulse meta data into the GPU's float4 data type, we were 
able to obtain noticeably higher global memory bandwidth. 
A global memory access that does not implement this 
optimization is coded as follows: 
      shared[threadIdx.x] = global[threadIdx.x + offset]; 
The same memory access, rewritten to implement 16 bit 
word coalescing, would be modified to the following. The 
global array in this code has been cast to an array of type 
float4, which is reflected in the use of the identifier global4 
in place of global.  
 
      float4 temp; 

      temp = global4[threadIdx.x + offset/4]; 

      shared[threadIdx.x*4] = temp.x; 

      shared[threadIdx.x*4+1] = temp.y; 

      shared[threadIdx.x*4+2] = temp.z; 

      shared[threadIdx.x*4+3] = temp.w; 

The increase in the size of each element in the global 
memory array has the effect of multiplying the index 
accessed by four. To preserve correctness, corresponding 
adjustments must be made to the offset value and shared 
memory index. 
     The GPU has also been shown to perform more 
efficiently when multiple blocks are active on each 
multiprocessor. This permits global memory access latency 
to be masked by overlapping execution with reads. A block 
can be marked as active on a multiprocessor if there are 
enough shared memory resources and registers available to 
service the block. The GPU used for our experiments 
contained 16 KB of shared memory and 16384 registers per 
multiprocessor. It was necessary, therefore, to ensure that 
each block used less than half those resources. The 
allocation of shared memory to meet these requirements was 
not difficult. Using the analysis described in Section 3, our 
experimental data, and a tile size of 32 x 32, we determined 
that the maximum number of range bins that could be 
needed to render a pulse. This data fit easily within 4 KB, 
leaving an additional 4 KB shared memory per block 
available for caching pulse meta data. The process of 
register allocation, however, proved more challenging. Due 
to the fact that the scope of a register variable is limited to 
only one thread, a block consisting of 512 threads is limited 
to only 16 registers per thread if it is intended to share a 
multiprocessor with another block. This value is 
prohibitively low, and several optimization techniques were 
used to reduce register utilization. 
     The first approach was to unroll loops when the number 
of iterations the loop will execute is known at the time the 
application is compiled. This has the effect of freeing up the 
register that would otherwise be used to maintain the loop 
index. For example, a simple piece of code which computes 
the sum of the first 3 elements in an array could be 
implemented as: 
 
   x = arr[0] 
   for(i=1; i < 3; i++) 
   x += arr[i]; 

 
     The code segment above requires a register to maintain 
the value of the index variable i throughout the duration of 
loop. An alternative implementation, which does not require 
an index variable, is: 
 
   x = arr[0]; 
   x += arr[1]; 
   x += arr[2]; 
 
     In our experimental implementation, this technique was 
used to facilitate the sequential computation of several pixels 
by a single thread without the use of an index register to 
track which pixel was currently being computed. 
     When parameters to execution are not known at the time 
of compilation, it is natural to compute them dynamically 



and store the results in a variable for later reuse. We have 
found, however, that this practice can adversely affect the 
behavior of the register allocator. In many instances, the 
temporal cost of recomputing a value each time it is needed 
is outweighed by the spatial cost of allocating a register to 
hold it. For example, the contribution of a pulse to a pixel is 
computed as the weighted mean of the range bin 
immediately preceding the pixel and the bin immediately 
following it. This contribution is computed twice, once for 
the real component of the pulse data, and once for the 
imaginary component. A natural implementation is to 
determine constants, w1 and w2, whose values range 
between 0 and 1 depending on where the pixel is located 
relative to the starting point of the two bins: bin1, the range 
bin whose boundary immediately precedes the pixel 
location; w1, ranges between 0.0f and 1.0f, where 1.0f  
corresponds to pixel that falls exactly on the boundary of 
bin1. 
 
   w2 = 1.0 - w1; 
   bin2 = bin1 + 1; 
   real = w1 * real[bin1] + w2 * real[bin2]; 
   imag = w1 * imag[bin1] + w2 * imag[bin2]; 
 
     The implementation above requires registers to store w2 
and bin2. Recomputing these variables reduces register 
utilization at the expense of increased latency. Consider the 
following alternative implementation: 
 
 
   real = w1 * real[bin1] + (1.0 - w1) *  
      real[bin1 + 1]; 
   imag = w1 * imag[bin1] + (1.0 - w1) *  
      imag[bin1 + 1]; 
 
     The revised code above frees two registers and requires 2 
extra operations. In this instance, the disincentive for 
implementing this optimization is relatively low, as 2 
operation delays is not likely to produce a noticeable effect 
on performance. In the general case, however, the penalty 
for recomputing known values may be more severe, and 
careful analysis is needed to determine if the benefit is worth 
the cost. 
     A register utilization reduction can also be achieved by 
reducing the number of threads in a block and increasing the 
number of pixels rendered by each thread. This follows from 
the fact that not all registers used by a thread store 
information about a specific pixel. Many store information 
about the state of the thread. Therefore, increasing the 
number of pixels the thread is responsible for does not 
increase the demand for these registers. One such register 
corresponds to the variable holding the index of the pulse 
that is currently being rendered. This register contains 
information about the state of the thread, not the pixel. 
Consequently, reducing the number of threads results in a 
linear decrease in the number of these registers being used. 
This dramatically reduces thread utilization, at the expense 

of thread count. In practice, we determined that the number 
of threads could be reduced from 512 to 128 without 
adversely effecting performance. In this environment, each 
thread handled 8 pixels. 
     A final consideration in obtaining optimal performance is 
the implementation of transcendental functions. The 
backprojection algorithm includes one tangent operation per 
pulse-pixel pair. Evaluating this operation in single precision 
is costly on a GPU because the approximation algorithm is 
not well suited for SIMD parallel execution. Fortunately, the 
GPU includes a much faster implementation of the tangent 
function, __tanf(). This function evaluates with less 
precision than the single precision alternative, tanf(). 
However, despite its higher performance, the substitution of 
__tanf() in place of tanf() does not adversely affect the 
output image. The subtraction of an image generated using 
the faster implementation from an image generated using the 
single precision implementation resulted in a difference of 
less than 1 x 10-7 %. For the purpose of comparison, we also 
implement tangent using a lookup table with 1024 entries. 
This yielded higher latency than the __tanf() function and 
produced an output image that differed from the single 
precision image by 0.02%. 
 

VI. EXPERIMENTAL RESULTS 

     The algorithm described above was implemented and 
tested on an nVidia Tesla C1060 GPU, using  publicly-
available data [12] having 42,208 pulses with 4096 range 
bins per pulse. Experimental results are shown in Table 1.  
The low latencies produced by our algorithm, and the 
analysis provided in the preceding section, support the 
reconstruction of images in real time using multiple parallel 
GPU devices as pulse data is collected. For a 512 x 512 pixel 
output image, reconstruction times of less than one second 
can be obtained using only four GPUs. For larger tile sizes, 
the number of GPUs required to obtain such latencies is 
higher, because the reduction step (discussed previously) 
takes longer to compute. This can be attributed to the 
increased number of partial output images to be summed, 
and the increased size of each image.  
     Table 1 does not include the time required to transfer 
input pulse data from the host to the GPU and transmit 
image data back to the host. These times are included in 
Table 2, and are a function of the bandwidth of the host-GPU 
connection. In certain environments, however, these times 
can be masked using the Tesla GPU’s asynchronous 
invocation capabilities. In particular, since GPU kernel calls 
and data transfers can be flagged to return prior to 
completion, it is possible to overlap these instructions. In the 
case where the entire input pulse response matrix resides in 
host memory prior to execution, it is possible to load only a 
small number of pulses, launch a kernel using only those 
pulses which have been loaded, then continue loading the 
remainder of the pulses. In this way, the computation process 
can be overlapped with the startup transfer time. This is a 



particularly natural approach for invoking the kernel when 
pulse data is being read directly from an incoming data 
stream and reconstruction occurs in real time. In that case, a 
portion of the pulse data is transferred to the GPU (or one of 
several GPUs operating in parallel as described in the 
previous section), the kernel is invoked on those pulses, and 
computation begins as the next block of pulse data is 
streamed into global memory for the next computation.  
    This technique was implemented in our test environment, 
with results shown in Table 2. The latency required to 
transfer the input data from host memory to GPU global 
memory was measured to be 1.8 sec. The size of the input 
data was 1.32 GB, which yielded a host-GPU bandwidth 
estimate of 732 MB/sec. In addition, due to the fact that all 
output image sizes 
must be rendered using the entire pulse response matrix, the 
host-GPU transfer latency represents a fundamental limit on 
output latency that is independent of image size. 
Asynchronous I/O allows most of the transfer latency to be 
overlapped with computation, but total latencies lower than 
the transfer latency cannot be obtained. A similar technique 
can be used to mask the transfer of the output image back 
from GPU memory. However, this is not particularly useful, 
as the time required to transfer an image back to the host is 
usually negligible compared to the other latencies involved 
in reconstructing the image.  For example, a 2048px x 
2048px image was reconstructed in 48.1 sec, but required 
less than 0.1 sec to transfer back to the host device. 
 
1. GPU Implementation Observations 

    Based on our experimental results, a GPU is an ideal 
architecture for reconstructing SAR images via 
backprojection. This is primarily due to two key benefits of 
the GPU architecture: (1) the ability to mask memory access 
latency through overlapping I/O and computation, and (2) 
parallelism obtained from 240 cores operating 
simultaneously.  
     When compared to a consumer grade CPU, the 
performance difference is dramatic. Tables 3 and 4 depict the 
 

Image Size  
(px) 

Tile Size  
(px) 

Lat. 
(sec) 

Throughput 
(Gflop/s) 

512 x 512 32 3.44 119 

1024 x 1024 32 12.6  130 

2048 x 2048 32 48.1  136 

 
Table 1. Minimum measured reconstruction latencies for 
three representative output image sizes, in addition to the 
optimal tile size and number of pulses assigned to each 
thread block. This table omits the latency required to transfer 
pulses from the host to the nVidia Tesla C1060 GPU, which 
is shown in Table 2. Equivalent throughput in Gflop/s is 
given for each tile. 

 
 Without 

Asynchronous I/O 
With 

Asynchronous I/O 

Image Size 
(px) 

Lat. 
(sec) 

Throughput 
(Gflop/s) 

Lat. 
(sec) 

Throughput 
(Gflop/s) 

512 x 512 5.24 78.3 3.84 107 Gflop/s 

1024 x 1024 14.4 113 13.0 126 Gflop/s 

2048 x 2048  49.9 131 48.5 135 Gflop/s 
 
Table 2. Minimum measured reconstruction latencies for 
three image sizes shown in Table 1, including external I/O 
latency (data transfer between the host and GPU). Based on 
these observations, bandwidth between the host and GPU in 
our environment is 732 MB/sec. 

 
 No Tile 

Partitioning 
Tile Size 

40px x 40px 

Image Size 
(px) 

Lat. 
(sec) 

Throughput 
(Gflop/s) 

Lat. 
(sec) 

Throughput 
(Gflop/s) 

512 x 512 3170  0.129 3100 0.132 

1024 x 1024 11736 0.140 11485 0.143 
 
Table 3. Minimum measured latencies when images were 
reconstructed on desktop PC containing an AMD Athlon 64 
Dual Core 2.8 GHz Processor, and 2942 MB RAM, utilizing 
only one computation thread. The L1 cache size per core 
was 128 KB and the L2 cache size was 1024 KB. The 
marginal benefit of partitioning when using this architecture 
is depicted by comparing the latencies observed when the 
algorithm is run using a tile size of 40 x 40 to the latencies 
observed when partitioning is not used. 

 
 No Tile 

Partitioning 
Tile Size  

40px x 40px 

Image Size 
(px) 

Lat. 
(sec) 

Throughput  
(Gflop/s) 

Lat. 
 (sec) 

Throughput  
(Gflop/s) 

512 x 512 1550 0.265   1510 0.272 
Gflop/s 

1024 x 1024 5740 0.286 5490 0.299 
Gflop/s 

  
Table 4. Minimum measured reconstruction latencies for 
two cases in Table 3, but with four threads. 
 
 
 
 
 
 
 



throughput when images were rendered on a Windows Vista 
PC containing an AMD Athlon 64 Dual Core Processor 2.8 
GHz, with 2942 MB RAM, 128 KB L1 cache, and 1024MB  
L2 cache. When images were rendered in a single execution 
thread, a maximum throughput of 0.132 Gflop/s was 
obtained. Increasing the number of threads to four and 
introducing a tiled partitioning scheme increased throughput 
to 0.299 Gflop/s. Utilizing a larger number of threads was 
ineffective, as thread scheduling on a CPU is much slower 
than on a GPU, and the increased latency due to thread 
scheduling negatively impacts throughput. The impact of 
tile-based partitioning on throughput is less clear in the CPU 
than in the GPU. This can be attributed to the large L1 cache 
size available to the CPU. An entire row of the pulse 
response matrix from our data set had a size of 32 KB. This 
fit easily into the L1 cache of the CPU, meaning that pulse 
response matrix cache misses were rare, even when tile 
partitioning was not used. The benefit of tile-based 
partitioning is more pronounced when execution times are 
measured on a GPU that is not implementing this scheme. 
An alternative scheme was implemented where each GPU 
thread operated on a single pixel. This scheme did not 
partition the output image deliberately, but simply assigned 
pixels to threads sequentially in a row-major order. This is a  
variation of the approach described in Section 4.1, except 
that sequential thread assignment replaces random 
assignment. For the 512 x 512 pixel output image, a 
minimum latency of 20.5 sec was obtained, which 
corresponds to an estimated throughput of 20.0 GFLOPs, 
well below the measured throughput of 119 GFLOPs 
obtained using tile based partitioning. 
     The GPU implementation of the tile based partitioning 
scheme is the superior approach for reconstructing SAR 
images. Compared to the CPU implementation, the speedup 
observed from this approach was 438. In contrast, when 
compared to the inferior GPU partitioning scheme, the 
speedup was 5.8.  
 

VII. CONCLUSIONS AND FUTURE WORK 

     We have presented a design for an efficient mechanism 
for reconstructing images given synthetic aperture radar data 
using the Graphics Processing Unit (GPU). Our design, 
which is optimized for use on the nVidia Tesla C1060 GPU, 
partitions the output image into tiles. In particular, our 
approach relies on the fact that the amount of response data 
required for processing each tile is predictable and 
proportional to the size of the tile divided by the size of the 
image. Each thread block in the GPU operates on one tile for 
a given set of pulses from the pulse response matrix. The 
optimal tile size is the largest tile such that a single pulse can 
be contained in GPU shared memory, while still producing 
enough threads to permit the GPU to effectively make use of 
its 240 cores. 

Throughput is limited by the relatively high latency of 
accessing global memory on the GPU, particularly for 

reading the large pulse response matrix into shared memory. 
Nonetheless, performance for large output images (2048 x 
2048 pixels) was measured at up to 136 GFLOPs, which is 
more than ten percent of the C1060's peak performance 
measurement of 936 Gflop/s. Lower resolution images (e.g., 
512 x 512 pixels), which require a smaller number of 
computations using the same set of input pulse data, 
performed at 119 Gflop/s.  

Our continued research will investigate how multiple 
GPUs can be configured to operate in parallel and obtain 
additional throughput. In this case, the computational burden 
could be distributed across devices using the principles 
established in Sections 4.1 - 4.5. For small images, an 
efficient partitioning scheme would distribute blocks of 
pulses to multiple GPUs and combine the results at a single 
host machine to form a completed image. For large images, 
is is likely that a tiled partitioning scheme would be used to 
distribute image tiles, and the corresponding subset of the 
pulse data, to each device.  Experimental results show that 
real-time data processing is possible for 512 x 512 pixel 
images using a small number of GPUs.  
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