
Parallel Processing Techniques for the Processing of
Synthetic Aperture Radar Data on GPUs

 William Chapman, Sanjay Ranka,

Sartaj Sahni, Mark Schmalz
University of Florida, Department of CISE, Gainesville FL

32611-6120

Uttam Majumder
ARFL/RYAS, Dayton OH 45431

Abstract - This paper presents a design for parallel processing
of synthetic aperture radar (SAR) data using one or more
Graphics Processing Units (GPUs). Our design supports real-
time reconstruction of a two-dimensional image from a matrix
of echo pulses and their corresponding response values. Key to
our design is a dual partitioning scheme that divides the output
image into tiles and divides the input matrix into sets of pulses.
Pairs comprised of an image tile and a pulse set are distributed
to thread blocks in a GPU, thus facilitating parallel
computation. Memory access latency is masked by the GPU’s
low-latency thread scheduling. Our performance analysis
quantifies latency as a function of the input and output
parameters. Experimental results were generated with an
nVidia Tesla C1060 GPU having maximum throughput of 972
Gflop/s. Our design achieves peak throughput of 136 Gflop/s,
which scales well for output image sizes from 512 x 512 pixels to
2,048 x 2,048 pixels. Higher throughput can be obtained by
distributing the pulse matrix across multiple GPUs and
combining the results at a host device.

I. INTRODUCTION
 The use of electromagnetic waves to produce images that
depict detail beyond the response of human vision is of keen
research interest for applications such as computed
tomography, meteorology and geology (e.g., remote
sensing). In particular, radar-based mapping of ground
objects can benefit from high performance parallel
computing techniques.
 In practice, radar mapping involves the reconstruction of
a two-dimensional image of an object from a collection of
radar pulses, together with parameters of the radar sensor.
As shown in Figure 1, a device at a known location L emits a
pulse at time T0. Reflections (echoes) of this pulse from the
target are collected as a function of time over a given
interval. Echoes associated with objects further from the
emitter will arrive at the sensor later than those closer to the
emitter. In Figure 1, the response for P1 will appear at an
earlier time than P2, and P2 will appear earlier than P3. The
exact time these responses should arrive can be estimated by
dividing the distance between L and Px by the speed of light
c.
 Unfortunately, while predicting the arrival time for a
given point Pi is relatively simple, the inversion of multiple
echoes to determine Pi can be challenging due to
ambiguities. For example, as shown in Figure 2, an
additional point P4 can have the same distance from L as P1,
and can cause an equal response time as P1. Given the
response data for a single pulse, one cannot disambiguate the
echoes from P1 versus P4, thus confounding reconstruction
of P1 versus P4. Instead, one can only approximate the
location within the concentric circle centered on L, shown as

Figure 1: A radar pulse is
transmitted, and response
intensity is measured as a function
of time. Responses from more
distant objects traverse a longer
path and will return to the sensor
at a later time.

Figure 2. Configuration
of Figure 1 shown in
top view. An object at
P4 is the same distance
from L as P1, and will
have the same response
time.

a dotted line in Figure 2.
 Synthetic aperture radar provides a technique for
resolving these spatial ambiguities, based on the exploitation
of multiple pulses taken at multiple locations over time, to
increase radar sampling density and thus the effective
aperture. In the example shown in Figures 1 and 2, the
sampling process could be repeated with L in different
locations with respect to P1, P2, and P3. Via solution of an
inversion equation, the ambiguity between P1 and P4 can be
approximately resolved, allowing a more accurate
approximation of sensed objects in their reconstructed versus
truthed locations. Additionally, the effect of sampling error
due to interference and environmental factors is reduced by
averaging of multiple replicates. Unfortunately, SAR-based
image reconstruction becomes more expensive
computationally as the number of pulses and range bins per
pulse increases. For example, our experiments showed that a
512x512-pixel image having 42,208 pulses and 4096 range
bins per pulse took over four hours to reconstruct on a
consumer-grade 2 GHz Centrino processor.
 Fortunately, the emergence of less expensive parallel
architectures offers support for fast but computationally
expensive SAR reconstruction, for example, with Graphics
Processing Units (GPUs). In addition to efficiency, a GPU’s
data partitioning scheme, as well as our optimization
strategies for peak throughput, can be generalized to a
variety of problems with data access pattern characteristics
similar to SAR reconstruction. In particular, our scheme can
be effectively applied to generate an effective GPU solution
to any problem where spatial locality of output data implies
spatial locality of the required input data (for example, in
computed tomography). Due to space limitations, we focus
the remainder of this paper on SAR reconstruction with one
or more GPUs.

II. PRELIMINARIES

1. The Backprojection Algorithm
 Several algorithms are available for SAR reconstruction
from pulse response data, and instances of these algorithms
have been optimized to perform well on sequential systems
with relatively low throughput. In designing these
algorithms, computational performance, rather than quality
of the reconstructed image, tended to be the primary
evaluation metric. An algorithm that was rated poorly by this
metric is the backprojection (BP) algorithm [3]. BP, known
for its large computational cost and high output quality,
examines the pairing of every received (postprocessed) pulse
with every reconstructed pixel to estimate object reflectivity
at each point in the spatial representation. The details of this
algorithm are beyond the scope of this paper, but the
algorithm is summarized as follows.
 The pulse response data, or pulse response matrix, is
partitioned into range bins. Each range bin corresponds to a
measured response during a given interval of time after the
pulse was emitted. As mentioned in Section 1, responses that
arrive later are further from the emitter location, and are thus
placed into a higher-numbered range bin. For each pixel in
the output image, every pulse, and every range bin in that
pulse, is considered separately, with the value in a given
range bin being added to the value of the associated pixel of
the reconstructed SAR image. Thus, areas of higher
reflectivity will be associated with brighter output pixels or
regions.
 More formally, the main computational loop of the
backprojection algorithm features the pairing of each pulse
in the pulse response matrix with each pixel of the output
image. Let P denote the set of pulses, with P[i].bin[j]
denoting the jth range bin of pulse i after phase correction,
and (P[i].x, P[i].y, P[i].z) denoting the source of pulse i with
respect to some fixed reference point. If each pulse has a
range of Rstart to Rend, then the intensity of the output image
pixel at (x,y) can be written:

[] []() []() []()
()

















−

−−
∑ |].[|/

...
.

222

1 biniPRR
ziP+yiPy+xiPx

biniP=Y
startend

P

=i
yx, (1)

Surprisingly, this model captures the data movement patterns
of the backprojection algorithm, although our
implementation includes several enhancements to improve
output quality. For instance, in Equation (1), it was assumed
that pixel (x,y) maps to a range bin indexed by an integer. In
practice, pixels often fall between range bins, mapping to
bins that have a fractional index. In such cases, an
interpolated (smoother) image can be generated by
examining range bins adjacent to a fractionally-indexed bin,
then computing their weighted average based on their
distance from this bin. Such enhancements are not the focus
of this paper; we view any implementation of the
backprojection algorithm with a data access pattern as
shown in Equation 1 as being logically equivalent.

Additional detail regarding the backprojection algorithm,
and its enhancements, can be found in [3].

 2. Related Work

 The algorithm and design presented herein are tailored to
the fast parallel processing of synthetic aperture radar data,as
well as reconstruction of a corresponding two-dimensional
SAR output image. However, these techniques could also be
applied to any domain where pulse response data is
projected back to form an image of a surface, object, or area.
One such application is computer aided tomography, or the
construction of three-dimensional models from a set of
cross-sectional views, for example, for the purpose of
obtaining a three dimensional view of tissue in vivo. Here,
each atomic volumetric unit or voxel demonstrates the same
properties derived from a reconstructed SAR pixel. Namely,
for a given cross-sectional view, each voxel will be
associated with a response value that is spatially near the
response of its neighboring voxel. Similarly, a given volume
of output data will require a predictable quantity of response
data for each cross section. The preservation of these
properties ensures that the proposed partitioning scheme
would also provide an efficient data access mechanism for
generating tomograms [2,9].
 Other potential applications of our algorithm depart
entirely from the domain of image sampling. Network
tomography, for example, involves the inference of network
characteristics from observations taken at a variety of known
locations. In this case, each node in the network core is
analogous to a pixel in the output image, where each sample
location is analogous to a pulse. The latency or reliability of
a channel can be inferred from the repeated transfer of
packets between locations. The projection of this data back
onto the nodes through which packets travelled can produce
a visual representation of the network at any point in time,
without requiring explicit assistance from core nodes. In this
paradigm, spatial locality follows from the route
optimization properties of routing protocols [8]. A similar
problem involves estimation of ocean temperatures from
acoustic wave propagation latencies, because the speed of
sound in water is directly related to water temperature. By
measuring the propagation time of the wave between a
variety of sources and destinations, a set of cross sectional
images can be reconstructed that is analogous to the images
obtained in computer aided tomography. Small three
dimensional units of water, not unlike the voxels of
computer aided tomography, become the unit onto which
acoustic sensor response data is projected. Spatial locality of
input data follows from the output partitioning scheme [10].

3. Graphics Processing Unit (GPU)

 A Graphics Processing Unit is a parallel computing
device having high throughput and relatively low cost. GPUs
can be purchased for less than 100 USD, and are found
inside many modern desktop computers. Performance of

GPUs, despite their price, has been measured at over 900
GFLOPs. Comparatively, high end consumer-grade CPUs
have not achieved more than 150 GFLOPs per chip [4].
 The throughput of GPUs can be attributed to their high
degree of parallelism, or more specifically, their ability to
operate efficiently as single instruction, multiple data
(SIMD) devices. The nVidia Tesla C1060 GPU, which was
used in our experiments, has 30 streaming multiprocessors,
each consisting of 8 streaming processors or cores, for a
total of 240 cores. Generally, GPUs execute threads by
arranging them into thread blocks. Each thread block
corresponds to the execution of a single piece of code across
multiple parallel threads, with each thread acting on a
different unit of data. The code running on each thread is
referred to as a kernel. During the design phase, a
programmer can specify which parts of an application are
suited for this type of execution, labeling them as kernels
using syntax specified by the GPU language (e.g., CUDA for
our nVidia Tesla processor). At runtime, each thread block is
capable of accessing a common shared memory device,
which allows for a form of inter-thread communication. A
much slower device, global memory, is accessible from all
thread blocks, and is used to transfer data to and from the
host [4]. As in other hierarchically-configured memory
systems, high performance implies concentration on local
(on-chip) memory operations, with minimal transfer to and
from slower storage devices.
 The GPU is intended to operate efficiently with
thousands of threads running simultaneously, since thread
scheduling is implemented directly in GPU hardware and
has negligible overhead compared to program execution
time. In GPUs, the support for numerous threads allows
memory access latencies to be masked, since other threads
may operate while paused threads wait for IO operations to
complete.
 With respect to SAR, the backprojection algorithm
described in the preceding section is an ideal candidate for
GPU implementation, since (a) each output pixel can be
viewed as the sum of the contribution of each input pulse,
and (b) the set of operations used to calculate this
contribution is not dependent on the value of the input.

III. DATA MOVEMENT ISSUES IN SAR

 The backprojection algorithm described in Equation 1
requires the computational pairing of each pixel in the output
image with each pulse in the pulse response matrix. This
requires that each pixel and its corresponding range bin from
each pulse must be available on-chip at the same time. Since
both the output image and pulse response matrix can be
quite large in size, it is often impossible to fit the entirety of
either structure in shared memory, constant memory or
register memory. Fortunately, the data access pattern of the
backprojection algorithm ensures two properties that are
helpful in reducing the global memory access. We will
appeal to these properties in Section 4.4 when we examine a

Figure 3. The minimum number of range bins needed
corresponds to a look angle that is parallel to any side of the
square region (L1). The maximum number of range bins
occurs at an angle whose incident line forms a 45O angle
with each side of the square region (L2).

partitioning scheme that attains data access locality in
backprojection.

 Let the function N(P, S) be the number of range bins for a
given pulse required to completely generate a square
subregion S of the output image. For any square subregion S
and pair of pulses (P1 , P2), we have Property 1:

 Lemma 1: () ()SPNSPN 2,1 2, ≤

 This property can be explained by recalling that the range
bin needed for a given pixel is linearly related to its distance
from the pulse location. For any two points, the factor
relating the difference in their physical locations to the
difference D in their corresponding range bins is constant.
In particular, D equals the total distance sampled divided by
the number of range bins. Observe that the least number of
range bins will be required when the look angle is either
parallel or perpendicular to the base of the square subregion.
Likewise, the maximum number of range bins is required
when the look angle equals 45O, such that
 DB=Bins * (2)
where B denotes the length of the square base. For the 45O
case,
 DB=ngthDiagonalLeB=Bins 2* (3)
The final step is proven using the Pythagorean Theorem.
 A related property involves the relationship between the
number of bins needed by two square subregions. Consider
two such regions S1 and S2 with base lengths of b1 and b2.
Letting P be a pulse in the pulse response matrix, we obtain
the following lemma that states Property 2:

 Lemma 2: () () ()
2

12
1

2

12 2
2 b

bSP,NSP,N
b

bSP,N
≤≤

Observe that the distance between any two points on
opposite boundaries of S1 is less than or equal to 21B .
This follows directly from the Pythagorean Theorem. The
upper bound on the number of range bins required to render
this image is then proportional to 21B , with a
proportionality constant (C, as distinct from the speed of
light c) determined by the sampling resolution:

 () 211 CBSP,N ≤ (5)
Likewise, observe that the distance between any two points
on opposite boundaries of S2 is greater than or equal to B2.
The number of range bins required is then proportional to
B2. Since the input pulse data P remains constant, so does the
sampling resolution and the (constant) factor C. As a result,
we have
 () 22 CBSP,N ≥ (6)
Observing that B2 is a positive number,

 ()
2

2

B
SP,N

C ≤ (7)

and the upper bound of Property 2 follows from substitution
of C. The lower bound of Property 2 follows directly from
the upper bound. By swapping the roles of S1 and S2, and
noting that b1 and b2 are positive, we have

 () ()
1

21
2

2
b

bSP,NSP,N ≤ (8)

and the result follows.

IV. APPROACHES FOR DESIGNING A PARALLEL
IMPLEMENTATION

 The Backprojection Algorithm can be implemented on a
GPU by defining the kernel as the pairing of one pixel with
one pulse. The steps involved in performing this operation
are the same for all pixel/pulse pairs, so it is inherently
SIMD in nature. However, challenges arise in the mapping
of pair/pulse combinations to thread groups.

1. A Naive Approach

 First, let us consider the simplest approach, where kernels
are grouped arbitrarily. (See Figure 4.) Using this scheme,
each pulse/pair combination is assigned to a thread in an
unspecified sequence. This will produce a correct result,
because the backprojection algorithm does not specify an
order in which contributions must be summed. It is also
relatively easy to implement, as the programmer does not
have to concern himself with the details of grouping kernels
efficiently. This approach is also practical if the size of the
pulse response matrix is small enough to be copied to each
shared memory, where each thread has rapid access to the
entire pulse response matrix, so it can perform the necessary
computations without incurring data movement penalties.
When the pulse response matrix is large, it cannot be copied
to each shared memory; however, it may still be possible to
store the pulse response matrix in global memory. If shared
memory is used as a local cache, and the pulse response
matrix memory is divided into pages equal to the cache size,
a cache hit will occur with an average frequency equal to the
size of shared memory divided by the pulse response matrix
size. Our analysis shows that this results in only a few cache
sits in several thousand projections, even when the image

memory accesses are not considered. Noting that the time
required to access a cache page is larger than the time
required to read a single byte from global memory, it is
preferable to access global memory directly. Global
memory access latencies are roughly two orders of
magnitude slower than shared memory, so this is not a
feasible approach for the implementation of a backprojection
algorithm. While this approach achieves the minimum
computational requirements of backprojection, it does not
take advantage of the GPU memory hierarchy. The cost of
moving data from global memory to the GPU multiprocessor
is then one pixel load, one range bin load, and one pixel
write-back per pixel/pulse combination. Assuming an image
size of N x N pixels, rendered using P pulses, this process
requires 3PN2 global memory operations.
 We have found that the only remaining solution is to
achieve access locality by partitioning the data and
corresponding pixel/pulse combinations, ensuring that only a
small subset of the data needs to be copied to shared
memory at any one time. For each of the following proposed
partitioning schemes, we shall present a global memory
access cost in terms of N and P as defined above. Omitting
the bookkeeping calculations needed to implement
partitioning, all schemes are computationally equivalent.

2. Pulse Response Matrix Partitioning

 In contrast, if the pulse response matrix is partitioned into
blocks row- and column-wise, as shown in Figure 5, then
each block and the output pixels associated with this block
can be copied to the shared memory, processed, then written
back to global memory. This approach initially appears
promising, as it results in minimal transfer of the pulse
response matrix data: range bins are loaded from memory,
projected onto the image, and then discarded as they are not
needed in shared memory again.
 The challenges of this approach are best characterized by
considering the requirements of partitioning in each
dimension: the range bin dimension and the pulse
dimension. Of these, the former is notably more
troublesome. The key problem with dividing a pulse's range
bins across multiple blocks is the output image data access
pattern. In order to fully process the pulse, all pixels to
which the elements of this pulse contribute must be stored in
memory and updated. Since a single range bin contributes to
all pixels at a certain distance from the pulse source, a
relatively small number of range bins may correspond to a
large number of pixels, as shown in Figure 5. In addition,
images are represented in memory as a two-dimensional
array of pixels, where the upper left pixel is defined as the
starting point, and subsequent pixels are stored in row-major
order. Using this scheme, the pixels accessed by each
partition of the pulse response matrix rarely occupy adjacent
locations in memory. Since the GPU is optimized to load
data from memory in vector form, the fact that these pixels
are not adjacent and thus cannot be efficiently grouped into

vectors results in high access latencies. For these reasons, it
is preferable not to partition along this dimension. Pulse
response matrix partitioning should only be considered as a
technique that divides the data structure into groups of
pulses.
 If pulses are blocked in this manner, access locality on
the pulse response matrix is achieved within each block.
However, each pulse contributes to every pixel in the
reconstructed image. There is no access locality on the
output image. It follows that the global memory access cost
of this scheme is a single transfer of the pulse response
matrix followed by one pixel load and one pixel store for
each pixel/pulse combination. Referring back to our
definitions of N and P, and defining R to be the number of
range bins per pulse, this cost is PR + 2PN2. Fortunately, it is
possible to reduce the burden of the pixel load and write-
back steps if enough space is available to locally store an
independent copy of the output image for each pulse block.
After completing the block, the output can be summed with
the image already residing in global memory in a single pair
of load and write-back memory transactions. This final step
represents a reduction operation that produces a single
output image from the output of each pulse block. The
global memory access cost of this improved scheme, where
S is the number of pulse blocks, is PR + 2SN2.
 Although this technique is helpful in reducing the I/O
cost of backprojection, it imposes global memory access
requirements and on-chip memory requirements that are
sensitive to the size of the output image. Additional
partitioning is necessary to achieve reasonable performance
when the size of the output image is large.

3. Output Image Partitioning

 Rather than perform a block partition on the pulse
response matrix, another approach involves partitioning the
output image, as shown notionally in Figure 6. Using this
approach, the output image is divided into tiles, and each tile
is rendered by a single processing element. In [5], we have
shown this is an efficient means of implementing the
Proximality means that, for a pair of nearby pixels X and Y,
the range bins needed to compute X are proximal (near) in
the pulse response matrix to those range bins required to
compute Y. This permits FPGA implementations to route
data through a spatially-mapped algorithm in nearly systolic
fashion, facilitating high throughput with relatively low
hardware costs. It also encourages the selection of a tile size
that is relatively small with respect to the size of the output
image. This advantage occurs because the underlying data
structure benefited from the property of proximality, and
performed more effectively when all pixels in the tile were
reasonably close together.
 This property is not helpful in a GPU due to its shared
memory architecture, and due to the fact that a small tile size
results in pulse data being loaded from memory more
frequently. In contrast, GPU implementation tends to favor
large tile sizes, which reduce the amount of unnecessary

Figure 4. Data access pattern when each thread block is
assigned an arbitrary collection of pixels. There are is no
locality of access to be exploited on either the pulse response
matrix or the output image, so each thread must have
random access to the entirety of both data structures.

Figure 5. Partitioning the pulse response matrix data is an
effective technique that permits pulse data to be loaded into
shared memory, used, and then discarded. However, the
required image pixels are within a specfic distance interval
of a given pulse. These pixels do not occupy adjacent
memory locations, and demonstrate poor access locality.

Figure 6. Partitioning the output image into small tiles
supports locality of access for input and output data. Each
small subimage corresponds to a vertical strip of the pulse
response matrix.

pulse data movement.
 The global memory access cost of this scheme is the cost
of transferring a subset of the range bins from each pulse to
the processing element rendering each tile, followed by a
write-back of the tile to global memory after generation is
complete. There is no reduction step because each tile
represents the contribution of all pulses in the pulse response
matrix, rather than a subset of pulses. As shown above, each
tile requires a number of bins that is proportional to K/N, so
the global memory access cost scales with PRN/K + N2. A
factor of 2 does not precede the N2 term because the write-
back operation does not require a load step, as no reduction

operation is occurring. This equation shows that larger tile
sizes inherently incur lower global memory access costs. A
range bin is copied from global memory each time it is
needed by a tile. As the set of pixels contributed to by a
range bin increases, the number of times that bin must be
copied from global memory also increases.

 4. Output Image and Pulse Response Matrix Partitioning

 While large tile sizes help reduce I/O cost, they also
reduce algorithmic parallelism. When the image size is small
relative to the tile size, there are fewer partitions to be
distributed across the available processing cores. An
inefficient partitioning scheme results. Memory access
delays that would be masked by a larger number of partitions
instead adversely impact device throughput. This challenge
can be overcome by splitting the pulses into pulse sets, then
distributing the computation of a single image tile across
several cores. Using output partitioning only, each thread
handles the computation of a set of pixels across all pulses.
Thus, a thread now computes a set of pixels across 1/S
pulses, where S is the number of pulse sets. Figures 9 and 10
illustrate this approach notionally, comparing it with a pure
output partitioning scheme. Thus, the previous approach is
simply a specialization of this approach with S=1. Because
this approach partitions the pulse response matrix, each tile
of the output image is further distributed across processing
devices. This requires a load and write-back reduction step
as described in Section 4.2, increasing the global memory
access cost to PRN/K + 2SN2. In this equation, the value of
P, R and N are input parameters to backprojection, while the
values of K and S are variable and can be configured to
maximize throughput.
 An ideal tile size (K) balances unnecessary global
memory access (incurred by small tile sizes) against
decreased parallelism (observed for large tile sizes).
Unnecessary global memory access occurs when the same
range bin from a given pulse is transferred from global
memory to shared memory more than once, as occurs when
a range bin is used for multiple pixels in different tiles (as
shown in Figure 9). Here, two pixels equidistant from the
emitter are assigned to the same range bin. In general, if
there are R range bins, and NxN output pixels, then a range
bin is accessed, on average, by RN /2 pixels.
 In a simple worst case analysis, the tile size K = 1 is
equivalent to rendering each pixel independently, thereby
accessing global memory each time a range bin is accessed,
which results in each bin being loaded RN /2 times.
Considering an image size of 512 x 512 pixels, and our
sample data set having 4096 range bins per pulse after
oversampling, this results in the pulse response matrix being
loaded from memory 64 times. In contrast, a simple best-
case analysis uses K = N, where the entire pulse matrix is
loaded from global memory once, used for every pixel of the
output image, then permanently discarded, such that the

Figure 7. The output image, represented by the cube face, is
partitioned into K x K tiles for distribution across multiple
processing units. Each processing unit renders a single tile
for each pulse sequentially.

Figure 8. A generalization of the approach described in
Figure 7. The pulse set is divided into three groups. Each
thread group renders a K x K tile of the output image with
respect to 1/3 of the pulses.

pulse response matrix is loaded only once.
 An intermediate case employs Lemma 2, and redefines R
as the number of bins needed to render the NxN–pixel image
for an arbitrarily chose pulse. In practice, this new value of
R may be less than the total number of range bins in that
pulse. Without loss of generality, since unused range bins are
not transferred to shared memory, they can be ignored when
optimizing implementation parameters. If an NxN image is
partitioned into KxK tiles, then loading each tile from global
memory accesses a predictable number of bins. In particular,
consider the case of an image whose x or y axis is incident to
the look angle. Here, the number of bins accessed
is NRK / . Lemma 2 claims that for any other image tile,
the number of range bins required to render this pulse is less
than NRK /2 . Observe that Lemma 2 does not require
that the subregions on which it operates (S1 and S2) be
contained within the NxN image, nor does it require that
they have the same orientation. As a result, for every pulse,
there exists a region S1 whose x- or y-axis is incident to the
look angle. Therefore we have an upper bound on the
number of bins required to render any tile using any pulse.
Applying this concept to the processing of every tile in an

NxN image results in a total transfer of bins that is contained
within the following interval:










K
RN,

K
RN 2 , (9)

 as shown in Figure 9 using 4096 range bins and 512 x 512
output pixels.
 From the previous relationship, it would appear that an
optimal tile size is K = N, subject to memory constraints.
However, we have already shown this is not the case. Large
values of K, even in environments where memory is not
limited, reduce the inherent parallelism of the tiled approach.
On a GPU, where many processing cores are available for
parallel operation, this situation is inefficient. In particular,
since only one thread block is being rendered at a time, the
reconstruction operation is restricted to a single
multiprocessor, and the GPU is forced to pause computation
during the
operations that read and write from global memory. If a
larger number of thread blocks were available, then the GPU
could interleave computation and memory access,
significantly masking these latencies. Thus, a second
partitioning scheme was introduced on the pulse dimension
of the pulse response matrix.
 The characteristics of this partitioning scheme can be
observed graphically. Figure 10 describes the observed
latency when tile size is selected to be the size of the output
image. This results in minimal parallelism, since only one
block is being rendered by a single multiprocessor. It also
results in minimal pulse response matrix data transfer, as
described in the preceding analysis. The shape of this graph
indicates that increasing the number of pulse partitions
initially has the effect of decreasing latency. Beyond some
optimal point, latency begins to increase at a rate that is
linear with respect to the number of pulse sets.
 In order to maximize throughput, we analyze in greater
depth the shape of Figure 10. Firstly, we consider the
downward slope of the graph caused by increased
parallelism from larger numbers of threads. As shown in
Figure 11, this graph can be divided into three distinct
regions. In Region 1, the GPU is underutilized, as there are
not enough thread blocks to distribute to the multiprocessors.
Increasing the number of blocks results in a linear decrease
in the latency.
 In Region 2, there are enough thread blocks to distribute
to every multiprocessor. However, some multiprocessors
have only a small number of blocks assigned to them. When
the threads in these blocks block to wait for global memory
access, the multiprocessor has no other work to do and must
wait until memory access is complete. During this time, the
multiprocessor is idle, yielding suboptimal latencies.
 In Region 3, ample work is distributed among the device,
so multiprocessors rarely go idle. The upward-sloping
element of the graph results from the reduction operation at
the completion of each image block. When the pulse
response matrix is distributed to several blocks, the images

Figure 9. The pulse response matrix data transfer bounds
(Equation 9) are modeled as a function of tile size K. The
required number of range bins is 4096, and the output image
is 512x512 pixels. Larger tile sizes result in less movement
of pulse response matrix data.

Figure 10. Latency response for reconstructing an N x N
image, where K = N, and the number of pulse sets is varied
from 1 to the logical maximum of 1 pulse per pulse set.
Latency decreases sharply as parallelism improves, then
increases as the latency to reduce output images overtakes
improvements from increased parallelism.

generated by each block must be combined to form a final
output image, using the transfer medium of global memory.
This global memory access cost increases with the number
of output images, which results in a linear increase in latency
as the number of pulse sets is increased, per Figure 12.

4.5 - The Effect of Input and Output Size

 From the preceding analysis, when image sizes are large
with respect to the pulse response matrix, it is desirable to
use a smaller tile size and recycle the pulse response matrix
through global memory. When image sizes are small with
respect to the pulse response matrix, large tile sizes are
preferred, and pulse partitioning is the preferred means of

achieving parallelism. This follows from the notion that
small tile sizes result in more unnecessary global memory
access on the pulse response matrix, per Figure 9, and large
tile sizes dictate the need for pulse partitioning and image
reduction, per Figures 13 and 15.
 Modern GPU devices contain a relatively small block of
low latency memory. This provides an upper bound on the
tile size that does not limit computation parallelism on the
smallest image size of 512 x 512. As a result, pulse
partitioning is not used to obtain our experimental results.
However, we anticipate this optimization will be of
increased importance in future devices.

V. EXPERIMENTAL GPU IMPLEMENTATION

 GPUs are convenient architectures for implementing tile-
based partitioning, since most GPUs provide native support
for two-dimensional block partitioning by allowing thread
groups to be indexed on a two dimensional grid. This
supports logical correspondence between the thread
partitioning and image partitioning schemes. Also, each
thread group evaluates one tile of the output image, as
shown in Figure 6.
 A GPU can also permit thread indexing within each
thread group. This provides an equally simple approach for
assigning pixels to threads. In particular, the index of each
thread is equal to the index of each image pixel, when pixels
are traversed in normal scanning order (left to right, top to
bottom). Unfortunately, the GPU employed in our
experiments supports a
maximum of only 512 threads per block. If one thread
evaluates each pixel, then this limits the size of the tile to
K = 5121/2 = 22, which yields high I/O latency for typical
output size, since pulse data is recycled from global memory
several times. A better approach assigns each thread multiple
pixels to be evaluated sequentially, as summarized in Figure
14.
 Distribution of the pulse data is facilitated by the fact that
the reconstruction of a given output pixel with respect to
each pulse is an independent event. As a result, no benefit is
gained from loading multiple pulses into shared memory at a
single time. Except in the rare instance that there are not
enough pixels to occupy the group threads, there is no
possibility of rendering two pulses in parallel within a single
thread group. Even in such an instance, there is no
performance benefit to be seen from loading multiple pulses,
since greater efficiency could be achieved by increasing the
tile size or reducing the number of threads in the group. As a
result, a more effective technique allows each thread to
render each set of pixels with respect to every pulse. When
the computation of each pixel-pulse pair is treated as a tuple
in three dimensional space, this technique can be depicted as
shown in Figure 8. The approach benefits from its
simplicity: each pixel can be stored either in a register or in
shared memory, so at the completion of the thread, there is
no additional work to be done. A completed pixel value is

Figure 11. The latency of
increasing the number of pulse
sets being computed in parallel,
excluding the reduction
operation used to generate a
final result. Regions 1-3 are
illustrated notionally.

Figure 12. Reduction
latency increases as the
number of pulse sets
computed in parallel is
increased. The slope of the
increase is the size of the
image divided by the
bandwidth of global
memory.

Figure 14. Output image decomposed into two-dimensional
KxK-pixel tiles, where each tile is evaluated by one thread
block. To accommodate tile sizes larger than K = 5121/2, each
thread can process a set of pixels sequentially.

available for immediate copying back to global memory.
 In order to achieve maximal throughput, other factors
affecting GPU performance were considered. In particular,
performance is maximized when global memory accesses
occur in a pattern that facilitates memory coalescing.
Coalescing describes the ability of the GPU to group
multiple memory requests into a single memory transaction
when certain criteria are satisfied. GPU devices of compute
capability 1.2 or higher, which include the device on which
our experiments were performed, are capable of coalescing
16 transactions of transfer from global memory when all
threads in a half warp access 4 byte or 8 byte words and all
words are located in the same memory segment. To satisfy
this requirement, the contribution of each pulse to a tile is
split into three parts. Each thread in a block performs the
following steps:

 for each pulse {
 // compute the minimum and maximum
 // range bin needed by the pulse
 // copy the range bins from global
 // memory to shared memory
 // compute the contribution of the
 // pulse to the pixels handled by
 // this thread
 }

 The second step is ensures that the requirements for
coalescing are met. Each thread accesses the bin equal to the
minimum range bin summed with its thread id. If the number
of bins needed exceeds the number of threads in the block, a
pointer is moved to the last bin read and the process is
repeated.
 This approach is effective in ensuring that pulse data is
coalesced. However, it does not achieve coalescing for pulse
meta-data. This includes the pulse location, frequency, and
range. The pulse location consists of an x, y, and z
coordinate, each represented by a single float. Likewise, the
frequently and range also occupy a single float. Each of
these five data items are stored in separate arrays. This
excludes the possibility of coalescing unless the meta-data
for multiple pulses are loaded in a single transaction. For
that reason, the loop in the code segment above is split into
two loops as follows:

 for each set of 64 pulses {
 //load x position for all pulses in set
 //load y position for all pulses in set
 //load z position for all pulses in set
 //load frequency for all pulses in set
 //load range for all pulses in set

 for each pulse in set {
 // compute the minimum and maximum
 // range bin needed by the pulse
 // copy the range bins from global
 // memory to shared memory
 // compute the contribution of the
 // pulse to the pixels handled by
 // this thread
 }
 }

 In modern GPU devices, the performance of coalescing
can be improved by increasing the word size of the data
being coalesced. In particular, by packaging pulse data and
pulse meta data into the GPU's float4 data type, we were
able to obtain noticeably higher global memory bandwidth.
A global memory access that does not implement this
optimization is coded as follows:
 shared[threadIdx.x] = global[threadIdx.x + offset];
The same memory access, rewritten to implement 16 bit
word coalescing, would be modified to the following. The
global array in this code has been cast to an array of type
float4, which is reflected in the use of the identifier global4
in place of global.

 float4 temp;

 temp = global4[threadIdx.x + offset/4];

 shared[threadIdx.x*4] = temp.x;

 shared[threadIdx.x*4+1] = temp.y;

 shared[threadIdx.x*4+2] = temp.z;

 shared[threadIdx.x*4+3] = temp.w;

The increase in the size of each element in the global
memory array has the effect of multiplying the index
accessed by four. To preserve correctness, corresponding
adjustments must be made to the offset value and shared
memory index.
 The GPU has also been shown to perform more
efficiently when multiple blocks are active on each
multiprocessor. This permits global memory access latency
to be masked by overlapping execution with reads. A block
can be marked as active on a multiprocessor if there are
enough shared memory resources and registers available to
service the block. The GPU used for our experiments
contained 16 KB of shared memory and 16384 registers per
multiprocessor. It was necessary, therefore, to ensure that
each block used less than half those resources. The
allocation of shared memory to meet these requirements was
not difficult. Using the analysis described in Section 3, our
experimental data, and a tile size of 32 x 32, we determined
that the maximum number of range bins that could be
needed to render a pulse. This data fit easily within 4 KB,
leaving an additional 4 KB shared memory per block
available for caching pulse meta data. The process of
register allocation, however, proved more challenging. Due
to the fact that the scope of a register variable is limited to
only one thread, a block consisting of 512 threads is limited
to only 16 registers per thread if it is intended to share a
multiprocessor with another block. This value is
prohibitively low, and several optimization techniques were
used to reduce register utilization.
 The first approach was to unroll loops when the number
of iterations the loop will execute is known at the time the
application is compiled. This has the effect of freeing up the
register that would otherwise be used to maintain the loop
index. For example, a simple piece of code which computes
the sum of the first 3 elements in an array could be
implemented as:

 x = arr[0]
 for(i=1; i < 3; i++)
 x += arr[i];

 The code segment above requires a register to maintain
the value of the index variable i throughout the duration of
loop. An alternative implementation, which does not require
an index variable, is:

 x = arr[0];
 x += arr[1];
 x += arr[2];

 In our experimental implementation, this technique was
used to facilitate the sequential computation of several pixels
by a single thread without the use of an index register to
track which pixel was currently being computed.
 When parameters to execution are not known at the time
of compilation, it is natural to compute them dynamically

and store the results in a variable for later reuse. We have
found, however, that this practice can adversely affect the
behavior of the register allocator. In many instances, the
temporal cost of recomputing a value each time it is needed
is outweighed by the spatial cost of allocating a register to
hold it. For example, the contribution of a pulse to a pixel is
computed as the weighted mean of the range bin
immediately preceding the pixel and the bin immediately
following it. This contribution is computed twice, once for
the real component of the pulse data, and once for the
imaginary component. A natural implementation is to
determine constants, w1 and w2, whose values range
between 0 and 1 depending on where the pixel is located
relative to the starting point of the two bins: bin1, the range
bin whose boundary immediately precedes the pixel
location; w1, ranges between 0.0f and 1.0f, where 1.0f
corresponds to pixel that falls exactly on the boundary of
bin1.

 w2 = 1.0 - w1;
 bin2 = bin1 + 1;
 real = w1 * real[bin1] + w2 * real[bin2];
 imag = w1 * imag[bin1] + w2 * imag[bin2];

 The implementation above requires registers to store w2
and bin2. Recomputing these variables reduces register
utilization at the expense of increased latency. Consider the
following alternative implementation:

 real = w1 * real[bin1] + (1.0 - w1) *
 real[bin1 + 1];
 imag = w1 * imag[bin1] + (1.0 - w1) *
 imag[bin1 + 1];

 The revised code above frees two registers and requires 2
extra operations. In this instance, the disincentive for
implementing this optimization is relatively low, as 2
operation delays is not likely to produce a noticeable effect
on performance. In the general case, however, the penalty
for recomputing known values may be more severe, and
careful analysis is needed to determine if the benefit is worth
the cost.
 A register utilization reduction can also be achieved by
reducing the number of threads in a block and increasing the
number of pixels rendered by each thread. This follows from
the fact that not all registers used by a thread store
information about a specific pixel. Many store information
about the state of the thread. Therefore, increasing the
number of pixels the thread is responsible for does not
increase the demand for these registers. One such register
corresponds to the variable holding the index of the pulse
that is currently being rendered. This register contains
information about the state of the thread, not the pixel.
Consequently, reducing the number of threads results in a
linear decrease in the number of these registers being used.
This dramatically reduces thread utilization, at the expense

of thread count. In practice, we determined that the number
of threads could be reduced from 512 to 128 without
adversely effecting performance. In this environment, each
thread handled 8 pixels.
 A final consideration in obtaining optimal performance is
the implementation of transcendental functions. The
backprojection algorithm includes one tangent operation per
pulse-pixel pair. Evaluating this operation in single precision
is costly on a GPU because the approximation algorithm is
not well suited for SIMD parallel execution. Fortunately, the
GPU includes a much faster implementation of the tangent
function, __tanf(). This function evaluates with less
precision than the single precision alternative, tanf().
However, despite its higher performance, the substitution of
__tanf() in place of tanf() does not adversely affect the
output image. The subtraction of an image generated using
the faster implementation from an image generated using the
single precision implementation resulted in a difference of
less than 1 x 10-7 %. For the purpose of comparison, we also
implement tangent using a lookup table with 1024 entries.
This yielded higher latency than the __tanf() function and
produced an output image that differed from the single
precision image by 0.02%.

VI. EXPERIMENTAL RESULTS

 The algorithm described above was implemented and
tested on an nVidia Tesla C1060 GPU, using publicly-
available data [12] having 42,208 pulses with 4096 range
bins per pulse. Experimental results are shown in Table 1.
The low latencies produced by our algorithm, and the
analysis provided in the preceding section, support the
reconstruction of images in real time using multiple parallel
GPU devices as pulse data is collected. For a 512 x 512 pixel
output image, reconstruction times of less than one second
can be obtained using only four GPUs. For larger tile sizes,
the number of GPUs required to obtain such latencies is
higher, because the reduction step (discussed previously)
takes longer to compute. This can be attributed to the
increased number of partial output images to be summed,
and the increased size of each image.
 Table 1 does not include the time required to transfer
input pulse data from the host to the GPU and transmit
image data back to the host. These times are included in
Table 2, and are a function of the bandwidth of the host-GPU
connection. In certain environments, however, these times
can be masked using the Tesla GPU’s asynchronous
invocation capabilities. In particular, since GPU kernel calls
and data transfers can be flagged to return prior to
completion, it is possible to overlap these instructions. In the
case where the entire input pulse response matrix resides in
host memory prior to execution, it is possible to load only a
small number of pulses, launch a kernel using only those
pulses which have been loaded, then continue loading the
remainder of the pulses. In this way, the computation process
can be overlapped with the startup transfer time. This is a

particularly natural approach for invoking the kernel when
pulse data is being read directly from an incoming data
stream and reconstruction occurs in real time. In that case, a
portion of the pulse data is transferred to the GPU (or one of
several GPUs operating in parallel as described in the
previous section), the kernel is invoked on those pulses, and
computation begins as the next block of pulse data is
streamed into global memory for the next computation.
 This technique was implemented in our test environment,
with results shown in Table 2. The latency required to
transfer the input data from host memory to GPU global
memory was measured to be 1.8 sec. The size of the input
data was 1.32 GB, which yielded a host-GPU bandwidth
estimate of 732 MB/sec. In addition, due to the fact that all
output image sizes
must be rendered using the entire pulse response matrix, the
host-GPU transfer latency represents a fundamental limit on
output latency that is independent of image size.
Asynchronous I/O allows most of the transfer latency to be
overlapped with computation, but total latencies lower than
the transfer latency cannot be obtained. A similar technique
can be used to mask the transfer of the output image back
from GPU memory. However, this is not particularly useful,
as the time required to transfer an image back to the host is
usually negligible compared to the other latencies involved
in reconstructing the image. For example, a 2048px x
2048px image was reconstructed in 48.1 sec, but required
less than 0.1 sec to transfer back to the host device.

1. GPU Implementation Observations

 Based on our experimental results, a GPU is an ideal
architecture for reconstructing SAR images via
backprojection. This is primarily due to two key benefits of
the GPU architecture: (1) the ability to mask memory access
latency through overlapping I/O and computation, and (2)
parallelism obtained from 240 cores operating
simultaneously.
 When compared to a consumer grade CPU, the
performance difference is dramatic. Tables 3 and 4 depict the

Image Size
(px)

Tile Size
(px)

Lat.
(sec)

Throughput
(Gflop/s)

512 x 512 32 3.44 119

1024 x 1024 32 12.6 130

2048 x 2048 32 48.1 136

Table 1. Minimum measured reconstruction latencies for
three representative output image sizes, in addition to the
optimal tile size and number of pulses assigned to each
thread block. This table omits the latency required to transfer
pulses from the host to the nVidia Tesla C1060 GPU, which
is shown in Table 2. Equivalent throughput in Gflop/s is
given for each tile.

 Without

Asynchronous I/O
With

Asynchronous I/O

Image Size
(px)

Lat.
(sec)

Throughput
(Gflop/s)

Lat.
(sec)

Throughput
(Gflop/s)

512 x 512 5.24 78.3 3.84 107 Gflop/s

1024 x 1024 14.4 113 13.0 126 Gflop/s

2048 x 2048 49.9 131 48.5 135 Gflop/s

Table 2. Minimum measured reconstruction latencies for
three image sizes shown in Table 1, including external I/O
latency (data transfer between the host and GPU). Based on
these observations, bandwidth between the host and GPU in
our environment is 732 MB/sec.

 No Tile

Partitioning
Tile Size

40px x 40px

Image Size
(px)

Lat.
(sec)

Throughput
(Gflop/s)

Lat.
(sec)

Throughput
(Gflop/s)

512 x 512 3170 0.129 3100 0.132

1024 x 1024 11736 0.140 11485 0.143

Table 3. Minimum measured latencies when images were
reconstructed on desktop PC containing an AMD Athlon 64
Dual Core 2.8 GHz Processor, and 2942 MB RAM, utilizing
only one computation thread. The L1 cache size per core
was 128 KB and the L2 cache size was 1024 KB. The
marginal benefit of partitioning when using this architecture
is depicted by comparing the latencies observed when the
algorithm is run using a tile size of 40 x 40 to the latencies
observed when partitioning is not used.

 No Tile

Partitioning
Tile Size

40px x 40px

Image Size
(px)

Lat.
(sec)

Throughput
(Gflop/s)

Lat.
 (sec)

Throughput
(Gflop/s)

512 x 512 1550 0.265 1510 0.272
Gflop/s

1024 x 1024 5740 0.286 5490 0.299
Gflop/s

Table 4. Minimum measured reconstruction latencies for
two cases in Table 3, but with four threads.

throughput when images were rendered on a Windows Vista
PC containing an AMD Athlon 64 Dual Core Processor 2.8
GHz, with 2942 MB RAM, 128 KB L1 cache, and 1024MB
L2 cache. When images were rendered in a single execution
thread, a maximum throughput of 0.132 Gflop/s was
obtained. Increasing the number of threads to four and
introducing a tiled partitioning scheme increased throughput
to 0.299 Gflop/s. Utilizing a larger number of threads was
ineffective, as thread scheduling on a CPU is much slower
than on a GPU, and the increased latency due to thread
scheduling negatively impacts throughput. The impact of
tile-based partitioning on throughput is less clear in the CPU
than in the GPU. This can be attributed to the large L1 cache
size available to the CPU. An entire row of the pulse
response matrix from our data set had a size of 32 KB. This
fit easily into the L1 cache of the CPU, meaning that pulse
response matrix cache misses were rare, even when tile
partitioning was not used. The benefit of tile-based
partitioning is more pronounced when execution times are
measured on a GPU that is not implementing this scheme.
An alternative scheme was implemented where each GPU
thread operated on a single pixel. This scheme did not
partition the output image deliberately, but simply assigned
pixels to threads sequentially in a row-major order. This is a
variation of the approach described in Section 4.1, except
that sequential thread assignment replaces random
assignment. For the 512 x 512 pixel output image, a
minimum latency of 20.5 sec was obtained, which
corresponds to an estimated throughput of 20.0 GFLOPs,
well below the measured throughput of 119 GFLOPs
obtained using tile based partitioning.
 The GPU implementation of the tile based partitioning
scheme is the superior approach for reconstructing SAR
images. Compared to the CPU implementation, the speedup
observed from this approach was 438. In contrast, when
compared to the inferior GPU partitioning scheme, the
speedup was 5.8.

VII. CONCLUSIONS AND FUTURE WORK

 We have presented a design for an efficient mechanism
for reconstructing images given synthetic aperture radar data
using the Graphics Processing Unit (GPU). Our design,
which is optimized for use on the nVidia Tesla C1060 GPU,
partitions the output image into tiles. In particular, our
approach relies on the fact that the amount of response data
required for processing each tile is predictable and
proportional to the size of the tile divided by the size of the
image. Each thread block in the GPU operates on one tile for
a given set of pulses from the pulse response matrix. The
optimal tile size is the largest tile such that a single pulse can
be contained in GPU shared memory, while still producing
enough threads to permit the GPU to effectively make use of
its 240 cores.

Throughput is limited by the relatively high latency of
accessing global memory on the GPU, particularly for

reading the large pulse response matrix into shared memory.
Nonetheless, performance for large output images (2048 x
2048 pixels) was measured at up to 136 GFLOPs, which is
more than ten percent of the C1060's peak performance
measurement of 936 Gflop/s. Lower resolution images (e.g.,
512 x 512 pixels), which require a smaller number of
computations using the same set of input pulse data,
performed at 119 Gflop/s.

Our continued research will investigate how multiple
GPUs can be configured to operate in parallel and obtain
additional throughput. In this case, the computational burden
could be distributed across devices using the principles
established in Sections 4.1 - 4.5. For small images, an
efficient partitioning scheme would distribute blocks of
pulses to multiple GPUs and combine the results at a single
host machine to form a completed image. For large images,
is is likely that a tiled partitioning scheme would be used to
distribute image tiles, and the corresponding subset of the
pulse data, to each device. Experimental results show that
real-time data processing is possible for 512 x 512 pixel
images using a small number of GPUs.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support of this work
under Air Force contract #FA8650-09-M-1563 and NSF
grant NETS 0963812.

REFERENCES

[1] Mita D. Desai and W. Kenneth Jenkins, "Convolution
 Backprojection Image Reconstruction for Spotlight Mode
 Synthetic Aperture Radar" IEEE Transactions on Image
 Processing, Vol. 1 No. 4, pp. 505-517, 1992.
[2] Nicolas Gac and Stephane Mancini and Michel Desvignes and
 Dominique Houzet, "High Speed 3D Tomography on
 CPU, GPU and FPGA"
[3] Lars M. H. Ulander, Hans Hellsten, Gunnar Stenstrom,
 "Synthetic-Aperture Radar Processing Using Fast
 Factorized Back-Projection" IEEE Transactions on
 Aerospace and Electronic Systems, Vol. 39 No. 3, pp. 760-776,
 2003.
[4] "NVIDIA Programming Guide - Version 2.2." April 2009.
[5] William Chapman, Sanjay Ranka, Sartaj Sahni, Mark Schmalz,
 "Parallel Processing Techniques for the Processing of
 Synthetic Aperture Radar Data on FPGAs." October 2009.
[6] Shibdas Bandyopadhyay, "SAR implementation on the GPU
 using CUDA." August 2009.
[7] "Introduction to CUDA", NVidia Corp 2008
[8] "Network Tomography: estimating source-destination traffic intensities
 from link data". J. Am. Statistics Association 91: 365-377.
 1996
[9] R.S. Ledley, Introduction to computerized tomography, Comput. Biol.
 Med. 6 (1976), pp. 239–246.
[10] Brekhovskikh, Leonid. Fundamentals of ocean acoustics. 3rd. Springer
 Verlag, 2003. Print.
[11] Alan Dl Cenzo, "A Comparison of Resolution for Spotlight Synthetic-
 Aperture Radar and Computer-Aided Tomography"
 Proceedings of the IEEE, VOL 74, NO. 6, Aug 1966
[12] Curtis H. Casteel, Jr, LeRoy A. Gorham, Michael J. Minardi, Steven
 M. Scarborough, Kiranmai D. Naidu, Uttam K. Majumder. "A
 Challenge Problem for 2D/3D Imaging of Targets from a
 Volumetric Data Set in an Urban Environment." Proc. of SPIE
 Vol. 6568 65680D-1

