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Abstract

Topological indices of molecular graphs are related to several physicochemical characteristics; re-

cently, the inverse problem for some of these indices has been studied, and it has some applications

in the design of combinatorial libraries for drug discovery. It is thus very natural to study also

extremal problems for these indices, i.e. finding graphs having minimal or maximal index. In this

paper, these questions will be discussed for three different indices, namely the σ-index, the c-index

and the Z-index, with emphasis on the σ-index.
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1 Introduction

Formally, a topological index is a map from the set of molecular graphs to the real numbers.

The indices discussed in this paper appear, for example, in the work of Li et al. (2003). For

their uses in drug design and molecular recognitions, we refer to Sheridan and Kearsley (1995),

Venkatasubramanian et al. (1995) and Goldman et al. (2000).

The inverse problem for topological indices (i.e. finding a graph having some given index value)

has been studied by Goldman et al. (2000) for the Wiener index and by Li et al. (2003) for the σ-,

the c-, the Z- and the M1-index. All these indices are popular in the study of molecular graphs,

see for example Rouvray (1973), Sabljić and Trinajstić (1981), Merrifield and Simmons (1989) and

Trinajstić (1992). In the stated papers on the inverse problem, algorithmic solutions have been

given. In the current work, we are interested in the natural question of finding graphs of minimal

or maximal index value, given their size (number of vertices or edges).

We start with the definitions of the indices we are considering (cf. Li et al., 2003):

Definition 1 The σ-index σ(G) of a graph G is the number of independent vertex subsets of G

(including the empty set), where a set of vertices is said to be independent if there is no pair of

connected vertices in it.

Definition 2 The c-index c(G) of a graph G is the number of cliques of G (including the empty

clique), i.e. the number of complete subgraphs.

Definition 3 The Z-index Z(G) of a graph G is the number of independent edge subsets of G

(including the empty set), where a set of edges is said to be independent if there is no pair of edges

sharing a common vertex in it.

In section 2, we will give a short survey of known mathematical facts on the σ-index, and then

turn to new results and generalizations. In sections 3 and 4, the c- and Z-index are considered,

with similar results, but less detailed. All graphs considered here are finite, simple and connected

(if not stated otherwise), and we refer to Biggs (1989) for notation and terminology.
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2 The σ-index

The σ-index is also called Merrifield-Simmons-Index, and it is one of the most popular topological

indices in chemistry. In their original work in 1989, Merrifield and Simmons were able to show the

correlation between this index and boiling points. It was further investigated in various subsequent

papers (Wang et al., 2001; Li et al., 2003)

In mathematics, the σ-index has already been introduced in 1982 in a paper of Prodinger and

Tichy, although it is called Fibonacci number of a graph there. In this and two subsequent papers

(1983 and 1986), the σ-index for trees, especially t-ary trees, was investigated. There, it was also

proved that the tree of maximal σ-index for a given number of vertices is a star, whereas the tree

of minimal σ-index is a path. Alameddine (1998), for instance, studied bounds for the σ-index of

a maximal outerplanar graph.

A list of the trees of maximal σ-index has been given in Knopfmacher et al. (2004). We will extend

this list to all connected graphs, and we will give a list of the graphs (not necessarily connected)

of maximal σ-index. First, we need some definitions of special graphs appearing in the following:

Definition 4 C(n) denotes the set of connected graphs with n + 1 vertices, T (n) denotes the set

of trees with n + 1 vertices (and thus n edges). Throughout this paper, n + 1 will always be the

number of vertices of a graph.

Definition 5 The following graph classes are denoted by X(k, l, m) and X̃(k, l, m):

r

r

r

r

�
�

����
PPP
Q

Q
Qr

v
�

�
�

���
PPPQ

Q
Qr

r

r

r

�
�

����
PPP
Q

Q
Qr

w
r

r

r

r

�
�

�
���
PPPQ

Q
Q

k vertices m vertices l vertices

r

r

r

r

�
�

����
PPP
Q

Q
Qr

v
�

�
�

���
PPPQ

Q
Qr

r

r

r

�
�

����
PPP
Q

Q
Qr

w
r

r

r

r

�
�

�
���
PPPQ

Q
Q

k vertices m vertices l vertices

...
...

...
...

...
...

X(k, l, m) X̃(k, l, m)

Figure 1: The graph classes X(k, l, m) and X̃(k, l, m).

where k, l, m ≥ 0, k + l +m = n−1. We suppose, without loss of generality, that k ≥ l. X(k, l, m)

is connected if and only if m > 0.

The special cases X(k, l, 1) and X̃(k, l, 0) correspond to trees. In Knopfmacher et al. (2004), it

was shown that all trees in T (n) having a σ-index ≥ 2n−1 + 5 are either of the form X(k, l, 1) or

X̃(k, l, 0) or one of the exception trees in Figure 2.
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Figure 2: The exception trees.

Throughout this paper, they are denoted by TAn, TBn and CSn respectively, and their σ-indices

are σ(TAn) = 9 · 2n−4 + 4, σ(TBn) = 2n−1 + 6, and σ(CSn) = 2n−1 + 5. The last one is called

the “Christmas star”. It is the tree of maximal σ-index having a diameter ≥ 5.

Definition 6 The relations ∼, � and
!

� are defined on C(n) in the following way:

G1 ∼ G2 :⇐⇒ σ(G1) = σ(G2) (1)

G1 � G2 :⇐⇒ σ(G1) > σ(G2) (2)

G1

!

� G2 :⇐⇒ G1 � G2 ∧ (@ G ∈ C(n) : G1 � G � G2) (3)

We want to determine all connected graphs G ∈ C(n) satisfying σ(G) ≥ σ(CSn). First, we need

some auxiliary results:

Lemma 1 If some graph G contains a subgraph G′ 6= G with equally many vertices, σ(G) <

σ(G′). In particular, if G is a connected graph and T 6= G a spanning tree, σ(G) < σ(T ). Thus, a

spanning tree of a graph G ∈ C(n) with σ(G) ≥ σ(CSn) must be of the form X(k, l, 1) or X̃(k, l, 0)

or be one of the stated exception trees.

Proof: Clearly, removing edges from a graph increases the σ-index; thus, the lemma follows. �

Lemma 2 If G is a connected graph and F is a subgraph without cycles, then there exists a

spanning tree T of G that contains F .

Proof: By induction on the number of components of F . If F is connected, choose T = F .

Otherwise, let F1, . . . , Fr be the components of F . As G is connected, there must be an edge

e ∈ E(G) such that one end of e lies in F1, the other in F2 ∪ . . . ∪ Fr. Add this edge to F (no

cycles can appear, as they would have to use e twice); the number of components of F decreases

by one, so by the induction hypothesis, we are done. �
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Lemma 3 If a connected graph G ∈ C(n) contains a simple path of length ≥ 5, σ(G) ≤ σ(CSn),

with equality if and only if G ' CSn.

Proof: Extend the simple path contained in G to form a spanning tree T . This tree contains a

path of length ≥ 5, so its diameter must be ≥ 5. As CSn is the tree of diameter ≥ 5 that has

largest σ-index, the result follows immediately. �

Lemma 4

σ(X(k, l, m)) = 2n−1 + 2k + 2l + 1, σ(X̃(k, l, m)) = 2n−1 + 2k + 2l (4)

Proof: If v and w are vertices as in the picture of Definition 5, 2n−1 corresponds to all independent

vertex subsets containing neither v nor w, 2k corresponds to those containing only w, 2l to those

containing only v. Furthermore, in X(k, l, m), {v, w} is an independent subset, too. �

Proposition 5 A connected graph G ∈ C(n) \ T (n) with σ(G) ≥ 2n−1 + 5 = σ(CSn) is either of

the form X(k, l, m) or X̃(k, l, m) or one of the following graphs (Figure 3):
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Figure 3: The exception graphs.

Proof: We consider several cases:

• G contains a cycle of length ≥ 5: if this cycle has length ≥ 6, it contains a path of length

5; if this cycle has length 5, say with vertices v1, . . . , v5, there must be another vertex w

adjacent to a vi (if G is not the cycle C5 ∈ C(4), having a σ-index of 11 < 13 = 24−1 + 5),

say v1. Then w, v1, . . . , v5 is a path of length 5. By Lemma 3, σ(G) < σ(CSn).

• The largest cycle of G has length 4, with vertices v1, . . . , v4. There can be no vertices w1, w2 6∈

{v1, . . . , v4} such that w1 ∼ w2 and vi ∼ w1, as there would be a path w2, w1, vi, vi+1, vi+2, vi+3

of length 5 (indices modulo 4). If there are vertices w1, w2 6∈ {v1, . . . , v4} such that w1 ∼ vi
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and w2 ∼ vi+1, there is a path w1, vi, vi−1, vi−2, vi+1, w2 of length 5. If there is w 6∈

{v1, . . . , v4} such that w ∼ vi, w ∼ vi+1 for some i, the graph would contain a cycle of

length ≥ 5.

Therefore, all vertices 6= v1, . . . , v4 can only be connected to two opposite vertices vi, vi+2

(without loss of generality, i = 1), possibly to both of them. If G is not of the form X(k, l, m)

or X̃(k, l, m), there must be an edge (v2, v4). But then, there can be no vertices w1, w2 6∈

{v1, . . . , v4} such that w1 ∼ v1,w2 ∼ v3, as there would be a path w1, v1, v2, v4, v3, w2 of

length 5. So all other vertices are only connected to one of the vertices v1, v3, and G is thus

the following graph with σ-index σ(G) = 2n−1 + 2 < σ(CSn):
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Figure 4: A graph with a cycle of length 4.

• The largest cycle of G has length 3; two such cycles cannot have a common edge, as they

would form a cycle of length 4. If there are cycles v1, v2, v3 and w1, w2, w3 connected by a

path u1 = v1, u2, . . . , uk = w1, there is a path v3, v2, v1 = u1, u2, . . . , uk = w1, . . . , w2, w3 of

length ≥ 5. So two cycles of length 3 must always have a common vertex.

Consider two cycles v1, v2, v3 and w1 = v1, w2, w3. There can be no other u ∼ v2, as we

would again obtain a path of length 5: u, v2, v3, v1 = w1, w2, w3. Analogously, there is no

other vertex adjacent to v3, w2 or w3.

If there are vertices u1, u2 such that v1 ∼ u1 and u1 ∼ u2 (u1, u2 6= vi, wj), consider the

graph consisting only of the edges of the two cycles, (v1, u1) and (u1, u2) (obviously, this

graph is not connected any more (see picture), but it is a subgraph of G, so it has larger

σ-index). Its σ-index is 29 · 2n−6 < σ(CSn) (the σ-index of the only connected component

with more than one vertex is 29, and there are n − 6 isolated vertices), a contradiction; so

G must be the exception graph A.
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Figure 5: A graph with two cycles of length 3.

The only remaining possibility is a graph with only one cycle of length 3. If we remove one

of the edges from the cycle, we obtain a tree which must be of the form X(k, l, 1), X̃(k, l, 0),

TAn, TBn or CSn. Thus G results from adding an edge to one of the graphs in this list. As

σ(G) ≥ σ(CSn), this cannot be CSn.

If we add an edge (v, w) to TBn, the σ-index decreases by the number of independent vertex

subsets containing both v and w. It is easy to verify that there is always a vertex u such

that {v, w} and {u, v, w} are both independent subsets, so the σ-index decreases at least by

2. As σ(TBn) = 2n−1 +6 = σ(CSn)+1, we would obtain a graph with smaller σ-index than

CSn.

If we add an edge to X̃(k, l, 0), we obtain either one of {X̃(k − 1, l, 1), X̃(k, l − 1, 1)} or a

graph containing a cycle of length 4 or a graph of the following form:
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Figure 6: A graph resulting from X̃(k, l, 0).

where k+l = n−3. The σ-index of this graph is 3 ·2n−3+3 ·2k+2l (using the same reasoning

as in the proof of Lemma 4; similar arguments are also used for the following graphs). Only

for l = 0 or l = 1, this is ≥ σ(CSn). But for l = 0, we obtain the graph X̃(n − 2, 1, 0), and

for l = 1, we obtain exception graph B.

If we add an edge to X(k, l, 1), we obtain either X̃(k, l, 1) or a graph containing a cycle of
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length ≥ 4 or a graph of one of the following forms:
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Figure 7: Graphs resulting from X(k, l, 1).

The σ-index of the first graph is 3 · 2n−3 + 3 · 2k + 2l + 1, and k + l = n− 4. Only for l = 0,

this is ≥ σ(CSn). But for l = 0, we obtain exception graph B.

The σ-index of the second graph is 3 ·2n−3 +2k+1 +2l +1, and k+ l = n−3. Only for l = 0,

this is ≥ σ(CSn). But for l = 0, we obtain the graph X̃(n − 3, 1, 1).

Finally, if we add an edge to TAn, we obtain either a graph containing a cycle of length ≥ 4

or one of the following graphs:
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σ(G) = 9 · 2n−4 + 2σ(G) = 2n−1 + 4

Figure 8: Graphs resulting from TAn.

We conclude that there is only one more graph with σ(G) ≥ 2n−1 +5 that is not of the form

X(k, l, m) or X̃(k, l, m) - the exception graph B. The stated theorem thus results. �

Now, let’s denote the exception graphs by EAn, EBn. We have

σ(EAn) = 9 · 2n−4 + 1, σ(EBn) = 9 · 2n−4 + 2 (5)
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and

σ(X(k, l, m)) = 2n−1 + 2k + 2l + 1, σ(X̃(k, l, m)) = 2n−1 + 2k + 2l. (6)

This gives us the order of the graphs we just found with respect to their σ-index:

Theorem 6 All connected graphs with n + 1 vertices and σ-index ≥ 2n−1 + 5 are either of the

form X(k, l, m) (with k + l + m = n− 1, k ≥ l, m ≥ 1 and k ≥ 2 or k = l = 1) or X̃(k, l, m) (with

k + l + m = n − 1, k ≥ l and k ≥ 2) or one of TAn, TBn, CSn, EAn or EBn. Their order with

respect to the σ-index is given by the following list:

X(k, l, m)
!

� X̃(k, l, m) (k, l, m ≥ 0 s. t. k + l + m = n − 1, k ≥ l, k ≥ 2, m ≥ 1), (7)

X̃(k, l, m)
!

� X(k, l − 1, m + 1) (k, l, m ≥ 0 s. t. k + l + m = n − 1, k ≥ l ≥ 2), (8)

X̃(k, 1, n− k − 2) ∼ X(k, 0, n− k − 1) (2 ≤ k < n − 1), (9)

X̃(k, 0, n− k − 1) ∼ X(k − 1, k − 1, n− 2k + 1)
(

2 ≤ k <
n + 1

2

)

, (10)

X̃(k, 0, n− k − 1)
!

� X̃(k − 1, n − k, 0)
(n + 1

2
≤ k ≤ n − 1

)

. (11)

Furthermore, TAn ∼ X̃(n− 4, 2, 1), EBn ∼ X̃(n− 4, 1, 2) ∼ X(n− 4, 0, 3), EAn ∼ X̃(n− 4, 0, 3),

TBn ∼ X(2, 0, n− 3) and CSn ∼ X̃(2, 0, n− 3) ∼ X(1, 1, n− 3).

Proof: By the preceding proposition, we only have to check the relations from above:

σ(X(k, l, m)) = 2n−1 + 2k + 2l + 1 > 2n−1 + 2k + 2l = σ(X̃(k, l, m)), (12)

σ(X̃(k, l, m)) = 2n−1 + 2k + 2l > 2n−1 + 2k + 2l−1 + 1 = σ(X(k, l − 1, m + 1)), (13)

σ(X̃(k, 1, n − k − 2)) = 2n−1 + 2k + 2 = σ(X(k, 0, n − k − 1)), (14)

σ(X̃(k, 0, n − k − 1)) = 2n−1 + 2k + 1 = σ(X(k − 1, k − 1, n− 2k + 1)), (15)

σ(X̃(k, 0, n − k − 1)) = 2n−1 + 2k + 1 > 2n−1 + 2k−1 + 2n−k

= σ(X̃(k − 1, n − k, 0))
(

for
n + 1

2
≤ k

)

,

(16)

σ(TAn) = 9 · 2n−4 + 4 = σ(X̃(n − 4, 2, 1)), (17)

σ(EBn) = σ(X̃(n − 4, 1, 2)) = σ(X(n − 4, 0, 3)) = 9 · 2n−4 + 2, (18)

σ(EAn) = 9 · 2n−4 + 1 = σ(X̃(n − 4, 0, 3)), (19)

σ(TBn) = 2n−1 + 6 = σ(X(2, 0, n − 3)), (20)

σ(CSn) = σ(X̃(2, 0, n − 3)) = σ(X(1, 1, n − 3)) = 2n−1 + 5. (21)

This list already determines uniquely the order of all connected graphs with σ-index ≥ 2n−1 + 5,

so we are done. �
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We now turn to the study of connected graphs having small σ-index. It is obvious that adding

edges decreases the σ-index, so connected graphs of large σ-index should be “almost complete”

graphs. The following theorem provides precise information:

Theorem 7 The graph with smallest σ-index in C(n) is the complete graph Kn+1, and σ(Kn+1) =

n + 2. If n ≥ 3 and n + 2 ≤ f ≤ 2n + 2, there is a graph G ∈ C(n) such that σ(G) = f .

Proof: The empty set and every one-element subset of V (G) are always independent sets, so

σ(G) ≥ n + 2 for all G ∈ C(n). Clearly, the complete graph is the only graph with no more

independent vertex subsets.

Given some f with n + 2 ≤ f ≤ 2n + 2, consider the complementary graph T = G. If we take T

to be a forest with |V (T )| = n + 1 and |E(T )| = f − n− 2 (as 0 ≤ f − n− 2 ≤ n, this is possible),

we have

σ(G) = 1 + (n + 1) + |E(T )| = f, (22)

as vertices in G are independent if and only if they are connected in T . T contains no triangles,

so there are no independent subsets of size ≥ 3. Furthermore, if T is not a star (as n ≥ 3 we can

take T to be a path instead, for example), G is a connected graph. �

Remark: There are at least |T (f − n − 2)| (|T (n)| − 1 if f = 2n + 2) such graphs (which

follows directly from the proof), and generally, there are obviously a lot more, even with larger

independent sets (the σ-index of the complement of a single triangle is n + 6, for instance).
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3 The c-index

The c-index can be called the complement of the σ-index, as we have c(G) = σ(G), where G

denotes the complement graph. This follows easily from the fact that independent subsets in G

are cliques in G and vice versa.

Again, we want to find the graphs of maximal or minimal index. The ideas are quite similar, so

we will give the proofs in less detail.

If we don’t care about the graphs being connected, we can already derive the following corollary

from the last theorem of the preceding section:

Corollary 8 Let G(n) be the class of all graphs (not necessarily connected) with n + 1 vertices.

The graph with smallest c-index in G(n) is the graph without edges, and its c-index is n + 2. For

each n + 2 ≤ f ≤ 2n + 2, there is a graph G ∈ G(n) such that c(G) = f .

It is known from Li et al. (2003) that a connected graph has minimal c-index if and only if it is

a tree: for every tree T ∈ T (n), we have c(T ) = n + 2 (the only cliques are n + 1 single vertices

and the empty clique). Adding single edges will give graphs of c-index n + 3, n + 4, . . ., so our

particular interest will be in connected graphs of maximal c-index.

This is, in fact, equivalent to finding (not necessarily connected) graphs of large σ-index. Their

complement graphs will then have large c-index.

The aim of the following preliminaries will be to give a list of non-connected graphs with a larger

σ-index than the star graph Sn.

Lemma 9 If a graph G ∈ G(n) contains a cycle of length k, its σ-index is σ(G) ≤ lk2n+1−k,

where lk is a Lucas number, defined by l0 = 2, l1 = 1, ln+1 = ln + ln−1.

Proof: If we remove all other edges, the σ-index clearly increases. Then, a cycle of length k

remains together with n + 1 − k isolated vertices. It is easy to prove that the σ-index of a cycle

Ck is σ(Ck) = lk, so we have σ(G) ≤ lk2n+1−k. �

Lemma 10 A graph G ∈ G(n) with σ(G) ≥ 2n + 1 must be a forest.

Proof: By the previous lemma, it suffices to show that lk ≤ 2k−1 for k ≥ 3; this is easily done

by induction. �

Lemma 11 If one of the components of a forest G ∈ G(n) is not a star, σ(G) ≤ 2n.

11



Proof: Let T be a component of G that is not a star. Let |E(T )| = k. As T is not a star, k ≥ 3.

If all edges not belonging to T are removed, the resulting graphs G′ has larger σ-index than G.

Furthermore, σ(T ) ≤ 3 · 2k−2 + 2 (the second-largest σ-index of a tree with k edges). So we have

σ(G) ≤ σ(G′) = 2n−kσ(T ) ≤ 3 · 2n−2 + 2n−k+1 ≤ 3 · 2n−2 + 2n−2 = 2n. (23)

�

Now, we are ready to prove

Theorem 12 Let F (c1, . . . , cd) be the forest whose components are the stars Sc1−1, . . . , Scd−1

(c1 + . . . + cd = n + 1). Then we have, in G(n),

F (1, . . . , 1)
!

� F (2, 1, . . . , 1)
!

� F (3, 1, . . . , 1)
!

� F (4, 1, . . . , 1) ∼ F (2, 2, 1, . . . , 1)

!

� F (5, 1, . . . , 1)
!

� . . .
!

� F (n, 1)
!

� F (n + 1) ' Sn

(24)

Proof: By the preceding lemma, we only have to consider graphs of the form F (c1, . . . , cd). A

formula for σ(F (c1, . . . , cd)) is determined easily:

σ(F (c1, . . . , cd)) =

d
∏

i=1

(2ci−1 + 1). (25)

Thus

σ(F (k, 1, . . . , 1)) = (2k−1 + 1) · 2n+1−k = 2n + 2n+1−k > 2n + 2n−k = σ(F (k − 1, 1, . . . , 1)) (26)

and

σ(F (4, 1, . . . , 1)) = 9 · 2n−3 = σ(F (2, 2, 1, . . . , 1)). (27)

So we only have to prove that there are no other graphs that might appear in the list above. We

write

σ(F (c1, . . . , cd)) = 2c1+...+cd

d
∏

i=1

(1

2
+ 2−ci

)

= 2n+1

d
∏

i=1

(1

2
+ 2−ci

)

. (28)

Each of the factors in the product is ≤ 1, with equality if and only if ci = 1. Their product must

be ≥ 1

2
. But if there are some components with ci ≥ 2 and cj ≥ 3, the product is ≤ 3

4
· 5

8
= 15

32
< 1

2
.

So there are no other possibilities to obtain a σ-index ≥ 2n + 1. �

Corollary 13 The complements of the graphs in the theorem are the graphs of maximal c-index,

in the same order as above. All of them are connected, except the complement of the star graph.
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4 The Z-index

Finally, we take a short look at the Z-index. It can be related to the σ-index in the following way:

for a graph G, define the line graph G′ to be the graph that results from replacing the edges by

vertices and connecting vertices whose corresponding edges in G have a common vertex. Then, it

is easy to verify that σ(G′) = Z(G).

As removing edges means increasing the σ-index, but decreasing the Z-index, it it quite natural

that a large σ-index means a small Z-index and vice versa. This fact holds only up to a certain

extend, though, as it is not difficult to construct graphs G1, G2 satisfying both σ(G1) > σ(G2)

and Z(G1) > Z(G2).

Clearly, the complete graph has largest Z-index among all graphs from C(n) (or even G(n)). Unlike

the σ-index, it is a nontrivial problem to determine the exact value for the Z-index of a complete

graph Kr with r vertices. In fact, there is no simple formula, but only the following expression as

a sum:
b r

2
c

∑

k=0

r!

2kk!(r − 2k)!
(29)

For small r, the exact values are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496. By removing a single edge

from the complete graph, one obtains the graph of second-largest Z-index; removing two edges

without a common vertex yields the graph of third-largest Z-index, and this list can be extended

(without new ideas, but with increasing effort).

The star is the connected graph having minimal Z-index, by an easy argument. Generally, one can

obtain an interesting fact: given any connected graph S with m edges, one can always construct a

connected graph G ∈ C(n) containing S as a subgraph such that G has “small” Z-index (precisely,

for any given function ω(n) that goes to ∞ arbitrarily slow as n → ∞, at most ω(n) connected

graphs have smaller Z-index than G) if n ≥ m is large enough. The graph G is constructed as in

the following picture, we leave out the details of the proof:

v Sr

HH
A
A

...
(n − m edges)

Figure 9: Constructing a graph of small Z-index.
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