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1.

Embedded signal processing systems are facing th
challenges of increased computational
Reconfigurable architectures, which can be conéiduo
form application-specific hardware, offer not orthjgh
degree of parallelism but also the possibility to
dynamically allocate the resources during run-tiffieis
allows the user to implement applications which are
otherwise too large to be handled by a particukariak.
The reconfigurable computing devices have evolvesr o
the years from the gate-level arrays to a more sesar
grained composition of highly optimized functiotbcks

or even program controlled processing elementsgchwhi
are operated in a coordinated manner to
performance and energy efficiency.

However, developing applications that employ
reconfigurable architectures is constrained byrtded for
mastering low-level structural description languagad
their lack of support for expressing dynamic
reconfiguration. Traditionally, system developeravé
instead relied on using advanced synthesis tools an
automatic parallelization techniques to lower the
development costs, but these techniques lag insterin
achieved runtime performance.

Introduction

2. Thesis Statement

We propose that, in order to meet high computationa
demands, the application development has to bedbase
suitable models of computations that will lead talable
and reusable implementations. The models shouldrergh
the understanding of the application and at theestime
enable the developer to organize the computatiorthat
they can be efficiently mapped to the target reigoméble
architecture. The goal of the thesis is to proposthods
to program future coarse-grained reconfigurablditect-
tures in a productive manner in such a way as hiege
energy efficient mapping with improved performance.

3. Research Approach

The approach used in our research is to first waded
the class of coarse-grained reconfigurable ardhites
and identify the emerging trends, and then perfarstudy
of relevant software models of computation. Basedhz
findings, we intend to perform some experiments by

demands.

improve

Halmstad, Sweden.

adopting selected well-known computation models to
program some example coarse-grained architectuves.
resent our preliminary results obtained from onehs
arget architecture, where we generate a single
configuration at compile-time. Further, we suggest
framework based on the selected programming mbael t
allows the developer to express the dynamic mode of
reconfiguration.

4. Architectures and Computation Models
for Coarse-Grained Reconfigurable
Computing

We have surveyed the field of coarse-grained reconf

igurable computing [1], taking into account the harc
itectural characteristics of granularity, reconfigbility,
and interconnection network. We have classified the
coarse-grained reconfigurable architectures intw fvoad
categories, i.e., Hybrid architectures, Arrays widtional
units, Arrays of processors, Arrays of soft prooess

The study reveals a trend across the categorieseip
reconfigurability at the interconnection networkeéeand
have heterogeneous programmable cores implemented

with instruction streaming. As the number of cores

increases, the complexity of distribution of clonkreases
too. Following the ideas of the VLSI community, the
negative impacts of the global clock distribution the
processor arrays can be minimized by adopting the
globally asynchronous locally synchronous (GALShpr
ciple at a coarse-grained level. One of the emgrgiam-
ples of such an implementation is Ambric’'s massgivel
parallel MIMD style array of RISC processors comm-
unicating over a fabric of asynchronous messagsimas
channels [2]. Therefore we chose Ambric to be fh& f
target architecture for our experimental framework.

The computation models that are studied have the
inherent ability to express communication explhgitl
separated from the computations, which makes them
suitable for exposing parallelism. The models tinet
consider are Stream Processing [3], Communicating
Sequential Processes (CSP) [4], and Kahn Process
Networks (KPN) [5]. The streaming model has the
characteristics of being synchronous, while CSP kiRbl
are asyn-chronous. CSP uses unbuffered channets wit
message passing for describing communication betwee
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processing nodes, while channels between processes
KPN have unbounded buffering capability.

5. Programming Reconfigurable Processor
Arraysin occam-pi
We propose CSP to be a suitable model of computé&tio

the coarse-grained reconfigurable processor athatsare
based on the GALS principle because of its asymzus

reconfiguration in reconfigurable processor arrayke
mathematical modeling of the mobility features of
occam-pi is based on pi-calculus. The mobility concept of
the pi-calculus enables the movement semanticsngluri
assignment and communication, which means that the
respective data has moved from the source to tlgetta
and afterwards the source loses the possessidre afata.
Mobile communication is introduced in the form obbile
channel types, and the data communicated on mobile

nature and its available programming model such asghannels has to be of the mobile data type. Charypel

occam. As a proof of concept we performed an
experiment by usinggccam-pi [6] for programming the
Ambric array of processors after implementing a piben
[7]. Occam-pi is an extension of classicakccam that
includes the mobility features of the pi-calculksr each
process in th@ccam-pi source code, the backend of the
developed compiler produces Ambric’s proprietagava
andaStruct code, the latter to describe the communication
with other processes. This work is part of our ango
research whose initial studies are presented here.

An application study is performed in which theules
of three different implementations of the 1D-DCTy&l
rithm are compared on the basis of performanceusers
resource requirements [7]. The comparison revéalsthe
most parallelized version, which uses 34 processors
produces 27 times higher throughput when compaitd w
the serialized implementation. In terms of linescofle
metrics, theoccam-pi source code is three times shorter
than its correspondingStruct andaJava code.

6. Discussion and Future Work

In the past the techniques used to program theestud
architectures involve either low-level micro-codiray
generating data-flow graphs from C-language sococke.

variables behave similarly to the other mobile ahiés.
Once they are allocated, their communication means
moving the channel-ends around the network. In $eofm
pi-calculus it has the same effect as if passiegctiannel-
end names as messages. For expressing run-time
reconfiguration, dynamic invocation of processes is
necessary. lmccam-pi concurrency can be introduced by
not only using the classic&AR construct but also by
dynamic parallel process creation using forking. We
propose to use the extensions in doeam-pi language,
such as channel direction specifiers, mobile datd a
channel types, dynamic process invocation, andgsc
placement attribute, to express run-time reconéitian of
hardware resources in the programming model.

We would also like to evaluate our ideas furthgr b
providing a platform which can be used to achieve
efficient implementations with respect to perforroan
energy and engineer efficiency on a range of cearse
grained reconfigurable architectures. The propdsede-
work includes extensions of theccam-pi language to
support the use of heterogeneous reconfigurable- pro
essing elements and implementation of partitioniggh-
nigques in the compiler to adapt the generated ¢ode
way that is best suited for the target architect&irally

In our view, a better approach will be to base the the framework is to be tested by implementing a Ipem
application development on concurrent computation of signal processing applications of our interesi aval-
models such as CSP, KPN, or Stream processing.eThesuating the results on different heterogeneous tectuires.

models provide a representation that enhancesasthedf
parallelization because of their exposure of explic
concurrency and strong encapsulation. We are fogus
computation models that support concurrent execdial
offer possibilities for expressing reconfiguratipnfor
instance the combination of CSP with the pi-calsulu
These models allow separation of computations ftoen
communication, so that the computational kernetsthan
be scheduled for reconfiguration without any data
dependencies. Our experience so far is that thesielmn
allow optimizations and support correct design.

A significant property of reconfigurable architeets
is their ability to undergo run-time reconfiguratidso far
we have not dealt with making use of this propértgur
experimental framework. A natural continuation bfst
work is to extend the compiler platform to use tinability
features of occam-pi for implementing run-time
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