
	

	

	

Halmstad University Post-Print

High-level programming of coarse-
grained reconfigurable architectures

Zain-ul-Abdin

N.B.: When citing this work, cite the original article.

©2009 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

Ul-Abdin Z. High-level programming of coarse-grained reconfigurable
architectures. In: 19th International Conference on Field Programmable Logic and
Applications: (FPL), proceedings, Prague, Czech Republic, August 31-September
2, 2009. Piscataway, N.J.: IEEE; 2009. p. 713-714.

DOI: http://dx.doi.org/10.1109/FPL.2009.5272337
Copyright: IEEE

Post-Print available at: Halmstad University DiVA
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-87

In Proceedings of 19th International Conference on Field Programmable Logic and Applications (FPL), Czech
Republic, August 31 - September 2, 2009.

High-level Programming of Coarse-Grained Reconfigurable Architectures

Zain-ul-Abdin
Centre for Research on Embedded Systems (CERES),

Halmstad University, Halmstad, Sweden.

1. Introduction

Embedded signal processing systems are facing the
challenges of increased computational demands.
Reconfigurable architectures, which can be configured to
form application-specific hardware, offer not only high
degree of parallelism but also the possibility to
dynamically allocate the resources during run-time. This
allows the user to implement applications which are
otherwise too large to be handled by a particular device.
The reconfigurable computing devices have evolved over
the years from the gate-level arrays to a more coarse-
grained composition of highly optimized functional blocks
or even program controlled processing elements, which
are operated in a coordinated manner to improve
performance and energy efficiency.
 However, developing applications that employ
reconfigurable architectures is constrained by the need for
mastering low-level structural description languages and
their lack of support for expressing dynamic
reconfiguration. Traditionally, system developers have
instead relied on using advanced synthesis tools and
automatic parallelization techniques to lower the
development costs, but these techniques lag in terms of
achieved runtime performance.

2. Thesis Statement

We propose that, in order to meet high computational
demands, the application development has to be based on
suitable models of computations that will lead to scalable
and reusable implementations. The models should enhance
the understanding of the application and at the same time
enable the developer to organize the computations so that
they can be efficiently mapped to the target reconfigurable
architecture. The goal of the thesis is to propose methods
to program future coarse-grained reconfigurable architect-
tures in a productive manner in such a way as to achieve
energy efficient mapping with improved performance.

3. Research Approach

The approach used in our research is to first understand
the class of coarse-grained reconfigurable architectures
and identify the emerging trends, and then perform a study
of relevant software models of computation. Based on the
findings, we intend to perform some experiments by

adopting selected well-known computation models to
program some example coarse-grained architectures. We
present our preliminary results obtained from one such
target architecture, where we generate a single
configuration at compile-time. Further, we suggest a
framework based on the selected programming model that
allows the developer to express the dynamic mode of
reconfiguration.

4. Architectures and Computation Models
for Coarse-Grained Reconfigurable

Computing

We have surveyed the field of coarse-grained reconf-
igurable computing [1], taking into account the arch-
itectural characteristics of granularity, reconfigurability,
and interconnection network. We have classified the
coarse-grained reconfigurable architectures into four broad
categories, i.e., Hybrid architectures, Arrays of functional
units, Arrays of processors, Arrays of soft processors.
 The study reveals a trend across the categories to keep
reconfigurability at the interconnection network level and
have heterogeneous programmable cores implemented
with instruction streaming. As the number of cores
increases, the complexity of distribution of clock increases
too. Following the ideas of the VLSI community, the
negative impacts of the global clock distribution in the
processor arrays can be minimized by adopting the
globally asynchronous locally synchronous (GALS) prin-
ciple at a coarse-grained level. One of the emerging exam-
ples of such an implementation is Ambric’s massively
parallel MIMD style array of RISC processors comm-
unicating over a fabric of asynchronous message passing
channels [2]. Therefore we chose Ambric to be the first
target architecture for our experimental framework.
 The computation models that are studied have the
inherent ability to express communication explicitly,
separated from the computations, which makes them
suitable for exposing parallelism. The models that we
consider are Stream Processing [3], Communicating
Sequential Processes (CSP) [4], and Kahn Process
Networks (KPN) [5]. The streaming model has the
characteristics of being synchronous, while CSP and KPN
are asyn-chronous. CSP uses unbuffered channels with
message passing for describing communication between

In Proceedings of 19th International Conference on Field Programmable Logic and Applications (FPL), Czech
Republic, August 31 - September 2, 2009.

processing nodes, while channels between processes in
KPN have unbounded buffering capability.

5. Programming Reconfigurable Processor
Arrays in occam-pi

We propose CSP to be a suitable model of computation for
the coarse-grained reconfigurable processor arrays that are
based on the GALS principle because of its asynchronous
nature and its available programming model such as
occam. As a proof of concept we performed an
experiment by using occam-pi [6] for programming the
Ambric array of processors after implementing a compiler
[7]. Occam-pi is an extension of classical occam that
includes the mobility features of the pi-calculus. For each
process in the occam-pi source code, the backend of the
developed compiler produces Ambric’s proprietary aJava
and aStruct code, the latter to describe the communication
with other processes. This work is part of our ongoing
research whose initial studies are presented here.
 An application study is performed in which the results
of three different implementations of the 1D-DCT algo-
rithm are compared on the basis of performance versus
resource requirements [7]. The comparison reveals that the
most parallelized version, which uses 34 processors,
produces 27 times higher throughput when compared with
the serialized implementation. In terms of lines of code
metrics, the occam-pi source code is three times shorter
than its corresponding aStruct and aJava code.

6. Discussion and Future Work

In the past the techniques used to program the studied
architectures involve either low-level micro-coding or
generating data-flow graphs from C-language source code.
In our view, a better approach will be to base the
application development on concurrent computation
models such as CSP, KPN, or Stream processing. These
models provide a representation that enhances the task of
parallelization because of their exposure of explicit
concurrency and strong encapsulation. We are focusing on
computation models that support concurrent execution and
offer possibilities for expressing reconfigurations, for
instance the combination of CSP with the pi-calculus.
These models allow separation of computations from the
communication, so that the computational kernels can then
be scheduled for reconfiguration without any data
dependencies. Our experience so far is that these models
allow optimizations and support correct design.
 A significant property of reconfigurable architectures
is their ability to undergo run-time reconfiguration. So far
we have not dealt with making use of this property in our
experimental framework. A natural continuation of this
work is to extend the compiler platform to use the mobility
features of occam-pi for implementing run-time

reconfiguration in reconfigurable processor arrays. The
mathematical modeling of the mobility features of
occam-pi is based on pi-calculus. The mobility concept of
the pi-calculus enables the movement semantics during
assignment and communication, which means that the
respective data has moved from the source to the target
and afterwards the source loses the possession of the data.
Mobile communication is introduced in the form of mobile
channel types, and the data communicated on mobile
channels has to be of the mobile data type. Channel type
variables behave similarly to the other mobile variables.
Once they are allocated, their communication means
moving the channel-ends around the network. In terms of
pi-calculus it has the same effect as if passing the channel-
end names as messages. For expressing run-time
reconfiguration, dynamic invocation of processes is
necessary. In occam-pi concurrency can be introduced by
not only using the classical PAR construct but also by
dynamic parallel process creation using forking. We
propose to use the extensions in the occam-pi language,
such as channel direction specifiers, mobile data and
channel types, dynamic process invocation, and process
placement attribute, to express run-time reconfiguration of
hardware resources in the programming model.
 We would also like to evaluate our ideas further by
providing a platform which can be used to achieve
efficient implementations with respect to performance,
energy and engineer efficiency on a range of coarse-
grained reconfigurable architectures. The proposed frame-
work includes extensions of the occam-pi language to
support the use of heterogeneous reconfigurable proc-
essing elements and implementation of partitioning tech-
niques in the compiler to adapt the generated code in a
way that is best suited for the target architecture. Finally
the framework is to be tested by implementing a number
of signal processing applications of our interest and eval-
uating the results on different heterogeneous architectures.

7. References
[1] Zain-ul-Abdin, and B. Svensson, “Evolution in architectures

and programming methodologies of coarse-grained
reconfigurable computing”, Microprocessors and
Microsystems, Vol. 33, 2009, pp. 161-178.

[2] M. Butts, A.M. Jones, and P. Wasson, “A structural object
programming model, architecture, chip and tools for
reconfigurable computing”, FCCM, 23rd April, 2007.

[3] R. Stephens, “A survey of stream processing”, Acta
Informatica, Vol. 34(7), 1997, pp. 491-541.

[4] C.A.R. Hoare, Communicating sequential processes,
Prentice-Hall, 1985.

[5] G. Kahn, “The semantics of a simple language for parallel
programming”, Information Processing, North-Holland
Publishing Company, 1974, pp. 471-475.

In Proceedings of 19th International Conference on Field Programmable Logic and Applications (FPL), Czech
Republic, August 31 - September 2, 2009.

[6] P.H. Welch, and F.R.M. Barnes, “Communicating mobile

processes: introducing Occam-pi”, LNCS, Springer Verlag,
Vol. 3525, April 2005, pp. 175-210.

[7] Zain-ul-Abdin, and B. Svensson, “Using a CSP based
programming model for reconfigurable processor arrays”,
ReConFig’08, 3-5 December, 2008.

