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Abstract - MIMO single-relay fading channels are studied, 
where the source and destination are equipped with multiple 
antennas and the relay has a single one. Compact closed-form 
expressions are obtained for the outage probability under i.i.d. 
and correlated Rayleigh-fading links. Insightful high-SNR 
approximations are derived, which show the impact of the 
number of antennas, correlation, relay noise, relaying protocol, 
etc. Diversity-multiplexing tradeoff (DMT) is obtained for a 
broad class of fading distributions, including, as special cases, 
Rayleigh, Rice, Nakagami, Weibull, which may be non-identical, 
spatially correlated and/or non-zero mean. The DMT is shown to 
depend not on a particular fading distribution, but rather on its 
polynomial behavior near zero. It turns out to be the same for the 
simple "amplify-and-forward" protocol and more complicated 
"decode-and-forward” one with capacity achieving codes, i.e. the 
full processing capability at the relay does not help to improve 
the DMT. However, we also emphasize significant difference 
between the SNR-asymptotic DMT and the finite-SNR outage 
performance: while the former is not improved by using an extra 
antenna on either side, the latter can be significantly improved 
and, in particular, an extra antenna can be traded-off for a full 
processing capability at the relay. 

I. INTRODUCTION

Cooperative communication strategies have recently 
emerged as an efficient way to exploit multi-user diversity 
available in wireless networks to significantly improve their 
performance [1]. While the research was initially concentrated 
on the single-antenna systems [1][2], the emphasis has 
recently shifted towards multi-antenna systems [3][4]. Typical 
performance metrics in a fading channel include the outage 
capacity or the outage probability, mean (ergodic) capacity 
and error rates when specific codes/modulation formats are 
studied [1][5]. Due to the complexity of the analysis, the 
performance studies have been mainly limited to independent 
(but not necessarily identically distributed) Rayleigh (or 
Rician) fading channels [3]. The only exception is [5], where 
the outage probability/capacity has been studied for a generic 
fading distribution, but the analysis was limited to the low-
SNR regime and the links are still required to be independent. 

Since the MIMO systems present an additional level of 
difficulty in terms of performance evaluation, an elegant 
framework termed “diversity-multiplexing tradeoff” (DMT) 
has been proposed in [6], which allows one to quantify the 
system performance in terms of two principle gains, diversity 
and multiplexing, available in a slow-fading MIMO channel 
when SNR → ∞ . Many systems, for which the outage 
probability/capacity analysis is illusive, can be characterized 
and compared via their respective DMTs. This framework has 
been successfully applied to relay channels as well [3]. While 

the original DMT formulation of Zheng and Tse [6] is limited 
to i.i.d. Rayleigh fading channels, a generalization to a class of 
channels satisfying a number of conditions on the distribution 
function has been presented in [7]. While most of the DMT-
based studies are limited to the SNR → ∞  regime, the finite-
SNR DMT of the relay channel with independent, Rayleigh-
fading links and single-antenna terminals have been studied in 
[8]. 

In this paper, we consider the source and the destination of 
the relay channel equipped with multiple antennas and a relay 
node equipped with a single antenna (e.g. due to complexity 
constraints). We allow the fading to be non-identical, 
correlated Rayleigh or of generic distribution, and consider 
amplify-and-forward (AF) and decode-and-forward (DF) 
protocols.  

The contributions of the paper are two-fold: 

• The SNR-asymptotic DMT of the relay channels in the 
AF and DF modes is obtained for a broad class of fading 
distributions including, as special cases, Rayleigh, Ricean, 
Nakagami, and Weibull, which can be non-identical and/or 
spatially correlated (Theorems 1, 2 in Section III). The AF and 
DF systems have the same DMT, which depends on the 
minimum diversity order only. 

• Outage probability for correlated and/or non-identical 
Rayleigh fading is obtained in a closed form (Theorems 3, 4 in 
Section IV) for any SNR. Its low-outage approximations 
(Corollaries 3.1, 4.1) reveal a number of insights, including 
the impact of correlation, number of antennas, protocols and 
relay noise. We emphasize that systems with the same DMT 
may have vastly different outage performance: while the DMT 
of the 1 1× , 2 1×  and 1 2×  channels is the same, an additional 
antenna results in significantly lower outage probability or, 
equivalently, a significant SNR gain (about 10 dB at the 
outage probability = 310− ), not captured by the DMT 
framework (see Section V). An additional antenna can be 
traded off for the full processing capability at the relay. 
Moreover, an extra transmit rather than a receive antenna is 
preferable, since it helps to eliminate the negative impact of 
relay noise for the AF protocol. 

II. CHANNEL MODEL

Consider a MIMO relay channel with a single relay node 
equipped with a single antenna (see Fig. 1); the source 
(transmitter) and the destination (receiver) have m  and n
antennas respectively. While we consider both the amplify-
and-forward and decode-and-forward protocols, the former 
will be assumed for simplicity of exposition, unless indicated 
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otherwise, with a fixed relay gain (this is motivated by the fact 
that it is simpler to implement). We assume no direct source-
destination link. This is motivated by three reasons: (i) the 
direct link is usually much weaker than the relay one (e.g. no 
line-of-sight etc.), and thus can be neglected (this is the case 
when the relay link is needed most) [2]; (ii) the results 
obtained for the no direct link case can be used as a “building 
block” to analyze the direct link case; (iii) the direct link 
corresponds to the regular (no relay) systems and thus has 
been extensively studied and well-understood by now, the 
relay link, on the contrary, is not so well understood so we 
concentrate our attention on this case.  

S DR
srh rdh

S DR
srh rdh

Fig. 1. Relay channel with a single relay node (R) (single-antenna) and 
multiple-antenna source (S) and destination (D). 

The standard baseband system model of a frequency 
flat relay channel in the amplify-and-forward mode is, 

rd sr rd sr rd rd rG G G+= + ξ +y h h x h  (1) 

where x  and y  are the source (Tx) and destination (Rx) 
symbol vectors, srh  and rdh  are the source-relay and relay-
destination normalized channels (i.e. they include the 
multipath fading but not the average path loss), +  denotes 
Hermitian conjugation, srG  and rdG  are the source-relay and 
relay-destination average path loss factors, 2~ (0, )r rξ σ
and 2

0~ ( , )σ0 I  are relay and destination AWGN noise of 
variance 2

rσ  and 2
0σ  respectively, and independent of each 

other. A fixed relay gain rK  is absorbed into rdG  via the 
substitution r rd rdK G G→ . Unless otherwise indicated, we do 
not assume any particular fading distribution of srh  and rdh , 
but only assume that srh  and rdh  are independent of each 
other, and require that PDFs ( )sf x  and ( )df x  of 2

srh  and 
2

rdh  behave polynomially near zero, which hold for a broad 
class of fading distributions including, as special cases, 
Rayleigh, Ricean, Nakagami and Weibull fading, i.e. our 
results hold for a generic fading channel. Note that the first 
term in (1) represents the signal received at the destination; the 
second and the third terms represent the relay noise 
propagated to the destination and the destination noise. The 
sufficient statistics for y  is, 

rd rd
rd sr rd sr rd rd r

rd rd
z G G G

+ +
+= = + ξ +

h h
y h h x h

h h
 (2) 

The instantaneous SNR at the destination can be expressed as 

2 2 2

02 22 2
0 1

rd sd rd sr x sr rd sr

rd rd r rd

G G

G

+
′γ = ≤ γ = γ

σ + σ + α
h h R h h h

h h
, (3) 

where { }x E +=R xx  is the covariance matrix of the 
transmitted signal, 2 2

0/rd rGα = σ σ  is the ratio of the average 
relay noise propagated to the destination to the destination 
noise, and 2 2

0 0/rd sr xG Gγ = σ σ  is the average SNR at the 
destination, 2 { }x xtr E +σ = =R x x  is the total transmitted 
power (at the source). The inequality in (3) follows from 

2 2
sr x sr sr x
+ ≤ σh R h h , and the equality is achieved when 

22 /x x sr sr sr
+= σR h h h , i.e. beamforming from the source to 

the relay, /sr srs= ⋅x h h , where s  is the scalar transmitted 
symbol of the total power 2

xσ . This requires channel state 
information (CSI) at the source. When no such information is 
available, a sensible transmission strategy is isotropic, i.e. 

2 /x x m= σR I . In this case, the instantaneous SNR at the 
destination is / m′γ = γ , i.e. the source CSI brings in an m-
fold SNR gain, but does not change the statistics of the 
instantaneous SNR otherwise and, therefore, the outage 
probability or outage capacity differ by a constant SNR shift 
and the diversity-multiplexing tradeoff is the same in both 
cases. The instantaneous channel capacity (in nats/s/Hz) can 
now be expressed as ( )ln 1C = + γ  and the outage probability, 
i.e. the probability that the channel cannot support the target 
rate R , is { }( ) ProutP R C R= < 1. 

III. DIVERSITY-MULTIPLEXING TRADEOFF

Following [6], we define the diversity gain as 

0 0lim ln / lnoutd Pγ →∞= − γ  (4) 

and the multiplexing gain from 

0 0lim / lnr Rγ →∞= γ , (5) 

The SNR-asymptotic DMT of the relay channel in (1) for a 
broad class of fading distribution can be characterized as 
follows: 

Theorem 1: Consider the relay channel in (1) such that the 
PDFs ( )sf x  and ( )df x  of 2

srh  and 2
rdh  behave 

polynomially near zero, i.e. 1( ) ~ sd
sf x x − , 1( ) ~ dd

df x x −  as 
0x → , where ,s dd d  are the diversity gains (orders) of the 

source-relay and relay-destination links at 0r = , and 
( ) ~ ( )f x g x  means that there are constants 0 A B< ≤ < ∞ , 

such that ( ) ( ) ( )Ag x f x Bg x≤ ≤  for sufficiently small x . The 
DMT of this channel in the amplify-and-forward mode is 

( ) min( ( ), ( )) min( , ) (1 )s d s dd r d r d r d d r= = ⋅ − , 0 1r≤ ≤  (6) 

where ( ) (1 ), ( ) (1 )s s d dd r d r d r d r= ⋅ − = ⋅ −  are the SNR-
asymptotic DMTs of the source-relay and relay-destination 
links2. 

Proof: see Appendix. 

Note that Theorem 1 holds for a broad class of fading 
distributions in the relay channel, which include, as special 
cases, Rayleigh, Ricean, Nakagami, and Weibull, and which 
may be non-identically distributed and spatially correlated. It 
is thus a generalization of [[9], Theorem 1] (for single relay 
case), where srh  and rdh  are assumed to be i.i.d. complex 
Gaussian. Note also that the noise at the relay node does not 
affect the DMT, i.e. the channel in (1) with 0rξ =  has the 
same DMT as in (6). 

Theorem 1 shows that the DMT is affected by the number of 
degrees of freedom available in the channel and not by a 

                                                
1 When capacity-achieving codes are used, 1

2 outP≈BER , and the 
word/frame error rate outP≈ . 
2 The DMT in (6) corresponds to an on-frequency relay; if orthogonal 
transmissions are used on the S-R and R-D links, the 2r r→  substitution 
should be used in (6). 
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particular fading distribution, as long as the definition of 
diversity gain in (4) makes sense. Since the conditions of 
Theorem 1 relate to the behavior near zero of the distributions 
of 2

srh  and 2
rdh , not the individual vector entries, it is 

straightforward to see that a full-rank correlation does not 
change the DMT. Following the discussion in Section II, the 
lack of source CSI is equivalent to an m-fold SNR loss and, 
therefore, has no effect on the SNR-asymptotic DMT. The 
transmit beamforming in combination with QAM modulation 
is an example of a space-time code that achieves the DMT of 
the single-relay channel with the source CSI. When no such 
CSI is available, isotropic transmission in combination with 
QAM will achieve the DMT. 

Consider now the DMT of the decode-and-forward single-
relay channel, assuming capacity achieving codes and 
complete decoding/encoding at the relay. 

Theorem 2: Under the conditions of Theorem 1, the DMT 
of the decode-and-forward single-relay channel is given by (6) 

Proof (sketch): Since the instantaneous capacity in this case 
is { }min ,sr rdC C C= , where srC  and rdC  are the capacities 
of the source-relay and relay-destination links, outP  is 
dominated by { }max ,sr rdP P , where { }( ) ( )Prsr rd sr rdP C R= <
are the outage probabilities of the source-relay and relay-
destination links, as 0γ → ∞ . Based on this, (6) follows after 
some manipulations. 

Therefore, the single-relay channel subject to fading from a 
broad class of distributions has the same SNR-asymptotic 
DMT in the amplify-and-forward and decode-and-forward 
modes, i.e. the full processing capability at the relay (to 
achieve the capacity) does not help. Does it however mean 
that one should not employ such a processing? For many 
fading channels (e.g. i.i.d. or full-rank correlated), sd m= , 

dd n= . Thus, another conclusion from Theorem 1 is that 
there is no point in using unequal number of antennas (e.g. no 
point to use more destination than source antennas), since the 
DMT is affected by min( , )m n only. Do these conclusions still 
hold at finite SNR? To answer these questions, we need to 
consider the outage probability and not just the SNR-
asymptotic DMT, which is done in the next section. 

IV. OUTAGE PROBABILITY

Since the finite-SNR analysis is not feasible for a generic 
fading distribution, in this section we consider Rayleigh-
fading links (i.e. source-relay and relay-destination), which 
may be non-identical and/or correlated. 

Theorem 3: Let rdh  and srh  be mutually independent 
circular symmetric correlated Gaussian random vectors. When 
the eigenvalues of the source-relay and relay-destination link 
correlation matrices ( ) ( ) ( )( )sr rd sr rd sr rdE +=R h h  are non-zero 
and distinct, the outage probability of the single-relay channel 
in the amplify-and-forward mode is 

/
11 1

4 4
( ) 1 jm n x

out j ij i
j i j i

x x
P x A B e K−α λ

= == −
λ η λ η

 (7) 

where 1( )K x  is the first order modified Bessel function of the 
second kind [12], jA  and iB  are the coefficients of a partial 
fraction decomposition given by ( )/k k k ii k

A ≠= λ λ − λ∏
and likewise for B , jλ  and iη  are the eigenvalues of 

( )sr rdR , and ( ) 01 /Rx e= − γ .  
Proof (sketch): Using the notations in the proof of Theorem 

1, the outage probability is 

0
( ) Pr{ } ( ) ( / )out s d s s d s sP x g g x f g F x g dg

∞
= < = , (8) 

where ( )dF x  is the CDF of dg . Integrating (8) and using 
similar steps as in the proof of [[10], Theorem 1], (7) follows. 

As expected, ( )outP x  increases with α . While (7) holds 
when eigenvalues are different and non-zero, zero eigenvalues 
should be simply excluded, i.e. m  and n  should be treated as 
the ranks of corresponding correlation matrices. 

To get some insight, let us consider the low-outage regime. 

Corollary 3.1: ( )outP x  in Theorem 3 in the low outage 
regime 0x →  is dominated by the min( , )m n  term and is 
given by: 

( )

1

2

1
3 3

( ) ( ),                         

( ),                          

ln ( ),       

m m
out

n n

m m
x

P x a x o x m n

a x o x m n

a b x o x m n

= + <
= + >

= + + =

 (9) 

where 1a , 2a , 3a  and 3b  are constants independent of x   
1

1 ,
1 1

( 1) ln
( )

!det det

m nm m
i i

k mk
sr sr ik i

B
a D

m

+

= =

α − η= + α
ηR R

, 

1

2
1

ln( 1)

!( 1)!det

mn
j j

n
rd jj

A
a

n n

+

=

λ−=
− λR

, 

( )
1

3
1

1

,
1 1

( 1)
ln

!det !( 1)!det

( 1) ln( )
   ( ),

det

mm m
j

j mn
sr rd jj

m nm
i i

k mk
sr ik i

A
a

m m m

B
D

+

=

+

= =

α −= + λ + Ψ +
− λ

− η+ α
η

R R

R

3
1 1

!( 1)! det detsr rd
b

m m
=

− ⋅R R
,  

,
( 1)

( )
( )!( 1)! !

l k l k

k lD
l k k k

− −− αα =
− −

,  

( ) ( 1)k k kΨ = ψ + ψ + , and ( )kψ  is the Psi (digamma) 
function [12]. 

Proof (sketch): Using the standard series expansion of 
( )NK x  [12], and making use of the following properties of 

partial fraction decomposition, 

1

1
n

k
k

A
=

= , 
1

0,  1,..., 1
n

k
i
kk

A
i n

=
= = −

λ
, (10) 

(9) follows after some straightforward but lengthy 
manipulations. 

In a typical wireless system, the average path loss is about 
50…100 dB or more (unless the transmitter and the receiver 
are very close to each other), so that when the relay gain and 

2 2
0/rσ σ  are not too large, 1α << . Motivated by this, we note 
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that the channel in (1) and the outage probability in (7) are the 
same as those of the single-keyhole model [10][[11], Theorem 
3.1] when 0α → , and (9) simplifies to  

1

1

1

ln
( ) ( ),         

!( 1)! det det

ln ( 1)
( ),   

!( 1)! ( ) det

m mx m
out

rd sr

nm m
ii m

m
i sri

bx
P x o x m n

m m

x B
o x n m

m m

−

=

+
= + =

−

η −= + >
− η

R R

R

 (11) 

where 1 / 2 (1)mb m= + ψ , and the m n>  case is obtained from 
the n m>  one via m n↔ . (11) clearly shows that  the outage 
probability increases with correlation, since det R  is 
maximum for uncorrelated channel and decreases with 
correlation. 

While Theorem 3 applies to a correlated channel with 
distinct eigenvalues and does not include the case of the i.i.d. 
channel, the latter is covered by the following result. 

Theorem 4: Let rdh  and srh  be i.i.d. circular-symmetric 
zero-mean Gaussian random vectors. The outage probability 
of the single-relay channel in the amplify-and-forward mode is  

1 ( ) / 2

0 0

2
( ) 1 ( 4 )

( 1)! !( )!

m kx i k i n

out k i n
k i

e x
P x K x

n i k i

−−α + +
− −

= =

α= −
− −

 (12) 

Proof (sketch): Following the same steps as in the proof of 
Theorem 3. 

Note that (12) is easy to evaluate numerically, since it contains 
finite sums and well-known special functions. Let us now 
consider the low-outage regime.  

Corollary 4.1: ( )outP x  in Theorem 4 is dominated by 
the min( , )m n  term in the low-outage regime 0x →  and is 
given by: 

0

1

1

( 1)!
( ) ( ),  

( 1)! ( )! !

( 1)! 
 ( ),                           

!( 1)!

ln( 1)!
( ),  

( 1)! ( )! ! !

mm k
m

out
k

n
n

mm k mx m

k

x n m k
P x o x m n

m m k k

x m n
o x m n

n m

bx k
o x m n

m m k k m

=

=

α − + −= + <
− −

− −= + >
−

+α −= + + =
− −

(13) 

Proof (sketch): (13) follows after some straightforward but 
lengthy manipulations using the standard series expansion of 

( )NK x  [12]. 

As in the correlated channel, the unusual term 1ln
x

, which 
has a profound impact on the outage probability when m n= , 
is present. Unlike the m n≤  case, ( )outP x in (13) does not 
depend on α  when m n> , i.e. extra Tx antenna(s) make the 
effect of relay noise negligible at the low-outage regime and 
thus are beneficial, even though they do not improve the 
DMT. When 0α = , ( )outP x  is symmetrical with respect to m
and n , which is explained by the symmetry of the channel 
model in (1) in this case. 

V. EXAMPLES

To obtain some insight, let us consider 1x1, 2x1 and 1x2 
i.i.d. Rayleigh-fading channels. In these cases, using 

0( 1) /Rx e= − γ  and 0lnR r= γ  at high SNR, (13) simplifies 
to 

0
,1 1 1

0

,1 2 1
0

,2 1 1
0

(1 ) ln
,

1
 ,  

1
,  

out x r

out x r

out x r

r
P

P

P

−

−

−

α + − γ≈
γ

+ α≈
γ

≈
γ

 (14) 
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Fig. 2 Outage probability of 1x1, 2x1 and 1x2 i.i.d. Rayleigh-fading relay 
channels in the AF mode and their approximations in (14) for 1α =  and 

0r =  (this corresponds to fixed R at high SNR). While the DMT is the same 
for all three channels, the gap between the outage probabilities increases with 
SNR: at SNR=40dB, the difference between 2x1, 1x2 and 1x1 channels is 
about 10dB and even greater for larger α . 

Outage probabilities and their approximations are show in 
Fig. 2. It can be seen that the approximations are sufficiently 
accurate already for 0 0dBγ > . From (14), 

,1 1 ,1 2
0

,2 1 ,2 1
(1 ) ln ,   1out x out x

out x out x

P P
r

P P
≈ α + − γ ≈ + α  (15) 

so that ,1 1 ,2 1/out x out xP P  and ,1 1 ,1 2/out x out xP P  grow unbounded 
as 0γ → ∞  for 1r < , i.e. there is a significant advantage in 
using an extra antenna at either Tx or Rx end at high SNR, 
even though the DMT is the same in all three cases (see 
Theorem 1). Moreover, (15) also shows that adding an extra 
Tx rather than Rx antenna is preferable for noisy relay. 

When the relay node has full processing capability, i.e. the 
decode-and-forward protocol with capacity-achieving codes 
on both ends, the relay channel capacity is 

{ }min ,sr rdC C C= , i.e. the weakest link dominates the outage 
performance, so that 

,1 1 1
0

2
out x r

P −≈
γ

 (16) 

assuming for simplicity the same average SNR on the Tx-relay 

Exact
Approx.
Exact
Approx.1 1×

2 1×

1 2×
0

0

ln
outP

α + γ≈
γ

0

1
outP ≈

γ

0

1
outP

+ α≈
γ

0ln≈ α + γ
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and relay-Rx links. Comparing this to (14), we note that an 
extra Tx antenna in the AF mode is better then the full 
processing capability at the relay and can be used as a simple 
alternative of the latter, even though it does not improve the 
DMT (see Theorem 2). The same can be said about an extra 
Rx antenna if 1α ≤ . This indicates that the DMT framework 
is ill-suited for some channels and should be used with 
extreme caution when formulating design guidelines.

For the 1x2 and 2x1 channels in the DF mode, 

,1 2 ,2 1 1
0

1
out x out x r

P P −= ≈
γ

 (17) 

i.e. an extra antenna brings a modest SNR gain (= 3dB at 
0r = ), unlike the AF mode where this gain can be very 

significant (see Fig. 2). Comparing (17) to (14), we also note 
that the full processing capability at the relay does not bring in 
any advantage for the 2x1 channel; the same applies to the 1x2 
channel when 1α << .  

APPENDIX

Proof of Theorem 1:  

Let 2
s srg = h , 2 2/ (1 )d rd rdg = + αh h . From (3) 

( ) Pr{ } Pr{ }out s dP x C R g g x= < = < ,  (18) 

where 0( 1) /Rx e= − γ . For 0lnR r= γ , 0 1r≤ < , and 

0γ → ∞ , (1 )
0~ rx − −γ . Thus, 0x →  as 0γ → ∞ . From (18), 

1 2 3
0

( ) ( ) ( / )out s s d s sP x f g F x g dg P P P
∞

= = + + , (19) 

where ( )dF x  is the CDF of dg , and 

0

0

ln
1

0

2
ln

3

( ) ( ) ( / )

( ) ( ) ( / )

( ) ( ) ( / )

x
s s d s s

s s d s s
x

s s d s s

P x f g F x g dg

P x f g F x g dg

P x f g F x g dg

γ

δ

γ

∞

δ

=

=

=

, (20) 

and 0ln 1x γ < δ << , δ  is a sufficiently small constant 
(independent of the SNR). In fact, 1( )P x  and 3( )P x  represent 
the outage events due to the outage of the source and 
destination terminals, respectively, and 2 ( )P x  represents the 
outage events due to simultaneous deep fades at both ends. 
The upper bound on 1( )P x  and 3( )P x  are 

0ln
1 0

0

3

( ) ( ) ( ln )

( ) ( ) ( / ) (1 ( )) ( / )

x
s s s s

s s d s s d

P x f g dg F x

P x f g F x dg F F x

γ

∞

δ

≤ = γ

≤ δ = − δ δ
, (21) 

where ( )sF x  is the CDF of sg . Note that 
( ) ( /(1 ))d rdF x F x x= − α  for 1xα ≤  and 1 otherwise, where 
( )rdF x  is the CDF of 2

rdh . Therefore ( ) ~ ( )d rdF x F x , Since 
1( ) ~ sd

sf x x −  and 1( ) ~ dd
df x x − , ( ) ~ sd

sF x x  and 
( ) ~ dd

dF x x . Thus from (21), 

1 0 0

3

( ) ( ln ) ~ ( ln )

( ) (1 ( )) ( / )

s s

d

d d
s

d
s d

P x F x x x

P x F F x x

≤ γ γ
≤ − δ δ

, (22) 

where 1 0 2 0( ) ( )f fγ γ  means exponential equality [1], [6]. 
Since δ  is sufficiently small, 

0

0 0

2
ln

1 1

ln ln

( ) ( ) ( / )

~ ( / )s s dd d

s s d s s
x

d d dd d
s s s s s

x x

P x f g F x g dg

g x g dg x g dg

δ

γ

δ δ− − −
γ γ

=

=

(23) 

If s dd d≠ , 

( ) min( , )
2 0( ) ~ ( ln )

d
s d s d s d

d
d d d d d d

d s

x
P x x x

d d
− −γ − δ

−
 (24) 

If s dd d= , 

( )2 ( ) ~ ln ln( ln )s sd dP x x x xδ − γ   (25) 

Combining (22), (24), and (25), one obtains 

min( , ) (1 )min( , )
0( ) s ds d d d rd d

outP x x − ⋅ −= γ  (26) 

Applying (4), (6) follows Q.E.D. 
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