
Advanced Review

Concurrent software architectures
for exploratory data analysis
Anže Starič,1 Janez Demšar1 and Blaž Zupan1,2∗

Decades ago, increased volume of data made manual analysis obsolete and
prompted the use of computational tools with interactive user interfaces and rich
palette of data visualizations. Yet their classic, desktop-based architectures can no
longer cope with the ever-growing size and complexity of data. Next-generation
systems for explorative data analysis will be developed on client–server architec-
tures, which already run concurrent software for data analytics but are not tailored
to for an engaged, interactive analysis of data and models. In explorative data
analysis, the key is the responsiveness of the system and prompt construction of
interactive visualizations that can guide the users to uncover interesting data pat-
terns. In this study, we review the current software architectures for distributed
data analysis and propose a list of features to be included in the next generation
frameworks for exploratory data analysis. The new generation of tools for explo-
rative data analysis will need to address integrated data storage and processing,
fast prototyping of data analysis pipelines supported by machine-proposed anal-
ysis workflows, pre-emptive analysis of data, interactivity, and user interfaces for
intelligent data visualizations. The systems will rely on a mixture of concurrent soft-
ware architectures to meet the challenge of seamless integration of explorative data
interfaces at client site with management of concurrent data mining procedures on
the servers. © 2015 John Wiley & Sons, Ltd.

How to cite this article:
WIREs Data Mining Knowl Discov 2015, 5:165–180. doi: 10.1002/widm.1155

INTRODUCTION

Any data analysis is, in its essence, interactive.
We preprocess data, identify the outliers, and

develop descriptive and predictive models. But at the
same time, we wish to know which parts of data sup-
port the reached conclusions and which contradict
them. The patterns that we discover—data associa-
tions, correlations, interactions—become meaningful
only after being traced back to the data. Data analy-
sis involves the analyst in a deep and engaging pro-
cess of discovery. According to John W. Tukey, ‘In
exploratory data analysis there can be no substitute
for flexibility; for adapting what is calculated—and

∗Correspondence to: blaz.zupan@fri.uni-lj.si
1Faculty of Computer and Information Science, University of
Ljubljana, Ljubljana, Slovenia
2Department of Molecular and Human Genetics, Baylor College of
Medicine, Houston, TX, USA

Conflict of interest: The authors have declared no conflicts of interest
for this article.

what we hope plotted—both to the needs of the
situation and the clues that the data have already
provided’.1 Data exploration is a dynamic process, in
which the interaction with visualizations and other
analysis leads the researcher ever deeper into under-
standing of the underlying data, its structure and inter-
action between its components. Tukey’s introduction
of exploratory data analysis inspired the development
of many current statistical tools. The early data anal-
ysis systems supported interaction and exploratory
analysis through scripting. In R2 (Figure 1), the user
issues data processing commands and observes their
results through textual output or data visualizations.
Domain experts are not necessarily fluent in program-
ming. Graphical environments that retain flexibility
through innovative human-computer interfaces, such
as visual programming (Figure 2) are an alternative to
scripting. In platforms such as KNIME,3 Orange,4 and
TANAGRA,5 visual programming or construction of
data mining diagrams can provide an engaging expe-
rience by offering simple interfaces for execution of

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 165



Advanced Review wires.wiley.com/widm

FIGURE 1 | RStudio has a command line interface to invoke analysis methods and plot data graphs. Visualizations are displayed in a separate
window (right), and the next scripting steps often strongly rely on the displayed results.

complex analysis. Visual programming environments
rely strongly on data visualization and interactions.6

Users can interact with visualized data and select
data subsets to explore them in the emerging analysis
pipeline. Interactive data analysis also takes place in
modern spreadsheet applications, where a few tricks
suffice to construct powerful computational proce-
dures and exceptional data visualizations.

Desktop data analysis tools work well if the
data are small enough to fit into the working mem-
ory of a commodity computer. They fail, however,
with data’s increasing size and complexity. Explorative
data analysis requires responsive systems. Clogging
and substantial response delays due to computation-
ally complex analysis procedures, resampling-based
estimations, or rendering of visualizations of large
data sets hinder interactivity and discourage the user
from exploring. Exploratory data analysis systems are
on the crossroad. Desktop-based systems with inter-
active data analysis interfaces are failing to cope with
larger data sets. Analysis of such data requires concur-
rent architectures for large-scale data mining,7,8 but
they may lack the necessary front-ends for exploratory
analysis. Data mining tools that will offer the best of
the two worlds need to address some major software

engineering challenges. Computational speed, com-
munication of partial results, accurate reporting on
progress, and adaptation to dynamic changes in the
analysis pipeline are just a few aspects to consider.

In the next chapter, we review major
state-of-the-art software architectures that can sup-
port concurrent data analysis. These architectures
were designed to speed-up the analysis processes
through concurrent execution of computational pro-
cedures, buy lack several features that are intrinsic to
interactive and exploratory data analysis. For each
of the software architectures, we provide a review,
expose its main advantages and highlight its short-
comings that are related to its utility in interactive
data analysis. Based on the review, we next present
an abstract model of a software architecture for
interactive data analytics. Components of this model
are further discussed in the section that lists advanced
features of next-generation exploratory analysis soft-
ware environments. We summarize our review in the
last section of the article and conclude that present
software architectures will need a number of spe-
cific but gradual adaptations to support interactive,
user-engaged data analysis.

166 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015



WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

FIGURE 2 | A workflow editor from Orange data mining toolbox, with an example workflow for cross-validation of supervised data mining
algorithms and analysis of results. Computational units are represented with icons and communicate through typed communication channels (gray
lines).

ARCHITECTURES FOR CONCURRENT
DATA ANALYSIS
Analysis of large data sets has gained vast interest from
scientists and data miners in recent years. Developers
of data mining tools have thus far focused on different
aspects of the problem, such as designing algorithms
that take advantage of specialized data storage, par-
allelization of analysis problems, and visualization of
large data sets. Various software toolboxes have been
crafted to support the data analysis process by allow-
ing users to reuse or upgrade existing analytics com-
ponents to create new analysis pipelines.

Software Agents
Agent-based architecture is among the oldest dis-
tributed architectures for data analysis. Software
agents receive instructions from the user or from other
agents, independently perform the analysis, and report
the results. This approach scales well with the size
of data if the modeling can use only small localized
data subsets. Agents are employed concurrently, each
reporting a model to be fused with others to gain
understanding of the entire domain. Agents can also
handle distributed data sets that cannot be moved due
to privacy or regulatory concerns.9

Ideally, agents would learn and adapt over time
and produce meaningful results with very limited

interaction with the user. This goal has never been
achieved. Instead, agents in the present systems are
simple and specialized, and often dependent on the
user’s interaction through graphical user interfaces
(Figure 3)9 or query languages.10,11 Some systems are
also able to graphically present resulting data models,
and, e.g., provide visualizations of decision trees9 or
interactive graphs.11 Some also report on the progress
of the agent-based execution of analysis.

Agent-based architectures take various
approaches to parallel execution of data mining
tasks. JAM9 is designed to treat data as stationary,
and considers data sets at different locations to be
private and belonging to various independent organi-
zations. Only the induced models are communicated
between agents and fused into a final, resulting model.
Papyrus,10 however, can move data from one location
to another, and considers various trade-offs between
local computation and transfer of the data to multiple
computers to optimize computational load.

Each data analysis agent produces its own
model. In principle, and when only predictions are
important, the models may be combined through
ensembles by, say, stacking12 or averaging. Fused mod-
els are very hard to interpret, however, and spe-
cial procedures like data visualizations and feature
scoring13 are needed for their appropriate inclusion
into exploratory data analysis.

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 167



Advanced Review wires.wiley.com/widm

FIGURE 3 | Interface for meta learning in JAM architecture showing the progress of the analysis execution (on the right).

Agent based architectures have been used in wide
range of data analysis applications that include text
mining,11 medical data analysis,10 and credit card
fraud detection.9 Agents were found to be of particular
benefit when the datasets were spread across multiple
sites and could not be moved or combined due to the
regulatory restrictions.

Web Services
Web services are a popular technology that allows
us to take advantage of remote computational
resources.14 Services based on Web Service Definition
Language (WSDL) allow easy discovery by providing
a description of the interface as a part of the service.
In contrast, Representational State Transfer (REST)

services strive toward simplicity and rely on the
features included in the HTTP protocol.

Several modern data analysis systems use web
services to execute the analysis on remote comput-
ers. Weka4WS15 has the same graphical user interface
as Weka,16 but uses web services to remotely analyze
data. Taverna17 is a workflow management system for
creating and executing scientific workflows. It con-
tains references to more than 3500 services that can
be added to the user-designed data analysis pipeline.
Taverna consists of Taverna Workbench (Figure 4), a
desktop application for workflow design, and Taverna
Server for remote execution of workflows.

Taverna workflows strongly depend on services,
which are its sole means of data processing. There
is no local, client-based data analysis. In this way,

168 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015



WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

FIGURE 4 | Taverna workbench can be used to design complex workflows (on the right) from the list of available services (on the left).

Taverna simplifies and elegantly unifies the analytics
architecture. The main bottleneck of the approach is
data communication. Services need to exchange data,
and if these are large, their transfers can take much
longer than the actual computations. Orange4WS,18

however, can construct workflows from components
that are executed either locally or through webservice
calls to remote components. Based on the workflow
manager in Orange,4 each component of the work-
flow executes its tasks as soon as it has all the neces-
sary inputs, which enables the user to get preliminary
results during construction of the analysis pipeline.
Another distinctive feature of Orange4WS is auto-
matic construction of workflows. The analytic com-
ponents are annotated with terms from a Knowledge
Discovery Ontology19 and can be assembled into anal-
ysis workflow from the user’s specification of desired
inputs and outputs.

Service oriented architectures for data analy-
sis also have several shortcomings.17 In an analysis
composed of multiple services, each of them has its
own processing queue, which is usually hidden from
the user. As a result, execution times are hard to
predict when some of the services are experiencing

heavy load. Service descriptions are sufficient to
establish a connection, but their readability depends
on the service author and is not subject to a standard.
Service inputs with names such as ‘arg1’ or parame-
ters of the type such as ‘string’ suffice for generating
a valid request, but are not informative. Orange4WS
tackles this problem with additional annotations
constructed manually and added independently of
the service provider. Problems also arise when com-
bining services from different providers. The input
and output data types of services may not match
and the user has to manually provide the necessary
conversions. Services also need to transfer all the data
related to requests, which is unfeasible for large data
sets. The Web Service Resource Framework (WSRF,
http://www.globus.org/wsrf/specs/ws-wsrf.pdf) par-
tially solves this by storing the data as a resource and
using resource identifiers in the requests. Weka4WS
supports WSRF and further provides a WSRF-based
service that can be executed on grids.

Web services have found their utility in var-
ious application areas, including astronomy,20

biology,21 chemistry,22 and text mining.23 BioCat-
alogue (https://www.biocatalogue.org), e.g., includes

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 169

http://www.globus.org/wsrf/specs/ws-wsrf.pdf
https://www.biocatalogue.org


Advanced Review wires.wiley.com/widm

over 1000 different web services from different
areas of life sciences, where a substantial number
of them deal with data access, analysis, and visu-
alization. These and similar web services can be
composed into workflows using open source tools
such as Taverna (http://www.taverna.org.uk) or Tri-
ana (http://www.trianacode.org/). Using the WSRF
standard, web services can take advantage of grids to
spread the work on multiple computation nodes.

Grids
Grids solve the problem of controlled and coordinated
resource sharing and resource use in dynamic, scalable
virtual organizations.24 Multiple organizations can
share data, analysis procedures, and computational
resources. Grids also implement various security and
access policies.

Grid software architectures for data analysis
are developed on the existing grid services for data
transfer and management, allocation, monitoring, and
control of computational resources. These provide the
framework to construct additional layers of services
that implement various data mining procedures. Grid
services expose their interfaces and usage policies. A
high-level client can discover and combine them into
an analysis pipeline.

Many current grid-based data analysis frame-
works offer graphical interfaces to assemble analysis
pipelines. In workflow editors, we can select differ-
ent services, set their parameters, and establish com-
munication, while services on the grid execute the
data analysis tasks. The pipeline editor in Discovery
net25 can verify the validity of the workflow from ser-
vice metadata. When multiple sites provide the same
service, Discovery net users can manually map tasks
to specific computational resources. An alternative to
designing implementation-specific graphical editors is
to couple grid services with open source workflow
managers. These fetch information on available ser-
vices from a service catalog provided by the grid. The
DataMiningGrid,26 e.g., uses the Triana27 workflow
editor.

Job scheduling and parallel execution on grids
are managed by a resource broker, which receives
requests and delegates them to the underlying grid
execution system, such as HTCondor.28 Independent
services concurrently run on different machines, and
data-aware scheduling minimizes data transfer.

Grids have been used for Gene Annotation,25

Ecosystem Modeling,26 and Text Analysis.26 Data
analysis pipeline can be designed in workflow editors
such as Taverna (http://www.taverna.org.uk/) or Tri-
ana (http://www.trianacode.org/) and executed con-
currently on the grid.

MapReduce and Hadoop
MapReduce7 is a popular approach for processing
large amounts of data. By limiting the programmer
to the tasks that can be expressed as a series of
map and reduce steps, MapReduce provides a high
level of parallelism on a large number of commodity
machines. The core of MapReduce technology is a
distributed file system where the data are redundantly
stored on multiple machines.

Data analysis algorithms can be expressed as a
series of map and reduce steps. The map operation is
applied to the entire data set and yields intermediary
results. The distributed nature of the underlying file
system ensures that processing on different parts of
the data can be performed with different machines
without moving any data. Outputs of the map step are
assembled and processed in the reduce step to yield the
final result.

MapReduce clusters can contain thousands of
machines. The probability of hardware failure rises
with the size of cluster. The software architecture
thus contains mechanisms to circumvent failures and
slow or unresponsive workers by reassigning the
corresponding jobs to another machine that holds
duplicate data.

Apache Hadoop (http://hadoop.apache.org)
is a popular open source implementation of the
MapReduce architecture and a general-purpose
framework. Its data analysis extension is imple-
mented within multiple libraries; Apache Mahout
(http://mahout.apache.org) for data mining, BioPig29

and SeqPig30 for sequencing data and Pegasus31 for
mining graphs. Data analysis code can be written in
Java, PIG, SQL,32 or R programming language.33,34

Commercial third party tools such as Pentaho Busi-
ness Analytics or IBM InfoSphere provide some
limited support for graphical design of MapReduce
analysis pipelines.

While MapReduce approach works for batch
processing of data, other approaches are used when
data needs to be queried because of their short
response times. Apache HBase is a data store inspired
by Google BigTable.35 It is built on top of the Hadoop
File System and supports real-time read/write access
to the data. Interactive queries of the data are possible
with Dremel36 (marketed as Google BigQuery). It uses
a combination of columnar storage and hierarchical
processing to execute aggregate queries on petabytes
of data in a few seconds. Project Apache Drill aims to
provide an Open Source implementation of function-
ality provided by Dremel.

An alternative approach is open source cluster
computing system Spark.37 Its responsiveness is a
result of keeping the data in memory between requests,

170 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015

http://www.taverna.org.uk
http://www.trianacode.org/
http://www.taverna.org.uk/
http://www.trianacode.org/
http://hadoop.apache.org
http://mahout.apache.org


WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

FIGURE 5 | The web application BigML allows users to upload their data sets, build and visualize decision tree models, and use them on new
data. Each of the application’s tabs (top row) is associated with one of the available tasks carried out within a simple interface also suitable for users
with little or no data mining experience.

which can benefit exploratory data analysis. Tools
such as RABID38 can be used to execute R code on
Spark clusters.

MapReduce can deal with large amounts of
data, but is it ready for exploratory data analysis?
Researchers perform exploratory studies on Hadoop39

implementations of interactive querying of data have
shown that interactive analysis of the larger data sets
is possible given enough computers to parallelize the
job. However, survey of Hadoop usage in research
workflows40 shows that high level tools are still not in
regular use and that majority of analyses is performed
by writing low-level MapReduce code. Optimization
of Hadoop for small jobs41 and algorithms for data
visualization on MapReduce architectures42 are two
example research areas that are paving the way for
exploratory analysis on MapReduce clusters.

Cloud Applications
Cloud computing offers a number of opportuni-
ties for data analysis applications. Perhaps the most

promising is horizontal scaling,43 where the number
of rented workers dynamically changes according to
the requirements of the analysis procedures.

Several applications allow users to upload data
and use cloud computing for data analysis. BigML
(https://bigml.com) implements a set of basic data
mining procedures that are accessed through a sim-
ple graphical interface (Figure 5), making this web
application also suitable for users with no formal
background in data analytics. BigML includes several
advanced procedures that support interactive analy-
sis of big data. For instance, data histograms are first
rendered on a data sample and then updated when
the entire data set is loaded and processed. Decision
trees are a supervised machine-learning technique that
starts with the root classification node, which is then
iteratively refined. Decision trees in BigML are ren-
dered on the client application dynamically and evolve
as their nodes are induced on the computational server.

Google Prediction API (https://developers.
google.com/prediction) does not support interactivity,
but provides an interface to supervised data analysis

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 171

https://bigml.com
https://developers.google.com/prediction


Advanced Review wires.wiley.com/widm

TABLE 1 Five Features of Concurrent Software Architectures That Play an Important Role in Implementations of Exploratory Data Analysis
Environments, and Their Support by a Set of Existing Architectures. A Partial Support Is Noted Where the Software Architecture Was Not Designed for
the Task But Could in Principle Be Adapted for It

Fine-Grained

Parallel Execution

Interactive

Visualization

Communication

of Intermediate Results

High-Level

Execution Environment

Data

Stays on Premise

Agents No Yes Yes No Yes

Web services No Yes No Yes No

Grids Yes No Partially Yes Partially

Map reduce Yes No No Partially Partially

Cloud Yes Yes Yes Yes No

on the cloud. This is one of the earliest cloud-based
data mining solutions, but it is not suitable for explo-
rative data analysis as it returns only predictions and
not models.

Cloud-based architectures are a low-cost option
that enables large-scale data analysis for organiza-
tions that by themselves do not own the adequate
computational resources. The downside is the need
to transfer the data to and from the cloud. Data
transfer takes time and may be in part restricted
by corporate policies or government regulations.
From the viewpoint of explorative data analysis, the
principal bottleneck of cloud-based architectures is
the lack of their support for responsive visualiza-
tions. Existing JavaScript libraries, such as InfoViz
(http://thejit.org), D3 (http://d3js.org), or Highcharts
(http://www.highcharts.com), support beautiful visu-
alizations, but all assume that the entire data set is
locally available for rendering. Resulting visualiza-
tions can be interactive, but again only if the entire
data set is already present on the client side. Visualiza-
tions with multiple levels of detail required for explo-
ration of big data are currently not available. Existing
data visualization applications44 solve this problem
with native clients by locally rendering the data they
dynamically fetch from the cloud.

Summary
Table 1 summarizes the features of the reviewed archi-
tectures. We focus on the five aspects that are most
important for exploratory data analysis. The first one
is support for fine-grained parallel execution. Concur-
rent execution of a single task on multiple CPUs can
speed up the execution to the degree were interac-
tive analysis of large data becomes feasible. The sec-
ond one, interactive visualization, requires constant
communication with the computational server. Even
if computation is lengthy, the user has to be updated
on the progress and, ideally, should see any interme-
diate results, our third aspect in the Table 1, to allow

users to focus the analysis on the interesting subsets
of the data. Notice that while Grids and Map Reduce
provide speed-ups with concurrent execution, these
architectures engage computational workers that do
not directly communicate with the client and are less
suitable for interactive exploration and communica-
tion of intermediate results.

The fourth aspect examines if the high-level exe-
cution environment can be coupled with the chosen
architecture. Such environment should allow domain
experts to analyze large amounts of data without
specifically addressing the intricacies of parallel envi-
ronments. The final, fifth aspect, is related to data
security which is important in industrial or clinical
settings or alike. We distinguish between architectures
where data stays on a local premise or is spread across
the network not necessary managed by the data owner.
Grids and Map Reduce can support data locality only
if the institution has the appropriate, often costly com-
putational clusters.

Obviously, none of the current software archi-
tectures was designed with exploratory data analysis
in mind, and hence none is ideal for its implementa-
tion. Yet, they all contain basic building blocks with
which we could construct a suitable architecture. We
briefly review these building blocks in the next chapter,
and continue with a list of features that are specific to
exploratory data analysis.

COMPONENTS OF DATA ANALYTICS
SOFTWARE ARCHITECTURE
The five concurrent software architectures that can
support data analysis, which we reviewed in the previ-
ous section all decouple data processing from the user
interface. Regardless of their substantial differences,
we may abstract their architecture with a few intercon-
nected components (Figure 6). The user, who may be a
field expert and not necessary prolific in computer sci-
ence, uses a client to issue data analysis tasks to the rest

172 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015

http://thejit.org
http://d3js.org
http://www.highcharts.com


WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

Jobs

Da
ta

R
es

ul
ts

Requests

Progress

results

Results

data

Workers

Data storage

Application
server

Progress

preliminary

results

FIGURE 6 | General architecture for data analysis. Clients with user interface send data analysis requests to application servers that engage
workers. These communicate with a data repository to load data and store the results of the analysis. Application servers render the results and
communicate them back to the clients.

of the system. The client is either a standalone program
or a web application that converts analysis requests
to a set of instructions and presents the results to the
user. The most common ways to design an analysis are
workflows,45 script-based programs or sets of state-
ments in a query language.46 The client should also be
responsible for informing the user about the progress
of the analysis and about any errors that occur during
the execution of the analysis.

The responsiveness of the analysis system
mostly depends on the computational backend.
Often referred to as computational nodes, servers,
or workers, they do the heavy lifting required to
execute the analysis. Depending on the variety of
tasks executed, workers may be of general-purpose or
task-specialized.

General-purpose workers are able to execute any
of the requested data analysis tasks. Their utiliza-
tion depends on the data set locality and computa-
tional demands. In cloud-based setups, the number of
general-purpose workers can be modified in order to
meet the application load.

Specialized workers can only perform a limited
number of tasks, but with greater efficiency than
general-purpose workers. For instance, machines
equipped with graphical processing units can effi-
ciently execute some data analysis algorithms in

parallel.47,48 Similarly, clusters equipped with a
high-speed InfiniBand network can significantly speed
up execution of jobs using OpenMPI.49

ADVANCED FEATURES OF
NEXT-GENERATION EXPLORATORY
ANALYSIS SOFTWARE
ENVIRONMENTS
In the Introduction, we have exposed the key com-
ponents of exploratory data analysis systems: respon-
sive user interfaces, interaction with analytics engine,
graphical data displays, and dynamic workflows.
Following we list several core functions that should
be present in next-generation explorative data analysis
systems and would distinguish these from the current
desktop-based systems. We also highlight that some
of this functionality have already been prototyped in
existing data analysis software libraries, but it is their
collective implementation within analytic systems that
will present the biggest challenge to the evolution of
concurrent data analysis architectures. We group the
proposed features from the view-point of a user into
those that address the speed-ups of the algorithms
and data analysis procedures, support the smooth
use of data analysis workflows, deal with procedures

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 173



Advanced Review wires.wiley.com/widm

for data visualization, and support collaborative data
exploration.

Concurrent Processing and Algorithms
An obvious gain from concurrent architectures for
data analysis is greater speed. Users of toolboxes for
explorative data analysis expect responsive interfaces
and short execution times of underlying data analy-
sis algorithms. These can be achieved by minimizing
the data transfer between computational units, par-
allelization of data mining algorithms, and algorith-
mic prediction of the future user’s requests to guide
preemptive analysis and compute results for the most
likely future queries.

Integrated Storage and Processing
Transmission of the data from storage to processing
component of data analysis architecture is time con-
suming. Modern approaches store the data on the
machines that also perform analysis, either by using
a distributed file system50,51 or sharding.52 Such archi-
tectures scale well, as support for growing data volume
is achieved by providing an increased number of com-
puters. The downside of this architecture is that the
location of the data files determines the nodes to pro-
cess the data, which can be problematic when multiple
users use the system simultaneously.

Potential solutions should consider meta infor-
mation about storage and processing needs of the com-
putational components of the workflow. These should
be considered within task scheduler and load balanc-
ing algorithms. Load balancing strategies have been
developed within grid computing53 and agent-based
systems,54 and would need to be adapted for data min-
ing tasks in which only rough estimates of processing
time are available.

Parallelization of Standard Data Mining Tasks
Procedures such as scoring of the prediction systems
(e.g., cross-validation), parameter estimation, or var-
ious optimization methods are standard data min-
ing tasks.55 Their parallel implementation is often
straightforward and many of them are embarrassingly
parallel. Some data mining software suites already
support this kind of concurrency,56 and its implemen-
tation should be present in any modern explorative
data analysis system.

Algorithms based on iterative optimization are
harder to parallelize, as each step of the procedure
relies heavily on the previous steps. Parallel implemen-
tation of support vector machines57 decomposes the
model into a hierarchy of submodels. Submodel are
trained in parallel and later joined to produce a single

prediction model. Training of deep neural networks
is still done sequentially, but takes advantage of spe-
cialized hardware (GPUs) to speed up the execution of
each iteration. Other algorithms, such as mixed effects
models are yet to be parallelized.

Preemptive Analysis
Explorative data analysis is most often based on
descriptive statistics and their appropriate rendering.
We request the computation of averages, standard
deviations, and box plots for almost any examined
data set. If computational resources are available, such
statistics can be computed in advance, even before
the user explicitly requests them. Preemptive execution
of data analysis procedures can largely improve the
perceived responsiveness of the system.

Several existing technologies already preprocess
data to speed-up the analysis. In online analytical
processing58 (OLAP), transactional multidimensional
data are transformed to OLAP cubes that are suitable
for rapid filtering, grouping and computation of sums,
averages, and other descriptive statistics. With appro-
priate design and intelligent workflow engines, other,
more complex data analysis procedures may be exe-
cuted in advance. Choosing which procedures to run
will require predictions that reveal the most likely data
analysis tasks to be executed according to the current
pipeline, data, and user’s choices when dealing with
similar analysis problems in the past. For instance,
loading a class-labeled data set could trigger a preemp-
tive cross-validation with the user’s favorite supervised
data analysis methods that he previously applied to
similar data sets. Preemptive analysis may have high
computational costs and need to be tailored for partic-
ular users. The main challenge in this field is automatic
identification of analysis tasks that require preemptive
treatment, and automatic selection of types of preemp-
tive analysis given the history of data analysis actions.
The field could borrow predictive methods from rec-
ommender systems.59

Design and Use of Workflows
Workflows and their construction through visual
programming are a perfect match for explorative data
analysis. Workflows consist of computational units
where users process, visualize, filter, and select data.
The output of one computational unit is passed to
another unit, in this way instructing the machine about
the required analysis steps. Combined with interactive
data visualizations, workflows can provide intuitive
means to describe potentially complex data analysis
procedures. Concurrent architectures can provide
parallel implementations of workflows to speed-up

174 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015



WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

analysis of larger data sets and data collections. Yet,
these will still require implementation of procedures to
report on the progress of analysis and inform the user
by returning any intermediate results. For complex
data analysis tasks and where computational compo-
nents for data analysis are abundant, user may benefit
from techniques that provide assistance in workflow
construction and that propose the likely workflow
extension or completion of analysis branches based
on their current state and type of analyzed data.

Support for Fast Prototyping
Prototyping is an efficient way to assemble analysis
pipelines and apply them to new data.60 It allows
an expert analyst to try out different methods and
adapt them to the data at hand. Prototyping can
be done in visual programming interfaces3,4,60 or
through scripting, possibly in the interactive console.2

Each approach has its own merits. Visual interfaces
are easier to learn, yet they usually limit the choice
of available components. Scripting however enables
expert users to finely tune their queries and change
advanced parameters. PIG complements Java interface
of Apache Hadoop with a high level language that
can be used to combine existing map and reduce jobs,
while Dremel uses queries similar to SQL to query
underlying data.

Workflows define a collection and succession of
data analysis tasks to be executed on a computa-
tional server. Workflow paths by their nature imply
parallelism, making concurrent processing architec-
tures ideal for this type of specification of tasks in
explorative data analysis. Many current data analy-
sis systems support workflow design, with no consen-
sus on the ‘right’ granularity of tasks they implement
and combine. Taverna, e.g., can embed either a simple
string-processing routine or a complex genome analy-
sis procedure with a single component. An open chal-
lenge is what granularity is best for the user of such
systems.

Progress Tracking
Even with the fast implementation of data analysis
algorithms and their concurrent execution, results of
data analysis may not be available instantaneously.
Execution tracking and estimation of remaining time
are important for analyses that run for longer periods.
Estimating the execution time is difficult, in particular
for heuristic and iterative algorithms, which abound
in data analysis.

Estimating execution of parallel queries in
a general setup is a challenging problem. JAM
architecture9 displays status of execution on used
agents. Pig/Hadoop’s progress estimator shows a

percentage-remaining estimate under assumption that
all operators take the same time to complete. Another
solution for execution time estimation of MapReduce
tasks is ParaTimer,61 which provides better estimates
by considering distribution over different nodes,
concurrent execution, failures, and data skew.

Display of Intermediate Results
From the user’s viewpoint, rendering of intermediate
results for some data analysis procedure is primarily
the feature of the client’s interface. The main com-
plexity of the implementation, however, lies within
the architecture of the server. Here, the distribution
of the tasks on the server has to include handling of
requests for intermediate results and potential requests
for abortion of the execution.

Time-consuming approaches in data mining,
such as induction of classification trees in a large ran-
dom forest or inference of deep neural networks,62 are
iterative. Partial or converging models may be mean-
ingful even before the analysis is completed. For classi-
fication trees, nodes close to the root that are inferred
first may already hold potentially interesting informa-
tion. In a random forest, a smaller subset of trees
may already provide useful predictions. Early stages of
development of a deep neural network may be already
sufficiently accurate. Application clients should thus
be able to receive and render partial results of the data
analysis as they arrive. Exposing them to the user lets
him reconsider the course of analysis and potentially
change it before the ongoing computation is com-
pleted. Display of intermediate results depends on the
data analysis method, which would need to be appro-
priately adapted and implemented on the servers.
Another challenge for the software architecture is also
to provide means to request or push the intermediate
results and report on the status of analysis.

Intelligent Data Analysis Interfaces
Analysis of complex and heterogeneous data sources
requires nontrivial analysis pipelines. Future genera-
tion explorative data analysis frameworks will be able
to suggest the components or analysis pathways based
on the data characteristics, previous actions of the
analysts, and typical analysis patterns of the broader
community. Technologies for such an endeavor may
stem from meta-learning,63 social computing, and rec-
ommender systems.59 Prediction of workflow compo-
nents (Figure 7) is a recent area of study64 that also
borrows from techniques of network analysis.65

Data Visualization
Data visualization provides an essential mean of com-
munication with the user of explorative data analysis

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 175



Advanced Review wires.wiley.com/widm

File Classification tree

CN2

Logistic regression Nomogram

CN2 rules viewer

Classification tree
graph

FIGURE 7 | Machine prediction of workflow components. The user
constructs a workflow with two modeling algorithms (Classification
Tree and a rule-based classifier CN2), each followed by components for
model visualization (Classification Tree Graph and CN2 Rules Viewer).
After he adds another modeling algorithm (Logistic Regression), the
framework can anticipate that it will be followed by a visualization
component (Nomogram) as well.

environment. For exploration, the visualizations need
to support interactions, and to sustain the speed, the
server has to be aware of the limitations of the data
transfer. Instead of serving the entire data sets, data
projects are computed and even partially rendered on a
server. Concurrent algorithms on a server may also sip
through the vast space of different projections to find
those most informative and worthy to be displayed to
the user.

Interactive Visualizations
Visualizations are an efficient way to gain insight into
large data sets. Visual analytics66 thus plays a very
important role in exploratory data analysis. Visual-
ization of large data sets is computationally intensive
and cannot be performed on the client alone. Visu-
alizations can be rendered on the server and trans-
ferred to the client in a form of a video stream.67 In
such a hybrid architecture, the server transforms the
data into a representation of manageable size, which
is transferred to the client and rendered there.68 Visu-
alizations on the client may be updated continuously
as the stream of the processed data arrives from the
server. Depending on the type of visualization and its
processing needs, the data projection methods need to
be adapted for parallel computation. An example for
the later is an adaptation of multidimensional scaling
and its parallel implementation.55

Intelligent Data Visualizations
When data includes many variables, the number of
possible projections and data views is vast. Intelli-
gent data visualization copes with this by engaging

computational algorithms to propose the most infor-
mative visualizations. Various data mining methods
already address this problem, although on a smaller
scale. These include a dynamic walk through interest-
ing visualizations (GrandTour69), or techniques such
as VizRank that find and rank the most interesting
projections70 (Figure 8). Enumeration of interesting
visualizations and search for paths to explore them
is computationally expensive; different visualizations
have to be explored through concurrent search and
optimization. Processes that run on the server may
depend on actions of the users through, say, choice of
visualizations or choice of a data subset. This again
requires a responsive software architecture that is able
to run, abort, and reinitiate tasks on the server, based
on the events received from the client site.

Another problem that could be solved with intel-
ligent approaches is scaling the visual representations
that work on small data sets to data of larger vol-
ume. Scatterplot, a popular visualization technique for
small data sets, is useless for huge number of data
points. For larger data sets, processes on the server
would need to estimate the distributions from an infor-
mative data sample,72 and communicate these to client
to render a visualization of incomplete data set that
potentially uncovers interesting patterns. It is the task
of procedures for intelligent visualization to score the
interestingness and, through concurrent processing,
find data subsets that maximizes this score.73

Collaboration
Analysis of real-life data is often a complex process
spanning across different areas of expertise. Data
analysis projects are becoming collaborative efforts.
Collaboration interfaces should borrow from the ideas
of social and gaming platforms. Collaborative data
exploration has to be mapped to concurrent execution
of data analytics tasks to avoid redundancies in
data processing and offer the speed that stems from
sharing the results that were rendered for one user to
his partners. Collaborative explorative data analysis
environments are in its infancy74 and we have yet
to gain experience in this field to propose efficient
concurrent solutions.

CONCLUSIONS
Of the software architectures we have reviewed, it is
their combination that will most likely be present in
the future systems for explorative data analysis. The
key components will likely be implemented within
computer grids, perhaps augmented with specialized
hardware for large-scale parallel execution. Current

176 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015



WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

FIGURE 8 | Intelligent data visualization by VizRank. The window on the right shows Radviz visualization of gene expression profiles from Ref.
71. Vizrank can score Radviz data projections by degree of separation between data items of different classes and offer them in browsable ranked list
(window on the left).

architectures would need much improvement, how-
ever, to accommodate the advanced tasks that will be
supported by the next generation of concurrent explo-
rative data analysis architectures. They will need to
address a decrease of latency, continuous streaming
of results, and improvements at the client site and
user interfaces. Latency could be reduced by incre-
mental analysis of the data that would offer interme-
diate results prior to completion of the analysis on
the entire data set, or even prior to the user’s request
for the analysis. Software architectures should stream
graphical results, as data visualization is one of the
key components of exploratory data analysis. Work-
flow interfaces on the client side need to be adapted for
dynamically changing environments, where the design
and execution are interwoven and intermediate results
impact the analysis choices of the user.

Future systems for data analytics will predict
the course of analysis and guide users in the design
of the analytics pipeline. Computational servers will
anticipate the next steps of analysis and execute some
selected procedures in advance by balancing between
the cost of computational resources and response time
requirements. Collaborative analysis will add an extra
dimension to this problem and will require an addi-
tional optimization layer to minimize computation by
jointly serving the needs of the community of users.

Ever growing volume of data will greatly impact
the design computer systems for exploratory data
analysis. Existing software architectures are no longer
adequate; we need to adapt them and invent new ones.
But as this review shows, the process can be gradual
and based on excellent foundations of concurrent pro-
cessing and software architectures developed through-
out a wide scope of information technologies.

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 177



Advanced Review wires.wiley.com/widm

REFERENCES
1. Jones LVE. The Collected Works of John W. Tukey:

Philosophy and Principles of Data Analysis 1949–1964,
vol. III & IV. Chapman & Hall; 1986, London.

2. Ihaka R, Gentleman R. R: a language for data analysis
and graphics. J Comput Graph Stat 1996, 5:299–314.

3. Berthold MR, Cebron N, Dill F, Gabriel TR, Köt-
ter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel
B. KNIME: the Konstanz information miner. ACM
SIGKDD Explor Newslett 2009, 11:26–31.

4. Curk T, Demšar J, Xu Q, Leban G, Petrovič U,
Bratko I, Shaulsky G, Zupan B. Microarray data min-
ing with visual programming. Bioinformatics 2005,
21:396–398.

5. Rakotomalala R. TANAGRA: un logiciel gratuit pour
l’enseignement et la recherché. In: Actes de EGC’2005,
RNTI-E-3, Paris, France, 2005, 697–702.

6. Keim DA, Mansmann F, Schneidewind J, Ziegler H.
Challenges in visual data analysis. In: Proceedings of the
IEEE Tenth International Conference on Information
Visualisation, 2006, 9–16.

7. Dean J, Ghemawat S. MapReduce: simplified data
processing on large clusters. Commun ACM 2008,
51:107–113.

8. Ekanayake J, Pallickara S, Fox G. MapReduce for
data intensive scientific analyses. In: Proceedings of
the 4th IEEE International Conference on eScience,
Indianapolis, Indiana, US, 2008, 277–284.

9. Stolfo S, Prodromidis A, Tselepis S, Lee W. JAM: Java
agents for meta-learning over distributed databases.
In: Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining, Newport
Beach, California, US, 1997, 74–81.

10. Bailey S, Grossman R, Sivakumar H, Turinsky A.
Papyrus: a system for data mining over local and
wide area clusters and super-clusters. In: Proceedings
of the 1999 ACM/IEEE conference on Supercomputing
(CDROM), ACM, Portland, Oregon, US, 1999, 63.

11. Kargupta H, Hamzaoglu I, Stafford B. Scalable,
distributed data mining—an agent architecture. In:
Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, Newport
Beach, California, US, 1997, 211–214.

12. Džeroski S, Ženko B. Is combining classifiers with
stacking better than selecting the best one? Mach Learn
2004, 54:255–273.

13. Štrumbelj E, Kononenko I. An efficient explanation of
individual classifications using game theory. J Mach
Learn Res 2010, 11:1–18.

14. Papazoglou M. Web Services: Principles and Technol-
ogy. Upper Saddle River, New Jersey: Prentice Hall;
2008.

15. Talia D, Trunfio P, Verta O. The Weka4WS framework
for distributed data mining in service-oriented grids.
Concur Comput Pract Exp 2008, 20:1933–1951.

16. Hall M, Eibe F, Holmes G, Pfahringer B, Reutemann P,
Witten IH. The WEKA data mining software: an update.
ACM SIGKDD Explor Newslett 2009, 11:10–18.

17. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock
MR, Li P, Oinn T. Taverna: a tool for building and
running workflows of services. Nucleic Acids Res 2006,
34:29–32.

18. Podpečan V, Zemenova M, Lavrač N. Orange4WS
environment for service-oriented data mining. Comput
J 2011, 55:82–98.

19. Zakova M, Kremen P, Zelezny F, Lavrač N. Automating
knowledge discovery workflow composition through
ontology-based planning. IEEE Trans Autom Sci Eng
2011, 8:253–264.

20. Raicu I, Foster I, Szalay A, Turcu G. Astroportal: a sci-
ence gateway for large-scale astronomy data analysis.
In: Proceedings of the TeraGrid Conference, Indianapo-
lis, Indiana, US, 2006, 12–15.

21. Kalderimis A, Lyne R, Butano D, Contrino S, Lyne M,
Heimbach J, Hu F, Smith R, Štěpán R, Sullivan J, et al.
InterMine: extensive web services for modern biology.
Nucleic Acids Res 2014, 42:468–472.

22. Kiss R, Sandor M, Szalai F. http://Mcule.com: a public
web service for drug discovery. J Cheminform 2012,
4(Suppl 1):17–17.

23. Korkontzelos I, Mu T, Ananiadou S. ASCOT: a text
mining-based web-service for efficient search and
assisted creation of clinical trials. BMC Med Inform
Decis Mak 2012, 12(Suppl 1):1–12.

24. Foster I. The anatomy of the grid: enabling scalable
virtual organizations. Int J High Perform Comput Appl
2001, 15:200–222.

25. AlSairafi S, Emmanouil FS, Ghanem M, Giannadakis
N, Guo Y, Kalaitzopoulos D, Osmond M, Rowe A,
Syed J, Wendel P. The design of discovery net: towards
open grid services for knowledge discovery. Int J High
Perform Comput Appl 2003, 17:297–315.

26. Stankovski V, Swain M, Kravtsov V, Niessen T,
Wegener D, Kindermann J, Dubitzky W. Grid-enabling
data mining applications with DataMiningGrid: an
architectural perspective. Future Gener Comput Syst
2008, 24:259–279.

27. Taylor I, Shields M, Wang I, Harrison A. The Tri-
ana workflow environment: architecture and applica-
tions. In: Workflows for e-Science. Heidelberg: Springer;
2007, 320–339.

28. Thain D, Tannenbaum T, Livny M. Distributed comput-
ing in practice: the condor experience. Concur Comput
Pract Exp 2005, 17:323–356.

29. Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a
Hadoop-based analytic toolkit for large-scale sequence
data. Bioinformatics 2013, 29:3014–3019.

30. Schumacher A, Pireddu L, Niemenmaa M, Kallio A,
Korpelainen E, Zanetti G, Heljanko K. SeqPig: simple

178 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015



WIREs Data Mining and Knowledge Discovery Concurrent architectures for explorative data analysis

and scalable scripting for large sequencing data sets in
Hadoop. Bioinformatics 2014, 30:119–120.

31. Kang U, Tsourakakis CE, Faloutsos C. Piranha:Pegasus:
mining peta-scale graphs. Knowl Inf Syst 2011,
27:303–325.

32. Russell J. Getting Started with Impala: Interactive
SQL for Apache Hadoop. O’Reilly Media, Inc.; 2014,
Sebastopol, California, US.

33. Prajapati V. Big Data Analytics with R and Hadoop.
Packt Publishing; 2013, Birmingham, UK.

34. Yejas ODL, Zhuang W, Pannu A. Big R: large-scale
analytics on Hadoop using R. In: Proceedings of the
IEEE International Congress on Big Data (BigData
Congress), Anchorage, Alaska, US, 2014, 570–577.

35. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA,
Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable:
a distributed storage system for structured data. ACM
Trans Comput Syst 2008, 1–26:4.

36. Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar
S, Tolton M, Vassilakis T. Dremel: interactive analysis
of web-scale datasets. In: Proceedings of the 36th
International Conference on Very Large Data Bases,
Singapore, 2010, 330–339.

37. Zaharia M, Chowdhury M, Franklin M, Shenker S,
Stoica I. Spark: cluster computing with working sets.
In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, USENIX Association,
Boston, MA, US, 2010, 10.

38. Lin H, Yang S, Midkiff SP. RABID: a distributed
parallel R for large datasets. In: Proceedings of the
IEEE International Congress on Big Data (BigData
Congress), Anchorage, Alaska, US, 2014, 725–732.

39. Zhou X, Petrovic M, Eskridge T, Carvhalo M. Explor-
ing Netfow data using Hadoop. In: Proceedings of the
Second ASE International Conference on Big Data Sci-
ence and Computing, Academy of Science and Engineer-
ing (ASE), Stanford, CA, US, 2014.

40. Ren K, Kwon Y, Balazinska M, Howe B. Hadoop’s
adolescence: an analysis of Hadoop usage in scientific
workloads. Proc VLDB Endowment 2013, 6:853–864.

41. Elmeleegy K. Piranha: optimizing short jobs in hadoop.
Proc VLDB Endowment 2013, 6:985–996.

42. Wang Z, Chen C, Zhou J, Liao J, Chen W, Maciejew-
ski R. A novel visual analytics approach for clus-
tering large-scale social data. In: Proceedings of the
IEEE International Congress on Big Data (BigData
Congress), Santa Clara Marriott, CA, USA, 2013,
79–86.

43. Vaquero LM, Rodero-Merino L, Buyya R. Dynamically
scaling applications in the cloud. ACM SIGCOMM
Comput Commun Rev 2011, 41:45–52.

44. Chen K, Xu H, Tian F, Guo S. Cloudvista: visual
cluster exploration for extreme scale data in the cloud.
In: Proceedings of the 23rd International Conference
on Scientific and Statistical Database Management,
Portland, OR, US, 2011, 332–350.

45. Deelman E, Gannon D, Shields M, Taylor I. Workflows
and e-science: an overview of workflow system features
and capabilities. Future Gener Comput Syst 2009,
25:528–540.

46. Džeroski S, Lavrač N. Relational Data Mining. Berlin:
Springer; 2001.

47. Lowe EW, Butkiewicz M, Woetzel N and Meiler J.
GPU-accelerated machine learning techniques enable
QSAR modeling of large HTS data. In: Proceedings
of IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, San Diego,
CA, US, 2012, 314–320.

48. Sharp T. Implementing decision trees and forests on a
GPU. In: Proceedings of the 10th European Conference
on Computer Vision, Marseille, France, 2008, 595–608.

49. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra
JJ, Squyres JM, Sahay V, Kambadur P, Barrett B,
Lumsdaine A et al. Open MPI: goals, concept, and
design of a next generation MPI implementation. In:
Proceedings of the 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, 2004, 97–104.

50. Ghemawat S, Gobioff H, Leung ST. The Google file
system. ACM SIGOPS Oper Syst Rev 2003, 37:29–43.

51. Shvachko K, Kuang H, Radia S, Chansler R. The
Hadoop distributed file system. In: IEEE 26th Sym-
posium on Mass Storage Systems and Technologies
(MSST), Lake Tahoe, Nevada, US, 2010, 1–10.

52. Cattell R. Scalable SQL and NoSQL data stores. ACM
SIGMOD Rec 2011, 39:12–27.

53. Qin X. Design and analysis of a load balancing strat-
egy in data grids. Future Gener Comput Syst 2007,
23:132–137.

54. Mary MEL, Saravanan V. Predictive load balancing for
data mining in distributed systems. J Theor Appl Inf
Technol 2013, 53:13–23.

55. Bae SH, Choi JY, Qiu J, Fox GC. Dimension reduc-
tion and visualization of large high-dimensional data via
interpolation. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed
Computing, ACM, Chicago, Illinois, US, 2010, 203.

56. Bekkerman R, Bilenko M, Langford J. Scaling up
machine learning: parallel and distributed approaches.
Cambridge: Cambridge University Press; 2012.

57. Sun Z, Fox G. Study on parallel SVM based on MapRe-
duce. In: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications, CSREA Press, Las Vegas, Nevada, US,
2012, 16–19.

58. Chaudhuri S, Dayal U. An overview of data warehous-
ing and olap technology. ACM SIGMOD Rec 1997,
26:65–74.

59. Tavakolifard M, Almeroth K. Social computing: an
intersection of recommender systems, trust/reputation
systems, and social networks. IEEE Network 2012,
26:53–58.

Volume 5, Ju ly/August 2015 © 2015 John Wiley & Sons, Ltd. 179



Advanced Review wires.wiley.com/widm

60. Mierswa I, Wurst M, Klinkenberg R. YALE: rapid pro-
totyping for complex data mining tasks. In: Proceedings
of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM,
Philadelphia, PA, US, 2006, 935–940.

61. Morton K, Balazinska M and Grossman D. Paratimer: a
progress indicator for mapreduce dags. In: Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, ACM, Indianapolis, Indiana,
US, 2010, 507–518.

62. Murphy KP. Machine Learning: A Probabilistic Per-
spective. Cambridge, MA: The MIT Press; 2012.

63. Prodromidis A, Chan P and Stolfo S. Meta-learning in
distributed data mining systems: issues and approaches.
Advances in Distributed and Parallel Knowledge Dis-
covery, AAAI Press/MIT Press, 2000, 81–114.

64. Polajnar M, Demšar J. Small network completion
using frequent subnetworks. Intell Data Anal 2015,
19:89–108.

65. Newman M. Networks: An Introduction. Oxford, UK:
Oxford University Press; 2010.

66. Keim D, Andrienko G, Fekete JD, Carsten G. Visual
Analytics: Definition, Process, and Challenges. Berlin,
Germany: Springer-Verlag; 2008.

67. Lamberti F, Sanna A. A streaming-based solution
for remote visualization of 3D graphics on mobile
devices. IEEE Trans Vis Comput Graph 2007, 13:
247–260.

68. Ahrens J, Woodring J, DeMarle D, Patchett J, Maltrud
M. Interactive remote large-scale data visualization via
prioritized multi-resolution streaming. In: Proceedings
of the Workshop on Ultrascale Visualization, ACM,
Portland, OR, US, 2009, 1–10.

69. Asimov D. The grand tour: a tool for viewing mul-
tidimensional data. SIAM J Sci Stat Comput 1985,
6:128–143.

70. Leban G, Zupan B, Vidmar G, Bratko I. Vizrank: data
visualization guided by machine learning. Data Min
Knowl Discov 2006, 13:119–136.

71. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet
CW, Furey TS, Ares M, Haussler D. Knowledge-based
analysis of microarray gene expression data by using
support vector machines. Proc Natl Acad Sci USA 2000,
97:262–267.

72. Agarwal S, Mozafari B, Panda A, Milner H, Madden
S, Stoica I. BlinkDB: queries with bounded errors
and bounded response times on very large data. In:
Proceedings of the 8th ACM European Conference
on Computer Systems, ACM, Prague, Czech Republic,
2013, 29–42.

73. Ma KL. Machine learning to boost the next generation
of visualization technology. IEEE Comput Graph Appl
2007, 27:6–9.

74. Willett W, Heer J, Hellerstein J, Agrawala M. Com-
mentSpace: structured support for collaborative visual
analysis. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Vancouver, BC,
Canada, 2011, 3131–3140.

FURTHER READINGS
Heer J, Kandel S. Interactive analysis of big data. XRDS 2012, 19:50–54.

Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc.;
2005, Burlington, Massachusetts.

Ward MO, Grinstein G, Keim D. Interactive Data Visualization: Foundations, Techniques, and Applications (2nd Edition),
A K Peters/CRC Press, 2015.

180 © 2015 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2015


