
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Survey paper

Refactoring large process model repositories

Barbara Weber a,*, Manfred Reichert b, Jan Mendling c, Hajo A. Reijers d

a Department of Computer Science, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
b Institute of Databases and Information Systems, University of Ulm, Germany
c Humboldt-Universität zu Berlin, Germany
d School of Industrial Engineering, Eindhoven University of Technology, The Netherlands

Contents

1. Introduction . 468

1.1. Problem statement . 468

1.2. Contribution . 468

2. Preliminaries . 469

2.1. Process repository meta model . 469

2.2. Process models and refactorings . 470

3. Identifying refactoring opportunities . 471

3.1. Research methodology . 471

3.1.1. Selection criteria . 471

3.1.2. Data sources and data collection . 471

3.1.3. Procedure for process model smell identification . 472

3.2. Process model smells . 472

3.2.1. PMS1: Non-intention Revealing Naming of Activity/Process Model . 472

3.2.2. PMS2: Contrived Complexity . 472

3.2.3. PMS3: Redundant Process Fragments . 473

3.2.4. PMS4: Large Process Models . 473

3.2.5. PMS5: Lazy Process Models . 473

3.2.6. PMS6: Unused Branches (Unused Code in SE) . 474

3.2.7. PMS7: Frequently Occurring Instance Changes . 474

3.2.8. PMS8: Frequently Occurring Variant Changes . 475

3.3. Summary of process model smells. 475

4. Refactoring techniques . 475

Computers in Industry 62 (2011) 467–486

A R T I C L E I N F O

Article history:

Received 24 July 2010

Received in revised form 18 November 2010

Accepted 17 December 2010

Available online 5 February 2011

Keywords:

Process-aware information system

Process model quality

Process model smell

Process model refactoring

Abstract: With the increasing adoption of process-aware information systems, large process model

repositories have emerged. Typically, the models in such repositories are re-aligned to real-world events

and demands through adaptation on a day-to-day basis. This bears the risk of introducing model

redundancies and of unnecessarily increasing model complexity. If no continuous investment is made in

keeping process models simple, changes will become more difficult and error-prone over time. Although

refactoring techniques are widely used in software engineering to address similar problems, so far, no

comparable state-of-the-art has evolved in the business process management domain. Process designers

either have to refactor process models by hand or are simply unable to apply respective techniques at all.

This paper proposes a catalogue of process model ‘‘smells’’ for identifying refactoring opportunities. In

addition, it introduces a set of behavior-preserving techniques for refactoring large process repositories.

The proposed refactorings enable process designers to effectively deal with model complexity by making

process models better understandable and easier to maintain. The refactorings have been evaluated

using large process repositories from the healthcare and automotive domain. To demonstrate the

feasibility of the refactoring techniques, a proof-of-concept prototype has been implemented.

� 2010 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail address: Barbara.Weber@uibk.ac.at (B. Weber).

Contents lists available at ScienceDirect

Computers in Industry

journa l homepage: www.e lsevier .com/ locate /compind

0166-3615/$ – see front matter � 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2010.12.012

Author's personal copy

4.1. Preliminaries . 476

4.2. Refactorings for process model trees . 477

4.2.1. RF1/RF2 (Rename Activity/Process Model), RF7 (Re-label Collection) . 477

4.2.2. RF3: Substitute Process Fragment. 477

4.2.3. RF4 (Extract Process Fragment), RF5 (Replace Process Fragment by Reference), RF8 (Remove Redundancies) 477

4.2.4. RF6: Inline Process Fragment . 478

4.3. Refactoring of process variants . 478

4.3.1. RF9: Generalize Variant Changes . 478

4.4. Refactorings for model evolution . 479

4.4.1. RF10: Remove Unused Branches. 479

4.4.2. RF11: Pull Up Instance Change . 480

5. Implementation . 480

5.1. Architecture . 480

5.2. Walk-through scenario . 481

6. Related work . 482

7. Summary and outlook . 484

References . 484

1. Introduction

Process-aware information systems (PAISs) have become an
integral part of enterprise computing and are used to support
business processes at an operational level [99]. In contrast to
conventional information systems, PAISs strictly separate process
logic from application code, relying on explicit process models that
provide the schemes for process execution. This enables a
separation of concerns, which is a well established principle in
Computer Science to increase maintainability and to reduce costs
of change [13].

1.1. Problem statement

Process repositories are the central store of process models in
PAISs. In large companies, such repositories can easily contain
several thousands of process models [72]. Such sheer numbers give
rise to several quality issues. Over time new process models
emerge, existing ones need to be adapted to changing require-
ments, and new process model variants are created to align
processes to a particular context (e.g., specific regulations in one of
the countries where the company operates). While support for
model changes is quite well understood from a research
perspective both in terms of process model configuration
[74,71] and adaptation of running process instances [58,60], a
notable research gap exists concerning quality assurance in
process repositories.

This gap is underlined by two facts: First, regarding model
construction companies try to delegate process modeling tasks to
operational staff that has little or no modeling competence [72].
Thus, it is not surprising that process model repositories tend to
contain a rate of unsound models that ranges from 3.3% up to 37.5%
[40]. This rate is a severe roadblock to process model usage.
Second, it is well known from software engineering research that
computer programs degenerate over time when code is modified
or added by different developers [54]. Since numerous users may
work on a single process repository, we can expect that process
repository evolution faces similar challenges as software program
evolution does; i.e., maintenance will become increasingly difficult
over time if no techniques for quality improvement are provided.

While methods and tool support are still limited in process
modeling, there has been considerable progress in software
engineering (SE) on related problems. So-called refactoring

techniques have been widely used to ensure that code bases
remain maintainable [52,17]. Refactoring enables programmers to
restructure a software system without altering its behavior. Thus,
it is typically used to improve code quality by removing

duplication, improving readability, simplifying software design,
or adding flexibility [2]. Examples of SE refactoring techniques
include the renaming of a class to foster understandability and the
extraction of a new method from an existing code block to reduce
redundant code fragments and to increase readability. In the SE
domain, code smells are widely used for identifying refactoring
opportunities [50] (e.g., duplicate code or very long methods).

It has been noted by various authors that process models and
computer programs are similar in various respects [23,90]. In [92],
the following parallels are singled out:

� Both types of artifacts provide a procedural view on the
processing of information. Within each described step, either
within a process model or a computer program, one or more
outputs are produced on the basis of one or more inputs.
� A process model has a compositional structure that is similar to

that of a computer program. A computer program can be split up
into modules or classes. Every module consists of a number of
statements, and every statement references variables and
constants. Likewise, a process model contains activities, each
of these being composed of elementary operations, which in turn
use one or more pieces of information to produce new
information.
� Both a process model and a computer program can be used as

script for enactment. When instantiating either of these, an
execution flow of their elements is invoked that unfolds in
accordance with this static representation. This flow may involve
consecutive executions, concurrency, conditional routings, etc.

Considering these similarities, it is not surprising that some
authors even refer to process modeling as ‘‘programming in the
large’’ [90]. Our line of reasoning now is that the idea of refactoring,
well-known in the area of software engineering, may well be an
attractive direction to investigate in the context of process model
usage in PAISs.

1.2. Contribution

This article adapts the concept of refactoring from SE to process
modeling. Our contribution is twofold. Firstly, we provide an
extensive discussion of process model smells facilitating the
identification of refactoring opportunities. Secondly, we introduce
refactoring techniques that provide remedies for these smells. A
refactoring technique improves upon the internal quality of a model
such that it becomes easier to read and maintain, but it does not
affect the model’s semantics or external behavior. The techniques

B. Weber et al. / Computers in Industry 62 (2011) 467–486468

Author's personal copy

are proposed as a means to assist process designers, but the final
decision whether or not to apply a refactoring in a specific situation
is always at their discretion. In that sense, the proposed refactoring
techniques support a modeler’s task without making it superflu-
ous.

The presented smells and refactorings are not complete in a
mathematical sense: It can be easily imagined that refactorings
might be added in future or that existing refactorings will be
refined. The presented list, however, is duly empirically validated
on utility considerations. Using a range of existing process
repositories from the healthcare and automotive domain, we are
able to show that all identified refactorings are frequently needed
in practice. A similar argument of relevance is also used in SE as
constructive criterion for design patterns [18]. Beyond that, we
provide a second constructive validation in terms of a prototypical
implementation, which demonstrates how the different refactor-
ings can be offered to process designers in an easy-to-use fashion.

While some isolated refactorings are discussed in [15], our
contribution is the first comprehensive account of the refactoring
concept for process models. At the same time, process models
typically comprise different perspectives including control-flow,
data flow, and resource allocation. Our contribution is restricted in
the sense that it purely focuses on the control-flow perspective.
This is, however, not a fundamental limit: It can be imagined how
the current set of refactorings can be extended to cover other
dimensions as well.

This paper further complements previous work on process

redesign and process adaptation. Both refactoring and process

redesign may require model transformations. However, the scope
of process redesign is broader and goes beyond structural
adaptations. It is primarily business-driven and aims to improve
one or more performance dimensions of a process (e.g., time,
quality, costs) [61]. Therefore, redesign often affects the external
quality of a PAIS and its results are visible to the customer. In
contrast, refactoring techniques primarily impact the internal
quality of a PAIS, ensure conceptual integrity, and foster
maintainability. Similar to refactorings, process adaptations

[58,60,97] refer to structural changes of a process model (e.g.,
using change patterns) [95]. In contrast to refactorings, they
usually affect process model behavior.

The paper is structured as follows. Section 2 presents a generic
meta model we assume for a process repository. We use an
illustrative example to introduce process modeling as well as
refactoring concepts. We then define the scope of the process
model refactorings we consider. Section 3 presents a set of
empirically supported process model smells for detecting refac-
toring opportunities. Section 4 describes 11 refactoring techniques
which enable process designers to improve the quality of process
models and provide remedies for the process model smells as
discussed in Section 3. Section 5 demonstrates the applicability of
the refactorings based on a prototypical implementation and
provides a realistic use scenario. Section 6 discusses related work,
before Section 7 concludes the paper.

2. Preliminaries

We first introduce general concepts providing the foundation of
this paper. Section 2.1 presents the meta model we assume for a
process repository. Section 2.2 defines refactoring and aligns it to
process modeling concepts.

2.1. Process repository meta model

The most essential entities in a process repository are process

models. Several process modeling languages have been defined
including Event-driven Process Chains (EPCs), Business Process

Modeling Notation (BPMN), and Workflow Nets. They have
distinctive elements and sometimes display subtle differences in
semantics. In the following, we aim to abstract from these
differences, and focus on basic commonalities of these languages
instead [84]. Accordingly, we define a process model as a set of
activities and gateways that are connected by control-flow arcs.
Gateways can be either split nodes (i.e., nodes with one incoming
and multiple outgoing arcs) or join gateways (i.e., nodes with
multiple incoming and one outgoing arc). There are three different
types of splits and joins. The XOR-split defines a decision point
where one outgoing branch becomes activated and the XOR-join
the respective merge. The AND-split introduces concurrent
processing of all outgoing branches while the AND-join synchro-
nizes its incoming branches. The OR-split represents a non-
exclusive choice in the sense that one, multiple, or all outgoing arcs
can be activated. The OR-join guarantees proper synchronization of
those branches that have become active.

There are relationships that span different process models as
well. Most relevant is the subprocess relationship that refers from
an activity of one process model (parent) to another process model
as a whole (child). This signifies that the subprocess implements
the activity, i.e., every time the activity gets activated, it is the
subprocess that has to be executed. We denote such an activity as a
complex activity. We require the parent-child process relationship
to be acyclic such that we have different process model trees linking
parent and child process models. Subprocesses constitute a
powerful concept for describing the common parts of different
process models.

Fig. 1a illustrates the content of a very simple process repository
at a certain point in time. There are five process models S, S1, S2, S3,
and S4. Model S includes an AND-split after activity A. Accordingly,
B, C and D, and also E and F can be executed concurrently. The AND-
join synchronizes the different paths. M is a complex activity
pointing to subprocess S3 that executes activity sequence X, Y and
Z. Model S1 uses this subprocess as well. S1 and S2 also contain the
same process fragment, which is built upon an AND-split and AND-
join. Finally, S2 contains complex activity K that refers to S4. As can
be seen, parts of the different models are redundant in the sense
that they cover exactly the same process logic.

Process models can either be created from scratch or through
adaptation of a reference process model, i.e., by means of
configuration. From such a reference model Sref, several process

model variants V1, . . ., Vn can be derived based on a restricted set of
high-level change patterns [58,95].1 Thereby, for a given variant
model V we denote the minimal number of high-level changes
needed to transform the reference model Sref into V as change

distance s(Sref, V) between Sref and V. Furthermore, a minimal
sequence of high-level changes needed to transform model Sref into
V is denoted as bias (D) between Sref and V.2 The total set of all
variant models (i.e., variants for short) derived from a reference
process is called a process model family.

Fig. 1b shows a reference process model Sref and four process
variants V1, . . ., V4 derived from it; e.g., to configure Sref into V2 we
need to insert Y and delete Activity G; i.e., we obtain distance s(Sref,
V2) = 2 and bias D(Sref, V2) = [Insert Y after C, Delete G].

Based on a given process model, at run-time new process

instances can be created and executed according to this model. The
latter is reflected by the execution traces of these instances, which
log information about events relating to the start and completion
of process activities [85].

1 Examples of change patterns include the insertion, deletion and movement of

activities within a process model.
2 Generally, it is possible to have more than one minimal sequence of change

operations to transform Sref into V, i.e., given two process models their bias does not

need to be unique (see [36] for a detailed discussion on this).

B. Weber et al. / Computers in Industry 62 (2011) 467–486 469

Author's personal copy

2.2. Process models and refactorings

The term ‘‘refactoring’’ was coined by Opdyke [52] and refers to
‘‘the process of changing a software system in such a way that it
does not alter the external behavior of the code, yet improves its
internal structure’’ [17]. As such, refactoring neither resolves errors
nor adds functionality, but improves understandability and
maintainability through behavior-preserving model transforma-
tions. Therefore, refactoring differs from model transformations
applied when redesigning or adapting processes, since these
transformations are typically not behavior preserving. Refactoring
can be classified as both endogenous (i.e., transformations between
models expressed in same language) and horizontal (i.e., source and
target model reside at same level of abstraction) [49]. Refactorings
constitute small changes with little value when applied in
isolation, but these become valuable when combined with other
refactorings [2]. Thus, model refactoring constitutes an iterative
process which enables designers to improve the quality of a
process repository. According to [50] we define refactoring by a
procedure consisting of a number of distinct activities:

In SE, the incentive to consider a particular refactoring is the
detection of a code smell [17]. Code smells are indicators of bad code

quality and in our application domain of bad process model quality.
Let us revisit our process repository from Fig. 1a to illustrate this
point. We have already stated that the repository contains several
redundancies. Using ‘‘refactoring terms’’ we can now describe
these as process model smells: models S1 and S2 both include the
common process fragment3 G1, which is a slight variation of
process fragment G contained in the left model S (i.e., although
process fragments G and G1 are not structurally equivalent, they
expose the same behavior). Using refactoring techniques, we can
extract these commonalities from the different models (cf. Fig. 2).
This results in a new model S5, which represents the logic of
process fragment G1 and G, respectively, and which becomes a
subprocess of the refactored models S, S1, and S2. Due to the
reduced redundancy, the resulting process models should now be
easier to maintain, but still expose the same behavior.

Whether the occurrence of a smell really means that a model
must be refactored is not a black or white decision. The value of a
particular refactoring often involves the trade-off between
different quality characteristics. For example, extracting (redun-
dant) process fragments from one or several process models
decreases the overall model size on the one hand, but potentially
increases the number of process models (with low number of
activities). This aspect is captured in our approach that aims to
assist the process designer rather than to fully automate the
refactoring process.

Process Model S

a.) Model Repository with Model Tree

A

Process Fragment G

Process Model S1
H

Process Fragment G1

Process Model S2
J

Process Fragment G1

+

++

B C D +

E F

Process Fragment G

B C D E F

Process Fragment G1

+

+

B C D E F

Process Fragment G1

+
K

M
M

+

+

+
+

I

(Sub) Process Model S4

XOR-Split/Join

AND-Split/Join

Atomic Activity

+
Complex Activity

+
x

(Sub) Process Model S3

X Y Z

(Sub) Process Model S4

S T V

b) Process Family

+ +

Process Variant V1

A
C

F
B

+ +

Process Variant V2

A
C

F
B Y

Generic Process Model Sref
CB

+A

E

F

D

Δ = <Delete G>
ED

Δ = <Insert Y after C
Delete G>

+ +A
C

E

F
B

D

G

Process Variant V4

Δ = <Delete F>
Process Variant V3

Δ = <Insert Y
after C Delete G>

+ +

Process Variant V4

A
C

E

G
B

D
+ +

Process Variant V3

A
C

E

F
B

D

Y

Δ := bias

Fig. 1. Core concepts.

1. Identify refactoring opportunities

2. Determine which refactoring(s) shall be applied

3. Ensure that the applied refactoring(s) preserve model behavior

4. Apply the refactoring

5. Assess the effect of the refactoring on quality characteristics

of the process model repository (e.g., understandability,

maintainability)
3 In the context of this paper a (process) fragment denotes a subgraph of a process

model with single-entry and single-exit node.

B. Weber et al. / Computers in Industry 62 (2011) 467–486470

Author's personal copy

In the following, we approach process model refactorings from
two angles, and with reference to the five refactoring steps as
summarized above. First, we explain how refactoring opportu-
nities can be identified. In this context, we introduce a catalogue of
process model smells that signal low process model quality. The
guidelines are supported both by an empirical evaluation and a
study of the relevant literature. Thereby, we assume that process
designers determine – in the same spirit as software engineers do
for code refactorings – whether or not a refactoring shall be applied
taking various trade-offs into account. Second, we describe a set of
behavior-preserving refactoring techniques which can be used to
improve overall quality of the process model repository without
changing actual process behavior. Again we assume that process
designers assess the effect of the applied refactoring.

3. Identifying refactoring opportunities

In the SE domain code smells are the most popular method for
identifying refactoring opportunities [50]. Picking up this meta-
phor, Section 3.2 introduces a list of process model smells serving as
indicators for low process model quality. These smells were
identified based on a large collection of process models from
different domains (cf. Fig. 3). Such an empirical approach seems
justified given the lack of an established theory that captures how
modeling artifacts come into being. Additional support was
gathered from a literature study that focuses on the understand-
ability and maintainability of process models (cf. Section 3.1).
Section 3.3 summarizes our results on process model smells.

3.1. Research methodology

We first describe the selection criteria for our process model
smells, the data sources providing the empirical evidencefor
them, and the procedure we applied for their identification.

3.1.1. Selection criteria

We consider process model smells for assisting designers in
detecting opportunities for process model refactoring. Our focus is
on smells which can be addressed by behavior-preserving refactoring
techniques; i.e., our refactorings do not change the actual behavior of
the process models to which they are applied. In addition, the smells
should not be restricted to a specific process modeling language.

3.1.2. Data sources and data collection

The following collections of process models have been used as
sources for the identification of process smells (cf. Fig. 3 for an
overview). The data sources were carefully selected to cover
processes from several domains (i.e., healthcare and automotive
engineering) and to mitigate the risk that the identified process
model smells are specific for a particular domain. Moreover, we
ensured that the selected data sources comprise processes with
different characteristics. The process models range from very small
ones (with just a few activities) to very large models (with hundreds
of activities). The sources include single process models, but also
families of process models expressed in different process modeling
languages. Finally, the selection of data sources also considered
aspects like the presence of a sufficiently large number of models
and full access to the respective process model repository.

Source 1. In a large healthcare project we analyzed five core
processes of a women’s clinic as documented in its organizational
manual: birth and postnatal care, inpatient chemotherapy
treatment, outpatient chemotherapy treatment, ovarian carcino-
ma surgery, and keyhole surgery [59]. In total, these five core
processes consist of 70 process models, which are expressed either
in terms of Event Process Chains or UML Activity Diagrams. Each
process model contains 2–18 activities.

Source 2 comprises 46 process models (with up to 40 activities)
representing medical guidelines and clinical pathways in internal
medicine.

Data
Source

ofNumberScenariosDomain
Models

Reference

Source 1 Healthcare Birth and postnatal care
Inpatient chemotherapy treatment
Outpatient chemotherapy treatment
Ovarian carcinoma surgery
Keyhole surgery

70 process models [59]

Clinical guidelines and pathways in Healthcare Source 2
internal medicine

46 process models

Source 3 Healthcare Clinical guidelines for urinary stone
diagnosis

1 process model
with 98 instances

Handling of medical procedures (i.e., Healthcare Source 4
requesting, scheduling, performing
and validating medical examinations)

84 process model
variants

Source 5 Automotive Vehicle development 1 process model [6]
[19] 60 process models Electronic change management Automotive Source 6

Source 7 Automotive Vehicle repair 900 variants [24]

Fig. 3. Data sources for identifying process smells.

+

B C D E F

Process Model S5

L
+

J

Process
Model S2’

L
+

H

I

Process
Model S1’

A

Process
Model S’

K
+

M
+

L
+

M
+

K

(Sub) Process Model S4 (Sub) Process Model S3

X Y ZS T V

Fig. 2. Model repository after refactoring (cf. Fig. 1a).

B. Weber et al. / Computers in Industry 62 (2011) 467–486 471

Author's personal copy

Source 3 consists of a clinical guideline for urinary stone
diagnosis as implemented in a PAIS (1 process model with 98
process instances).

Source 4 comprises process models from a clinical centre, i.e., 84
process model variants with 7–17 activities for the handling of
medical procedures; i.e., activities for requesting, scheduling and
performing medical examinations as well as for validating their
results.

Source 5 is a core process in vehicle development: product
planning [6]. The process model (plotted on a 1.5 m � 5 m
wallpaper) comprises several hundreds of activities for planning
production facilities and resources with complex inter-dependen-
cies, and the flow of about 50 relevant documents. Further, there
exists a process handbook with detailed activity descriptions.

Source 6 refers to a case study on electronic change manage-
ment (ECM) from the automotive industry. ECM process models
were partially published by the German Automotive Industry [19].
Our material comprises 60 process models expressed in different
notations like Event Process Chains and UML Activity Diagrams
(with 2–32 activities).

Source 7 is a vehicle repair process from the automotive domain
[24]. Overall, there exist around 900 variants of this process, 68 of
which are documented in explicit process models (in a BPMN-like
language).

3.1.3. Procedure for process model smell identification

We first created a list of candidate process smells by taking an
existing list of code smells from the SE domain as starting point
[17]. Since the focus of this paper is on the control-flow
perspective, we only considered smells which are related to this
perspective. In addition, we used the outcomes of an extensive
literature study to support the importance of the proposed smells
and to underline that the process model smells are really indicators
of bad model quality. Next we thoroughly analyzed the above
mentioned material to find empirical evidence for our process
model smells and – if necessary – extended the candidate list of
process model smells. Since we want our process model smells to
help detecting common quality problems in process models, we
required each of the smells to be observed at least three times in the
different models from our sources. Therefore, only those smells, for
which enough empirical evidence exists, are included in the final
list of process model smells.

3.2. Process model smells

In the following we present the identified process model smells
(cf. Fig. 4). Each smell is briefly described and then illustrated using
material from the aforementioned data sources.4 We subsequently
discuss each smell along its supporting literature, also explicitly
addressing related process model quality metrics. Forward
references are provided to the refactoring techniques in Section
4 that can be used to address the respective smells.

3.2.1. PMS1: Non-intention Revealing Naming of Activity/Process

Model

Description. Activities in a process model are normally tagged
with textual labels. However, improper labels may not reveal the
intended content or purpose to readers. This makes the model
more difficult to understand.

Illustration. When analyzing the 70 process models from Source
1 we identified significant inconsistencies regarding activity
names and labelling styles. For example, 16 process models

contained activities dealing with the scheduling of medical
procedures (e.g., surgeries, medical examinations, drug adminis-
trations). Although all these activities had similar intentions,
different labels and labelling styles were used (e.g., ‘‘make
appointment’’, ‘‘appointment’’, ‘‘schedule examination’’, ‘‘fix
day’’, ‘‘agree on surgery date’’, and ‘‘plan’’). This, in turn, caused
considerable efforts when reusing the models later in the context
of a large harmonization project (see the illustration of the ‘‘Lazy
Process Models’’ smell in Section 3.2.5).

Discussion. In literature, many guidelines exist stressing the
importance of appropriate activity namings in process models
[77,39,78]. Furthermore, empirical evidence exists that negative
effects can occur if inappropriate labels are used. In an
experimental study [41,43] the impact of different grammatical

styles for activity labelling was investigated. When being asked to
single out the labels in a process model that were ambiguous,
respondents often referred to labels that did not first mention a
verb, followed by an object. In contrast, labels that followed this
‘‘verb-object’’ style (e.g., Determine Loan Conditions) were rated as
being significantly more useful. In addition, length of a text label
can be an issue, as was established in another experiment [46].
While activities not following the ‘‘verb-object’’ style can be
automatically detected [34], non-intention revealing labels have to
be manually identified by process designers.

Relevant Refactorings. RF1 (Rename Activity), RF2 (Rename
Process Model), RF7 (Re-label Collection).

3.2.2. PMS2: Contrived Complexity

Description. It is often possible to express a piece of control-flow
logic within a process model in different ways. However, one
alternative may be more difficult to comprehend for humans than
another, despite their equivalence with respect to the (partial)
execution traces they produce. Using the more complex alternative
may negatively affect model understanding, and thus make
maintenance of the model more difficult.

Illustration. In the model repositories from all considered data
sources we were able to identify process models with unnecessar-
ily complex control-flow structures, which could be simplified
without changing the models’ behavior. Examples of such
complications include unnecessary AND-splits/-joins in connec-
tion with parallel branchings and superfluous control arcs
expressing order relations that could be transitively derived by
a set of other control arcs. Fig. 5a gives an example of unnecessary
logical connectors; its simplified version is shown in Fig. 5b. It is
worth mentioning that another factor impacting the difficulty
humans had in respect to the comprehension of process models in
the considered sources concerns the layout of the process model.

Discussion. Various studies have investigated the impact of
structural model properties on model understandability. For
example, [9] is centered around an adaptation of the cyclomatic
number (one of the most widely used SE metrics) for business
processes. Other research has analyzed process model under-
standability as aspect of maintainability, and has identified several
correlations [8,1]. Further metrics take their motivation from

Process Model Smells
PMS1 - Non-intention Revealing Naming of Activity / Process Model
PMS2 - Contrived Complexity
PMS3 - Redundant Process Fragments
PMS4 - Large Process Models
PMS5 - Lazy Process Models
PMS6 - Unused Branches
PMS7 - Frequently Occurring Instance Changes
PMS8 - Frequently Occurring Variant Changes

Fig. 4. Catalogue of process model smells.

4 Even though we illustrate each smell by way of an example, we have observed it

multiple times when analyzing the numerous process models from our data

sources.

B. Weber et al. / Computers in Industry 62 (2011) 467–486472

Author's personal copy

cognitive research [91] or are based on concepts of modularity
[93,88]. Most notably, an extensive set of metrics has been
validated as factor influencing both error probability [48] and
understandability [42]. The various validations show that factors
like structuredness of a process model (i.e., the proper nesting of its
gateways) and its density (i.e., the number of connections between
its model elements) are influential. Both aspects can be manipu-
lated by restructuring a process model; e.g., [91] presents three
different, but trace-equivalent process models displaying different
degrees of connectivity between model elements. Similarly, [75]
proposes a metric for structural appropriateness, which can be used
to determine how different models compare in their ability to
capture a process in a compact and meaningful way.

Relevant Refactoring. RF3 (Substitute Process Fragment).

3.2.3. PMS3: Redundant Process Fragments

Description. Both within a single and across different process
models, there may be fragments capturing the same control-flow
logic. Whenever it is required to change this logic (e.g. due to
changes in regulation or policy), the change must be propagated
across all these occurrences. When overlooking some of them or
when applying any of the changes incorrectly, inconsistencies arise
which make successive maintenance even more problematic.

Illustration. Source 1 comprises 70 process models of a women’s
clinic. Despite their diversity the models contained many
redundant fragments, which in most cases covered repetitive
procedures relevant in a more general context. Examples include
patient admission and discharge, medical reporting, and medical
order handling (e.g., ordering drugs or a medical examination).
Discussions with process owners showed that redundancies had
been partially introduced through copying and pasting fragments
from existing models when defining new ones. Furthermore, over
time these cross-model redundancies led to problems in model
maintenance due to oversized models as well as model incon-
sistencies.

Discussion. A common reason for redundancies entering process
models is that multiple model variants are created for different
scenarios [73]. Process parts may then be applied in a copy-paste
fashion, which is indeed also the case for the illustration we
provided above. As a consequence, even simple changes might
require manual re-editing of process variants [35]. Accordingly, the
advice to avoid redundancy in process models is widespread [3,29].
For example, [29] extracts typical modeling errors analyzing
hundreds of process models. The researchers suggest that each
activity, whenever possible, should only be defined once and be
made available in some sort of global repository to avoid execution
errors and to improve model understandability. In [89] the

footprint similarity metric is proposed to detect highly similar
process models or process model parts, which can be used to detect
this smell.

Relevant Refactorings. RF4 (Extract Process Fragment), RF5
(Replace Process Fragment by Reference), RF8 (Remove Redun-
dancies).

3.2.4. PMS4: Large Process Models

Description. With an increasing number of activities process
models become more difficult to understand and maintain.

Illustration. The product planning process from Source 5
comprises several hundreds of activities for planning production
facilities. Interviews with process owners revealed that the current
model contains several flaws, is known in its entirety to only very
few experts, and is partially outdated. Moreover, the model is
considered as being too large and difficult to maintain.

Discussion. Beyond the sources available to us, various
instances of process models that have grown to a very large
size have been recorded in literature. For example, the model in
[79] initially consisted of more than 800 activities, but this
number grew with 17% in an observed time period of two years.
Even though it is natural for process models to grow in size
along with their increased use, it is by now well-known that size
of a process model is connected to understandability and
correctness issues. An empirical study of a set of over 600
process models in an industrial repository provides evidence
that larger, real-world process models tend to have more formal
flaws (such as deadlocks or unreachable end states) than smaller
ones [48]. Moreover, an empirical study investigating the effect
of using modularity in process models (i.e., use of complex
activities referring to subprocesses) has indicated that this eases
understanding [63]. Some considerations are available on when
a process model would have to be split up into subprocesses. In
this context, practitioner books recommend modularizing
process models with more than 5–15 [27] or 5–7 activities
[77]. According to [44] models with more than 50 elements have
an error probability of 50%. To support the process designer in
finding this process model smell, process model size can be used
as a metric. Based on the above described insights a process
model size of 50 elements should be regarded as upper bound.
However, modularization might also be effective for a smaller
process model.

Relevant Refactoring. RF4 (Extract Process Fragment).

3.2.5. PMS5: Lazy Process Models

Description. Inclusion of many small process models will
increase the overall number of models in a process repository.

ba ++

+ +

Patient information
of consent sheet

Patient
preparation

Appointment
med. examination Medical order entry

x

Patient information
of consent sheet

Patient
preparation

Appointment
med. examination Medical order entry

x

Planning
transport Sending order form

+
Planning
transport

Sending order form

x

++

x

+

Fig. 5. Process fragment from healthcare case.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 473

Author's personal copy

This is bad for maintenance and it will make model retrieval more
difficult.

Illustration. 15 out of 60 process models of Source 6 comprised
only 3 or less activities. All these models were referred to by
exactly one superordinated process. This rather large number of
small process models aggravated both model maintenance and
model training, and it was additionally accompanied by incon-
sistencies. Therefore, model harmonization, removal of redundan-
cies, and reduction of the number of models were considered as
key contributions towards improved model management by the
involved stakeholders.

Discussion. Use of complex activities referring to subprocesses is
known to improve the understanding of process models in
comparison with models merely using atomic activities [63].
Clearly, decompositions which are too extreme (i.e., which result in
many tiny process models) are not optimal in terms of mainte-
nance and usability. While there is no source that specifies an
optimal, lower bound for the number of activities in subprocesses,
guidelines suggest that this number should range from 5 to 7 [77].
A metric that could be used to identify this smell is the number of

activities per subprocess.
Relevant Refactoring. RF6 (Inline Process Fragment).

3.2.6. PMS6: Unused Branches (Unused Code in SE)

Description. Process models may specify behavior that never
occurs in reality; i.e., such models are too large and complex for
their purpose. This will have negative consequences for their
understandability and maintainability.

Illustration. An analysis of the 46 process models representing
clinical guidelines from Source 2 showed that some of the models
contained branches that were never executed and which,
therefore, unnecessarily inflated the models. Interestingly, in
several cases the execution of the unused branches depended on a
particular medical context (e.g., pregnancy). Since that particular
context had already been covered by another, more specific
process variant, the respective branches remained unconsidered.

Discussion. The problem of unused branches is closely linked to
the issue of ‘‘overfitting’’ [83], which refers to situations where a
process model contains behavior not found in a series of
observations of the actual process. Clearly, if one can observe a
process for only a limited amount of time or only with respect to
few different instances, it does make sense for designers to create a
process model that attempts to generalize those observations.

However, it is relatively easy to generate models that are too
general, as shown in [75]. In this work the degree to which a model
represents reality and does not become too generic is captured as
metric, referred to as behavioral appropriateness.

Relevant Refactoring. RF10 (Remove Unused Branches).

3.2.7. PMS7: Frequently Occurring Instance Changes

Description. When executing a particular process instance it
may become necessary to deviate from the logic predefined in the
process model. A high frequency of such changes can, however, be
problematic. It may indicate that the actual process model does not
properly reflect the real process, which undermines its role as
communication instrument.

Illustration. In patient treatment, clinical guidelines play an
important role [32]. They aim at supporting physicians by
providing recommendations for medical decision making and
patient treatment based on existing evidence. However, physicians
are not supposed to follow the process set out by a guideline step-
by-step. Instead, they must estimate the patients’ chances and
risks, and ensure that their decisions are consistent with the
patients’ states (i.e., the specific treatment process depends on
medical knowledge as well as on case-specific decisions).
Consequently, physicians frequently adjust the treatment process
defined by a guideline to the specific situation of the patient (i.e.,
the process is adapted at instance level). As example, consider a
clinical guideline for urinary stone diagnostics taken from Source 3
(cf. Fig. 6a). This process has been implemented using the ADEPT2
adaptive process management system [11]. Physicians deviate
from this process quite frequently, for example, in case a patient is
pregnant or has an increased blood sugar level. In the former case,
an additional lab test (‘‘Blood glucose’’) is added and activity
‘‘Abdominal X-ray’’ is exchanged by activity ‘‘MRT’’. In the latter
case, lab tests are added (i.e., ‘‘HbA1C’’ and ‘‘Blood glycemic
profile’’). Fig. 6b depicts the guideline taking pregnancy and
diabetes into consideration.

Discussion. A much investigated PAIS feature concerns the
deviation from predefined process logic during run-time. There are
various reasons why exceptions occasionally occur that necessitate
such changes [80]. Interestingly, a study of processes in the chip
design industry [51] found that actual instance changes are often
highly similar. This has been confirmed in other domains like
healthcare, e-negotiation, and transportation [96]. When excep-
tions occur frequently, it is desirable to pull similar instance

+Lab specimen

Anamnesis Examination Sonography

Consider Suspicion for x x

a

delivery

Lab test 1

findings

Lab test 2

urinary stone?+

Abdominal
X-ray

XOR-Split/JoinAND-Split/JoinAtomic Activity + x

Anamnesis Examination Sonography

Patient is pregnant process
variant “pregnancy” is chosen

Increased blood sugar level; process
variant “Diabetes” is chosen

b

xx

+

+Lab specimen
delivery

Lab test 1

Consider
findings

Lab test 2

Suspicion for
urinary stone?+

HbA1C Blood glycemic
profile

no

yes

+

Blood
glucose MRT

New process fragments are
inserted in parallel

Fig. 6. Example of clinical guideline ‘‘Urinary Stone Diagnostics’’.

B. Weber et al. / Computers in Industry 62 (2011) 467–486474

Author's personal copy

changes up to the process type level. On the one hand, this
improves semantic quality of the process model (i.e. it decreases
the gap between modeled and real-world process). On the other
hand, it reduces the need for future instance changes. This is
advantageous, because a proper instance change might be rather
difficult to achieve due to various constraints to be taken into
account. ProCycle [96,67], for example, has been explicitly
developed to support such discovery of desirable process model
changes. To automatically detect this smell, the number of instance

changes could be used as a metric.
Relevant Refactoring. RF11 (Pull Up Instance Change).

3.2.8. PMS8: Frequently Occurring Variant Changes

Description. Ongoing creation of multiple model variants leads
to an enlargement of the size of the model repository aggravating
its maintenance.

Illustration. In one of our case studies in a large clinical centre (cf.
Source 4) we have identified more than 80 process variants for
handling medical procedures (e.g., X-ray inspections or cardiological
examinations). Fig. 7 depicts four variant models of Source 4 and
their distances to a documented reference process model. Despite
the high similarity of the four variants they are captured in separate
process models. Discussions with process owners have shown that in
the past even simple changes (e.g. due to new regulations or
reengineering efforts) required error-prone, manual re-editing of a
large number of logically related process variants. Over time, this had
led to degeneration and divergence of the respective process models,
which aggravated their maintenance significantly. As a consequence,
costly manual refactorings became necessary. We observed similar
problems with respect to model maintenance in Source 7.

Discussion. The number of process models in real-life reposito-
ries can be substantial [38,62]. One of the common reasons for this
is the creation of multiple model variants for different scenarios

[73]. In [89], an industrial repository of 74 sales and distribution
process models was investigated. Alone in this sample 50 pairs of
process model variants were identified. This indicates the
uncontrolled profusion that can take place when creating process
variants. This exact issue is the subject of methods as described in
[62,38,35,37], which aim to search and match process variants
towards the creation of more generalized models. In this way, the
size of model repositories can be controlled. For example, in the
setting of a large financial organization it was possible to combine
15 different variants of the same offering into one process model,
which was well-received by the users that maintain the repository
[62]. The profusion of process variants can be determined by
inspection of their change distances.

Relevant Refactoring. RF9 (Generalize Variant Change).

3.3. Summary of process model smells

Above, we have identified and discussed eight frequent process
model smells. Fig. 8 summarizes this discussion including references
to related work in the literature. For each smell, the source process
model collections are mentioned in which we observed their
occurrence. Each of the smells was at least supported by its
occurrence in three different models. The column metrics mentions
the indicators that are useful to detect the smell. Finally, in the last
column, we point to Relevant Refactoring techniques. These
techniques will be discussed in more detail in the next section.

4. Refactoring techniques

In the following, we describe 11 refactoring techniques which
enable process designers to improve the quality of their models
and to cope with the discussed model smells (cf. Fig. 9). An analysis of
our sources, the process repositories from the healthcare and

Select
Examination

Order
Examination

Inform Patient
about Procedure

Prepare
Patient (ward(

Perform
Examination

Create
Medical Report

Read/Validate
Medical Report

Reference Model SA B C D E F G

++xx Select
Examination

Order
Examination

Prepare
Patient (ward)

Second
Opinion
by other ++Select

Examination
Order

Examination
Prepare

Patient (ward)
Call

Patient

Process Configuration

H
I

Inform Patient
about

Procedure

Physician
Inform Patient

about Procedure

Create Summary Read Summary
L M

I J K

++

Prepare
Patient

(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Call
Patient

Aftercare
for Patient Prepare

Patient
(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Aftercare
for Patient

V2VariantV1Variant

J K

Select
Examination

Order
Examination

Register
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for Patient

Select
Examination

Order
Examination

Schedule
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for PatientCall Tranport

Patient back

N O

QK

M
I K

+

+

+

++

+Perform
Examination

Create

Read/Validate
Medical Report

Create
Summary

Read
SummaryCall

Patient

+

+Perform
Examination

Read/
Validate
Medical
Report

Create

Read
Summary

Patient

Tranport
Patient

P
I

L
L

M

Distance σ(S, V1) = 6 ∆(S,V1) = <Insert(H,A,B), Insert(loop,START,B), Insert(I,D,E), Move(D,B,I), Insert (J,I,E), Insert(K,E,F) >

Medical
Report

Create
Medical
Report

Summary

V4VariantV3Variant

Distance σ(S, V3) = 5 ∆(S,V3) = <Insert(N,B,C), Insert(I,D,E), Insert(K,E,G), Insert(L,E,F), Insert(M,L,G)>

Distance σ(S, V2) = 6 ∆(S,V2) = <Insert(I,D,E), Insert(J,I,E), Move (D,B,I), Insert(K,E,F), Insert(L,E,END), Insert(M,L,END)>

Distance σ(S, V3) = 7 ∆(S,V4) = <Insert(O,B,C), Insert(I,D,E), Insert(K,E,G), Insert(L,E,F), Insert(M,L,G), Insert(P,I,E), Insert(Q,K,G)>

Fig. 7. Examples of configured process variants for handling medical procedures.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 475

Author's personal copy

automotive domain, and the additional literature study have clearly
shown that all identified refactorings are frequently needed in
practice (cf. Section 3).

For each of the proposed refactorings we describe its intent and
the process smell(s) it addresses, give illustrations, provide a
description of the refactoring operation (with pre- and postcondi-
tions), and sketch its implementation. We organize our refactor-
ings into three groups. The first one is introduced in Section 4.2 and
contains refactorings for process model trees. Refactorings in this
category can be applied to a single model or to entire process
model trees (i.e., hierarchies of process models). The second group
additionally relies on the support for reference process models. It
provides a refactoring that can be applied to a collection of process

variants. More precisely, this refactoring helps process designers in
finding a process reference model that is close to the given variant
collection (cf. Section 4.3). Finally, the third group describes two
refactorings, which support model evolution by considering process
history data (Section 4.4). Since respective refactorings make use of
history data (i.e., execution traces), their application requires the
presence of a run-time environment.

4.1. Preliminaries

In our context, refactorings constitute model transformations
which are behavior-preserving if certain preconditions are met.

Several of our refactorings can be implemented based on process
change patterns as introduced in [95,68]. However, since change
patterns are usually not behavior-preserving our refactorings are
imposing the required preconditions to ensure this.

Most refactorings are not applicable to arbitrary process
fragments, but are restricted to single-entry, single-exit (SESE)
regions or sequences of SESE regions (e.g., RF3, RF4, RF5 and
RF8). Fig. 10 shows process model S and its decomposition into
SESE regions (for details on SESE decomposition see [93]). SESE
regions can be nested (e.g., R3, R4, R5 and R6 are contained in
R2), sequentially composed (e.g., regions A, R2 and M), or disjoint
(e.g., regions R3 and R4). In Fig. 10a refactorings are applicable
to region R2, but not to a selection comprising regions R3, R4
and R5.

The resulting process structure tree PSTS is depicted in Figure
Fig. 10b. Nodes in such a tree represent SESE regions of the process
model, while edges represent the nesting of regions (see [93] for
details).

Models S and S0 are called structurally equivalent if and only if
they have the same process structure tree.

Definition 1 (Structural Equivalence).
Two process models S and S0 are structurally equivalent iff PSTS =
PSTS0 .

sgnirotcafeRscirteMerutaretiLsecruoSllemS
PMS1 1-7 [41,43,46,77,78] verb-object style RF1, RF2, RF7
PMS2 1-7 [1,8,9,42,48,88,90,91] cyclomatic number, structuredness,

density, structural appropriateness
RF3

PMS3 1, 4, 5, 6 [3,89] footprint similarity RF4, RF5, RF8
PMS4 4FRezis]36,84,44,24[5
PMS5 6 [63,77] #activities / subprocess RF6
PMS6 2, 3, 7 [75,83] behavorial appropriateness RF10
PMS7 3 [51,97] #instance changes RF11
PMS8 4, 6, 7 [35,37,62] change distance RF9

Fig. 8. Summary of the discussion of the various smells

CollectionRe-labelRF7:ActivityRenameRF1:
RF8: Remove Redundancies RF2: Rename Process Schema
RF9: Generalize Variant Changes RF3: Substitute Process Fragment
RF10: Remove Unused Branches RF4: Extract Process Fragment
RF11: Pull Up Instance Change RF5: Replace Process Fragment by Reference

RF6: Inline Process Fragment

Fig. 9. Refactoring catalogue.

PSTTreeStructureProcessa b

+

Process Model S
R1

A MR2

S
A

R2

R6R3 R4 R5

R3 R4AND-
Split

B C D
+

B C D
+

E F

R5

R5 R6 AND-
Join

R7 R8

+

R1 M
+

R7 R8AND-
Split

AND-
Join

E F

Fig. 10. Process model with SESE regions.

B. Weber et al. / Computers in Industry 62 (2011) 467–486476

Author's personal copy

To reason about behavior-preservation of the refactorings, it is
essential to settle the notion of equivalence to be applied. Many such
notions exist (e.g., trace equivalence, bisimulation, branching
bisimulation). This paper will use trace equivalence as the main
formal notion. For example, s1 = hA, B, C, D, E, F, Mi and s2 = hE, B, D, C,
A, F, Mi both constitute traces producible on model S from Fig. 1a.
Models S (cf. Fig. 1a) and S0 (cf. Fig. 2) are called trace equivalent since
the same set of traces can be produced based on S as well as on S0.

Definition 2 (Trace Equivalence).
LetPS be the set of all process models. Let furtherA be the total set
of activities or – more precisely – activity labels based on which
models S2PS are specified (without loss of generality we assume
unique labelling of activities). Let further QS denote the set of all
possible execution traces producible on model S2PS. A trace
s 2QS is given by s = ha1, . . ., aki (with ai 2A) where the temporal
order of ai in s reflects the order in which activities ai were
completed over S. Two process models S and S0 are trace equivalent
iff QS = QS0 .

Many of the described refactorings do not only affect a single
process model, but an entire process model tree. To determine
whether two – potentially hierarchical – process models S and S0

are trace equivalent, the respective process model trees need to be
expanded. To this end, each complex activity needs to be replaced
by the (sub) process model it refers to. Consequently, the trace of
an activity does not contain the complex activity directly, but the
trace of the associated subprocess. A possible execution trace for
model S in Fig. 1a is s1 = hA, B, C, D, E, F, X, Y, Zi.

For refactorings RF10 and RF11 the notion of trace equivalence is
not applicable since the behavior producible on the changed
process model is altered. Therefore, we use state compliance [65] as
formal notion instead. In the given context, it indicates whether
the actual trace of a process instance could have been produced on
the changed process model as well. More precisely, if all instances
of a process model are state compliant with its refactored model
version (i.e., the traces are re-producible on this model), its
observed behavior remains unchanged.

Definition 3 (State Compliance).
Let I be a process instance with execution trace s. Let further S be a
process model. Then: I is state compliant withS iffs is producible on S.

4.2. Refactorings for process model trees

First, we describe 8 refactorings for process model trees.
Refactoring R F1 (Rename Activity) can be applied if the name of an
activity is not intention revealing. Similarly, RF2 (Rename Process

Model) enables designers to alter the name of a model. Using RF3

(Substitute Process Fragment) process designers can substitute a
fragment within a model by another one which is simpler in
structure, but has the same behavior. RF4 (Extract Process Fragment)

enables designers to extract a process fragment into a subprocess
to remove model redundancies, to foster reuse, and to reduce
model size. By applying RF5 (Replace Process Fragment by Reference)

a process fragment can be replaced by a complex activity referring
to a (sub) process model containing the respective fragment. RF6

(Inline Process Fragment), in turn, can be applied to collapse the
hierarchy by inlining a fragment. RF7 (Re-Label Collection) is a
composed refactoring, which supports re-labelling of selected
activities within a collection of process models. Finally, RF8

(Remove Redundancies) enables the combined use of RF4 and RF5 in
order to remove redundant fragments from multiple models in a
model collection at once.

4.2.1. RF1/RF2 (Rename Activity/Process Model), RF7 (Re-label

Collection)

Description. With RF1 the name of an activity can be changed if
it is not intention revealing. If an activity occurs several times in a
process model, all occurrences of that activity will be renamed. RF1
is comparable to the Rename Method refactoring in SE [17].
Similarly, RF2 enables designers to rename a model S into S0. A
similar refactoring in SE is called Rename Class [7]. RF7, in turn, is a
composed refactoring for re-labelling a particular activity in all
models of a model collection. For this, RF1 is applied to all models
containing the activities to be re-labelled.

Addressed Process Smell. Altogether these refactorings can be
used to address smell PMS1 (Non-Intention Revealing Naming).

Pre-conditions. RF1 requires that no activity from S is labelled
with the new name. RF2, in turn, requires that no process model
with label S0 exists.

Implementation. Labels which are not following the ‘‘verb-
object’’ style can be automatically refactored using techniques
described in [33].

Behavior-Preservation. Renaming an activity does not alter the
actual behavior of the model as only its label is changed; i.e.,
trace equivalence can be guaranteed when taking changed labels
into account appropriately. To guarantee that RF2 does not alter
process behavior all references to S need to be updated.
Obviously, trace equivalence can be used as a formal notion
for RF2 ensuring that behavior of the model collection remains
unchanged.

Effects. Applying RF1 enables process designers to improve
model understandability through more intention revealing labels
and consequently to reduce errors and to decrease costs of change
(cf. Section 3.2.1).

Illustration. Regarding the illustration provided for PMS1 (cf.
Section 3.2.1), RF1 was used for harmonizing activity labels
before extracting fragments and replacing them by subprocess
references.

4.2.2. RF3: Substitute Process Fragment

Description. Using RF3, a fragment G can be substituted by
another fragment G0 with simpler structure, but showing same
behavior (cf. Fig. 5). The Substitute Algorithm refactoring known
from SE [17] is comparable to RF3.

Addressed Process Smell. Scenarios in which RF3 is useful include
unnecessarily complex parallel branchings or superfluous control-
flow arcs due to transitive relations, i.e., RF3 addresses PMS2

(Contrived Complexity).
Pre-conditions. RF3 requires G and G0 to be trace equivalent SESE

fragments or sequences of SESE fragments.
Implementation. RF3 can be implemented based on process

change pattern Replace Process Fragment as described in [95,68].
Behavior-Preservation. Guaranteed based on pre-conditions.
Effects. Substituting a fragment by a simpler one enables

designers to improve model quality along several dimensions:
removing unnecessary parallel branchings and control-flow arcs
does not only increase model clarity, but also decreases model size
and control-flow complexity (CFC).

Illustration. Fig. 5a gives an example of a process model with
unnecessary logical connectors. Its simplified version (after
applying RF3) is shown in Fig. 5b.

4.2.3. RF4 (Extract Process Fragment), RF5 (Replace Process Fragment

by Reference), RF8 (Remove Redundancies)

Description. RF4 can be used to extract a process fragment G

from any model S (e.g., to eliminate redundant fragments or to
reduce size of model S). Applying RF4 results in the creation of a
new (sub) process model S0 implementing the fragment. In
addition, in S the original fragment is replaced by a complex

B. Weber et al. / Computers in Industry 62 (2011) 467–486 477

Author's personal copy

activity referring to S0. RF5, in turn, is used to replace a process
fragment by a trace-equivalent subprocess model. Finally, RF8 is a
composed refactoring based on RF4 and RF5. It can be applied to a
collection of models S1, . . ., Sn in order to remove redundancies. For
this, RF4 is applied to one of these models to extract the redundant
fragment. To all other models, RF5 is applied for replacing the
respective fragment by a reference to the (sub) process model
created before. The intent of these refactorings is similar to Extract

Method as known from SE [17].
Addressed Process Smell. RF4, RF5 and RF8 are potential remedies

for process model smells PMS3 (Redundant Process Fragment) and
PMS4 (Large Process Model).

Pre-conditions. To guarantee that RF4 does not alter the
behavior of the model tree, the fragment to be extracted must
be a SESE region or a sequence of SESE regions (cf. Fig. 10). For
applying RF5, the SESE fragment to be replaced and the
corresponding (sub-) process model need to be trace-equivalent.

Implementation. RF4 can be implemented using change pattern
Extract Process Fragment [95]. RF5, in turn, can be implemented
based on change pattern Replace Process Fragment [95].

Behavior-Preservation. Guaranteed by pre-conditions.
Effects. Extracting parts of a process model often results in

reduced control-flow complexity (CFC). Similarly, in SE the Extract

Method refactoring is suggested as remedy for high cyclomatic
complexity [20]. RF4 and RF5 can also be used to reduce the size of
large models and overall number of nodes in the process repository
by removing redundancies. Furthermore, removing redundancies
reduces costs of future process changes.

Illustration. Regarding the illustration that was provided for
PMS3 (see Section 3.2.3), it was possible to extract 9 redundant
fragments relevant for more than one process model and to map
them to separate (sub-) process models (RF4) (e.g., process models
for admitting patients, creating discharge summaries, or handling
medical orders). Taking the extracted process models, 30 redun-
dant process fragments within the 70 process models could be
replaced by references to the corresponding (sub-) process models
(RF5). These refactorings led to a significant reduction of
redundancies, a decrease of model sizes (while increasing the
total number of process models), an increase of model consistency,
and better overall maintainability.

4.2.4. RF6: Inline Process Fragment

Description. RF6 can be used to collapse the hierarchy of a model
by inlining the process fragment, e.g., if it is not justifying its
induced overhead. Similarly, in SE Inline Method [17] enables
programmers to inline the body of a method. By inlining a
fragment S1 into S the complex activity referring to S1 is
substituted by the fragment corresponding to S1.

Addressed Process Smell. This refactoring can be applied to
address PMS5 (Lazy Process Model).

Pre-conditions. RF6 can be applied to complex activities (i.e.,
activities referring to a (sub) process model).

Implementation. RF6 can be implemented based on the Inline

Process Fragment change pattern described in [95].
Behavior-Preservation. Trace equivalence can be used as formal

notion.
Effects. RF6 enables designers to collapse the hierarchy of a

process model tree resulting in a decrease of levels. Note that
model size and control-flow complexity might increase when
applying RF6.

Illustration. The models described in the illustration of PMS5
(see Section 3.2.5) can be significantly improved by applying RF6.
In particular, the total number of process models can be reduced
from 60 to 26 (containing 2–18 activities). Especially, the number
of very small models (i.e., models with 2 or 3 activities) can be
decreased from 15 to 4 models.

4.3. Refactoring of process variants

Another challenge is to manage the process variant models
belonging to the same process family (cf. Fig. 1b). Typically, the
model of a process variant is directly or indirectly derived through
configuration from a given reference process model Sref, i.e., by
applying a sequence of change operations to Sref (see Fig. 7 for an
example from the healthcare domain). As discussed in the context
of process model smell PMS8 (Frequently Occurring Variant

Changes), in many cases the process variants have to be maintained
by their own, and even simple changes affecting multiple variants
(e.g. due to new laws or re-engineering efforts) require error-
prone, manual re-editing of a large number of related process
variants. Over time this leads to a degeneration and divergence of
the models, which further aggravates maintenance.

In general, the configuration of new variants or the adaptation
of existing ones can be done most effectively if the reference model
is kept close to the given variant collection. This, in turn, can be
achieved if the average change distance between the reference
process model Sref and its corresponding variant models V1, . . ., Vn is
kept minimal; i.e., the average number of high-level change
operations needed to transform Sref into variant models Vi, i = 1, . . . ,
n is minimal [36,37]. In order to ensure this, continuous efforts
have to be made to evolve the reference model accordingly.
Otherwise, more and more redundant changes would have to be
performed to different variant models in order to keep them
aligned with the real-world processes. As example consider again
Fig. 7. Obviously, the depicted variant models contain redundant
changes (e.g., insertion of activity Call Patient) which should be
pulled up to the reference model in order to reduce future
configuration efforts and to decrease average distance between
reference model and process variants.

Though the variant models of a process family are similar,
unnecessary differences of their control flow structure can make
refactorings RF4 and RF5 inapplicable in many situations.
Therefore, an additional refactoring technique is needed, which
supports designers in maintaining reference models.

4.3.1. RF9: Generalize Variant Changes

Description. RF9 enables designers to pull changes, which are
common to several variants, up to the reference model (similar to
Pull Up Method and Push Down Method known from SE [17]). This
enables process designers to remove redundancies and to decrease
costs of future changes. As example consider Fig. 7 where the
depicted variant models have several changes in common. To each
variant model, for instance, activities Inform Patient about

Procedure, Call Patient and Aftercare for Patient have
been added. When pulling respective changes up to the reference
model the average distance between reference model and process
variants can be reduced. Consider our example from Fig. 7 for
which we can derive an optimized reference model by applying
RF9 to the given variant collection. This optimized reference model
is depicted on the top of Fig. 11. As can be further seen from the
bottom of Figs. 7 and 11, respectively, average change distance
between reference model and variants decreases when evolving
the old reference model S to the new one (i.e. to S�).

Addressed Process Smell. This refactoring can be applied to
address PMS8 (Frequently Occurring Variant Changes).

Implementation. RF9 necessitates a framework for managing
reference models and the variants derived from them. First of all,
techniques for analyzing process variants and for identifying
process variant changes to be pulled up to the reference model are
needed. In this context, we apply a family of advanced mining
algorithms as described in [37,35]. Using the clustering approach
as introduced in [35], a reference model S0re f can be derived by
mining a set of process variants V1, . . ., Vn such that average

B. Weber et al. / Computers in Industry 62 (2011) 467–486478

Author's personal copy

distance between S0re f and the variants becomes minimal. The
heuristics approach described in [37], in addition, allows to take
the old reference model into account as well; i.e. we are able to also
control the (maximal) distance between old reference model and
newly discovered one, which helps to avoid spaghetti-like process
models.5 Furthermore, when evolving a reference model Sref

accordingly, all variants need to be re-linked from Sref to S0re f , and
for each variant its bias needs to be re-calculated in respect to S0re f

[96]. Finally, effective techniques are needed for internally
representing a reference model and its variants.

Behavior-Preservation. Note that RF9 does not alter the variant
behavior. Applying the updated bias of a variant Vi to S0re f results in
same variant-specific model as it can be obtained when applying
the old bias to Sref.

6 Thus trace equivalence can be used as formal
notion.

Effects. The average change distance between a reference
process model and its variants is reduced.

Illustration. We applied RF9 to the healthcare scenario as
provided in the context of PMS8 and Source 4, respectively. In total,
84 process model variants were considered. Based on their
relevance (i.e., the relative frequency with which process instances
from the variant models were created), we assigned weights to the
variant models ranging from 0.1% to 8.67%. Considering this, the
original reference process model S was a simple process model
comprising 7 activities (see Fig. 7 for S and four exemplarily chosen
process variants). When evaluating this model in respect to the 84
variants, average change distance between S and the variant
models corresponded to 5.3; i.e., per average we needed to apply
5.3 high-level change patterns (e.g., to add, delete or move

activities) to configure a variant model out of S. Applying RF9 to the
collection of 84 variants resulted in a new reference model S� (cf.
top of Fig. 11) with average weighted distance of 2.79 between S�

and the process variants; i.e., RF9 performed well for this case and
contributed to the inclusion of important changes in the new
reference model and thus to less configuration efforts in future.

4.4. Refactorings for model evolution

This section describes refactoring techniques, which become
applicable when process models are executed by PAISs and historic
data on process instances is available in execution or change logs
[85,66]. These logs can be analyzed and mined to discover potential
refactoring options. In this context RF10 (Remove Unused Branches)

enables process designers to remove unused paths from a process
model (cf. PMS6 – Unused Branches) and RF11 (Pull Up Instance

Change) enables generalization of frequent instance changes by
pulling them up to the process type level (cf. PMS7 – Frequently

Occuring Instance Changes). Several mining methods for discover-
ing such situations already exist [85,37]. We therefore do not look
at respective techniques, but use them for realizing refactorings
based on historical data.

4.4.1. RF10: Remove Unused Branches

Description. RF10 enables designers to remove non-executed
process fragments from a model S. While unused branches can be
automatically detected, RF10 is not automatically applied, but
designers have to ensure that the misalignment between model
and log was not caused by design errors or an execution log not
covering all relevant traces.7

++Select
Examination

Order
Examination

Inform Patient

Prepare
Patient (ward)

Perform
Examination

Read/Validate
Medical Report

Call
Patient

Schedule
Examination

Aftercare for
Patient

Create
Medical Report

A B

C

D E F GO I K

about ProcedureNew Reference Model S*

++xx Select
Examination

Order
Examination

Prepare
Patient (ward)

Second
Opinion ++Select

Examination
Order

Examination
Prepare

Patient (ward)
Call

Patient

H

Examination Examination

Inform Patient
about

Procedure

by other
Physician

P C

Examination Examination

Inform Patient
about Procedure

Patient

Create Summary Read Summary
L M

J

++

Prepare
Patient

(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Call
Patient

Aftercare
for Patient Prepare

Patient
(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Aftercare
for Patient

2VtnairaV1VtnairaV

JJ

Select
Examination

Order
Examination

Register
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for Patient

Select
Examination

Order
Examination

Schedule
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
forPatientCall

Pi

Tranport
Patientback

N

Q

M

+

+

+

++

+Perform
Examination

Create

Read/Validate
Medical Report

Create
Summary

Read
SummaryCall

Patient

+

+Perform
Examination

Read/
Validate
Medical
Report

for Patient

Create

Read
Summary

Patient

Tranport
Patient

Patient back

P
L

M

L

M

+

Distance σ ∆(S,V1) = <Insert(H,A,B), Insert(loop,START,B), Delete(O), Insert(J,I,E)>

Medical
Report

Create
Medical
Report

Summary

V4VariantV3Variant

(S*, V1) = 4

Distance σ(S*, V3) = 6 ∆(S,V3) = <Delete(O), Move(C,B,D), Insert(N,B,C), Move(K,E,G), Insert(L,E,F), Insert(M,L,G)>

Distance σ(S*, V2) = 4 ∆(S,V2) = <Delete(O), Insert(J,I,E), Insert(L,E,END), Insert(M,L,END)>

Distance σ(S*, V3) = 6 ∆(S,V4) = <Move(C,O,D), Move(K,E,G), Insert(L,E,F), Insert(M,L,G), Insert(P,I,E), Insert(Q,K,G)>

Fig. 11. Newly mined reference model.

5 A technical description of these algorithms can be found in [35,37] and is out of

the scope of this paper.
6 This also becomes evident from the examples depicted in Figs. 7 and 11,

respectively.

7 Note that we require access to an execution log in order to be able to identify

unused branches.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 479

Author's personal copy

Addressed Process Smell. This refactoring provides a remedy for
smell PMS6 (Unused Branches).

Implementation. RF10 can be implemented based on the change
pattern Delete Process Fragment [95,68] and standard process
mining techniques [85].

Behavior-Preservation. Trace equivalence is not suitable as
formal basis for RF10 since behavior p roducible on the
respective process model is altered by RF10. Instead, we use
the notion of state compliance. RF10 can be applied to S if the
traces of all instances on S are re-producible on the new model
(i.e., observed behavior remains unchanged). Generally, state
compliance can be guaranteed when removing previously
unused execution paths.

Effects. Applying RF10 decreases model size and control flow
complexity.

Illustration. Regarding the illustration provided for PMS6 (cf.
Section 3.2.6), we were able to apply RF10 to some of the 46
process models in order to remove branches that had never been
chosen for execution in any of the logged process instances.
However, the deletion of such unused branches had to be explicitly
approved by process owners (e.g., to avoid the removal of relevant
exceptional paths that were not covered in another way within the
total collection of the 46 process models).

4.4.2. RF11: Pull Up Instance Change

Description. RF11 can be used to generalize frequently occurring
instance changes by pulling them up to the process type level
(similar to RF9 where variant changes are generalized).

Addressed Process Smell. RF11 serves as a remedy for smell PMS7

(Frequently Occurring Instance Changes).
Implementation. Implementation of RF11 is similar to the one of

RF9, but requires change logs to reconstruct the models of the
respective process instance collection.

Behavior-Preservation. Trace equivalence cannot be used to
exclude errors when applying RF11. By pulling changes from
instance level to type level, producible behavior is always altered.
Therefore, state compliance (cf. Definition 3) is used as formal
notion. Like RF9, RF11 has the potential for full automation.

Effects. Like for RF9, the goal is to reduce average and total
change distance between the process model and instance-specific
models; e.g., to learn from instance changes and to reduce future
need for adapting instances [96].

Illustration. Since instance adaptations occurred frequently in
the scenario introduced in the context of PMS7 (cf. Section 3.2.7), it
was decided to consider them in a specific variant of the original
guideline (cf. Fig. 6b).

5. Implementation

To demonstrate the feasibility of our refactoring techniques we
implemented a proof-of-concept prototype and applied it to
existing process models. Section 5.1 describes the architecture of
our prototype, while Section 5.2 demonstrates it based on a walk-
through scenario.

5.1. Architecture

Our refactoring tool has been implemented as an Eclipse RCP
application on top of the SecServ platform.8 Our prototype
provides support for all refactorings depicted in Fig. 9. To support
users in applying behavior-preserving refactorings, our prototype
only enables refactorings which fulfill the relevant preconditions.
In addition, users are supported in assessing the effects of a
particular refactoring on selected quality metrics. Fig. 12 shows the
architecture of our refactoring tool component. The Refactoring

Tool component is integrated in a loosely coupled manner into the
Process Editor component of SecServ via the extension point
mechanism of the Eclipse RCP platform.

Both the Refactoring Tool component and the Process Editor

component rely on the Process Model component containing all the
model elements from the process model repository and the Change

Operation component containing all supported change patterns
(e.g., Insert Process Fragment, Delete Process Fragment and Move
Process Fragment).

The Tool component is the central part of the Refactoring Tool

component containing the functionality of the refactorings. The
Tool component relies on the Selection Validation component, which
checks whether a particular refactoring can be executed depending
on the currently selected elements (i.e., it checks its pre-
conditions). In the graphical user interface of the Process Editor

component only those refactorings become enabled which fulfill
the pre-conditions.

The Tool component also relies on the Equivalence Tester

component, which checks whether two process models or process
model fragments are structurally equivalent, i.e., have the same
process structure tree (cf. Definition 1) or expose the same
behavior (cf. Definition 2). Both the Selection Validation component

and the Equivalence Tester component rely on the SESE decomposi-

tion component which computes SESE regions for a given process
model and process model fragment, respectively, and which
constructs a corresponding process structure tree.

Change Operation

Process Model

Refactoring Tool

Process Model

Refactoring Tool

<< control >> Tool Selection Validation
Process Editor

IRefactoringTool

SESE DecompositionEquivalence Tester

Quality Metric

IQualityMetric

Component

Interface

Fig. 12. Architecture of refactoring tool component.

8 http://qe-uibk.ac.at/secserv.

B. Weber et al. / Computers in Industry 62 (2011) 467–486480

Author's personal copy

To evaluate the effect of a particular refactoring with respect to
selected quality metrics the Refactoring Tool component uses the
IQualityMetric interface provided by the Quality Metric component.
Note that the Quality Metric component is easily extensible, i.e.,
further quality metrics can be added by implementing the
IQualityMetric interface.

As illustrated in Fig. 13, the current version of our refactoring
tool component provides support for all refactorings described in
this paper. In addition, the component can be easily extended with
additional refactorings by implementing the IRefactoringTool

interface and by adding a new extension. From a technical point
of view the provided refactoring tools can be divided into three
groups. First of all, ElementRefactoringTools modify a single activity.
These refactorings are not enabled if the selected element is a
gateway or an edge (i.e., RF1, RF6 and RF7). Second, Fragmen-

tRefactoringTools, in turn, are only applicable to SESE fragments
(i.e., RF3, RF4, RF5, and RF8). To support users in applying behavior-
preserving refactorings these refactorings are only enabled when a
SESE is selected. Finally, ProcessModelRefactoringTools modify the
whole process model. As a consequence, the selection of elements
has no effect on the availability of these refactorings (i.e., RF2, RF9,
RF10, and RF11).

5.2. Walk-through scenario

To better illustrate the main functionalities of our prototype we
describe a walk-through scenario. This scenario is based on a
simplified version of the pre take-off process for a general aviation
flight under visual flight rules (VFR) and is briefly described in the
following.

Before conducting a general aviation flight the pilot first has to
check the weather. Optionally, the pilot can then file the flight plan.

This is followed by a preflight inspection of the airplane. For large
airports the pilot calls clearance delivery to get the engine start
clearance. If an airport has a tower control the pilot has to contact
ground to get taxi clearance, otherwise she has to announce
taxiing. This is followed by taxiing to run-up area and run-up
inspections ensuring that the airplane is ready for flight. If the
airport has a tower, the tower is contacted to get take-off clearance,
otherwise take-off intentions have to be announced. Finally, the
pre take-off process finishes with the take-off of the airplane.

During the pre-flight inspections the pilot can detect problems
with the airplane. If the problems are severe, the flight is
immediately cancelled. Otherwise, if the airplane can move under
its own power, it drives to the repair station. Alternatively, the
airplane is either towed to the repair station or a mechanician
comes to the airplane in order to deal with the problem. After the
repair the flight is re-started with checking the weather.

Fig. 14 depicts the pre take-off process as described above
including several process model smells. First, the model does not
strictly follow the verb-object style of naming activities, which
relates to PMS1 (Non-Intention Revealing Naming of Activity). For
example, activity Repair violates this convention. Second, the
process model contains a redundant process model fragment (i.e.,
Fragments 1 and 2), which is an example of PMS3 (Redundant

Process Model). Third, the depicted model is rather large and
complex constituting an example of PMS4 (Large Process Model).

To address these smells, the process designer loads the model
into our refactoring tool. To remove PMS1 (Non-Intention Revealing

Naming of Activity) the process designer selects the respective
activity and renames it to Repair Airplane using RF1 (Rename

Activity). To deal with PMS4 (Redundant Process Fragment), the
designer selects Fragment 1 and chooses RF4 (Extract Process

Fragment) from the list of enabled refactorings to extract Model

AbstractRefactoringTool

AbstractFragmentRefactoringTool AbstractProcessModelRefactoringToolAbstractElementRefactoringTool

RF3 - Substitute Process
Fragment

RF4 – Extract Process
Fragment

RF5 - Replace Process
Fragment by Reference

RF8 - Remove
Redundancies

RF2 – Rename
Process ModelRF7 - Re-label Collection

RF1 - Rename Activity

RF6 – Inline Process
Fragment

RF10 – Remove
Unused Branch

RF9 – Generalize
Variant Changes

RF11 – Pull Up
Instance Change

Fig. 13. Refactoring tools.

Fragment 3

Fragment 4 Fragment 5 Fragment 6

Fragment 2

PMS3: Redundant
Process Fragment

Fragment 1

Check
Weather

Perform
Preflight

Inspection

File
Flightplan

Cancel
Flight

Severe
problem

Move to
Repair
Station

Small
Problem

Plane can
move under its
own power

Tow to
Repair
Station

Get
Mechanician

Repair
Check

Weather

Perform
Preflight

Inspection

File
Flightplan

Issue Found

Call
Clearance

Get
ClearanceIf

large
airport

Contact
Ground

Get Taxi
Clearance

Íf tower

Announce
Taxiing

Taxiing to
Run-up

Perform
Run-up

lnspection

Contact
Tower

Get Take-off
Clearance

Íf tower

Announce
Take-off

Intentions

Take-off
Airplane

PMS1: Non-intention revealing Naming of Activity
Violation of Verb-Object Style

PMS3: Redundant
Process Fragment

PMS4: Large Process
Model

Fig. 14. Original model of pre take-off process.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 481

Author's personal copy

PreightProcessSchema (RF4 is enabled since the selection
constitutes a SESE fragment and thus fulfills the pre-conditions for
RF4). In a next step, the designer selects Fragment 2 and chooses
refactoring RF5 (Replace Process Fragment by Reference) to replace
this fragment with a reference to Model PreightProcessSchema
(cf. Fig. 17).

Although these two changes have already reduced the size of
the pre take-off process by eight nodes, the process model is still
rather large and complex (PMS 6 – Large Process Model). Therefore,
the designer decides to also apply refactoring RF4 (Extract Process

Fragment) to Fragments 3–6, since each of them comprises several
activities logically belonging together. For example, Fragment 3
deals with the reparation of an airplane if issues are detected
during the preflight inspections.

Fig. 15 shows a screen of our prototype illustrating the
extraction of all activities dealing with the reparation of the
airplane (selected activities in Fig. 15A) into a distinct Model
RepairProcessSchema (cf. Fig. 16B). Before conducting the

change, the designer is informed about the effects of this
refactoring on the pre take-off process in terms of selected metrics
(e.g., reduction of model size by nine) (cf. Fig. 15B). By pressing the
OK button the change is performed and the updated model is
stored in the repository. The result of this refactoring is depicted in
Fig. 16.

Fig. 17 illustrates the model after applying all refactorings
described above. A summary of the conducted refactorings and
their effects on quality metrics is depicted in Fig. 18.

6. Related work

Refactoring techniques for improving software design were first
proposed by Opdyke [52]. He suggested a set of refactorings for C++
which are semantic preserving if certain preconditions are met.
The first notable refactoring tool has been the Refactoring Browser
[7] for Smalltalk, which automatically performs the refactorings
proposed by Opdyke plus some additionally techniques [69]. As all

Fig. 15. Model before extracting repair process.

Fig. 16. Model after extracting repair process.

B. Weber et al. / Computers in Industry 62 (2011) 467–486482

Author's personal copy

refactorings provided by this tool constitute behavior-preserving
transformations it is ensured that no errors or information losses
are introduced. Tool support for languages like C++ and Java have
recently emerged. The provided refactorings usually cannot be
proven to be completely behavior-preserving. Therefore, refactor-
ings need to be backed up by automated regression tests to detect
behavioral changes in the software and to avoid errors [17]. Most of
our refactorings, in turn, make use of pre-conditions to ensure that
the behavior of the process models from the repository is not
altered.

Closely related to the refactoring techniques considered in this
paper are program and code optimizations, which constitute
behavior-preserving program transformations [4]. In contrast to
refactorings which focus on improvement of design artifacts, code
optimization aims to improve the execution efficiency at runtime.
While this topic has not yet been systematically investigated in the
context of process-aware information systems, there are techni-
ques and considerations available that relate to this topic [28].
Code optimization is an issue for the deployment of an executable
process model to a process engine [25]. For instance, it is more
efficient to transform graph-oriented links in a BPEL process into
sequences if possible, because checking of link status is more
resource intense than simply jumping to the next activity in a
sequence when executing a process. In this paper, though, we stick
to the perspective of a process designer aiming to organize process
models in a comprehensible way.

Similar to program refactorings, process model refactorings
constitute transformations, which are behavior-preserving if
certain preconditions are met. Existing approaches focus on
UML model transformations [81], while refactoring has not been
elaborated in detail for business process models. There exist a few
approaches which provide specific refactorings in a narrow context
(e.g., a particular process modeling formalism). In [16] refactoring
techniques for Event-driven Process Chains are described. Unlike
our refactorings, these proposals require additional modeling
elements. Refactoring techniques have also been discussed in
connection with model merging [30]. The proposed transforma-

tions aim at improved process design, but are not necessarily
behavior-preserving. The ADEPT process management system, in
turn, applies simple refactorings in the context of process changes
to avoid smell PMS2 [58]; i.e., the structure of a process model is
simplified after the application of a sequence of changes, while
preserving model behavior. Finally, [6] discusses graph transfor-
mations similar to RF4 and RF6 in the context of process views.

Several refactoring techniques are discussed in [15], however,
their scope is slightly different from our refactorings; e.g.,
refactorings ‘‘Merge Process Ends’’, ‘‘Join Process Ends’’ and ‘‘Close
Branches’’ focus on model completion and refactoring ‘‘Automati-
cally Order Branches’’ deals with layouting issues. Similarly, [64]
discusses options for re-layouting process models in order to
increase model comprehension.

Behavior-preserving model transformations have been pro-
posed in [5] to make Petri nets more compact. Several approaches
for deriving structured models from unstructured ones are
discussed in the context of BPMN to BPEL transformations. These
include refined process structure tree decomposition [93],
untangling unstructured loops [100], and further transformation
rules [88,53,56,55]. Synthesis can be used to transform a Petri net
via a transition system into another behavior-equivalent Petri net.
Respective techniques allow to eliminate unnecessary net
elements (e.g., silent activities, unnecessary places) [10] or to
discard OR-joins from process models [47] (and can therefore be
used to address smell PMS2).

The specific requirements of capturing process model variants
have been addressed in different modeling approaches. In this
work, we assume a generic process model to capture the
behavioral alternatives of different variants. This is similar to
the approach taken in work on the configuration of process models
[22,86,87,24], while other approaches define dedicated variation
elements on the process modeling language level. Such languages
include Configurable EPCs [74,31], aggregated EPCs [62], and the
variant rich process models [76], which pick up ideas and concepts
from modeling of software product families and feature diagrams
[26,94]. The definition of generic process models relates to

Fig. 17. Model after refactoring.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 483

Author's personal copy

identifying similar process models with overlapping behavior
[89,14,12,98] and integrating them into a single model
[57,45,21,70].This integration is a particular instance of RF8,
which aims to remove redundancies.

Process model smells are closely related to anti-patterns
[29,82], since both describe indicators for low process model
quality. However, most of the described patterns constitute real
modeling errors (potentially leading to deadlocks) and cannot be
resolved through behavior-preserving refactorings. As an instanti-
ation of RF1, the work in [33] defines an automatic approach to
reformulate activity labels using techniques from natural language
processing. Finally, existing BPM tools only provide limited
refactoring support. Renaming of activities and process models
is supported by most tools (e.g., ARIS). However, more advanced
refactoring support has been missing in most existing tools so far.
Some support for process model refactorings is provided by the
IBM Pattern-based Process Model Accelerators extension for
WebSphere Business Modeler [15].

7. Summary and outlook

With the increasing adoption of PAISs and the emergence of
large process repositories systematic support for model manage-
ment is getting increasingly important. We introduced 8 process
model smells, supported by empirical evidence in the form of
several large case studies, to assist process designers in detecting
symptoms of low process model quality. Moreover, we proposed
11 refactorings specifically suited for large process repositories. To
demonstrate the feasibility of the proposed refactoring techniques
we provided a proof-of-concept prototype to support users in both
identifying refactoring options and applying behavior-preserving
or compliance-ensuring refactorings.

The smells and refactorings we propose, along with the
presented tool support, should be seen as a means to support
organizations to better deal with their emerging process model
repositories. As mentioned, it is increasingly realistic that business
users without any deep modeling skills will be developing process
models. While there are several benefits that can be associated
with this practice, we argue that the quality of process models –
regardless of their originators – will deteriorate over time.
Therefore, we argue that there will always be a need for a small
proportion of people with more advanced modeling knowledge to
counter-balance this detoriation; the proposed techniques in this
paper aim to support experienced modelers during process
modeling. The analogy from the business domain is that while
business professionals nowadays use advanced IT tools that
required specialized use only some years ago (e.g. web develop-
ment tools, databases, etc), the role of system administrators has
not died out and has arguably become more important than before
– precisely because of the lack of deep IT knowledge with casual
users.

Even though we considered several different data sources from
the healthcare domain and from automotive engineering having

different characteristics, it cannot be ruled out completely that
other domains might show different characteristics which are
missing from the current set of models. The goal of our paper is not
to provide a complete list of process model smells. Instead our
claim is to provide a list of process smells which can be typically
found in practice and which provide indication for poor process
model quality. To further validate our process model smells as well
as refactoring techniques expert interviews are planned.

Future work includes the evaluation of our proof-of-concept
prototype using case studies. We further plan to integrate the
presented techniques with other repository services including
process model adaptation [95], process model evolution [65], and
process change mining [65]. Our overall goal is to provide
integrated repository support for the management of process
models throughout the entire process life cycle.

References

[1] E.R. Aguilar, F. Garcı́a, F. Ruiz, M. Piattini, An exploratory experiment to validate
measures for business process models, in: Proc. RCIS’07, 2007.

[2] K. Beck, Extreme Programming Explained, Addison Wesley, 2000.
[3] J. Becker, M. Kugeler, M. Rosemann, Process Management: A Guide for the Design

of Business Processes, Springer, 2003.
[4] J. Bentley, Writing Efficient Programs, Prentice Hall Ptr, 1984.
[5] G. Berthelot, Transformations and decompositions of nets, in: W. Brauer, W.

Reisig, G. Rozenberg (Eds.), Advances in Petri Nets 1986, Part I, Springer, 1987.
[6] R. Bobrik, Configurable visualization of complex process models, Ph.D. thesis,

University of Ulm, 2008.
[7] J. Brant, D. Roberts, Refactoring Browser, st-www.cs.uiuc.edu/users/brant/refac-

toringbrowser/.
[8] G. Canfora, F. Garcı́a, M. Piattini, F. Ruiz, C. Visaggio, A family of experiments to

validate metrics for software process models, Journal of Systems and Software 77
(2) (2005) 113–129.

[9] J. Cardoso, chap. Evaluating workflows and web process complexity, in: Work-
flow Handbook 2005, Future Strategies, Inc., 2005, pp. 284–290.

[10] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Deriving petri nets from
finite transition systems, IEEE Transactions on Computers 47 (8) (1998) 859–
882.

[11] P. Dadam, M. Reichert, The ADEPT project: a decade of research and development
for robust and flexible process support—challenges and achievements, Comput-
er Science – Research and Development 23 (2) (2009) 81–97.

[12] R. Dijkman, M. Dumas, B.F. van Dongen, R. Käärik, J. Mendling, Similarity of
business processmodels:metrics and evaluation, Information Systems 36 (2)
(2011) 498–516.

[13] E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
[14] M. Dumas, L. Garcı́a-Bañuelos, R.M. Dijkman, Similarity search of business

process models, IEEE Data Engineering Bulletin 32 (3) (2009) 23–28.
[15] C. Favre, T. Gschwind, J. Koehler, et al., Faster and better business process

modeling with the IBM pattern-based process model accelerators, in: Proc.
BPMDemos2009, 2009.

[16] P. Fettke, P. Loos, Refactoring von Ereignisgesteuerten Prozessketten, in: Proc.
EPK’02, 2002.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-Wesley,
1994.

[19] German Association of the Automotive Industry (VDA), Engineering Change
Management. Part 1: Engineering Change Request (ECR), vol. 1.1., Doc. No.
4965, December 2005.

[20] A. Glover, Refactoring with Code Metrics, www.ibm.com/developerworks/java/
library/j-cq05306/, 2006.

[21] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, Merging event-driven
process chains, in: Proc. CoopIS’08, vol. 5331 of LNCS, Springer, 2008.

Before Refactoring Refactorings After Refactoring
PMS1 – 1 violation of verb-object style RF1 (1x) All activities labeled according to

verb-object style
PMS3 – Fragments 1 and 2 are redundant RF4 (1x)

RF5 (1x)
No redundant fragments
Reduction of model size by 8

PMS4 – Process model with 42 nodes
(22 activities, 18 gateways,
1 start node, 1 end node)

RF4 (4x) Flight Schema (S1): size 12
Preflight Process Schema (S2): size 7
Clearance Process Schema (S3): size 6
Taxiing Process Schema (S4): size 9
Take-Off Process Schema (S5): size 8
Repair Process Schema (S6): size 11

Fig. 18. Overview of conducted refactorings.

B. Weber et al. / Computers in Industry 62 (2011) 467–486484

Author's personal copy

[22] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, M.L. Rosa, Configurable
workflow models, International Journal of Cooperative Information Systems 17
(2) (2008) 177–221.

[23] A. Guceglioglu, O. Demirors, Using software quality characteristics to measure
business process quality, in: Proc. BPM’05, 2005.

[24] A. Hallerbach, T. Bauer, M. Reichert, Capturing variability in business process
models: the Provop approach, Journal of Software Maintenance and Evolution:
Research and Practice 22 (6–7) (2009) 519–546.

[25] R. Hauser, J. Koehler, Compiling process graphs into executable code, in: Proc.
GPCE’04, 2004.

[26] S. Hsiao, E. Liu, A structural component-based approach for designing product
family, Computers in Industry 56 (1) (2005) 13–28.

[27] N. Kock Jr., Product flow, breadth and complexity of business processes: an
empirical study of 15 business processes in three organizations, Business Process
Re-engineering & Management Journal 2 (2) (1996) 8–22.

[28] J. Koehler, R. Hauser, Untangling unstructured cyclic flows—a solution based on
continuations, in: Proc. CoopIS’04, 2004.

[29] J. Koehler, J. Vanhatalo, Process anti-patterns: How to avoid the common traps of
business process modeling, Tech. Rep. Report RZ-3678, IBM Zurich Research Lab,
2007.

[30] J. Küster, J. Koehler, K. Ryndina, Improving business process models with
reference models in business-driven development, in: BPM’06 Workshops, 2006.

[31] M.L. Rosa, M. Dumas, A.H.M. ter Hofstede, J. Mendling, Configurable multi-
perspective business process models, Information Systems.

[32] R. Lenz, M. Reichert, IT support for healthcare processes—premises, challenges,
perspectives, Data & Knowledge Engineering (1) (2007) 39–58.

[33] H. Leopold, S. Smirnov, J. Mendling, Refactoring of activity labels in business
process models, in: 15th International Conference on Applications of Natural
Language to Information Systems (NLDB 2010), 2010.

[34] H. Leopold, S. Smirnov, J. Mendling, Recognizing activity labeling styles in
business process models, Enterprise Modelling and Information Systems Archi-
tectures – International Journal (EMISA Journal), in press.

[35] C. Li, M. Reichert, A. Wombacher, Discovering reference process models by
mining process variants, in: Proc. ICWS’08, 2008.

[36] C. Li, M. Reichert, A. Wombacher, On measuring process model similarity based
on high-level change operations, in: Proc. ER’08, 2008.

[37] C. Li, M. Reichert, A. Wombacher, Discovering reference models by mining
process variants using a heuristic approach, in: Proc. BPM’09, 2009.

[38] R. Lu, S. Sadiq, Managing process variants as an information resource, in: Proc.
BPM’06, 2006.

[39] T. Malone, K. Crowston, G. Herman, Organizing Business Knowledge: The MIT
Process Handbook, MIT Press, 2003.

[40] J. Mendling, Empirical studies in process model verification, in: Proc. ToPNoC II,
2009.

[41] J. Mendling, H.A. Reijers, How to define activity labels for business process
models? in: Proc. AIS SIGSAND’08, 2008.

[42] J. Mendling, H.A. Reijers, J. Cardoso, What makes process models understand-
able? in: Proc. BPM’07, 2007.

[43] J. Mendling, H.A. Reijers, J. Recker, Activity labeling in process modeling:
empirical insights and recommendations, Information Systems 35 (4) (2010)
467–482.

[44] J. Mendling, H.A. Reijers, W.M.P. van der Aalst, Seven process modeling guide-
lines (7PMG), Information and Software Technology 52 (2) (2009) 127–136.

[45] J. Mendling, C. Simon, Business process design by view integration, in: Proceed-
ings of BPM Workshops 2006, vol. 4103 of LNCS, 2006.

[46] J. Mendling, M. Strembeck, Influence factors of understanding business process
models, in: Proc. BIS’08, 2008.

[47] J. Mendling, B.F. van Dongen, W.M.P. van der Aalst, Getting rid of or-joins and
multiple start events in business process models, Enterprise IS 2 (4) (2008) 403–
419.

[48] J. Mendling, H. Verbeek, B.F. van Dongen, W.M.P. van der Aalst, G. Neumann,
Detection and prediction of errors in EPCs of the SAP reference model, Data &
Knowledge Engineering 64 (1) (2008) 312–329.

[49] T. Mens, P.V. Gorp, A taxonomy of model transformation, Electronic Notes in
Theoretical Computer Science 152 (2006) 125–142.

[50] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transactions on
Software Engineering 30 (2) (2004) 126–139.

[51] M. Minor, A. Tartakovski, D. Schmalen, R. Bergmann, Agile workflow technology
and case-based change reuse for long-term processes, International Journal of
Intelligent Information Technologies 4 (1) (2008) 80–98.

[52] W.F. Opdyke, Refactoring: A program restrucuring aid in designing object-
oriented application frameworks, Ph.D. thesis, Univ. of Illinois, 1992.

[53] C. Ouyang, M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, J. Mendling,
From business process models to process-oriented software systems, ACM
Transactions on Software Engineering and Methodology 19 (1) (2009)
doi:10.1145/1555392.1555395.

[54] D. Parnas, Software aging, in: Proc: ICSE’94, 1994.
[55] A. Polyvyanyy, L. Garcı́a-Bañuelos, M. Dumas, Structuring acyclic process mod-

els, in: Proc. BPM’10, 2010.
[56] A. Polyvyanyy, L. Garcı́a-Bañuelos, M. Weske, Unveiling hidden unstructured

regions in process models, in: Proc. CoopIS’09, 2009.
[57] G. Preuner, S. Conrad, M. Schrefl, View integration of behavior in object-oriented

databases, Data & Knowledge Engineering 36 (2) (2001) 153–183.
[58] M. Reichert, P. Dadam, ADEPTflex – Supporting dynamic changes of workflows

without losing control, Journal of Intelligent Information Systems 10 (2) (1998)
93–129.

[59] M. Reichert, P. Dadam, B. Schultheiss, I. Konyen, Analysis of healthcare processes
in a woman’s clinic. DBIS No. 27, 28, 29, 16, 15, 14, 7, 6, 5 (1996–1997).

[60] M. Reichert, S. Rinderle-Ma, P. Dadam, Flexibility in process-aware information
systems, Transactions on Petri Nets and Other Models of Concurrency II, vol.
5460 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 2009,
pp. 115–135.

[61] H.A. Reijers, Design and control of workflow processes: business process man-
agement for the service industry, Springer, 2003.

[62] H.A. Reijers, R. Mans, R. van der Toorn, Improved model management with
aggregated business process models, Data and Knowledge Engineering 68 (2)
(2009) 221–243.

[63] H.A. Reijers, J. Mendling, Modularity in process models: review and effects, in:
Proc. BPM’08, 2008.

[64] S. Rinderle, R. Bobrik, M. Reichert, T. Bauer, Business process visualization—use
cases, challenges, solutions, in: ICEIS (3), 2006.

[65] S. Rinderle, M. Reichert, P. Dadam, Correctness criteria for dynamic changes in
workflow systems—a survey, Data and Knowledge Enginnering 50 (1) (2004)
9–34.

[66] S. Rinderle, M. Reichert, M. Jurisch, U. Kreher, On representing, purging, and
utilizing change logs in process management systems, in: Proc. BPM’06, 2006.

[67] S. Rinderle, B. Weber, M. Reichert, W. Wild, Integrating process learning and
process evolution—a semantics based approach, in: Proc. BPM’05, 2005.

[68] S. Rinderle-Ma, M. Reichert, B. Weber, On the formal semantics of change
patterns in process-aware information systems, in: Proc. ER’08, 2008.

[69] D. Roberts, J. Brant, R. Johnson, A refactoring tool for Smalltalk, Theory and
Practice of Object Systems (4) (1997) 253–263.

[70] M.L. Rosa, M. Dumas, R. Uba, R.M. Dijkman, Merging business process models, in:
Proc. CoopIS’10, vol. 6426 of LNCS, Springer, 2010.

[71] M.L. Rosa, J. Lux, S. Seidel, M. Dumas, A.H.M. ter Hofstede, Questionnaire-driven
configuration of reference process models, in: Proc. CAiSE’07, 2007.

[72] M. Rosemann, Potential pitfalls of process modeling: Part A, Business Process
Management Journal 12 (2) (2006) 249–254.

[73] M. Rosemann, J. Recker, C. Flender, Contextualisation of business processes,
International Journal of Business Process Integration and Management 3 (1)
(2008) 47–60.

[74] M. Rosemann, W.M.P. van der Aalst, A configurable reference modelling lan-
guage, Information Systems 32 (1) (2007) 1–23.

[75] A. Rozinat, W.M.P. van der Aalst, Conformance testing: measuring the fit and
appropriateness of event logs and process models, in: BPM’05 Workshop, 2006.

[76] A. Schnieders, F. Puhlmann, Variability mechanisms in e-business process
families, in: Proc. BIS’06, 2006.

[77] A. Sharp, P. McDermott, Workflow Modeling: Tools for Process Improvement and
Application Development, Artech House, 2001.

[78] B. Silver, BPMS watch: Ten tips for effective process modeling, http://
www.bpminstitute.org/articles/article/article/bpms-watch-ten-tips-for-effec-
tive-process-modeling.html (2009).

[79] M. Soto, A. Ocampo, J. Munch, The secret life of a process description: a look into
the evolution of a large process model, in: Proc. ICSP’08, 2008.

[80] D. Strong, S. Miller, Exceptions and exception handling in computerized infor-
mation processes, ACM ToIS 13 (2) (1995) 206–233.

[81] G. Sunye, D. Pollet, Y.L. Traon, J. Jezequel, Refactoring UML models, in: Proc.
UML’01, 2001.

[82] N. Trcka, W.M.P. van der Aalst, N. Sidorova, Data-flow anti-patterns: discovering
dataflow errors in workflows, in: Proc. CAiSE’09, 2009.

[83] W.M.P. van der Aalst, Business alignment: Using process mining as a tool for
delta analysis and conformance testing, Requirements Engineering Journal 10
(3) (2005) 198–211.

[84] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A. Barros, Workflow
Patterns, Distributed and Parallel Databases 14 (1) (2003) 5–51.

[85] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, A.
Weijters, Workflow mining: a survey of issues and approaches, Data and
Knowledge Engineering 27 (2) (2003) 237–267.

[86] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M.L. Rosa, J.
Mendling, Correctness-preserving configuration of business process models, in:
Proc. FASE 2008, 2008.

[87] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M.L. Rosa, J.
Mendling, Preserving correctness during business process model configuration,
Formal Aspects of Computing 22 (3–4) (2010) 459–482.

[88] W.M.P. van der Aalst, K. Lassen, Translating unstructured workflow processes to
readable BPEL: theory and implementation, Information and Software Technol-
ogy 50 (3) (2008) 131–159.

[89] B.F. van Dongen, R. Dijkman, J. Mendling, Measuring similarity between business
process models, in: Proc. CAISE’08, 2008.

[90] I. Vanderfeesten, J. Cardoso, J. Mendling, H. A. Reijers, W.M.P. van der Aalst,
Quality metrics for business process models, BPM & Workflow Handbook, 2007.

[91] I. Vanderfeesten, H.A. Reijers, J. Mendling, W.M.P. van der Aalst, J. Cardoso, On a
quest for good process models: the cross-connectivity metric, in: Proc. CAiSE’08,
2008.

[92] I. Vanderfeesten, H.A. Reijers, W.M.P. van der Aalst, Evaluating workflow process
designs using cohesion and coupling metrics, Computers in Industry 59 (5)
(2008) 420–437.

[93] J. Vanhatalo, H. Voelzer, J. Koehler, The refined process structure tree, Data and
Knowledge Engineering 69 (8) (2009) 793–818.

[94] C. Verdouw, A. Beulens, J. Trienekens, T. Verwaart, Towards dynamic reference
information models: Readiness for ICT mass customisation, Computers in In-
dustry 61 (9) (2010) 833–844.

B. Weber et al. / Computers in Industry 62 (2011) 467–486 485

Author's personal copy

[95] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and change support
features—enhancing flexibility in process-aware information systems, Data and
Knoweldge Engineering 66 (2008) 438–466.

[96] B. Weber, M. Reichert, W. Wild, S. Rinderle-Ma, Providing integrated life cycle
support in process-aware information systems, International Journal of Cooper-
ative Information Systems (IJCIS) 18 (1) (2009) 115–165.

[97] B. Weber, S.W. Sadiq, M. Reichert, Beyond rigidity—dynamic process lifecycle
support, Computer Science – Research and Development 23 (2) (2009) 47–65.

[98] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement based
on behavioural profiles of process models, IEEE Transactions on Software
Engineering.

[99] M. Weske, Business Process Management: Concepts, Methods, Technology,
Springer, 2007.

[100] W. Zhao, R. Hauser, K. Bhattacharya, B. Bryant, F. Cao, Compiling business
processes: untangling unstructured loops in irreducible flow graphs, Interna-
tional Journal of Web and Grid Services 2 (1) (2006) 68–91.

Barbara Weber is assistant professor at the University

of Innsbruck (Austria). Barbara is a member of the

Quality Engineering (QE) Research Group and head of

the Research Cluster on Business Processes and Work-

flows at QE. Barbara holds a Habilitation degree in

Computer Science and Ph.D. in Economics from the

University of Innsbruck. Her main research interests are

agile and flexible processes, integrated process lifecycle

support, intelligent user support in flexible systems and

process modeling. Barbara has published more than 60

refereed papers, for example, in Data & Knowledge

Engineering, Science of Computer Programming and

Journal of Software Maintenance and Evolution. Moreover, Barbara is organizer of

the successful BPI workshop series.

Manfred Reichert holds a PhD in Computer Science and

a Diploma in Mathematics. Since January 2008 he has

been appointed as full professor at the University of

Ulm. Before he was working as associate professor at

the University of Twente (UT) in the Netherlands. At UT

he was also leader of the strategic research orientations

on ‘‘E-health’’ and on ‘‘Applied Science of Services’’, and

member of the Management Board of the Centre for

Telematics and Information Technology (CTIT). His

major research interests are next generation process

management technology (e.g., adaptive processes, process lifecycle management,

data-driven processes, mobile processes), service-oriented architectures (e.g.,

service interoperability, service evolution), and advanced applications for ICT

solutions (e.g., e-health, automotive engineering). Together with Peter Dadam he

pioneered the work on the ADEPT process management system. Manfred has been

participating in numerous research projects in the BPM area and contributed

numerous papers. Further, he has co-organized international and national

conferences and workshops. Manfred was PC-Co-Chair of the BPM’08 Conference

in Milan and General Co-Chair of the BPM’09 Conference in Ulm.

Jan Mendling is a junior-professor with the Institute of

Information Systems at Humboldt-University of Berlin,

Germany. His research areas include business process

management, conceptual modelling and enterprise

systems. He has published more than 100 research

papers and articles, among others in IEEE Transactions

on Systems, Man and Cybernetics, IEEE Transactions on

Software Engineering, ACM Transactions on Software

Engineering and Methodology, Information Systems,

Data & Knowledge Engineering, Formal Aspects of

Computing, and Information and Software Technology.

He is a member of the editorial board of three

international journals. He is program co-chair of the International Conference on

Business Process Management 2010 and initiator of the BPMN workshop series.

Hajo Reijers is an associate professor in the Informa-

tion Systems Group at Eindhoven University of

Technology and an affiliated professor with the

TIAS/Nimbas Business School of Tilburg University.

Before that, he worked as a management consultant

for Accenture and Deloitte. His research interests

cover business process redesign, business process

modeling, workflow management technology, and

simulation. He has published over 75 refereed papers,

for example in the Journal of Management Information

Systems, Information systems, Data & Knowledge

Engineering, and Organization Studies. He recently

served as the co-chair of the 2009 edition of the International Conference on

Business Process Management.

B. Weber et al. / Computers in Industry 62 (2011) 467–486486

