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Abstract. Random walks are well known for playing a crucial role in the design of randomized
off-line as well as on-line algorithms. In this work we prove some basic identities for ergodic Markov
chains (e.g., an interesting characterization of reversibility in Markov chains is obtained in terms of
first passage times). Besides providing new insight into random walks on weighted graphs, we show
how these identities give us a way of designing competitive randomized on-line algorithms for certain
well-known problems.
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1. Introduction. In a recent paper, Coppersmith et al. [8] made clever use of
results from synthesis of electrical networks to design reversible random walks useful
for certain randomized on-line algorithms.

At the heart of their methods lies the following problem on random walks. We
are given a weighted (undirected) graph with n vertices, and with weight Cij on edge
{i, j}, for 1 ≤ i, j ≤ n. Assume that the weights are symmetric and that they satisfy
the triangle inequality. Every traversal of an edge {i, j} costs Cij .

Recall that a random walk on an undirected graph is the Markov chain whose
state space is the vertex set of the graph, whose behavior is given by the rule that
when the chain is at any given vertex the next transition is along an edge incident
to that vertex that is chosen at random, according to some probability distribution.
(The probability distribution could depend on the vertex, and the case of uniform
distribution over the incident edges is often called a simple random walk.) We say
that a random walk on G has stretch s (with respect to the cost matrix C) if, for any
sequence of vertices v0, . . . , vk, the expected cost of the random walk to traverse these
nodes in the prescribed order is at most s times the optimal cost, up to an additive
constant. Let euv denote the expected cost of the walk to go from vertex u to vertex
v. If for every v0, . . . , vk,

∑k
i=1 evi−1vi ≤ s

∑k
i=1 Cvi−1vi + a, where a ≥ 0, then the

walk is said to have stretch s. Given the cost matrix C, the problem is to design a
random walk with as low a stretch as possible.

Coppersmith et al. proved the following tight result for all symmetric cost matri-
ces: Any random walk on a weighted (undirected) graph with n vertices has stretch
≥ (n − 1), and every weighted (undirected) graph has a random walk with stretch
≤ (n− 1).

Coppersmith et al. justified the relevance of this problem by providing bounds
for the cat and mouse game, which they showed was central to the analysis of on-line

∗Received by the editors March 10, 1998; accepted for publication March 20, 1998; published
electronically March 22, 1999. A preliminary version of this paper appeared in Proc. 5th Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1994, pp. 402–411. The
work of this author was done while at AT&T Bell Labs, Murray Hill, NJ 07974.

http://www.siam.org/journals/sicomp/28-4/33551.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (tetali@math.

gatech.edu).

1232

D
ow

nl
oa

de
d 

08
/1

4/
14

 to
 1

30
.2

07
.5

0.
37

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1233

algorithms for well-known problems such as the metrical task system problem and the
k-server problem. (We shall define these shortly for the nonspecialist.)

Symmetry of the costs is crucial to the basic technique used in [8] in designing
the appropriate random walk, and thus an interesting question is left open on stretch
under asymmetric costs—equivalently, the stretch of random walks on directed graphs.
In this work we prove close-to-optimal lower and upper bounds on a stretch for a
class of matrices, without the symmetry assumption. Moreover, under symmetry our
results imply those of [8].

In a nutshell, Coppersmith et al. interpret a given cost matrix as an effective
resistance matrix of a resistive network, and then they synthesize an actual network
that has the desired properties. Classical analogues between resistive networks and
reversible Markov chains yield a corresponding random walk that achieves the optimal
stretch. We use a different way of synthesizing a random walk, the advantage being
that we do not need reversibility of the walk (i.e., symmetry of the costs) for our
techniques to work. We interpret the cost matrix as the hitting time (first passage
time) matrix of an ergodic (not necessarily reversible) Markov chain and then describe
how to find the unique chain that yields the desired hitting times, i.e., design the
transition probabilities which yield the desired hitting times. While such a synthesis
of an ergodic chain from a valid hitting time matrix is unique and efficient, it is not
true that an arbitrary cost matrix is always a hitting time matrix.1 (The consolation,
however, is that we can check for the latter condition with essentially one matrix
inversion.) We call a cost matrix ergodic if it can be interpreted as a certain hitting
time matrix, and we call the corresponding random walk an ergodic walk. We show
that this walk achieves optimal stretch when the costs are symmetric and is close to
optimal when the costs are asymmetric. We show that our techniques also work when
the cost matrix is essentially an effective resistance matrix, thus extending several
results proved in [8].

Given a weighted (directed) graph with a weight (or cost) matrix C = {Cij},
define the cycle offset ratio Ψ(C) as follows. Ψ(C) is the maximum over all sequences

v0, . . . , vk = v0 of

∑k
i=1 Cvi−1,vi∑k
i=1 Cvi,vi−1

.

(Note that 1 ≤ Ψ(C) ≤ (n− 1), since the costs satisfy the triangle inequality.)
We prove the following result.
Any random walk on a weighted graph with n vertices has stretch ≥ (n−1)/Ψ(C),

and the ergodic walk has stretch ≤ (n− 1), with equality under a symmetric C.
While we show examples that achieve equality in the lower bound, any tightening

of the upper bound seems quite hard. However, it is interesting that the stretch
of random walks on directed graphs can be brought down below n − 1, while the
counterpart on undirected graphs has an optimal bound of n− 1.

The first application, for the cat and mouse game (see section 3), follows imme-
diately from the above. It was mentioned in [8] that the cat and mouse game is at
the core of several on-line algorithms. We show that for any n × n cost matrix C
and any “blind” cat strategy (i.e., a random walk strategy), there is a mouse strategy
that forces the competitiveness of the cat to be at least (n−1)/Ψ(C), and the ergodic
walk by the cat achieves a competitive ratio ≤ (n− 1), on ergodic C.

1Similarly, an arbitrary cost matrix is not necessarily an effective resistance matrix for the tech-
niques of [8] to work.
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1234 PRASAD TETALI

The second and more interesting application is for the notoriously hard k-server
problem (see [11], [16], [20], [17]). The k-server problem (defined in [20]) is as follows.
There are k mobile servers located on k vertices of a graph G with positive, real costs
on the edges. (The costs can be thought of as distances between the positions.) An
on-line algorithm manages the servers in such a way as to satisfy an on-line sequence of
requests for service at vertices vi, i = 1, 2, . . . ; i.e., servicing a request corresponds to
moving a server to the requested vertex whenever a server isn’t there. The algorithm
pays a cost equal to the cost on the edge traversed by the server. The competitiveness
of the algorithm is measured with respect to the cost an adversary pays, wherein the
adversary moves the servers but also gets to choose the request sequence.

Due to the hardness of the k-server problem, it is significant to prove competi-
tive ratios even for special cases such as special classes of graphs (e.g., [4], [8], [6]).
Coppersmith et al. [8] provide one such example class. They use random walks to
design optimal randomized k-competitive server algorithms when the cost matrix has
a resistive inverse. We extend this class by allowing asymmetric costs, or equivalently,
weighted directed graphs, with ergodic cost matrices.

Define edge offset ratio Ψ′(C) to be maxij
Cij
Cji

. (Note that Ψ(C) ≤ Ψ′(C), and

that Ψ(C) = Ψ′(C) = 1, for symmetric C.) We prove the following result for the
asymmetric k-server problem. (This implies the result of [8].)

Let C be a cost matrix on n nodes. If every submatrix on k+ 1-nodes is ergodic,
then we have a randomized kΨ′(C)-competitive strategy for the k-server problem on
C.

The final application is to the task system problem, defined as follows. We have a
task system (S,C) for processing sequences of tasks wherein S is a set of states, and
C is a cost matrix, describing the cost of changing from state i to state j. We assume
that the costs satisfy the triangle inequality and that there is no cost of staying in
the same state (Cii = 0). Furthermore, when the costs are symmetric we refer to
the task system as a metrical task system (MTS). Each task T has a cost vector vT ,
where vT (i) is the cost of processing T in state i. A schedule for a given sequence of
tasks T1, . . . , Tk is a sequence of states s1, . . . , sk, where si is the state in which Ti is
processed. The task system problem is to design an on-line schedule (choose si only
knowing T1, . . . , Ti) so that the algorithm is w-competitive—on any input sequence
of tasks, the cost of the on-line algorithm is, barring an additive constant, at most w
times that of the optimal off-line algorithm.

Borodin et al. [5] designed a deterministic algorithm with a competitive ratio of
at most (2n−1)Ψ(C) for the task system problem with asymmetric costs. If the costs
are symmetric (i.e., an MTS), they prove a matching lower bound of (2n − 1). It is
straightforward to extend their lower bound proof for the asymmetric case to get a
lower bound of (2n − 1)/Ψ(C). Coppersmith et al. provided a simpler, memoryless,
(2n − 1)-competitive, randomized algorithm for any MTS, and also showed that no
randomized algorithm can do better against an adaptive on-line adversary. We extend
the results of [8] to the task system with ergodic cost matrices. In particular, we prove
a lower bound of (2n−1)/Ψ(C) for any randomized on-line scheduler. We also provide
a randomized on-line scheduler with a competitive ratio of at most (2n − 1). While
(2n − 1) is the best possible for symmetric cost matrices, our randomized scheduler
achieves a competitive ratio of strictly less than (2n− 1), whenever the (ergodic) cost
matrix is asymmetric. This shows that it is possible to design random walks with
lower stretch on directed graphs than on undirected graphs. This also suggests that
the deterministic algorithm of [5] (or a variant thereof) may have a competitive ratio
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1235

of at most (2n− 1) even under asymmetric costs.
Thus the novel technique of using the synthesis of random walks from hitting

times for the design of on-line algorithms, while yielding the results of [8] for undi-
rected graphs in a natural and simpler way, also yields results for directed graphs.
We conclude this work with an interesting question on “approximating” an ergodic
Markov chain, which will have useful implications in terms of extending our results
to all cost matrices.

2. Results on ergodic Markov chains. In this section we prove two identities
involving the first passage times and the transition probabilities. These results are
crucial (later) to the analysis of our on-line algorithms. Lemma 2.1 and Theorem
2.2 below appeared in an earlier paper of this author [23]; however, the proofs are
included here to keep the presentation self-contained.

Consider an electrical network on n nodes with resistors rij between nodes i and
j. Let Rij denote the effective resistance between the nodes. Then Foster’s theorem
asserts that ∑

i∼j

Rij
rij

= n− 1,

where i ∼ j denotes that i and j are connected by a finite rij . The proof appears in
[13]. Also, [22] shows an alternative way (using random walks) of proving the same.
In this section we prove an elementary identity for ergodic Markov chains which yields
Foster’s theorem when the chain is time-reversible.

Let P denote the transition probability matrix (size n× n) of an ergodic Markov
chain with stationary distribution π. Let Pii = 0 ∀i. Furthermore, let H denote the
expected first-passage matrix (also size n×n) of the above chain; i.e., Hij denotes the
expected time to reach state j starting from state i. We call these the hitting times.
Then we have the following lemma.

Lemma 2.1.
∑
i,j πjPjiHij = n− 1.

Proof.

∑
i,j

πjPjiHij =
∑
j

πj

(∑
i

PjiHij

)
=
∑
j

πj [Hjj − 1]

=
∑
j

πj [1/πj − 1] = n− 1,

since Hjj = 1/πj .
We prove a stronger statement than Lemma 2.1 in the form of Corollary 2.7 below.

Both Lemma 2.1 and Corollary 2.7 were formulated while attempting to interpret
Foster’s theorem in terms of ergodic Markov chains. For a proof that Lemma 2.1
implies Foster’s theorem, see [23].

2.1. Synthesis of an ergodic walk. In the following we describe the construc-
tion (whenever one such exists) of an ergodic walk given an all-pairs hitting times
matrix H. Given P as above, we define P̄ to be the following (n−1)× (n−1) matrix.
Let

P̄ii = πi

=
n∑
j=1
j 6=i

πiPij

 ,
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1236 PRASAD TETALI

and P̄ij = −πiPij , for 1 ≤ i, j ≤ n− 1.
Furthermore, let H̄jj = Hjn +Hnj , and H̄jk = Hjn +Hnk −Hjk, for 1 ≤ j, k ≤

n−1. We use the standard notation of In for an identity matrix of size n×n, and δij
to denote the entries of I. The following theorem is a generalization of the resistive
inverse identity (well known in electrical network theory) used in [8].

Theorem 2.2.

P̄ H̄ = In−1.

Proof. The basic identity we use is the triangle inequality for the hitting times.
Using a “renewal type” theorem (see section 2.3 of [2] or Proposition 9-58 of [19]) one
can show the following:

Hxz +Hzy −Hxy =
Nxz
y

πy
,(2.1)

Hxz +Hzx =
Nxz
x

πx
.(2.2)

(Recall that Nxz
y denotes the expected number of visits to y in a random walk from

x to z.) From (2.1) and (2.2) we have

H̄jk =
N jn
k

πk
∀j, k.

Consider

n−1∑
j=1

P̄ijH̄jk = P̄iiH̄ik +
n−1∑
j=1
j 6=i

P̄ijH̄jk

= πi
N in
k

πk
−
n−1∑
j=1
j 6=i

πiPij
N jn
k

πk

=
πi
πk

N in
k −

n−1∑
j=1
j 6=i

PijN
jn
k


=
πi
πk

[δik] (taking conditional means, given the first outcome)

= δik.

Remark 1. We have defined P̄ and H̄ by treating n as a special state of the
chain. Clearly, we could have chosen any other state j and carried out a similar
analysis.

Remark 2. For reversible chains, we have H̄jk = H̄kj. This is because

Hjn +Hnk +Hkj = Hjk +Hkn +Hnj ∀i, j (**).

The proof of this can be found in [9], or it can be verified directly by using the
formula for the hitting times in terms of either resistances (see [22]) or the fundamental
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1237

matrix (see [18]). Thus the proof of Theorem 2.2 becomes simpler for the reversible
case. (In particular, we do not need to use (2.1) and (2.2).)

An interesting consequence of Theorem 2.2 is that the property in (**) is sufficient
(not only necessary) to imply reversibility. For (**) implies that H̄ is symmetric
which in turn implies that P̄ is symmetric, i.e., πiPij = πjPji ∀i, j. This alternative
characterization of reversibility is interesting for yet another reason: Interpreted in
the electrical world, it can be shown (see [23]) to be equivalent to what is known as
the reciprocity theorem (see [22]).

Corollary 2.3. Given the hitting times, the chain can be tested for reversibility
in O(n2) time.

Proof. First we designate an arbitrary state as state n and then verify (**) for
all pairs of vertices in O(n2) time. (Here we abuse notation by using n for both the
number of states and the name of a particular state.)

Corollary 2.4. Given P and π, the hitting times (Hij) can be computed with
a single matrix inversion, and conversely, given the hitting times, P and π can be
computed with a single matrix inversion.

Proof. In view of Theorem 2.2, we need to show only (a) how to compute H from
H̄, and (b) how to compute P from P̄ .

(a) For 1 ≤ i, j ≤ n− 1, we have

Hin =
∑
k

N in
k =

∑
k

πkH̄ik,

Hni = H̄ii −Hin,

Hij = Hin +Hnj − H̄ij .

Thus we can first compute Hin and Hni ∀i < n, and then compute Hij for 1 ≤ i, j ≤
n− 1.

(b) We need to compute πn and Pni, since the rest of the information is available
in P̄ . Since π is stochastic, and πP = π, we have

πn = 1−
∑
i<n

πi = 1−
∑
i<n

P̄ii,

πnPni = πi −
∑
j 6=i,n

πjPji =
∑
j 6=n

P̄ji.

We observe that Theorem 4.4.12 of [18] gives an alternative way of computing
the chain, given all-pairs hitting times. However, the method outlined above seems
simpler, since the solution can be written in essentially one equation; see Theorem
2.2.

2.2. A trace inequality. Based on some empirical results and Lemma 2.1
above, we conjectured that

∑
i,j πiPijHij ≤ n − 1, with equality under reversibil-

ity of the chain. This plays a crucial role in all our applications below, besides having
an intrinsic importance. Recently, Aldous [1] proved this conjecture using a result
due to Fiedler et al. [12]. We provide a slightly different proof using Theorem 2.2 and
the main theorem in [12].

Definition 2.5. An M -matrix is an n× n matrix A of the form A = αI − P in
which P is nonnegative and α is at least as big as the largest eigenvalue of P .
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1238 PRASAD TETALI

An alternative characterization of nonsingular M -matrices (see [21]) is that a
nonsingular matrix A with nonpositive off-diagonal entries is an M -matrix iff A−1 ≥
0, meaning that all the nonzero entries are positive. From this, it is clear that the
matrix P̄ defined above is an M -matrix. The following theorem of Fiedler et al. is an
interesting trace-inequality.

Theorem 2.6 (Fiedler et al. [12]). For a nonsingular M -matrix A (size n× n),
tr(A−1AT ) ≤ n, with equality holding iff A is symmetric.

Now we are ready to state and prove the generalization of Lemma 2.1.
Corollary 2.7.

∑n
i,j=1 πiPijHij ≤ n − 1, with equality holding iff P (, ) is a

reversible chain.
Proof. Using Theorem 2.6 with P̄ in place of A, we have tr(H̄P̄T ) ≤ n − 1. We

are done by noticing that

tr(H̄P̄T )

=

n−1∑
i=1

n−1∑
j=1

H̄ijP̄ij

=
∑
i

H̄iiπi −
∑
i 6=j

H̄ijπiPij

=
∑
i

[Hin +Hni]πi −
∑
i 6=j

[Hin +Hnj −Hij ]πiPij

=
∑
i

[Hin +Hni]πi −
∑
i

Hinπi(1− Pin)

−
∑
j

Hnj(πj − πnPnj) +
n−1∑
i,j=1

πiPijHij

=
n∑

i,j=1

πiPijHij .

3. Lower and upper bounds on stretch. We recall the definition of stretch of
a random walk from the introduction: a random walk is said to have stretch s if there
exists an a > 0 such that, for every v0, . . . , vk,

∑k
i=1 evi−1vi ≤ s

∑k
i=1 Cvi−1vi +a. The

following facts follow easily from the definition of stretch.
Fact 1. If a random walk has stretch s on cost matrix C = {Cij}, then the walk

has the same stretch on C ′ = {βCij}, where β is any positive constant.
Fact 2. In computing the stretch of a random walk, it suffices to consider se-

quences of vertices, v0, v1, . . . , vk = v0, that form simple cycles in the graph G.
Note that if a random walk has a stretch of c on simple cycles, then since any

cycle can be decomposed as the union of disjoint simple cycles, the random walk will
have stretch c on arbitrary closed paths. Now, as shown on page 426 of [8], Fact 2
follows from the fact that we gave ourselves room by allowing for an additive constant
in the definition of stretch.

Let C = {Cij} be the given cost matrix of size n× n.
Definition 3.1. Let Ψ(C) be defined as the maximum over all cycles (v0, . . . , vk =

v0) of the ratio ∑k−1
i=0 Cvi,vi+1∑k−1
i=0 Cvi+1,vi

.
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1239

If we assume that the costs satisfy the triangle inequality, then it is easy to see
that Ψ(C) ≤ n−1. (Note that Ψ is defined in [5] and is termed the cycle offset ratio.)

Theorem 3.2. Any random walk over a directed weighted graph has stretch at
least (n−1)/Ψ(C), where C = {Cij} is an n×n matrix specifying weight Cij on edge
(i, j).

Proof. Note that the lower bound is n− 1, when C is symmetric, since Ψ(C) = 1.
In fact, the proof is identical to Theorem 1 of [8], wherein the symmetric case was
dealt with.

We now introduce the notion of ergodic cost matrices, which subsumes the class of
resistive cost matrices, introduced in [8]. First, we describe two types of cost matrices
for which there exist random walks with stretch at most n− 1.

Type I. Let Cij = Hij ∀i, j, i 6= j, where Hij denote the hitting times of an
n-state ergodic Markov chain.

Claim 1. Every cost matrix of Type I has a random walk with stretch at most
n− 1.

Proof. Note that, in view of Fact 2, it suffices to bound stretch over all simple
cycles; this can then be extended to all paths, with an additive constant such as
maxi,j Cij .

Consider the walk with Hij as the hitting times. The expected cost per move is

E =
∑
i,j

πiPijCij =
∑
i,j

πiPijHij ≤ (n− 1)

by Corollary 2.7. The claim now follows by noticing that the expected cost of a
traversal over any sequence v0, . . . , vk of vertices equals E ×∑k−1

i=0 Hvivi+1 = E ×∑k−1
i=0 Cvivi+1 .

Type II. Let Cij = 1
2 [Hij + Hji] ∀i, j, i 6= j, where Hij now denote the hitting

times of any reversible Markov chain.
Claim 2. Every cost matrix of Type II has a random walk with stretch at most

n− 1.
Proof. As in the proof of Claim 1, without loss of generality, it suffices to bound

stretch over all simple cycles.
The expected cost per move is

E =
∑
i,j

πiPijCij =
1

2

∑
i,j

πiPij [Hij +Hji] = n− 1

by Lemma 2.1 and reversibility of P . Moreover, the expected cost of a traversal over
any (cyclic) sequence v0, . . . , vk = v0 of vertices is, as before, equal to

E ×
k−1∑
i=0

Hvivi+1

= E × 1

2

[
k−1∑
i=0

Hvivi+1
+
k−1∑
i=0

Hvi+1vi

]
by (**)

= (n− 1)

k−1∑
i=0

1

2
[Hvivi+1

+Hvi+1vi ]

= (n− 1)×
k−1∑
i=0

Cvivi+1
.
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1240 PRASAD TETALI

Hence we have the claim.

Remark 3. Any quantitative sharpening of the trace inequality (Theorem 2.6)
immediately gives an improved upper bound on stretch for cost matrices of Type I.

Definition 3.3. A cost matrix is ergodic if it is either the hitting time matrix
of an ergodic chain (Type I) or the commute time matrix of a reversible chain (Type
II).

Note that Theorem 2.2 guarantees that we can test if a matrix is ergodic or not
with essentially a single matrix inversion.

Theorem 3.4. Every graph with an ergodic cost matrix has a random walk with
stretch ≤ n − 1. Moreover, this walk (termed ergodic walk) can be designed with a
single matrix inversion.

Proof. From Claims 1 and 2, the first part of the theorem follows. We now show
how Theorem 2.2 can be used to design the desired random walk. Let G be a graph
with the ergodic cost matrix C. In view of (**) it is easy to see that Cin+Cnj−Cij =
Hin+Hnj−Hij , regardless of whether C is of Type I or II. Define H̄ij = Cin+Cnj−Cij ,
for 1 ≤ i, j ≤ n − 1. The rest should be obvious: We construct P , the transition
probability matrix of the desired walk, by first computing P̄ using Theorem 2.2.

Remark 4. Recall that a cost matrix is resistive if the Cij can be interpreted
as effective resistance Rij ∀i, j. Note that any resistive cost matrix is of Type II
(modulo a constant factor), since effective resistance Rij is essentially the commute
time Hij+Hji (modulo the same constant factor) of a reversible chain. This, together
with Fact 1, shows that our results imply those of [8].

The lower and upper bounds are obviously tight under symmetry, since Ψ(C) = 1.
The following example shows that the lower bound is, in general, tight.

Example. Consider a directed cycle 1, 2, . . . , n, 1 with cost 1 on each directed
edge (i, i + 1). Now put in all other edges to make a directed Kn and assign the
distance along the original cycle to be the cost of each edge. Thus the cost matrix has
Ψ = n − 1. The optimal random walk (with stretch 1) is, in fact, the deterministic
walk always going around the cycle.

With each undirected cycle, we associate the following notion of a (strongly con-
nected) “bicycle.” A bicycle is a sequence of nodes v0, v1, . . . , vk−1, v0, vk−1, . . . , v1, v0,
i.e., the undirected cycle traversed once in either direction. The following asserts that
our random walk is optimal over traversals of 1.

Corollary 3.5. The stretch over any bicycle of any random walk is ≥ (n− 1),
and the ergodic walk achieves the equality.

Proof. The equality is obvious in view of the preceding theorem. The proof of
the lower bound is essentially the proof of Theorem 1 of [8].

The cat and mouse game. As mentioned in the introduction this game is a
convenient tool in analyzing more complicated on-line strategies. For completeness,
we describe the game here, but we refer the reader to [8] for further details and related
interesting references. This is a game played for a fixed number of rounds between a
cat and a mouse on a graph. Each round begins with both the cat and the mouse on
the same vertex; the mouse moves once (and just once) at the beginning of the round
to some (carefully chosen) vertex unknown to the cat. The rest of the round consists
of the cat’s moves (which could be deterministic or randomized) on the edges of the
graph until the cat reaches the vertex that the mouse is at. Each move of the mouse
can use information about all previous moves by the cat. A strategy for the cat is
c-competitive if there exists an (additive) constant a ≥ 0 such that for any number of
rounds and any strategy of the mouse, the cat’s expected cost is at most c times the
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1241

mouse’s cost +a.
Theorem 3.6. For any n × n ergodic cost matrix C and for any random walk

strategy by the cat, there is a mouse strategy that forces the competitiveness of the cat
to be at least (n − 1)/Ψ(C), and the ergodic walk by the cat achieves a competitive
ratio ≤ (n− 1).

Proof. It was pointed out in [8] that a random walk with stretch c defines a
memoryless c-competitive strategy for the cat: in each round the cat, without re-
course to its previous moves, executes a random walk with stretch c. Thus the upper
bound is immediate from Theorem 3.4 above. For the lower bound, we use a stan-
dard argument (used, e.g., in [8] and [20]). Consider (n− 1) mice, one on each node
except where the cat is. Whenever a cat moves from i to j, the mouse on j moves
to i. Thus the mice together pay a cost of

∑k−1
i=0 Cvi+1,vi , whenever the cat takes a

walk v0, . . . , vk incurring a cost of
∑k−1
i=0 Cvi,vi+1

. The single mouse strategy is going
to be (just as in [8]) that we choose one of the (n − 1) strategies uniformly at ran-
dom. By the definition of Ψ(C), the mouse can always make the competitive ratio to
be ≥ (n− 1)/Ψ(C).

4. k-servers with asymmetric costs. Consider the usual k-server problem
with the triangle inequality constraint on the costs. An adaptive on-line adversary
(provably different from the oblivious and the adaptive off-line ones) chooses the next
request at each step, knowing the current position of the on-line algorithm and, if
1, moves one of its servers to satisfy the request. We describe here a randomized
on-line algorithm that works well against such an adaptive on-line adversary. (The
significance of results proved against such an adversary is as follows. It was shown
in [3] that a c-competitive randomized on-line algorithm against an adaptive on-line
adversary implies the existence of a c2-competitive deterministic algorithm.) Let us
assume that all the costs are positive and bounded. Let us, however, not make the
assumption that the cost Cij of moving a server from position i to j be the same as
that of moving a server from j to i, Cji. We also make the strong assumption that
every k × k submatrix is ergodic in the sense defined above.

Definition 4.1. Let the edge offset ratio Ψ′(C) be maxi,j(Cij/Cji).
We may simply write Ψ′ to denote Ψ′(C) as long as there is no confusion as

to the underlying C. Note that Ψ(C) ≤ Ψ′(C), and when C is symmetric Ψ(C) =
Ψ′(C) = 1.

We are now ready to state the main theorem of this section.
Theorem 4.2. Let C be a cost matrix on n nodes. If every submatrix on k + 1-

nodes is ergodic, then we have a randomized kΨ′(C) competitive strategy (against an
adaptive on-line adversary) for the k-server problem on C.

Proof. For convenience, we refer to the k-servers under our randomized on-line
strategy as randomized servers. The strategy is as follows. Suppose the randomized
servers are on positions 1 through k. Let the current request be on position x. We
find the (unique) ergodic walk that corresponds to these k+1 vertices by interpreting
the costs as the hitting times. (Note that this computation, for all choices of k + 1
vertices, can be done once and for all at the beginning.) Let pij denote the transition
probabilities of this walk. Then the strategy is to move the (randomized) server at j
(for j = 1, . . . , k) to x with probability (pxj/

∑
j pxj). (The probabilities clearly sum

to 1, over all j.)
We can model the situation as a game between the randomized server and an

adversary. The adversary controls k “off-line” servers. In each round of the game, the
adversary picks the next request (vertex) and moves one of his servers to that vertex.
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1242 PRASAD TETALI

Then the randomized server uses her strategy to move one of her servers to the request.
We want to show that the expected cost of the randomized server is within a constant
factor of k times the cost incurred by the off-line server. Toward this, let us denote the
positions of the randomized servers and the adversary’s servers by a = {a1, . . . , ak}
and b = {b1, . . . , bk}, respectively. We define the following “potential function” Φ:

Φ(a,b) =

n∑
i,j=1

Cij −
∑
x

∑
j

Cxaj + kmin
σ

∑
i

Cbiaσ(i)
,

where x ranges over nodes where there is currently no randomized server, and σ
ranges over (directed) matchings between the adversary’s positions and the random-
ized servers’ positions. (The first term in the definition of Φ is introduced simply
to make Φ positive and is thus not essential to the proof.) Let CostR and CostA
denote the accumulated costs of the randomized servers and the adversary’s servers,
respectively.

Furthermore, let

∆ = Φ + CostR − kψ′ × CostA.

We would like to show that ∆ is always nonincreasing with every move of either
the randomized servers or the adversary.

Adversary’s move. Consider a move by the adversary’s server from node bj to
bj′ . The adversary clearly pays cost Cbjbj′ . We want to show that ∆(new)−∆(old) =
Φ(new)−Φ(old)−kψ′Cbjbj′ is ≤ 0. Let the minimum matching in Φ(old) be bi → ai∀i.
Then define a new matching as follows. Match bi with ai for i 6= j′, and match bj′
with aj . Clearly,

Φ(new)− Φ(old)− kψ′Cbjbj′
≤ kCbj′aj − kCbjaj − kψ′Cbjbj′
≤ kCbj′aj − kCbjaj − kCbj′bj (by the definition of ψ′)
≤ 0, since Cbj′bj + Cbjaj ≥ Cbj′aj .

Randomized servers’ move. For this half of the proof, it was shown in [8] that
(restrictive as it may sound) it suffices to prove the case when the randomized servers
and the adversary agree on (i.e., share the same vertices) k − 1 positions and differ
in only one position. The same justification applies in our situation as well, and we
omit the straightforward proof.

Thus let us assume without loss of generality that the adversary occupies positions
1 through m− 1 = k, and the randomized servers occupy positions 2 through m. Let
the request be on 1. So, the randomized server moves from j to 1 with probability
p1j/(

∑
j p1j), paying a cost of Cj1. Here and in the claim below,

∑
j represents

∑m
j=2.

Note that
∑
j p1j is equal to 1, if p11 = 0, but in general,

∑
j p1j = 1− p11.

Claim. ∑
j

p1j∑
j p1j

[Φ(new)− Φ(old) + Cj1] = 0.

Proof. Clearly, the minimum matching before the move has cost C1m, since the
minimium matching consists of the (directed) edge (1,m). Similarly, after the move
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1243

(of the server from j to 1), the minimum matching has cost Cjm (match j with m),
since the adversary and the randomized servers are identical everywhere else. Thus

[Φ(new)− Φ(old) + Cj1]

= −
m∑
i=1

Cji +
m∑
i=2

C1i + kCjm − kC1m + Cj1

= −
m∑
i=2

Cji +
m∑
i=2

C1i + kCjm − kC1m

= −
m∑
i=2

Hji +
m∑
i=2

H1i + kHjm − kH1m.

Thus∑
j

p1j∑
j p1j

[Φ(new)− Φ(old) + Cj1]

=
1∑
j p1j

− m∑
i=2

∑
j

p1jHji +
m∑
i=2

H1i

∑
j

p1j

+
1∑
j p1j

k∑
j

p1jHjm − kH1m

∑
j

p1j


=

1∑
j p1j

 m∑
i=2

−∑
j

p1jHji +H1i(1− p11)


+

1∑
j p1j

k
∑

j

p1jHjm −H1m(1− p11)


=

1∑
j p1j

[(
m∑
i=2

1

)
− k
]

(since H1i = 1 + p11H1i +
∑m
j=2 p1jHji)

= 0.

We showed that ∆ is always nonincreasing. This concludes the proof that the
randomized strategy is kΨ′-competitive against an adaptive on-line adversary.

5. Task systems. Recall the description of a task system from the introduction:
We have a task system (S,C) for processing sequences of tasks wherein S is a set of
states, and C is a cost matrix, describing the cost of changing from state i to state
j. The task system problem is to design an on-line schedule (choose si only knowing
T1, . . . , Ti) so that the algorithm is w-competitive—on any input sequence of tasks,
the cost of the on-line algorithm is, barring an additive constant, at most w times
that of the optimal off-line algorithm. In [5] it was shown that w(S,C) = 2|S| − 1
for every metrical task system (MTS), and w(S,C) ≤ (2|S| − 1)Ψ(C) = O(|S|2), for
every task system. Subsequently, [8] gave a (2|S| − 1)-competitive randomized on-line
algorithm for every MTS. It is to be noted that although this is a weaker result in
light of the deterministic algorithm of [5], the randomized algorithm is conceptually
and otherwise much simpler and is, moreover, memoryless.

Our contribution is as follows. We prove the analogous simplification for the
(nonmetrical) task systems using randomization. We prove a lower bound of (2|S| −
1)/Ψ(C) on the competitive ratio of any randomized on-line algorithm and provide a
randomized on-line scheduler with w(S,C) ≤ (2|S| − 1). Note that our results imply
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1244 PRASAD TETALI

those of [8] in the case of metrical task systems. In the asymmetric case, we provide
improved bounds to those of [5] with simpler memoryless randomized schedulers.
However, we do have the restriction that the cost matrix should essentially be a
hitting time matrix of an ergodic chain. Thus the random walk we refer to below is
the ergodic walk designed by interpreting the cost matrix as the hitting time matrix
as explained in sections 2 and 3.

5.1. Lower and upper bounds. The following lower bound on the competi-
tiveness of any deterministic or randomized algorithm for the task system problem
is straightforward to prove from the proofs in [5] and [8] for the lower bounds of the
MTS problem.

Theorem 5.1. Any deterministic or randomized on-line algorithm for the task
system problem has a competitive ratio of at least (2n− 1)/Ψ(C) against an adaptive
on-line adversary.

Proof. The proof is similar to the proofs for the symmetric case. For the deter-
ministic part, follow the proof of Theorem 2.2 of [5]. For the randomized part, the
proof is essentially that of Theorem 11 of [8].

For the upper bound we use the basic traversal algorithm first described in [5]
and also used in [8] in the following modified form:

(i) The positions are visited in a sequence, that is, prescribed by a random walk,
but independent of the input task sequence T1, T2, . . . .

(ii) There is a sequence of positive threshold costs β1, β2, . . . such that the transi-
tion from si to si+1 occurs when the total task processing cost incurred since entering
si reaches βi.

Please refer to both [5] and [8] for a full account on such traversal algorithms,
especially for the technical difficulties involved. The only originality on our part is in
choosing an appropriate value for βi. We simply choose βi to be the return time Hsisi ;
i.e., when in state j, the random scheduler leaves state j once the task processing cost
incurred since reaching j equals the expected time for a random walk beginning from
j to return to j for the first time. (This has an intuitive appeal!) Once again the
analysis in our case turns out to be quite simple.

Theorem 5.2. There exists a randomized traversal algorithm for task systems
(with ergodic cost matrices) which is (2n− 1)-competitive.

Proof. By total cost we mean the sum of the task processing costs and the moving
costs. We can assume without loss of generality (see [8]) that the adversary is a
“cruel taskmaster,” i.e., changes position only at the time the randomized on-line
algorithm reaches its current position. We further distinguish moving phases, where
the adversary changes positions, and staying phases, where the adversary stays in the
same position but the randomized server moves. Let the current position be i. We first
consider the cost incurred by the (randomized) on-line algorithm. Recall that we set
βi = Hii. Also, from our results in section 3, recall that the expected cost per move is
E ≤ (n− 1). The expected task processing cost per move is

∑
i πiβi =

∑
i πiHii = n,

since πi is the steady state probability of being at i. So, the ratio of the expected
total cost to expected cost per move (of the on-line algorithm) is [n + E]/E. Note
that it suffices to show that the expected moving cost of the on-line algorithm is at
most E times the cost of the adversary—we would then have a competitive ratio of
[n + E] ≤ (2n − 1). We show this in the following two phases, depending on when
the adversary is moving (the moving phase) and when the adversary is staying (the
staying phase):

1. The moving phase. The average cost in this phase can be analyzed as a cat
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DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1245

and mouse game, with the adversary playing the mouse’s role, yielding a competitive
ratio of E.

2. The staying phase. The cost of the adversary starting (and ending) at node
i is βi, whereas the expected moving cost of the on-line algorithm in that phase is
E ×Hii = Eβi.

5.2. Memoryless counterpart. The above algorithm needs to store a current
virtual position and a counter for the accumulated task processing cost at that posi-
tion. However, this can also be made memoryless in the spirit of [8], without sacrificing
the competitive ratio with the idea of using a probabilistic counter. We omit further
discussion since the details are the same as those of [8], modulo the following aspect.
We need to bound the stretch of a random walk while allowing for positive costs on
self-loops. We merely state the requisite lemma and outline the proof idea.

Lemma 5.3. The ergodic walk has a stretch of at most (2n− 1), on a graph with
cost matrix C, where Cii are not necessarily zero.

Proof idea. We adopt the procedure that was described in detail in [8]. We merely
suggest the solution and omit the proof, since it is similar to that of Theorem 7 of [8].
Intuitively, the idea is to place a special vertex on each self-loop with the appropriate
transition probabilities and appeal to the case of no self-loops. Since the number
of vertices is doubled (in the worst case), the stretch is at most 2n − 1 rather than
n− 1.

6. Loose ends. The most important issue here is in extending our results to all
cost matrices (say, those that satisfy the triangle inequality). In particular, tighter
upper and lower bounds on a stretch of random walks on directed graphs would con-
stitute significant progress. Coppersmith et al. [8] extend their results from resistive
cost matrices to all cost matrices (at least existentially, if not with an efficient con-
struction); i.e., they show that given any symmetric cost matrix {Cij}, satisfying
the triangle inequality, there exists a resistive (approximation) network (with con-
ductances cij) such that the effective resistance Rij ≤ Cij whenever cij ≥ 0, with
Rij = Cij whenever cij > 0. Much in the same spirit we would like to aim for
an ergodic Markov chain with the property that Hij ≤ Cij , with equality whenever
pij > 0. The existence of such an “approximate chain” is clearly implied by the result
of [8] when we are seeking a reversible chain. The main hurdle in mimicking the
approach taken in [8] for the nonreversible case is the following. Consider the space
of all n− 1× n− 1 matrices, P = {P̄}, where P̄ corresponds (as in Theorem 2.2) to
an ergodic chain on n states. It is easy to see that for 0 ≤ α ≤ 1,

P̄1, P̄2 ∈ P ⇒ αP̄1 + (1− α)P̄2 ∈ P.

Let’s even assume that P is a space of positive definite matrices. Now the function,
log of the determinant, is concave over the space of positive definite symmetric (or
Hermitian) matrices, and symmetry is crucial here. We have examples of asymmetric
P̄ (i.e., nonreversible chains) which show that the log of the determinant is neither
concave nor convex over P. This makes the analogous result for the nonreversible
case much harder. On the other hand, Coppersmith et al. benefit from convexity as
follows. They formulate the approximation as an appropriate convex programming
problem; the existence of the approximate chain (resistive network) is then guaran-
teed by simply appealing to the “Kuhn–Tucker” (necessary and sufficient) conditions
arising in the solution of the convex programming problem. It is still conceivable that
a somewhat different approach works for the nonreversible case.
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