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Abstract

The aim of this research is to establish a coherent framework for data mining in the relational model.

Observing that data mining depends on two partitions, the classi�er and the estimator, this paper

de�nes the classi�er=estimator (CE) framework. The classi�er indicates the target of the data mining

investigation. The classi�er may be di�cult to express from the relational instance or may involve

an \oracle" beyond the extant data. The estimator is typically simply expressible using the relational

instance. The degree to which the estimator re�nes the classi�er partition can be used to measure how

well the data instance matches the concept being investigated.

The CE framework is shown to generalize a variety of data mining and database concepts, including

rough sets, functional dependency, multivalued dependency, and association rules. Furthermore, the CE

framework suggests a wider range of data mining questions. The CE framework is shown to naturally

express qualitative and quantitative measures of the quality of approximation. Additionally, the CE

framework allows a question to be posed at a number of di�erent conceptual scopes from local to global

interests.
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1 Introduction

Data mining faces a predicament similar to that databases faced prior to Codd's [8] introduction of the

relational model: di�erent data mining problems seem to have little to do with one another, approaches are

generally ad{hoc, there is no concise or precise means of specifying problems, and so forth. This situation

has been observed elsewhere, for example [16, 20]. As with databases when all access was navigational, data

mining semantics is often de�ned by implementation, in this case search. There is no distinction between

what is being sought and how the search is being carried out. While some of this admittedly is the result of

data mining's diversity, there do exist enough common features to provide uniformity, if not for all of data

mining, at least for a well-de�ned portion. The aim of this research is to establish a coherent framework

for data mining in the relational model [8, 1, 27]. Our exemplar is the success of the relational model in

addressing two particular problems in databases: providing data independence and a rigorous mathematical

model. We address comparable problems in data mining with the hope of achieving like{minded results.

Data mining is the elicitation of useful information from large amounts of data [12]. This \drawing forth"

is made wrt some concept1 that varies along two dimensions. First, there is a degree of breadth/speci�city,

in that the mining may look for general aspects of all the data or speci�c details of a select subset (variations

of which are commonly refered to as \roll-up" and \drill-down" in the data cube approach [15]). Second,

there is a degree of approximate validity, in that the mined information lies somewhere between true and

false

(See Fig. 1.) To be somewhat more concrete, suppose our concept is X�Y , where � indicates some

relationship between data components X and Y . Irrespective of how we interpret X;Y;�, we can envision

a degree of detail=generalization. For example, at the most general we are interested in all X;Y that might

hold for �. In this case, X;Y are free and are found in some X{space and Y {space, respectively. But we

are also interested in less global information, e.g., all Y s that hold for a distinguished X . In this case, Y is

free and X is �xed. The second dimension is degree of quality of approximation. Since \true" information is

1A notion that, while too broad to de�ne formally, is understood to establish a context of what one is interested in.
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The three shaded regions, marked by 1,2, and 3, represents some play on these

dimensions for a particular concept of interest. Both \local" and \global" are

relative terms, but indicate a kind of conceptual gradient from individual in-

stances, to sets of instances that share some properties, and so forth. 1 signi�es

a perfectly true, mostly local occurrence of the concept. 2|more global than

1|allows the concept to be approximately true. 3, on the other hand, has a nar-

row interpretation of approximation, while looking for a broader interpretation

of the concept.

Figure 1: The two dimensions of data mining: breadth=speci�cation and approximation.
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hard to come by, we settle for its approximation, the usefulness of which is decided by both the goodness of

the approximation and our need. While speci�cation of a good approximation depends upon the application,

there is only one speci�cation of absolutely true information: what we call perfect information, against which

all approximations will ultimately be judged.

The next section gives a glimpse of our framework via a standard database concept, functional depen-

dency. Section 3 and 4 examine a popular data mining framework, rough sets, and begin to formally develop

our framework. Section 5 shows how some typical database and data mining concepts are characterized in

terms of our framework. Section 6 develops a suite of quantitative and qualitative metrics. The remaining

section gives a summary and points toward future work.

2 Turning a Database Concept into a Data mining Tool

This section provides an intuitive tour of the Classi�er=Estimator (CE) framework using a well{known

concept from database theory: functional dependency (FD) [9, 30, 28, 2]. Intuitively, the notion of functional

dependency says that each value of one attribute always implies one speci�c value of another attribute2; thus,

the word \functional" is applied because the second attribute is a function of the �rst. An example of a

functional dependency in a medical care information system is that benefit code functionally determines

deductible. (This also illustrates that functional dependencies typically come from \business rules" which

provide the absolute certainty of a perfect fact.)

Formally, let r be a relation instance over attributes X;Y; : : :. For a tuple t 2 r, t:X denotes the X

component value of t. Similarly, r:X denotes the set of all X values of tuples in r. With this notation,

the functional dependence of Y on X , also written \X functionally determines Y " or \X ! Y ", is de�ned

to hold i� �(X;Y ), where �(X;Y ) � (8x 2 r:X)(9y 2 r:Y )(8t 2 r)[t:X = x) t:Y = y]. Using the familiar

semantics of �rst order logic (FOL), � is perfect in that its value is either true or false.

We now describe an informal (the formalism follows later) characterization of X ! Y in the CE frame-

work. Given an r for which we wish to test X ! Y , we �rst de�ne two classes of parameterized sets:

Ex = ft 2 rjt:X = xg and Cy = ft 2 rjt:Y = yg. It is obvious that distinct x values give distinct and dis-

joint Ex and that each t 2 r belongs to Ex for that x such that t:X = x. Thus, fExgx2r:X is a partition of r.

Similarly, fCygy2r:Y is a partition of r. The stage is now set, since the CE framework requires two partitions,

the classi�cation and the estimation{in this case, fCygy2r:Y and fExgx2r:X , respectively. Then �(X;Y )

holds i� every Ex is a subset of one speci�c Cy. Writing this symbolically, including an explicit formulation

of subset, gives exactly the same form as our initial sentence, viz., (8Ex)(9Cy)(8t 2 r)[t 2 Ex ) t 2 Cy] or

equivalently, (8Ex)(9Cy)[Ex � Cy ]. This alternative formulation provides nothing to standard functional

dependency theory (beyond demonstrating the adequacy of the CE framework to capture this important

2We use individual attributes here in order to simplify notation. Later we give more complete coverage of functional

dependencies.
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concept), but the classi�er=estimator pair is the central feature of data mining to which we now return.

It would be highly signi�cant to discover that X ! Y , but the likelihood of newly discovering this perfect

fact is so low that we would probably never try|our resources are better used in discovering something else,

something close to the truth. One way in which X ! Y may be investigated is to look at its subclasses,

the simplest of which is to see whether a dependency holds locally for speci�c values of x and y. We write

this local dependency as x
XY
! y, or simply x ! y when X and Y are clear from the context, de�ned as

(8t 2 r)[t:X = x) t:Y = y] and witnessed by Ex � Cy. In the medical example, this would be a statement

that a certain symptom always determines a unique disease; oncologists know that the presence of alpha{

fetoprotein always indicates liver cancer. The evidence for this would be that Ealpha-fp � Cliver-cancer.

At a more global level, it might be interesting to �nd all X such that �(X;Y) for some Y.

Another dimension in which FDs can be investigated is to see how well this �ts the data (this is related

to [17]). This issue is awkward to express in an FOL formulation of functional dependencies, but the many

variations are all natural using the CE framework. The common aspect of any judgement of the quality

of X ! Y is that problems are always associated with those estimator sets that split over more than one

classi�er, that is, the Ex that \straddle the boundary" of some Cy. One approximation of X ! Y (written

X  Y ) might take as valid X  Y if 90% of the tuples of r belong to an Ex that does not straddle any

Cy| a global evaluation. Another approximation criterion is local, �nding all x such that 90% of Ex belongs

to the corresponding Cy. If the percentage parameter is less than 50%, this could yield an approximation

to a functional dependency which was no longer functional, in the sense that x  y1 and x  y2, for

distinct yi. Even though the presence acid-phosphatase does not always indicate a unique disease, it is

still highly signi�cant in that it either indicates prostate-cancer or some particular kind of leukemia, each

with roughly 45% of the cases. Of course, this theme could be elaborated at great length, always considering

Ex \ Cy and Ex \ �Cy, where both are non{empty.

3 From Rough Sets to Classi�er=Estimator

Rough sets have become a popular framework for data mining investigations[24, 26, 18], but they cannot

capture many important database concepts that also are relevant to data mining. In this section, we introduce

rough sets, discuss why this framework fails to capture certain other concepts, introduce a broader framework,

and show how this framework generalizes rough sets.

Rough sets were introduced by Pawlak [22, 23] as a mathematical tool to reason about vagueness and

uncertainty. Pawlak credits Frege's boundary{line view|that a property is vague if there exists objects for

which neither the property nor its complement completely hold|as his motivation. He �nds this boundary

by di�erencing two sets: the upper{bound that contains objects for which the property possibly holds and

the lower{bound for which the property certainly holds. The possibility and certainty are established by

operating over partitions, requiring that the property that must hold for at least one member of the entire
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class (possibility) or the entire class (certainty). A rough set application attempts to approximate a property

P , where a property is merely a subset of a �nite universe U . This approximation is achieved using an

equivalence relation E over U , establishing two bounds:

lower{bound ^PE =
S
fEjE � P; for E 2 Eg

upper{bound _PE =
S
fEjE \ P 6= ;; for E 2 Eg

Three ideas, crucial to data mining, were implicit (but not explicit) in the rough sets framework. They

are:

1. Analyzing a property P by investigating its relationship(s) with certain partitions of U .

2. Evaluating the interaction of the property P and the partition E at the level of individual classes of E .

3. Measuring the \goodness" of approximation of P by E in terms of _PE � ^PE , that subset of U for

which membership in an E{class does not determine (non)membership in P .

As was discussed above, functional dependency is a concept from database design theory which suggests a

variety of data mining investigations. Unfortunately, FDs are completely beyond the reach of the traditional

rough set framework because a property only provides a binary partition of U (namely, the partition fP; �Pg).

With this in mind, we de�ne the Classi�er=Estimator (CE) framework in terms of a classi�er C and an

estimator E . Throughout the remainder of this paper, U is the universe, a �nite set; complements are taken

with respect to U unless explicitly speci�ed. C and E are partitions of U , called the classi�er and estimator

respectively. A partition of course induces and is induced by an equivalence relation on U ; for partition B,

we write xBy to indicate that x and y belongs to the same B{class. The use of E is entirely consistent with

the E of rough sets; C is a generalization of the partition fP; �Pg. We use P to denote the classi�er fP; �Pg.

Rather than using the concepts of upper{bound and lower{bound, which �t a single property P but not

an arbitrary partition C, the CE framework generalizes the set di�erence of upper{bound and lower{bound.

The critical factor here is that this di�erence is a union of E{classes that straddle the boundary of some

C{classes. We formalize these notions:

De�nition 3.1 For E 2 E and C 2 C, E straddles C, written E G C, i� E \ C 6= ; and E \ �C 6= ;. Such

an E, irrespective of the C, is called a straddler. �

Our boundary then, is made up of elements from straddlers. This boundary is called the indeterminate

set (for reasons we will give later) and is de�ned as follows:

De�nition 3.2 The indeterminate set, written IEC , is I
E
C =

S
fEjE is a straddlerg. �

Proposition 3.1 ^PE = P � IEP .

Proof P � IEP =
S
(E \ P )� IEP

=
S
fEjE � Pg [

S
fEjE G Pg �

S
fEjE G Pg

=
S
fEjE � Pg

�
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Proposition 3.2 _PE = P [ IEP .

Proof P [ IEP =
S
fE \ P jE \ P 6= ;g [

S
fEjE \ P 6= ; and E � P 6= ;g

=
S
fEjE \ P 6= ; and E � P = ;g [

S
fEjE \ P 6= ; and E � P 6= ;g

=
S
fEjE \ P 6= ;g

�

Example 3.1 (Rough Sets) Let U = ft1; t2; t3; t4; t5g with an estimator E = fft1; t2; t4g; ft3g; ft5gg and

binary property P = fP; �Pg, where P = ft1; t2; t5g. Then IEP = ft1; t2; t4g and the lower and upper

approximations of P are ^PE = P � IEP = ft5g and _PE = P [ IEP = ft1; t2; t4; t5g.

t
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t

t

t 5
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U is partitioned into halves, the shaded portion is P and the un-

shaded is �P . The classes of E are demarcated by the ellipses, the

dashed ellipse is a straddler.

�

Observe that, for any binary classi�cation, there is a duality between the lower and upper bounds:

_PE = U � ^
�PE . This duality is an artifact of the size of P , since when jPj = 2, there is only one way

in which E can be a straddler. When jPj � 3, however, the duality breaks down. The intuition is that

lower{bounds remain stable because they are completely contained and therefore, any n{ary classi�cation

cannot a�ect this. The upper{bound of one class, however, could straddle up to n� 1 classes. It is for this

reason we choose indeterminate for the boundary, since this set contains elements that are indeterminate

wrt their membership in classes of the classi�er, given the estimator.

4 Indeterminate Sets

Now that we have shown how the CE framework handles rough sets, we take another look at the indeterminate

set.

Suppose for some E ; C, that IEC = ;. We know this means there are no straddlers, but there is another

meaning we can associate with this condition, re�nement. Given two partitions A;B over U , B is a re�nement

of A, written A 4 B, read \A is less re�ned than B," i�, for every class B 2 B, there exists a class A 2 A

such that B � A. We now have the following proposition:

Proposition 4.1 IEC = ; i� C 4 E .

Proof For any E 2 E , E intersects at least one C 2 C. But since IEC = ;, E is not a straddler and hence,

E \ �C = ; and therefore, E � C. Now suppose C 4 E . Then there are no straddlers E, and therefore,

IEC = ;. �
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Consider now when IEC 6= ;. Although this means that C 4 E does not hold, we can associate some

measure of \mismatch" wrt the set IEC . This in turn provides us a means of approximating how much of a

mismatch occurred. We will discuss this more at length in Section 5, Metrics, but it su�ces here to say that

the indeterminate set can provide both qualitative and quantitative measures in a much more robust way

than rough sets.

5 Applications of the Framework

The goal of this section is to validate the CE framework by showing that it captures a wide variety of

database and data mining themes.

In each case we will exhibit a classi�er and an estimator that perfectly characterize the concept at hand.

But just as importantly, in each case it is also possible to transform the perfect version into a range of data

mining investigations varying along the breadth=speci�city and approximation dimensions (as in Section 2

above). Each of those variations is implicit in some special treatment of the interaction of the C and E

classes, but we do not give any variation explicitly at this point. A subsequent section, \Metrics", discusses

a toolkit for evaluating approximations.

To facilitate our discussion, we use the following notations, R[A] is a relational schema where A =

fA1; : : : ; Ang and we assume an instance r over R[A]. For X � A, we write [X ] to mean a partition of r

into sets of tuples that agree on X . Formally s[X ]t, s:X = t:X , for s; t 2 r.

5.1 Functional Dependencies

Dependency theory has long been used to measure quality in relational database design, but dependencies

also arise quite naturally and often by themselves in databases. Much study has been devoted to this

area, and there are numerous important and useful results. There is, for example, a small set of inference

rules (usually called Armstrong's Axioms[6, 3]), both sound and complete, for FDs. With these axioms,

we can reason with and about FDs. Clearly, if we had a means of establishing whether some number

of FDs held, we could use these axioms to draw further, logically correct, conclusions about our data.

Here we show how the CE framework establishes when an FD exists, using an equivalent formulation:

X ! Y i� (8s 2 r)(8t 2 r)[s:X = t:X ) s:Y = t:Y ].

Proposition 5.1 X ! Y i� I
[X]
[Y ] = ;.

Proof SupposeX ! Y . We show that E 2 [X ] does not straddle any C 2 [Y ]. Since, for every s; t 2 r; s:X =

t:X ! s:Y = t:Y , it follows that E � C, and E cannot straddle C. But E cannot straddle any other C 0 2 [Y ],

because E \ C 0 = ;. Now, suppose I
[X]
[Y ] = ;. This means for every E 2 [X ], there exists some C 2 [Y ] such

that E � C and E \C 0 = ;, for all other C 0 2 [P ]. In other words, s; t 2 r; s:X = t:X ! s:Y = t:Y . Hence,

X ! Y . �
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5.2 Multivalued Dependencies

Although data mining has largely ignored multivalued dependencies (MVDs)[10, 11, 29], they too are an

interesting kind of dependency for a number of reasons: MVDs occur quite frequently, are the \
ipside" of

FDs (two sets of attributes are wholly independent rather than functionally dependent), and like FDs, there

exists a sound and complete set of axioms for reasoning about MVDs[7, 29]. Essentially an MVD requires

that a set of Y values be associated with a particular X value. In fact, when the relational formalism is

extended to allow sets as well as atomic values, an MVD is simply an FD with set{valued attribute on the

right{hand side. Before giving the CE characterization, we formally de�ne an MVD.

In the following, say A = X [ Y [ Z, where X;Y; Z are pairwise disjoint. We write t 2 r as hx; y; zi,

where t:X = x, t:Y = y, and t:Z = z. Also, for tuple s, Ny(s) = fyjhs:X; y; s:Zi 2 rg.

De�nition 5.1 X multidetermines Y in the context Z (mention of Z is often ommited since it is implied by

Z = A� (X [ Y )), written X � Y jZ if whenever s; t 2 r and s:X = t:X , then Ny(s) = Ny(t). �

With this formulation and C; E pairs is given by C such that sCt � Ny(s) = Ny(t) and E = [X ], the

desired result is immediate.

Proposition 5.2 X � Y jZ i� C 4 E. �

5.3 Association Rules

Association rules (AR) have been gaining popularity in both data mining and databases, discussed in [4, 5,

21, 20]. As a concept, AR begins with an instance r over R[A], where each attribute Ai 2 A has a boolean

domain f+;�g. For W � A, we write W+ to mean the set of tuples ftjt 2 r ^ t:Ai = +; for each Ai 2Wg.

Without loss of generality, let X = fA1; : : : ; Akg and Y = fAk+1; : : : ; Amg. Expression A1 ^ : : : ^ Ak )

Ak+1 ^ : : : ^ Am, signi�es that for t 2 r, t 2 X+ implies there is a tendency that t 2 Y+. This tendency

is indicated by a con�dence c and support s. The con�dence is meant to denote strength and is the ratio

jXY+j=jX+j. The support provides the overall frequency of the rule and is the ratio jXY+j=jrj. Rules that

have high con�dence and strong support are said to be strong. The task is to discover strong association

rules. We will show later how an association rule can be handled by a local application of FDs, but �rst we

directly characterize AR in the CE framework. Because the issue of partition re�nement are \value{blind"3,

we must make certain that r contains a tuple t+ with a + in every attribute|this may be accomplished ad

hoc by adding a tag attribute, with a value \-", to all tuples of the original r and then adding tuple t+ with

value \+" for all attributes, including the tag.

With this slightly constrained r, we move to the CE de�nitions. The classi�er is C = fXY +; XY +g and

the estimator is E = fX+; X+g.

3This is called genericity in database query theory
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Proposition 5.3 X ) Y; c = 1 i� C 4 E .

Proof Suppose X ) Y; c = 1. By the de�nition of c, jXY+j = jX+j. Since XY+ � X+, XY+ = X+, and

XY + = X+. Now, suppose C 4 E . Since t+ 2 XY+ \ X+, this can only hold if XY+ = X+. This gives

c = 1 as required. �

An AR is actually on a local fact related to an FD. That is, the above example is +; : : : ;+
X;Y
! +; : : : ;+.

Using localization of FDs allows exploration of signi�cant associations where some attributes are negative

as well as some positive. This is important, for example, in medical diagnoses.

Example 5.1 Suppose each tuple is a dianostic test that looks for a positive reaction helping di�erentiate

characteristics of similar microbiologic genera. The tests performed are Gelatinase, Mannitol, Inositol,

OF(glucose) (a `+' means a positive test) and whether the organism is toxic (a `+' means the organism is

toxic.) On the left is the instance. On the right, rules 1. and 2. are classical association rules, while rules

3. through 5. relate negative as well as positive characteristics.

test-id Gel Man Ino OF-glu Toxic

2 + + - + +

92 + + - + +

33 - - + - -

54 + - + - -

45 + - + + +

Gel ^ OF-glu ) Toxic

Man ) OF-glu

Man+ ) Ino�

Man� ) Ino+

OF-glu� ) Toxic�

�

There is another variety of \associations" that begins with a very di�erent representation. An example in

the medical context begins with the patient-symptom relation, denoted PS, with attributes pid and symptom.

This data indicates the symptom weakness always occurs in the presence of symptom fatigue, symbolized as

fatigue� weakness. Then x � y i� (8p 2 PS.pid)[hp; xi 2 PS ) hp; yi 2 PS]. To express this in the CE

framework, de�ne the classi�er C = [symptom] and estimator E = fEy; E
�
y gy2symptom where

Ey = ftjt 2 PS ^ t:symptom = y ^ (9t0 2 PS)[t:pid = t0:pid ^ t0:symptom = fatigue]

E�
y = ftjt 2 PS ^ t:symptom = y ^ (@t0 2 PS)[t:pid = t0:pid ^ t0:symptom = fatigue]

This classi�er=estimator pair in fact facilitates the determination of all y such that fatigue � y. To see

this, observe that symptom y = Ey [ E�
y . E�

y 6= ; i� there is some pid p such that hp; fatiguei 2 PS but

hp; yi =2 PS. So, fatigue� y i� symptom y = Ey.

Of course with �xed x and y, x� y can be transformed into an AR, viz., symptom = x) symptom = y.

But this transformation must create a new Boolean attribute for each value of symptom. Except by explicit

search, AR cannot �nd all y such that symptom� y, much less the even more general question considered

next. On the other hand, exploration of conjunctions involving several attributes requires joining the relation

with itself, perhaps several times.
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Consideration of the more general question of discovering all x; y pairs such that x � y shows the

�rst example where the base relation does not have enough \room" for relevant classi�er and estimator

partitions.4 It is necessary to build a larger relation, in this case U is PS� PS.symptom. Then the partitions

are Cy = ftjt = hp; x; yig and Ex = ftjt = hp; x; yig. Thus Ex straddles Cy i� it is not the case that

x � y. This example also clearly shows that the CE framework is a conceptual tool and not a recipe for

implementation, since in most cases, a single pass through the data will su�ce to compute the associative

metrics.

6 Metrics

There is a large body of work on metrics [25, 13, 14, 17, 19]. In the CE framework, the goodness of an

estimator can be decided either quantitatively or qualitatively. The CE framework does not itself prefer one

metric over another, but provides a way to describe and evaluate them.

In both kinds of goodness measure, there is the dimension of breadth/speci�city that enables us to focus

the CE to our need. This leads us to an equivalent analytic de�nition of indeterminate set,

I
E
C =
S
fE \ Cj E \ C 6= E; for E 2 E ; C 2 Cg.

Proposition 6.1 For two partitions E ; C over U , IEC = I
E
C

Proof Suppose there is a straddler E in the union forming IEC . Then let C1; : : : ; Ck, be classi�er sets that E

straddles and E =
S
E \ Ci. Since E G Ci, each E \ Ci is in the union de�ning I

E
C and thus, contains the

straddler E. Now, suppose there is an S in union forming I
E
C . Then S � E, where E 2 E straddles some

C 2 C. Hence, IEC contains the straddler E and also S. �

Observe that like IEC , I
E
C is also well{de�ned for two collections of sets E ; C and allows us to examine E

one column at a time and C one row at a time, viz., IEC =
S
E2E I

fEg
C =

S
C2C I

E
fCg. From now on, we write

I
E
C and I

E
C , understanding they stand for I

fEg
C and I

E
fCg, respectively. Note that IEC is more robust than

IEC , since I
E
C = IEC , but I

E
C ( IEC unless IEC = ;.

Given an estimator E = fE1; : : : ; Ekg and classi�er C = fC1; : : : ; Cng, there is a multitude of possible

measures. Some of these that suggests themselves to us are

1. Indeterminate count of P : cE(C) = j IEC j. Somewhat local, made wrt a particular C{class.

2. Indeterminate count of E: cC(E) = j IEC j. Somewhat local, made wrt a particular E{class.

3. Indeterminate count at E;C: jIEC j. Very local, made wrt a particular C{class, E{class.

4. Subtotal indeterminate count E 0 � E , C0 � C: C(E 0;P 0) =
P

C2C0 cE0(C) =
P

E2E0 cC0(E).

5. Determinate precision of C: dE(C) =
jCj � cE(C)

jCj .

4This is an \input/output complexity" issue.
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6. Indeterminate precision of P : iE(C) =
jCj

jcj + cE(C) .

7. Normalized determinate precision of P : dE(C) =
jCj � cE(c)

jUj .

8. Total precision: C(E ; C) =
P

C2P d(C)

Each of these metrics can be used to evaluate which of these two estimators is quantitatively better. An

estimator E is qualitatively better than estimator F i� IEC � IFC , in other words, F 4 E .

7 Summary Conclusions

This paper has presented a framework which

� uni�es a variety of data mining and atabase concepts.

� provides a range of breadth=speci�city so important to drill{down data mining.

� supports a wide variety of quantitative and qualitative metrics

Furthermore, many of the CE constructions are surprisingly simple. It is the fact that such a variety of

topics are handled simply makes this framework signi�cant.

We began the paper by drawing paralles with relation database theory. Continuing this metaphor, we feel

we still need to discover the analogs of SQL, QBE, e�cient join algorithms, query optimization strategies, etc.

In addition, we intend to \push the envelope" of the CE framework in such areas as temporal information,

nested relations, and sampling.

One �nal example suggests a broad range of possibilities. The general issue involves relationships between

the values of attributes. Consider a relation over X;Y; Z. We are interested in all values t:x such that

t:Y > t:Z. This is in fact an instance of a property, in that the classi�er is merely a partition distinguishing

those t for which t:Y > t:Z holds from those which it does not. Said another way, the speci�ed problem is a

kind of functional dependency, except that the dependent is derived rather than base data. The generalization

is immediate; by using function of the attribute values rather than just the values themselves to de�ne the

equivalence classes, a huge variety of data mining is possible.
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