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Examining the Performance of Six 
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in Different Forest Planning Problems
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The existence of multiple decision-makers and goals, spatial and non-linear forest man-
agement objectives and the combinatorial nature of forest planning problems are reasons 
that support the use of heuristic optimisation algorithms in forest planning instead of the 
more traditional LP methods. A heuristic is a search algorithm that does not necessarily 
find the global optimum but it can produce relatively good solutions within reasonable 
time. The performance of different heuristics may vary depending on the complexity 
of the planning problem. This study tested six heuristic optimisation techniques in five 
different, increasingly difficult planning problems. The heuristics were evaluated with 
respect to the objective function value that the techniques were able to find, and the time 
they consumed in the optimisation process. The tested optimisation techniques were 1) 
random ascent (RA), 2) Hero sequential ascent technique (Hero), 3) simulated annealing 
(SA), 4) a hybrid of SA and Hero (SA+Hero), 5) tabu search (TS) and 6) genetic algorithm 
(GA). The results, calculated as averages of 100 repeated optimisations, were very similar 
for all heuristics with respect to the objective function value but the time consumption 
of the heuristics varied considerably. During the time the slowest techniques (SA or GA) 
required for convergence, the optimisation could have been repeated about 200 times with 
the fastest technique (Hero). The SA+Hero and SA techniques found the best solutions for 
non-spatial planning problems, while GA was the best in the most difficult problems. The 
results suggest that, especially in spatial planning problems, it is a benefit if the method 
performs more complicated moves than selecting one of the neighbouring solutions. It 
may also be beneficial to combine two or more heuristic techniques.
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1 Introduction

If forest stands are regarded as being independ-
ent of each other in forest management planning, 
ranking of treatment alternatives can be made 
at the level of a single forest stand compart-
ment. The management alternative that gives the 
highest return or minimizes the consumption of 
resources is selected for every stand. Usually, 
however, the stand treatments depend on each 
other. This is the case for instance when the deci-
sion makers want an even flow of timber from 
their forests. In addition to temporal relationships, 
also spatial dependencies between stand treat-
ments may be considered and explicitly examined 
in optimisation.

Management objectives in today’s forest plan-
ning are diverse and complex. Ecologically 
related objectives emphasize the location of 
resources in the maintenance of natural diver-
sity. Economic objectives may also stress the 
locations of resources. For instance, creation of 
clusters of stands that can be cut during the same 
period may decrease the costs of logging opera-
tions. These kinds of spatial objectives cannot 
be calculated directly as a sum of stands over the 
whole planning area, which makes optimisation 
complicated. In addition, the number of decision 
makers or persons who want to have a say in the 
planning process is often more than one, calling 
for special problem formulations. These changes 
and the technical developments in the computers’ 
processing capacity have resulted in increased 
adoption of heuristic optimisation techniques in 
forest planning calculations.

Heuristic optimisation techniques have been 
used for instance in harvest scheduling problems 
including adjacency constraints (e.g. Borges et al. 
2002). Approaches based on random search tech-
niques were used first (e.g. O’Hara et al. 1989, 
Nelson and Finn 1991). Use has also been made 
of LP in combination with heuristic algorithm. 
Heuristic rules have been used to process the LP 
solution and to modify an LP matrix to produce 
a solution at the next level (e.g. Weintraub et al. 
1994, Tarp and Helles 1997).

Towards the end of the 1990’s “modern” heuris-
tic techniques (Reeves 1993a) were more fre-
quently applied to forest management problems. 

Simulated annealing (SA) (e.g. Dahlin and Sall-
näs 1993, Lockwood and Moore 1993, Öhman 
and Eriksson 1998, Öhman 2000), tabu search 
(TS) (e.g. Bettinger et al. 1997, Boston and Bettin-
ger 1999) and genetic algorithms (GA) (e.g. Lu 
and Eriksson 2000, Bettinger et al. 2002) have 
been the most often applied basic techniques. Dif-
ferent modifications of the basic techniques have 
been examined and presented widely in the field 
of operational analysis, but also in forestry (e.g. 
Bettinger et al. 1999, Boston and Bettinger 2002, 
Falcão and Borges 2001, 2002). Through modi-
fied search process and different neighbourhood 
definitions these modifications aim at increasing 
the probability for finding close-to-optimal solu-
tions. More details of different heuristic techni-
ques can be found e.g. from Glover and Laguna 
(1993), Pham and Karaboga (2000) and Bettinger 
et al. (2002).

Different heuristic techniques use different 
search procedures and control parameters that 
guide the search process. Therefore, their ability 
to solve different forest management planning 
problems may vary. In planning that requires the 
use of heuristics, one should be able to design or 
to select the technique that is best for that particu-
lar problem. In this choice, the objective function 
value and the time needed to find the solution are 
important criteria.

A few studies have compared different heuristic 
techniques in forest management planning con-
text (e.g. Boston and Bettinger 1999, Bettinger et 
al. 2002, Boston and Bettinger 2002, Crowe and 
Nelson 2002, Falcão and Borges 2002, Nalle et al. 
2002, Palahí et al. 2004). Some of them compare 
a new heuristic to existing techniques (e.g. Falcão 
and Borges 2002, Nalle et al. 2002, Crowe and 
Nelson 2002). Bettinger et al. (2002) compared 
eight heuristic techniques (random search, simu-
lated annealing, great deluge, threshold accepting, 
tabu search with 1 opt and 2 opt moves, genetic 
algorithm and a hybrid tabu search / genetic algo-
rithm process). These techniques were applied to 
three different and increasingly difficult wildlife 
planning problems, two of the problems includ-
ing spatial objectives. The main consideration 
was given to the objective function value that the 
techniques could find. Also the time needed to 
produce a single solution was reported.

A problem in the comparison of heuristic meth-
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ods is that the results depend on the problem 
type, method-specific parameters, and the time 
the method is given to search the decision space. 
Therefore, different studies report differing results 
on the performance of heuristic methods. For 
instance Bettinger et al. (2002) concluded that 
simulated annealing and tabu search are better 
than genetic algorithm in spatial planning prob-
lems, whereas Palahí et al. (2004) found that 
genetic algorithm was clearly superior to simu-
lated annealing and tabu search in the spatial 
version of their planning problem.

The parameters of a heuristic determine how 
much time it will require to complete the search. 
Even the simplest techniques such as random 
search can find good solutions, but at a very 
high computational cost. Because of the positive 
correlation between solution time and objective 
function value, ranking of heuristics is difficult 
without simultaneous consideration of computing 
time and objective function value. Out of these 
two criteria, computing time is more problematic 
because it greatly depends on the quality of the 
computer program that is used in the analysis 
(Hooker 1995). In addition, the total computing 
time may not alone describe the speed of the 
method well enough since most of the time may 
be wasted for non-improving search near the final 
solution if the stopping parameters are inappro-
priately set. Therefore, to get a better idea about 
the performance of a heuristic method, the whole 
sequence of objective function values during the 
search process should be examined instead of the 
mere convergence point. Because the type and 
size of the problem also affect the performance 
of heuristic methods, they should be tested with 
several different planning problems.

This study tested six heuristic optimisation 
techniques in five different planning problems. 
The optimisation results were analysed in terms 
of objective function value, computing time and 
the temporal development of the objective func-
tion value. The distorting effects of differences 
in implementations (programming skills) were 
minimised by using the same software for all 
methods. Only the core of the algorithm was 
programmed separately for every method, but the 
data structures, routines for producing random 
initial solutions, calculation of a move’s effect 
on objective function, etc., were exactly the same 

with all methods. 
The formulations of the planning problems were 

applications of multi-attribute utility theory. The 
objective function was an explicitly specified addi-
tive utility model. The differences between the 
planning problems resulted from different objec-
tive functions: starting from a simple one-objective 
planning problem and ending with a spatial multi-
ple ownership problem. All problems are relevant 
and topical in current Finnish forest planning. 

2 Materials and Methods

2.1 The Tested Heuristic Optimisation 
Techniques

Random Ascent

In random ascent (RA), an initial solution is pro-
duced by selecting a random treatment schedule 
for each forest stand from among the treatment 
alternatives generated for the stand. Then, a stand 
and one of its treatment schedules not being in 
the current solution, are selected randomly. The 
effect of the suggested change on the objective 
function value is calculated. If the selected treat-
ment schedule improves the objective function 
value, it is included in the solution, otherwise 
not. The search procedure is stopped when the 
maximum number of trials, as specified by the 
user, is reached. 

Hero

In Hero, maximization of the objective function 
(additive utility function in this study) consists 
of two steps (Pukkala and Kangas 1993). First, a 
random selection of a treatment schedule for each 
stand produces an initial solution. Second, the 
technique tests one stand at a time to see whether 
another treatment schedule would improve the 
objective function value. The stands and their 
treatment schedules are inspected sequentially. 
If increase is detected, the treatment schedule 
that improves the solution replaces the previous 
one. When all treatment schedules of all stands 
are examined in this way, the process is repeated 
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until no schedules can be found that would further 
improve the solution.

Simulated Annealing

Simulated annealing (SA) is a variant of the 
descent/ascent techniques of local optimization, 
and its search process resembles the process 
of RA. The difference is that SA attempts to 
avoid getting trapped in local optima by allow-
ing random deteriorations in the objective func-
tion value (e.g. Dowsland 1993). The moves 
that improve the value of the objective function 
are always accepted. Non-improving moves are 
accepted with a probability of p = exp(–(UNew 
– UOld)Ti

–1), where Ti is the current “tempera-
ture”, and U is objective function value (utility 
in this study). During the optimisation process, 
the temperature cools (which imitates the cooling 
process of melted metal), according to a given 
cooling schedule. The user can define the cooling 
schedule. At high temperatures the probability for 
accepting inferior moves is high (the melted metal 
moves easily), but as the temperature decreases 
(the metal solidifies), the probability decreases.

Parameters that the user has to specify when 
using SA are starting and stopping temperature, 
cooling schedule and the number of iterations at 
each temperature. The number of iterations can 
change during the cooling process, for example 
increase when the temperature cools.

Simulated Annealing + Hero

A new technique based on a combination of 
SA and Hero (SA + Hero) was also tested. The 
idea of cooling and that of accepting inferior 
solutions were applied in the same way as in 
SA, whereas the neighbourhood was searched 
in the same way as in the Hero, i.e. sequentially. 
All moves that improved the objective function 
value were accepted. At every temperature, all 
schedules for all compartments were inspected 
once and sequentially after which the temperature 
was changed and the same process was repeated 
until a stopping temperature was reached. This 
technique has been applied in the study of Kurttila 
and Pukkala (2003).

Tabu Search

Search memory in the form of tabu lists are the 
key characteristics of tabu search (TS). They con-
trol the search process for instance by prohibiting 
the repetition of recent moves. The length of the 
tabu list defines the number of iterations during 
which a treatment schedule that participated in a 
move may not be included in or removed from 
the solution. As in previous techniques, the search 
process of TS starts from a random initial solu-
tion. Then, several candidate moves, i.e. randomly 
selected treatment schedules of random compart-
ments, are produced. Among these moves, the 
best non-tabu move is made. If all moves are in 
the tabu list, the move that has the shortest tabu 
tenure is selected. However, an elite move, which 
is a move that produces the best solution so far, 
is always accepted. The length of the tabu-list 
(duration of tabu tenure) can be different for 
moves that enter the solution and for moves that 
are removed from the solution (for more details, 
see e.g. Glover and Laguna 1993).

Genetic Algorithms 

Unlike the heuristic optimisation techniques 
described above, the search process of genetic 
algorithms (GA) is not based on neighbourhood 
search. Instead, GA is based on an initial popu-
lation of solution alternatives, their evaluation 
and their breeding. The alternative solutions are 
called parent chromosomes, which are processed 
by crossing over (combining parts of two or more 
chromosomes) and by mutation (random change 
in one or several genes, or compartments). These 
operations result in a new chromosome (offspring). 
One of the two parents of a new chromosome is 
selected with the probability proportional to its 
ranking. The second parent is chosen randomly 
with an equal probability for all chromosomes. In 
the incremental GA technique used in this study, 
the new chromosome replaces one initial chromo-
some. The removed chromosome is selected based 
on its objective function value, the probability of 
removal being highest for chromosomes that have 
a low objective function value. The updated group 
of chromosomes is called generation (for more 
details, see e.g. Reeves 1993b). 



71

Pukkala and Kurttila Examining the Performance of Six Heuristic Optimisation Techniques in Different Forest Planning Problems

2.2 Test Data

The heuristic optimisation techniques were tested 
with a compartment level forest data collected 
from North Karelia, Finland. The Forest Centre of 
North Karelia surveyed the test forest using visual 
compartment inventory. The total forest area was 
984.8 ha and it was divided into 736 stands during 
the inventory. The forest area includes 26 non-
industrial private forest holdings more than 5 ha 
in size (the holdings range from 5.1 ha to 395.1 
ha). The largest holding was formed artificially 
by combining the compartments of those holdings 
for which no forest plan had been ordered from 
the Forest Centre. 

In the beginning of the planning period, the 
mean growing stock volume was 141.0 m3/ha. 
The proportions of pine (Pinus sylvestris), spruce 
(Picea abies) and broad-leaved trees were, 48%, 
35% and 17%, respectively. The initial age dis-
tribution of stand compartments was as follows: 
younger than 20 years 22%; 20–80 years 57%; 
and more than 80 years 21%. The current annual 
increment was estimated at 5.7 m3/ha.

The inventory data were fed into the Monsu 
forest planning software (Pukkala 2001). The 
length of the planning period was 60 years, 
divided into three 20-year-long sub-periods. The 
automatic stand treatment simulator of Monsu was 
used to produce one to eight optional treatment 
schedules for each stand. The average number of 
treatment schedules per stand was 3.8. The possi-
bility to regenerate a stand depended on stand age 
and mean tree diameter. With a high enough stand 
age or mean diameter, determined according to 
the official treatment recommendations for Finn-
ish private forests (Luonnonläheinen… 1994), 
it was possible to simulate regeneration chains 
(including a suitable final felling and regenera-
tion technique) for the stand. In addition to these 
earliest possible regeneration cuttings and thin-
nings, the program also simulated alternatives 
where a possible cutting was postponed to the 
next period or later. For mature stands, one of the 
simulated treatment schedules was the “No treat-
ments” option. However, the tending treatments 
for young stands were never postponed.

2.3 Objective Variables

Altogether six management objectives, cor-
responding fairly well to the forest manage-
ment goals examined by Ihalainen (1992), were 
included in the objective functions of planning 
problems: asset value of the forest, measured 
by soil expectation value (SEV) at the end of 
the three sub-periods (Objectives 1–3), and cor-
responding to the economic security goal by 
Ihalainen (1992); discounted net income (NPV) 
from timber sales (Objective 4) indicating the 
“released” return; recreation score at the end of 
the third sub-period (Objective 5), calculated as 
the mean area-weighted recreation score of all 
stands (Pukkala et al. 1988), indicating recrea-
tion possibilities; and ecological quality of the 
landscape (Objective 6), representing the nature 
values of Ihalainen (1992).

Holding-specific importances of management 
objectives were generated for the 26 holdings of 
the case study area using the method developed 
by Pukkala et al. (2003). This method produced a 
similar set of rankings of management objectives 
as has been observed in empirical studies (e.g. 
Ihalainen 1992).

The management objective 6 aimed at improv-
ing the living conditions of flying squirrels. The 
suitability of a forest stand for flying squirrel was 
determined with a threshold value of a multipli-
cative habitat suitability index (HSI) according 
to the principles of an earlier study (Kurttila 
et al. 2002). The HSI was computed from the 
following variables: growing stock volume, pro-
portion of the stand volume made up of spruce 
and deciduous trees, mean diameter of deciduous 
trees and the volume of dead standing trees (e.g. 
Mönkkönen et al. 1997, Hanski 1998, Reunanen 
et al. 2000). In planning problems 2 and 3, which 
were non-spatial, the aim was to increase the 
total area of forest stands having a HSI greater 
than 0.4 (threshold value used by Kurttila et al. 
(2002)). Planning problems 4 and 5 were spatial 
and aimed at creating and clustering habitats by 
using the proportion of “similar-stand boundary” 
(both neighbour stands having a HSI > 0.4) of the 
total boundary length as an objective variable. 
The use of this objective variable requires that 
the length of the common boundary of each stand 
with every neighbouring stand must be known. 
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GIS routines were used to derive the adjacency 
information.

2.4 Planning Problem Formulations

Each heuristic optimisation method was used 100 
times to solve five different planning problems. 
In these problems, the six management objectives 
were targeted in various ways to the whole plan-
ning area and individual holdings. The objective 
functions of the problems were written in the form 
of an additive utility model:

U b u qi i i
i

I

=
=
∑ ( )

1
 (1)

where U is the total utility, I is the number of 
goals, bi is the relative importance of management 
objective i, ui is a scaled sub-utility function for 
management objective i, and qi is the value of 
objective i. The sub-utility functions transform the 
absolute value of the variable measured in its own 
units to a relative sub-utility value. These func-
tions were determined through the smallest pos-
sible, target level, and the largest possible value of 
the objective variable, and the respective priorities. 
The relative sub-utility values were weighted by 
the relative importance of the objective variable 
(bi) and summed (Pukkala and Kangas 1993).

Problem 1

In the first problem, only one variable was included 
in the objective function (objective weights gen-
erated for the holdings were ignored). The net 
present value (NPV) of cutting revenues from the 
whole forest area was the maximized objective. 
In the optimisation, it suffices to find the best 
treatment alternative among the simulated ones 
separately for each compartment.

Problem 2

In the second problem, six management objec-
tives were included in the objective function but 
the holding-specific variation in the importance of 
management objectives was ignored. The impor-
tances of the six landscape-level management 

objectives (bi, i = 1,…,6) were determined as 
means of the holding-specific weights

b
K

ai ik
k

K

=
=

∑1

1

where K is the number of holdings, and aik is the 
importance of objective i in holding k). They were 
as follows: b1 = 0.0717, b2 = 0.0717, b3 = 0.0717 
(asset value of the forest at the end of the three 
sub-periods); b4 = 0.3672 (discounted net income 
from timber sales); b5 = 0.2521 (recreation score 
at the end of the third sub-period); and b6 = 0.1657 
(ecological objective). Note that the overall global 
importance of management objectives is nearly 
the same also in Problems 3 to 5.

The sub-utilities (ui in Eq. 1) of the recrea-
tion score, flying squirrel habitat area and NPV 
increased linearly from their minimum to their 
maximum values. For the SEVs at the end of the 
sub-periods, the minimum quantity gave a sub-
utility of zero, the planning area’s mean initial 
SEV produced a sub-utility of 0.9, and the maxi-
mum possible quantity of the SEV in the holding 
gave a sub-utility of one.

Problem 3

Problem 3 consisted of a set of partial holding-
level optimisation tasks. The formulation took 
into account the varying objective weights of 
individual forest owners. The objective function 
corresponding to this problem was

U w a u qk ik ik ik
i

I

k

K

=
==
∑∑ ( )

11

 (2)

where K is the number of forest holdings, wk is the 
weight of holding k, I is the number of holding-
level management objectives (6 in all holdings), 
uik is a scaled sub-utility function of manage-
ment objective i in holding k, qik is the value of 
objective i in holding k, and aik is the relative 
importance of management objective i in holding 
k. The relative importance of each holding is the 
same (wk = 1/K). The holding-specific sub-utility 
functions (uik in Eq. 2) were formed in the same 
way as in Problem 2.
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Problem 4
In Problem 4, the objective function corresponds 
to Problem 2 but the problem was made more 
complex by changing the non-spatial ecological 
objective variable (total habitat area) into a spatial 
one (proportion of similar-stand-boundary).

Problem 5

Problem 5 was the most complicated, including 
a spatial planning-area-level objective and hold-
ing level objectives in the same problem (for 
more details, see Kurttila and Pukkala 2003). The 
applied objective function was:

U w b u q w a u ql k ik ik ik
ik

K

= +
==
∑∑6 6 6

1

5

1

( ) ( )

where U is the total utility, wl is the weight of the 
landscape level, b6, u6 and q6 are, respectively, the 
relative local importance, sub-utility function and 
the amount of the landscape level management 
objective, K is the number of forest holdings, wk 
is the weight of holding k, and aik, uik and qik are, 
respectively, the relative importance, sub-utility 
function and value of management objective i in 
holding k.

The importance of the ecological, planning 
area-level objective, and the importances of indi-
vidual holdings’ utility functions were defined by 
transferring the global priority of the flying squir-
rel habitat objective (wka6k) from the holding-spe-
cific utility functions to the landscape level:

w b w al k k
k

K

6 6
1

=
=

∑

The respective importances of the holding levels 
were set to zero. Thus, holdings where the impor-
tance of the ecological objective was larger than 
zero “transferred” the respective proportion of 
their importance to the planning-area level. The 
minimum and maximum values of the planning-
area-level boundary proportion’s sub-utility func-
tion were determined for the whole planning area. 
The weights and sub-utility formulations of the 
other holding-level objectives were similar to 
those in the holding level plans of Problem 3.

2.5 Parameter Values for Heuristic 
Optimisation Techniques

The parameters that control the search process of 
a heuristic were inspected one at a time, keeping 
the other parameter values constant. The value of 
the parameter was increased or decreased until the 
change no longer resulted in a clear improvement 
of the objective function value. The eventual 
combination of parameter values was assumed 
to result in a search process that, on one hand, 
produces a very good objective function value 
but, on the other hand, can be extremely slow. 
The idea was to find values that allow the method 
to use enough time to reach a solution that no 
longer improves or improves only very slowly. 
The parameter values were defined using Problem 
3. The values obtained for a technique were used 
in all planning problems.

The following parameter values and settings 
were used in different heuristic techniques:

RA: The number of trials was 500 000 and 
the initial solution was produced by selecting 
randomly one treatment schedule for each stand 
among the simulated schedules.

Hero: The initial solution was produced ran-
domly i.e. as in RA.

SA: The starting temperature (T0) was com-
puted from T0 = 0.1 × N–1, where N is the number 
of compartments in the planning area. This for-
mula is based on the assumption that the effect of 
a compartment on the objective function value, 
which ranges from 0 to 1, is at most N–1. Further-
more, because the various treatment schedules of 
a compartment are, with several conflicting goals, 
often nearly equally good, N–1 was multiplied by 
0.1, the result being a guess for the magnitude 
of local optima. The cooling multiplier was set 
to 0.95. In the starting temperature, the number 
of iterations was 5N. The number of iterations 
increased by 5% at each temperature change. 
The search process was stopped when a freezing 
temperature of 0.01 × T0 was reached.

SA+Hero: In the beginning of SA+Hero, a 
random treatment schedule was selected for every 
stand. This selection was used as the starting 
point for the SA+Hero search process. The initial 
and freezing temperatures as well as the cooling 
schedule were similar as in SA.

TS: In the TS applied in this study, an iteration 
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means the production of a set of candidate moves 
and updating the solution. The number of candi-
date moves was 100. The number of iterations 
was set to 10 000. The initial tabu tenure was 100 
iterations for schedules that were removed from 
the solution and 20 iterations for schedules that 
were included in the solution.

GA: The initial population consisted of 30 
random combinations of treatment schedules for 
compartments. The number of generations was 
50 000. In the production of a new chromosome, 
the first parent was selected so that chromosomes 
(solutions) with good objective function values 
had a higher probability to become selected. The 
probability was directly proportional to the rank-
ing of the solution (see Reeves 1993b). The other 
parent chromosome was selected randomly, the 
probability being independent of the objective 
function value. Two crossing over points were 
determined randomly, and the sections between 
these points were taken from the second parent. 
The number of mutations in the new chromo-
some was 5, which means that the treatment 
schedule of five randomly selected compartments 
was changed. The new chromosome replaced an 
old one, the probability of becoming replaced 
being inversely proportional to the ranking of 
the chromosome.

3 Results

3.1 Objective Function Value

The optimisation was repeated 100 times with 
each planning problem and optimisation tech-
nique. In this section, the maximum and minimum 
values, standard deviations and averages of these 
repetitions are reported. In addition, the time con-
sumption of the techniques is analysed.

In Problem 1, Hero and SA+Hero techniques 
always found the best and the globally optimal 
solution (Table 1). Also RA, SA and TS often 
found a solution where the objective function 
value was very close to 1, but GA was clearly 
inferior to other methods.

In Problems 2 and 3 the objective function 
values found by different techniques were gener-
ally very close to each other. SA and SA+Hero 

found the best values in these problems. The 
results of TS were very close to the values of 
these two techniques. Hero had the poorest mean 
objective function value in Problem 2 and GA in 
Problem 3.

For Problems 4 and 5 with spatial objectives, 
GA found the best solutions with respect to the 
maximum and mean objective function value. 
The results of SA and SA+Hero were very close 
to each other. Hero found the poorest results for 
these problems.

The small standard errors of the 100 repeated 
optimisations result in very narrow confidence 
intervals, meaning that very small differences 
(0.001 or more) in mean objective function values 
are significant. It may for instance be concluded 
that GA was significantly poorer than all other 
methods in the simplest planning problem (no. 1) 
but better than all other methods in the most dif-
ficult problems 4 and 5. In addition, Hero but also 
RA were significantly inferior to the other meth-
ods in the spatial planning problems 4 and 5.

3.2 Time Consumption

The time that was used for the optimisation proc-
ess differed remarkably between the techniques. 
Because Hero was always the quickest, the other 
algorithms were compared to it in Fig. 1 (the time 
that Hero used =1). Also SA+Hero, RA and TS 
converged relatively fast. The slowest optimisa-
tion techniques, SA and GA, used about 200 times 
more time than Hero did.

The objective function values, when the fastest 
and the second fastest optimisation techniques 
converged, are shown in Fig. 2.  When Hero 
converged, TS had still a relatively low objec-
tive function value. GA was still producing and 
evaluating the initial population of solutions, and 
had not even started its search. Only the combina-
tion of Hero and SA in problem 4 had reached an 
objective function value equally good as Hero.

At the time point when the second fastest tech-
nique (RA) finished, all techniques except GA had 
already found relatively good solutions, and in 
some problems TS and SA had even found better 
solutions than RA.

Fig. 3 shows the development of the objective 
function value in one optimisation for Problem 3. 
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Table 1. Mean, maximum and minimum objective function values among the 100 repetitions, and the standard 
deviations of the objective function values. The best value (the highest maximum and minimum and lowest 
standard deviation) is in boldface and the worst value is in italics.

 Hero SA+Hero RA TS SA GA

Problem 1
Mean 1.0000 1.0000 0.9995 0.9996 0.9995 0.9765
Max 1.0000 1.0000 1.0000 0.9998 1.0000 0.9793
Min 1.0000 1.0000 0.9991 0.9991 0.9991 0.9737
Sd 0.0000 0.0000 0.0005 0.0002 0.0005 0.0012

Problem 2
Mean 0.7577 0.7713 0.7660 0.7708 0.7734 0.7632
Max 0.7607 0.7721 0.7690 0.7725 0.7751 0.7648
Min 0.7551 0.7701 0.7626 0.7694 0.7717 0.7604
Sd 0.0012 0.0004 0.0015 0.0007 0.0008 0.0009

Problem 3
Mean 0.8058 0.8084 0.8069 0.8076 0.8081 0.8019
Max 0.8080 0.8091 0.8086 0.8091 0.8092 0.8033
Min 0.8032 0.8076 0.8052 0.8058 0.8072 0.8000
Sd 0.0009 0.0003 0.0008 0.0006 0.0005 0.0007

Problem 4
Mean 0.7512 0.7731 0.7679 0.7723 0.7744 0.7790
Max 0.7568 0.7744 0.7725 0.7742 0.7766 0.7875
Min 0.7456 0.7718 0.7639 0.7699 0.7723 0.7702
Sd 0.0022 0.0004 0.0017 0.0009 0.0009 0.0032

Problem 5
Mean 0.7998 0.8076 0.8065 0.8073 0.8076 0.8170
Max 0.8030 0.8084 0.8085 0.8090 0.8086 0.8302
Min 0.7948 0.8067 0.8038 0.8047 0.8061 0.8058
Sd 0.0019 0.0003 0.0010 0.0010 0.0007 0.0050

Fig. 1. Duration of the optimisation in five problems in relation to the fastest optimisation 
technique (Hero = 1).
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Fig. 2. Relative objective function value of the tested heuristics at the time 
point when the fastest (A) or second fastest (B) technique converges. In 
A the relative objective function value of Hero (the fastest technique) 
is set equal to one, and in B the objective function value of RA (the 
second fastest technique) is set equal to one.

Fig. 3. An example of the development of the objective function value in 
Problem 3 by different heuristic techniques. The end points for RA, 
TS, SA, and SA+Hero are shown with an arrow. Note the logarithmic 
scale of the x-axis.
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The quick convergence of the Hero method (less 
than 10 seconds) and the very slow convergence of 
GA (more than 1000 seconds) are apparent (note 
the logarithmic time scale). The figure should 
be taken as an example rather than universal 
result, because the shape of the curve depends on 
method-specific parameter values, as well as on 
the type and size of the planning problem.

4 Discussion

In this study, six heuristic optimisation techniques 
were tested in five different forest planning prob-
lems, all modelled as utility maximization tasks. 
The main conclusion that can be drawn from the 
results is that, with fair parameter values, the 
methods do not differ much in terms of objective 
function value. This is not surprising because 
widely used and accepted techniques were used; 
the result only indicates that none of the methods 
is a complete failure. However, some differences 
in the quality of solutions can be found. Simple 
techniques such as Hero and RA are good for 
simple problems only. When the planning prob-
lem becomes more complicated, and especially 
when spatial objectives were included in the prob-
lem, the performance of simple techniques (espe-
cially Hero) decreases, whereas more complicated 
techniques improve their performance. According 
to the results of this study, GA seems especially 
suitable to solve planning problems with spatial 
objectives (see Palahí et al. 2004). A result similar 
as in Palahí et al. (2004) was that GA is not good 
in very simple problems.

In the study of Bettinger et al. (2002), the 
techniques were categorized in three classes 
according to the value of the objective function: 
very good (simulated annealing, great deluge, 
threshold accepting, tabu search with 1-opt and 
2-opt moves, and a hybrid tabu search / genetic 
algorithm process), adequate (tabu search with 1 
opt moves and genetic algorithm) and less than 
adequate (random search). The results of our 
study were not perfectly in line with the results 
of Bettinger et al. (2002). Our study showed that 
GA is better than SA and TS in spatial prob-
lems, although an opposite result was reported 
in Bettinger et al. (2002). However, problem for-

mulations, implementation of the technique and 
parameter settings can greatly affect the perform-
ance of different algorithms (Crowe and Nelson 
2002), which makes differences between studies 
understandable. In this study, the good perform-
ance of GA in the most difficult problems can 
result, in addition to the problem and sub-utility 
formulations, from the fact that it was the only 
technique where a move could imply more than 
one change in the solution. The result may imply 
that it could be beneficial to use more compli-
cated neighbourhood structures in forest planning 
problems that have spatial objectives (see also 
Bettinger et al. 2002).

The “true optimum” value is known only for 
Problem 1. For the other problems it had been 
possible to try to find out the global optimum 
using for instance, methods based on extreme 
value theory (Bettinger et al. 2002). However, the 
extreme value theory is not reliable (e.g. Reeves 
1993a). In addition, relative rather than absolute 
merits were looked for in this study.

With respect to the total time consumption, the 
six techniques tested in this study can be divided 
into three groups: quick techniques (Hero and 
RA), medium speed techniques (SA+Hero and 
TS) and slow techniques (SA and GA). The differ-
ences in time consumption were more than 100-
fold: Hero optimisation could have been repeated 
200 times during one GA run. In planning situ-
ations where an immediate solution is expected 
from the planning program, like in interactive 
optimisation, the use of slow techniques may not 
be worthwhile if a quicker method is sufficient 
in the problem at hand. However, since quick 
techniques are not necessarily good in difficult 
problems, it may be recommended that interac-
tive heuristic optimisation should be pursued only 
with simple problems in which quick methods 
work well.

When observing the temporal development of 
the objective function value, the picture about the 
speed of different methods becomes somewhat 
different. If the time consumption of Hero is taken 
to mean “quick”, then all other methods are slow 
(except SA+Hero in some problems) because they 
are still far behind of the objective function value 
reached by Hero. If the time that RA requires 
for convergence is regarded to bisect methods to 
quick and slow ones, then all methods except GA 
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are quick because they have reached good and 
close-to-final objective function values. If those 
solutions were regarded acceptable, the search 
could be stopped. A practical problem is to find 
such values for the optimisation parameters that 
will detect when this point is reached.

In the problems of this study, variation in the 
complexity of the problems was introduced 
through different objective functions by increas-
ing the number of objectives, interdependencies 
between objectives and by adding a spatial objec-
tive to the objective function. However, compared 
to e.g. problems with several spatial objectives 
(e.g minimum and maximum clear-cut area con-
straints with minimum area constraint for old 
forest applied in Falcão and Borges (2002), the 
problem formulations were not computationally 
extremely complicated. In this study, additional 
complexity was introduced through combining 
forest level ecological objectives and holding-
specific objectives in the same problem, which is 
an important topic when new means to improve 
the biodiversity in Finnish forests are tested.

In this study, the basic versions of the tech-
niques were used. Numerous modifications of 
the techniques have been presented and tested. 
These modifications attempt to make the search 
process more efficient, for instance by guiding 
the search of alternative solutions to different 
parts of the solution space. For instance, the 2-opt 
moves of TS produce candidates where the treat-
ments of two randomly selected compartments are 
changed (e.g. Bettinger et al. 2002). According 
to the results of this study, techniques that utilize 
only simple neighbourhood search during the 
search process are not so well suited for planning 
problems with spatial objectives (see also Falcão 
and Borges 2002), and techniques where several 
simultaneous changes are made can be success-
ful. In addition, it may be beneficial to consider 
the stand adjacencies in the selection of 2-opt 
moves. It also seems that hybrids of different 
heuristic techniques (and probably also hybrids 
of LP and heuristics) sometimes work better than 
one technique alone. Also the hybrid technique of 
SA+Hero presented in this study performed well; 
it was fast and produced rather good results.

In the future, the methodological development 
should concentrate on the specific needs of vary-
ing forest planning problems, for example on the 

stand delineation process and on the use of stands 
as spatial elements of the planning problem. It 
looks evident that the use of heuristic optimisa-
tion techniques in forest planning calculations 
will become more common. The most important 
reasons for this are their simple search process 
and flexibility, which allows a rather free problem 
formulation with both additive and multiplicative 
parts in the objective function (Pukkala 2002), 
and the possibility to use non-linear sub-utility 
functions and spatial objective variables. In addi-
tion, the search process of heuristic techniques is 
quite easily understood by decision makers.
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