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Abstract

Ramsey ’s theorem was not discovered by P. Erdős. But perhaps
one could say that Ramsey theory was created largely by him. This
paper will attempt to demonstrate this claim.

1 Introduction

Ramsey’s theorem was not discovered by Paul Erdős. This was barely tech-
nically possible: Ramsey proved his theorem in 1928 (or 1930, depending on
the quoted source) and this is well before the earliest Erdős publication in
1932. He was then 19. At such an early age four years makes a big difference.
And also at this time Erdős was not even predominantly active in combina-
torics. The absolute majority of the earliest publications of Erdős is devoted
to number theory, as can be seen from the following table:

1932 1933 1934 1935 1936 1937 1938 1939
all papers 2 0 5 10 11 10 13 13
number theory 2 0 5 9 10 10 12 13

The three combinatorial exceptions among his first 82 papers published
in 8 years are 2 papers on infinite Eulerian graphs and the paper [46] by
Erdős and G. Szekeres. Thus, the very young P. Erdős could not have been a
driving force for the development of Ramsey theory or Ramsey-type theorems
in the thirties. That position should be perhaps reserved for Issac Schur
who not only proved his sum theorem [114] in 1916 but, as it appears now
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[115], also conjectured van der Waerden’s theorem [124], proved an important
extension, and thus put it into a context which inspired his student R. Rado
to completely settle (in 1933) the question of monochromatic solutions of
linear equations [102]. This result stands apart even after 60 years.

Yet, in retrospect, it is fair to say that P. Erdős was responsible for the
continuously growing popularity of the field. Ever since his pioneering work
in the thirties he proved, conjectured and asked seminal questions which
together, some 40 to 50 years later, formed Ramsey theory. And for Erdős,
Ramsey theory was a constant source of problems which motivated some of
the key pieces of his combinatorial research.

It is the purpose of this article to partially justify these claims, using a
few examples of Erdős’ activity in Ramsey theory which we will discuss from
a contemporary point of view.

In the first section we cover paper [46] and later development in great
detail. In Section 2, we consider the development based on Erdős’ work
related to bounds on various Ramsey functions. Finally, in Section 3 we
consider his work related to structural extensions of Ramsey’s theorem.

No mention will be made of his work on infinite extensions of Ramsey’s
theorem. This is covered in this volume by the comprehensive paper of A.
Hajnal.

2 The Erdős-Szekeres Theorem

F. P. Ramsey discovered his theorem [104] in a sound mathematical con-
text (of the decision problem for a class of first-order formulas; at the time,
the undecidability of the problem was not known). But since the time of
Dirichlet the “Schubfach principle” and its extensions and variations played
a distinguished role in mathematics. The same holds for the other early
contributions of Hilbert [67], Schur [114] and van der Waerden [124].

Perhaps because of this context Ramsey’s theorem was never regarded
as a puzzle and/or a combinatorial curiosity only. Thanks to Erdős and
Szekeres [46] the theorem found an early application in a quite different
context, namely, plane geometry:

Theorem 1 ([46]). Let n be a positive integer. Then there exists a least
integer N(n) with the following property: If X is a set of N(n) points in
the plane in general position (i.e. no three of which are collinear) then X
contains an n-tuple which forms the vertices of a convex n-gon.
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One should note that (like in Ramsey’s original application in logic) this
statement does not involve any coloring (or partition) and thus, by itself, fails
to be of “Ramsey type”. Rather it fits to a more philosophical description of
Ramsey type statements as formulated by Mirsky:

“There are numerous theorems in mathematics which assert, crudely
speaking, that every system of a certain class possesses a large
subsystem with a higher degree of organization than the original
system.”

It is perhaps noteworthy to list the main features of the paper. What a
wealth of ideas it contains! We can list at least 6 main aspects of this paper
(numbered I–VI):

I. It is proved that N(4) = 5 and this is attributed to Mrs. E. Klein. This
is tied to the social and intellectual climate in Budapest in the thirties
which has been described both by Paul Erdős and Szekeres on several
occasions (see e.g. [30]), and with names like the Happy End Theorem.

II. The following two questions related to statement of Theorem 1 are
explicitly formulated:

(a) Does the number N(n) exist for every n?

(b) If so, estimate the value of N(n).

It is clear that the estimates were considered by Erdős from the very
beginning. This is evident at several places in the article.

III. The first proof proves the existence of N(n) by applying Ramsey’s theo-
rem for partitions of quadruples. It is proved thatN(n) ≤ r(2, 4, {5, n}).
This is still a textbook argument. Another proof based on Ramsey’s
theorem for partitions of triples was found by A. Tarsi (see [63]). So
far no proof has emerged which is based on the graph Ramsey theorem
only.

IV. The authors give “a new proof of Ramsey’s theorem which differs en-
tirely from the previous ones and gives for mi(k, `) slightly smaller
limits”. Here mi(k, `) denotes the minimal value of |X| such that ev-
ery partition of i-element subsets of X into two classes, say α and β,
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each k-element contains an i-element subset of class α or each i-element
subset contains an i-element subset of class β.

Thus, mi(k, `) is the Ramsey number for 2-partitions of i-element sub-
sets. These numbers are denoted today by r(2, i, {k, l}) or ri(k, l). The
proof is close to the standard textbook proofs of Ramsey’s theorem.
Several times P. Erdős attributed it to G. Szekeres.

Erdős and Szekeres explicitly state that (r2(k + 1, ` + 1) = m2(k +
1, ` + 1) ≤

(
k+`
2

)
and this value remained for 50 years essentially the

best available upper bound for graph Ramsey numbers until the recent
improvements by Rödl, Thomason [122] and finally by Conlon [17]. The
current best upper bound (for k = `) is(

2k

k

)
k−C

log k
log log k .

V. It is not as well known that [46] contains yet another proof of the
graph theoretic formulation of Ramsey’s theorem (in the above nota-
tion, i = 2) which is stated for its particular simplicity. We reproduce
its formulation here.

Theorem 2. In an arbitrary graph let the maximum number of inde-
pendent points be k; if the number of points is N = m(k, `) then there
exists in our graph a complete graph of order `.

Proof. For ` = 1, 2, the theorem is trivial for any k, since the maximum
number of independent points is k and if the number of points is (k+1),
there must be an edge (complete graph of order 2).

Now suppose the theorem proved for (`− 1) with any k. Then at least
N−k
k

edges start from one of the independent points. Hence if

N − k
k

= m(k, `− 1),

i.e.,
N = k ·m(k, `− 1) + k,

then, out of the end points of these edges we may select, in virtue of our
induction hypothesis, a complete graph whose order is at least (`− 1).
As the points of this graph are connected with the same point, they
form together a complete graph of order `.
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This indicates that Erdős and Szekeres were well aware of the novelty
of the approach to Ramsey’s theorem. Also this is the formulation of
Ramsey’s problem which motivated some of the key pieces of Erdős’
research. First an early use of the averaging argument and then the
formulation of Ramsey ’s theorem in a “high off-diagonal” form: If a
graph G has a bounded clique number (for example, if it is triangle-
free) then its independence number has to be large. The study of
this phenomenon led Erdős so key papers [25], [27], [28] which will be
discussed in the next section in greater detail.

VI. The paper [46] contains a second proof of Theorem 1. This is a more
geometrical proof which yields a better bound

N(n) ≤
(

2n− 4

n− 2

)
+ 1

and it is conjectured (based on the exact values of N(n) for n = 3, 4, 5)
that N(n) = 2n−2 + 1. This is still an unsolved problem. The second
proof (which 50 years later very nicely fits to a computational geometry
context) is based on yet another Ramsey-type result.

Theorem 3. [Ordered pigeon hole principle; Monotonicity lemma] Let
m, n be positive integers. Then every set of (m − 1)(n − 1) + 1 dis-
tinct integers contains either a monotone increasing n-set or monotone
decreasing m-set.

The authors of [46] note that the same problem was considered by R.
Rado. The stage has been set.

The ordered pigeon-hole principle has been generalized in many differ-
ent directions (see e.g., [14], [90] and more recently [10]).

All this is contained in this truly seminal paper. Viewed from a contem-
porary perspective, the Erdős-Szekeres paper did not solve any well-known
problem at the time and did not contribute to Erdős’ instant mathematical
fame (as a number theorist). But the importance of the paper [46] for the
later development of combinatorial mathematics cannot be overestimated.
To illustrate this development is one of the aims of this paper.

Apart from the problem of a good estimation of the value of N there is a
peculiar structural problem related to [46]:
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Call a set Y ⊆ X an n-hole in X if Y is the set of vertices of a convex
n-gon which does not contain other points in X. Does there always exist
N∗(n) such that if X is any set of at least N∗(n) points in the plane in
general position then X contains an n-hole?

It is easy to prove that N∗(n) exists for n ≤ 5 (see Harborth (1978) where
these numbers are determined). Horton (1983) showed that N∗(7) does not
exist. The fact that N∗(6) exists was established only very recently. The
best bounds currently available are 30 ≤ N∗(6) ≤ 463 (see [57], [96], [74],
[97]).

3 Estimating Ramsey numbers

Today it seems that the first question in this area which one might be tempted
to consider is the problem of determining the actual sizes of the sets which are
guaranteed by Ramsey’s theorem (and other Ramsey-type theorems). But
one should try to resist this temptation since it is “well-known” that Ramsey
numbers (of all sorts) are difficult to determine and even good asymptotic
estimates are difficult to find.

It seems that these difficulties were known to both Erdős and Ramsey.
But Erdős considered them very challenging and addressed this question in
several of his key articles. In many cases his estimations obtained decades ago
are still the best available. Not only that, his innovative techniques became
standard and whole theories evolved from his key papers.

Here is a side comment which may partly explain this success: Erdős was
certainly one of the first number theorists who took an interest in combi-
natorics in the contemporary sense (being preceded by isolated events, for
example, by V. Jarńık’s work on the minimum spanning tree problem and
the Steiner problem see [69] and e.g. [65] and more recent [89] for the history
of the problem. Incidentally, Jarńık was one of the first coauthors of Erdős.)
Together with Turán, Erdős brought to the “slums of topology” not only his
brilliance but also his expertise and “good taste”. It is our opinion that these
facts profoundly influenced further development of the whole field. Thus it
is not perhaps surprising that if one would isolate a single feature of Erdős’
contribution to Ramsey theory then it is perhaps his continuing emphasis on
estimates of various Ramsey-related questions. From the large number of his
results and papers we decided to cover several key articles and comment on
them from a contemporary point of view.
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I. The 1947 paper [25]. In a classically clear way, Erdős proved

2k/2 ≤ r(k) < 4k (1)

for every k ≥ 3.
His proof became one of the standard textbook examples of the power

of the probabilistic method. (Another example perhaps being the strikingly
simple proof of Shannon of the existence of exponentially complex Boolean
functions.)

The paper [25] proceeds by stating (1) in an inverse form: Define A(n)
as the greatest integer such that given any graph G of n vertices, either it or
its complementary graph contains a complete subgraph of order A(n). Then
for A(n) ≥ 3,

log n

2 log 2
< A(n) <

2 log n

log 2
.

Despite considerable efforts over many years, these bounds have been im-
proved only slightly (see [121], [117]). We commented on the upper bound
improvements above. The best current lower bound is

r(n) ≥ (1 +O(1))

√
2n

e
2n/2

which is twice the Erdős bound (when computed from his proof).
The paper [25] was one of 23 papers which Erdős published within 3 years

in the Bull. Amer. Math. Soc. and already here it is mentioned that although
the upper bound for r(3, n) is quadratic, the present proof does not yield a
nonlinear lower bound. That had to wait for another 10 years.
II. The 1958 paper [27] — Graph theory and probability. The main
result of this paper deals with graphs, circuits, and chromatic number and
as such does not seem to have much to do with Ramsey theory. Yet the
paper starts with the review of bounds for r(k, k) and r(3, k) (all due to
Erdős and Szekeres). Ramsey numbers are denoted as in most older Erdős
papers by symbols of f(k), f(3, k), g(k). He then defines analogously the
function h(k, `) as “the least integer so that every graph of h(k, `) vertices
contains either a closed circuit of k or fewer lines or the graph contains a set
of independent points. Clearly h(3, `) = f(3, `)”.

The main result of [27] is that h(k, `) > `1+1/2k for any fixed k ≥ 3 and
` sufficiently large. The proof is one of the most striking early uses of the
probabilistic method. Erdős was probably aware of it and this may explain

7



(and justify) the title of the paper. It is also proved that h(2k+1, `) < c`1+1/k

and this is proved by a variant of the greedy algorithm by induction on `.
Now after this is claimed, it is remarked that the above estimation (1) leads
to the fact that there exists a graph G with n vertices which contain no closed
circuit of fewer than k edges and such that its chromatic number is > nε.

This side remark is in fact perhaps the most well known formulation of
the main result of [27]:

Theorem 4. For every choice of positive integers k, t and ` there exists a
k-graph G with the following properties:

(1) The chromatic number of G > t.

(2) The graph of G > `.

This is one of the few true combinatorial classics. It started in the 40’s
with Tutte [20] and Zykov [126] for the case k = 2 and ` = 2 (i.e., for
triangle-free graphs). Later, this particular case was rediscovered and also
conjectured several times [22], [70]. Kelly and Kelly [70] proved the case
k = 2, ` 5 5, and conjectured the general statement for graphs. This was
settled by Erdős in [27] and the same probabilistic method has been applied
by Erdős and Hajnal [35] to yield the general result for hypergraphs.

Erdős and Rado [41] proved the extension of k = 2, ` = 2 to transfinite
chromatic numbers while Erdős and Hajnal [36] gave a particularly simple
construction of triangle-free graphs, so called shift graphs G = (V,E) : V =
{(i, j); 1 ≤ i < j ≤ n} and E = {(i, j), (i, j); i < j = i < j}. Gn is triangle-
free and χ(Gn) = [log n].

For many reasons it is desirable to have a constructive proof of Theorem 4.
This has been stressed by Erdős on many occasions (and already in [27]).
This appeared to be a difficult problem and a construction in full generality
was finally given by Lovász [81]. A simplified construction has been found
in the context of Ramsey theory by Nešetřil and Rödl [91]. The graphs and
hypergraphs with the above properties (i), (ii) are called highly chromatic
(locally) sparse graphs, for short. Their existence could be regarded as one
of the true paradoxes of finite set theory (see [35]) and it has always been
felt that this result is one of the central results in combinatorics.

Recently it has been realized that sparse and complex graphs may be
used in theoretical computer science for the design of fast algorithms. How-
ever, what is needed there is not only a construction of these “paradoxical”
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structures but also their reasonable size. In one of the most striking recent
developments, a program for constructing complex sparse graphs has been
successfully carried out. Using several highly ingenious constructions which
combine algebraic and topological methods it has been shown that there are
complex sparse graphs, the size of which in several instances improves the
size of random objects. See Margulis [84], Alon [2] and Lubotzky et al. [83].

Particularly, it follows from Lubotzky et al. [83] that there are examples
of graphs with girth `, chromatic number t and the size at most t3`. A bit
surprisingly, the following is still open:

Find a primitive recursive construction of highly chromatic locally sparse
k-uniform hypergraphs. Indeed, even triple systems (i.e., k = 3) present a
problem. The best construction seems to be given in [75].
III. r(3, n) [28]. The paper [28] provides the lower bound estimate on the
Ramsey number r(3, n). Using probabilistic methods Erdős proved

r(3, n) ≥ n2

log2 n
(2)

(while the upper bound r(3, n) ≤
(
n+1
2

)
follows from [46]). The estimation of

Ramsey numbers r(3, n) was Erdős’ favorite problem for many years. We find
it already in his 1947 paper [25] where he mentioned that he cannot prove
the nonlinearity of r(3, n). Later he stressed this problem (of estimating
r(3, n)) on many occasions and conjectured various forms of it. He certainly
felt the importance of this special case. How right he was is clear from the
later developments, which read as a saga of modern combinatorics. And as
isolated as this may seems, the problem of estimating r(3, n) became a cradle
for many methods and results, far exceeding the original motivation.

In 1981 Ajtai, Komlós and Szemerédi in their important paper [1] proved
by a novel method

r(3, n) ≤ c
n2

log n
. (3)

This bound and their method of proof has found many applications. The
Ajtai, Komlós and Szemerédi proof was motivated by yet another Erdős
problem from combinatorial number theory. In 1941 Erdős and Turán [48]
considered problem of dense Sidon sequences (or B2-sequences). An infinite
sequence S = {a1 < a2 < · · · } of natural numbers is called Sidon sequence if
all pairwise sums ai + aj are distinct. Define

fS(n) = max{x : ax ≤ n}
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and for a given n, let f(n) denote the maximal possible value of fs(n). In [48],
Erdős and Turán prove that for finite Sidon sequences f(n) ∼ n1/2 (improving
Sidon’s bound of n1/4; Sidon’s motivation came from Fourier analysis [116]).
However for every infinite Sidon sequence S growth of fs(n) is a more difficult
problem and as noted by Erdős and Turán,

lim fs(n)/n1/2 = 0.

By using a greedy argument it was shown by Erdős [26] that fs(n) > n1/3.
(Indeed, given k numbers x1 < . . . < xk up to n, each triple xi < xj < xk
kills at most 3 other numbers x, xi + xj = xk + x, xi + xk = xj + x and
xj + xk = xi + x and thus if k + 3

(
k
3

)
< ck2 < n we can always find a

number x < n which can be added to S.) Ajtai, Komlós and Szemerédi
proved [1] using a novel “random construction” the existence of an infinite
Sidon sequence S such that

fs(n) > c · (n log n)1/3.

An analysis of independent sets in triangle-free graphs is the basis of their
approach and this yields as a corollary the above mentioned upper bound on
r(3, n). (The best upper bound for fs(n) is of order c · (n log n)1/2.)

It should be noted that the above Erdős-Turán paper [48] contains the
following still unsolved problem: Let a1 < a2 < · · · be an arbitrary sequence.
Denote by f(n) the number of representations of n as ai + aj. Erdős and
Turán prove that f(n) cannot be a constant for all sufficiently large n and
conjectured that if f(n) > 0 for all sufficiently large n then lim sup f(n) =∞.
This is still open. Erdős provided a multiplicative analogue of this conjecture
(i.e., for the function g(n), the number of representation of n as aiaj); this
is noted already in [48]). One can ask what this has to do with Ramsey
theory. Well, not only was this the motivation for [1] but a simple proof of
the fact that lim sup g(n) = ∞ was given by Nešetřil and Rödl in [93] just
using Ramsey ’s theorem.

We started this paper by listing the predominance of Erdős’s first works
in number theory. But in a way this is misleading since the early papers of
Erdős stressed elementary methods and often used combinatorial or graph-
theoretical methods. The Erdős-Turán paper [48] is such an example and
the paper [24] even more so.

The innovative Ajtai-Komlós-Szemerédi paper [1] was the basis for a fur-
ther development (see, e.g., [6]) and this in turn led somewhat surprisingly
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to the remarkable solution of Kim [72], who proved that the Ajtai-Komlós-
Szemerédi bound is up to a constant factor, the best possible, i.e.,

r(n, 3) > c
n2

log n
.

Thus r(n, 3) is a nontrivial infinite family of (classical) Ramsey numbers with
known asymptotics. Recently, there are more such examples, see [3],[4],[5].
IV. Constructions. It was realized early by Erdős the importance of find-
ing explicit constructions of various combinatorial objects whose existence
he justified by probabilistic methods (e.g., by counting). In most case such
constructions have not yet found but even constructions producing weaker
results (or bounds) formed an important line of research. For example, the
search for an explicit graph of size (say) 2n/2 which would demonstrate this
Ramsey lower bound has been so far unsuccessful. This is not an entirely
satisfactory situation since it is believed that such graphs share many proper-
ties with random graphs and thus they could be good candidates for various
lower bounds, for example, in theoretical computer science for lower bounds
for various measures of complexity. (See the papers [13] and [122] which
discuss properties of pseudo- and quasirandom graphs.)

The best constructive lower bound for Ramsey numbers r(n) is due to
Frankl and Wilson. This improves on an earlier construction of Frankl [50]
who found the first constructive superpolynomial lower bound.

The construction of Frankl-Wilson graphs is simple:
Let p be a prime number, and put q = p3. Define the graph Gp = (V,E)

as follows:

V =

(
[q]

p2 − 1

)
= {F ⊆ {1, . . . , p3} : |F | = p2 − 1},

{F, F} ∈ E iff |F ∩ F | ≡ −1 (mod q).

The graph Gp has
(
p3

p2−1

)
vertices. However, the Ramsey properties of the

graph Gp are not trivial to prove: It follows only from deep extremal set
theory results due to Frankl and Wilson [52] that neither Gp nor its comple-

ment contain Kn for n ≥
(
p3

p−1

)
. This construction itself was motivated by

several extremal problems of Erdős and in a way (again!) the Frankl-Wilson
construction was a byproduct of these efforts.

We already mentioned earlier the developments related to Erdős paper
[27]. The constructive version of bounds for r(3, n) led Erdős to geomet-
rically defined graphs. An early example is Erdős-Rogers paper [45] where
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they prove that there exists a graph G with `1+ck vertices, which contains
no complete k-gon, but such that each subgraph with ` vertices contains a
complete (k − 1)-gon.

If we denote by h(k, `) the minimum integer such that every graph of
h(k, `) vertices contains either a complete graph of k vertices or a set of `
points not containing a complete graph with k − 1 vertices, then

h(k, `) ≤ r(k, `).

However, for every k ≥ 3 we still have h(k, `) > `1+ck .
This variant of the Ramsey problem is due to A. Hajnal. The construc-

tion of the graph G is geometrical: the vertices of G are points on an n-
dimensional sphere with unit radius, and two points are joined if their Eu-
clidean distance exceeds

√
2k/(k − 1).

Graphs defined by distances have been studied by many people (e.g., see
[101]). The best constructive lower bound on r(3, n) is due to Alon [3] and
gives r(3, n) ≥ cn3/2. See also a remarkable elementary construction [12]
(and also [16] which gives a weaker result).

4 Ramsey Theory

It seems that the building of a theory per se was never Erdős’s preference.
He was a life-long problem solver, problem poser, admirer of mathematical
miniatures and beauties. THE BOOK is an ideal. Instead of developing the
whole field he seemed always to prefer consideration of particular cases. How-
ever, many of these cases turned out to be key cases and somehow theories
emerged.

Nevertheless, one can say that Erdős and Rado systematically investi-
gated problems related to Ramsey’s theorem with a clear vision that here
was a new basis for a theory. In their early papers [42], [43] they investigated
possibilities of various extensions of Ramsey’s theorem. It is clear that these
papers are a result of a longer research and understanding of Ramsey’s theo-
rem. As if these two papers summarized what was known, before Erdős and
Rado went on with their partition calculus projects reflected by the grand
papers [44] and [37]. But this is beyond the scope of this paper. [42] con-
tains an extension of Ramsey’s theorem for colorings by an infinite number
of colors. This is the celebrated Erdős-Rado canonization lemma:
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Theorem 5 ([42]). For every choice of positive integers p and n there exists
N = N(p, n) such that for every set X, |X| ≥ N , and for every coloring
c :
(
x
p

)
→ N (i.e., a coloring by arbitrarily many colors) there exists an n-

element subset Y of X such that the coloring c restricted to the set
(
Y
p

)
is

“canonical”.

Here a coloring of
(
Y
p

)
is said to be canonical if there exists an ordering

Y = y1 < . . . < yn and a subset w ⊆ {1, . . . , p} such that two n-sets
{zl < . . . < zp} and {z1 < . . . < zp} get the same color if and only if zi = zi
for exactly i ∈ w. Thus there are exactly 2p canonical colorings of p-tuples.
The case w = φ corresponds to a monochromatic set while w = {1, . . . , p}
to a coloring where each p-tuple gets a different color (such a coloring is
sometimes called a “rainbow” or totally multicoloring).

Erdős and Rado deduced Theorem 5 from Ramsey’s theorem. For exam-
ple, the bound N(p, n) ≤ r(2p, 22p, n) gives a hint as to how to prove it. One
of the most elegant forms of this argument was published by Rado [103] in
one of his last papers.

The problem of estimating N(p, n) was recently attacked by Lefman and
Rödl [80] and Shelah [113]. One can see easily that Theorem 5 implies Ram-
sey’s theorem (e.g., N(p, n) ≥ r(p, n− 2, n)) and the natural question arises
as to how many exponentiations one needs. In [80] this was solved for graphs
(p = 2) and Shelah [113] solved recently this problem in full generality:
N(p, n) is the lower function of the same height r(p, 4, n) i.e., (p − 1) expo-
nentiations.

The Canonization Lemma found many interesting applications (see, e.g.,
[98]) and it was extended to other structures. For example, the canonical
van der Waerden theorem was proved by Erdős and Graham [31].

Theorem 6 ([31]). For every coloring of positive integers one can find either
a monochromatic or a rainbow arithmetic progression of every length. (Recall:
a rainbow set is a set with all its elements colored differently.)

This result was extended by Lefman [79] to all regular systems of linear
equations (see also [21]) and in an extremal setting by Erdős et al. [38].

One of the essential parts of the development of the “new Ramsey the-
ory” age was the stress on various structural extensions and structure analo-
gies of the original results. A key role was played by Hales-Jewett theorem
(viewed as a combinatorial axiomatization of van der Waerden’s theorem),
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Rota’s conjecture (the vector-space analogue of Ramsey’s theorem), Graham-
Rothschild parameter sets, all dealing with new structures. These questions
and results displayed the richness of the field and attracted so much attention
to it.

It seems that one of the significant turns appeared in the late 60’s when
Erdős, Hajnal and Galvin started to ask questions such as “which graphs
contain a monochromatic triangle in any 2-coloring of its edges”. Perhaps
the essential parts of this development can be illustrated with this particular
example.

We say that a graphG = (V,E) is t-Ramsey for the triangle (i.e., K3) if for
every coloring of E by t-colors, one of the colors contains a triangle. Symbol-
ically we denote this by G→ (K3)

2
t . This is a variant of the Erdős-Rado par-

tition arrow. Ramsey’s theorem gives us K6 → (K3)
2
2 (and Kr(2,t,3) → (K3)

2
t ).

But there are other essentially different examples. For example, a 2-Ramsey
graph for K3 need not contain K6. Graham [60] constructed the unique min-
imal graph with this property: The graph K3 + C5 (triangle and pentagon
completely joined) is the smallest graph G with G → (K3)

2
2 which does not

contain a K6. Yet K3 + C5 contains K5 and subsequently van Lint, Gra-
ham and Spencer constructed a graph G not containing even a K5, with
G→ (K3)

2
2. Until recently, the smallest example was due to Irving [68] and

had 18 vertices. Very recently, two more constructions appeared by Erickson
[49] and Bukor [11] who found examples with 17 and 16 vertices (both of
them use properties of Graham’s graph).

Of course, the next question which was asked is whether there exists a
K4-free graph G with G → (K3)

2
2. This question proved to be considerably

harder and it is possible to say that it has not yet been solved completely
satisfactorily.

The existence of a K4-free graph G which is t-Ramsey for K3 was settled
by Folkman [53] (t = 2) and Nešetřil and Rödl [94]. The proofs are compli-
cated and the graphs constructed are very large. Perhaps just to be explicit
Erdős [29] asked whether there exists a K4-free graph G which arrows trian-
gle with fewer than 1010 vertices. This question proved to be very accurate
and it was finally shown by Spencer [118] that there exists such a graph with
3×108 vertices. More recently, it was shown by Lu [82] with the help of com-
puters that such a graph exists with 9697 vertices, and subsequently Dudek
and Rödl reduced this number to 941. The record is currently held by Lange,
Radziszowski and Xu [76] who found such a graph on just 786 vertices. Of
course, it is possible that such a graph exists with fewer than 100 vertices!
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(In fact, one of the authors offers US$100 for the first person to find such a
graph). However, for more than 2 colors the known K4-free Ramsey graphs
are still astronomical.

Probabilistic methods were not only applied to get various bounds for
Ramsey numbers. Recently, the Ramsey properties of the Random Graph
K(n, p) were analyzed by Rödl and Ruciński and the threshold probability
for p needed to guarantee K(n, p)→ (K3)

2
t with probability tending to 1 as

n→∞, was determined (see [107]).
Structural properties of Ramsey’s theorem have also been investigated.

For example, the Erdős problems involving
∑

1
log i

where the sum is over

homogeneous subsets of {1, 2, . . . , n} and problems concerning the relative
order of gaps of homogeneous sets were treated for graphs in [106], [18] (see
also similar problems for ordering pigeonhole [10]).

Many of these questions were answered in a much greater generality and
this seems to be a typical feature for the whole area. On the other side
these more general statements explain the unique role of the original Erdős
problem. Let us be more specific. We need a few definitions: An ordered
graph is a graph with a linearly ordered set of vertices (we speak about
“admissible” orderings). Isomorphism of ordered graphs means isomorphism
preserving admissible orderings. If A, B are ordered graphs (for now we will
find it convenient to denote graphs by A,B,C, . . .) then

(
B
A

)
will denote the

set of all induced subgraphs of B which are isomorphic to A. We say that a
class K of graphs is Ramsey if for every choice of ordered graphs A, B from
K there exists C ∈ K such that C → (B)A2 . Here, the notation C → (B)A2
means: for every coloring c :

(
C
A

)
→ {1, 2} there exists B ∈

(
C
B

)
such that the

set
(
B′

A

)
is monochromatic (see, e.g., [88].) Similarly we say that a class K of

graphs is canonical if for every choice of ordered graphs A,B from K there
exists C ∈ K with the following property: For every coloring c :

(
C
A

)
→ N

there exists B ∈
(
C
B

)
such that the set

(
B
A

)
has a canonical coloring.

Denote by Forb(Kk) the class of all Kk-free graphs. Now we have the
following

Theorem 7. For a hereditary class K of graphs the following statements are
equivalent:

1. K (with some admissible orderings) is Ramsey;

2. K (with some admissible orderings) is canonical;
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3. K is a union of the following 4 types of classes: the class Forb(Kk),
the class of complements of graphs from Forb(Kk), the class of Turán
graphs (i.e., complete multipartite graphs) and the class of equivalences
(i.e., complements of Turán graphs).

(1. ⇔ 3. is proved in [87] establishing import ant connection of Ramsey
classes and ultra homogeneous structures. 2.⇒ 1. is easy, and one can prove
1. ⇒ 2. directly along the lines of Erdős-Rado proof of the canonization
lemma.) Thus, as often in Erdős’ case, the triangle-free graphs was not just
any case but rather the typical case.

From today’s perspective it seems to be just a natural step to consider.
Ramsey properties of geometrical graphs. This was initiated in a series of
papers by Erdős, Graham, Montgomery, Rothschild, Spencer and Straus,
[32], [33], [34]. Let us call a finite configuration C of points in En Ramsey if
for every r there is an N = N(r) is that in every r-coloring of the points of En,
a monochromatic congruent copy of C is always formed. For example, the
vertices of a unit simplex in En is Ramsey (with N(r) = n(r−1)+n), and it is
not hard to show that the Cartesian product of two Ramsey configurations is
also Ramsey. More recently, Frankl and Rödl [51] showed that any simplex in
En is Ramsey (a simplex is a set of n+ 1 points having a positive n-volume).

In the other direction, it is known [32] that any Ramsey configuration
must lie on the surface of a sphere (i.e., be “spherical”). Hence, 3-collinear
points do not form a Ramsey configuration, and in fact, for any such set C3,
EN can always be 16-colored so as to avoid a monochromatic congruent copy
of C3. It is not known if the value 16 can be reduced (almost certainly it
can). The major open question is to characterize the Ramsey configurations.
It is natural to conjecture that they are exactly the class of spherical sets.
Additional evidence of this was found by Kř́ıž [73] who showed for example,
that the set of vertices of any regular polygon is Ramsey (see [85] for a positive
answer to a weaker version). However, Leader, Russell and Walters [77] have
a different conjecture as to which sets are Euclidean Ramsey sets. Let us call
a finite set in Euclidean space subtransitive if it is a subset of a set which
has a transitive automorphism group. They conjecture that the Euclidean
Ramsey sets are exactly the subtransitive sets. These two conjectures are
not compatible since they also show [78] that almost all 4-points subsets of
a (unit) circle are not subtransitive. A fuller discussion of this interesting
topic can be found in [61] and [62].
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5 Adventures in Arithmetic Progressions

Besides Ramsey’s theorem itself the following result provided constant mo-
tivation for Ramsey Theory:

Theorem 8 (van der Waerden [124]). For every choice of positive integers k
and n, there exists a least N(k, n) = N such that for every partition of the set
{1, 2, . . . , N} into k classes, one of the classes always contains an arithmetic
progression with n terms.

The original proof of van der Waerden (which developed through discus-
sions with Artin and Schreier — see [125] for an account of the discovery)
and which is included in an enchanting and moving book of Khinchine [71]
was until recently essentially the only known proof. However, interesting
modifications of the proof were also found, the most important of which is
perhaps the combinatorial formulation of van der Waerden’s result by Hales
and Jewett [66].

The distinctive feature of van der Waerden’s proof (and also of Hales-
Jewett’s proof) is that one proves a more general statement and then uses
double induction. Consequently, this procedure does not provide a primitive
recursive upper bound for the size of N (in van der Waerden’s theorem). On
the other hand, the best bound (for n prime) is (only!) W (n + 1) ≥ n2n,
n prime (due to Berlekamp [9]). Thus, the question of whether such a huge
upper bound was also necessary, was and remains to be one of the main
research problems in the area. In 1988, Shelah [112] gave a new proof of
both van der Waerden’s and the Hales-Jewett’s theorem which provided a
primitive recursive upper bound for N(k, n). However the bound was still
very large, being of the order of fifth function in the Ackermann hierarchy
— “tower of tower functions”.

Even for a proof of the modest looking conjecture N(2, n) ≤ 222
2···

where
the tower of 2’s has height n, the first author of this paper offered $1000.
(He subsequently happily paid this reward to Tim Gowers for his striking
improvement for upper bounds on the related function rk(n) which we define
in the next section). The first author currently (foolishly?) offers $1000 for
a proof (or disproof) that N(2, n) ≤ 2n

2
for every n.

The discrepancy between the general upper bound for van der Waerden
numbers and the known values is the best illustrated for the first nontrivial
value: while N(2, 3) = 9, Gowers’ proof gives the bound
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N(2, 3) ≤ 222
24096

!

These observations are not new and were considered already in the Erdős and
Turán 1936 paper [47]. For the purpose of improving the estimates for the
van der Waerden numbers, they had the idea of proving a stronger — now
called a density — statement. They considered (how typical!) the particular
case of 3-term arithmetic progressions and for a given positive integer N ,
defined r(N) (their notation) to denote the maximum number elements of
a sequence of numbers ≤ N which does not contain a 3-term arithmetic
progression. They observed the subadditivity of function r(N) (which implies
the existence of a limiting value of r(N)/N) and proved r(N) ≤ (3

8
+ ε)N for

all N ≥ N(E).
After that they remarked that probably r(N) = o(N). And in the last

few lines of their they define numbers rk(N) to denote the maximum number
of integers less than or equal to N such that no k of them form an arithmetic
progression. Although they do not ask explicitly whether rk(N) = o(N)
(as Erdős did many times since), this is clearly in their mind as they list
consequences of a good upper bound for rk(N): long arithmetic progressions
formed by primes (yes, already there!) and a better bound for the van der
Waerden numbers.

As with the Erdős-Szekeres paper [46], the impact of the modest Erdős-
Turán note [47] is hard to overestimate. Thanks to its originality, both in
combinatorial and number theoretic contexts, and to Paul Erdős’ persistence,
this led eventually to beautiful and difficult research, and probably beyond
Erdős’ expectations, to a rich general theory. We wish to briefly mention
some key points of this development where the progress has been remarkably
rapid, so that van der Waerden’s theorem with it many variations and related
problems has become one of the fastest growing (and successful) areas in
mathematics). It cannot be the purpose of this article (which concentrates
narrowly on the work of Erdős) to survey this body of work (for a good
start, see [119]). In particular, this development has lead to 2 Fields Medals
(Gowers 2002, Tao 2006) and more recently, to an Abel Prize (Szemerédi
2012). In particular, Gowers [64] gave a new bound for rk(n) which as a
consequence gave the strongest current upper bound for the van der Waerden
function W (2, n) of the form

W (2, n) < 222
22

n+9

,
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thereby earning the above-mentioned $1000 prize. (Strictly speaking, Gow-
ers’ bound for W (2, n) is larger then required conjectured bound given by
the tower of n 2’s for the values of n = 7 and 8 but it was judged to be close
enough to deserve the full prize!) In addition, Green and Tao [64] proved
the existence of arbitrarily long arithmetic progression of primes in any set
of integers of positive upper density (thus solving a problem attributed to
Legendre). Most of these advances wee motivated and more or less directly
related the Erdős-Turán function rk(n). Soon after [47] good lower estimates
for r(N) were obtained by Salem and Spencer [110] and Behrend [8] which
still gives the best bounds. These bounds recently found a surprising appli-
cation in a least expected area, namely in the fast multiplication of matrices
(Coppersmith, Winograd [19]).

The upper bounds and rk(N) = o(N) appeared to be much harder. In
1953 K. Roth [109] proved r3(N) = o(N) and after several years of partial
results, E. Szemerédi in 1975 [92] proved the general case

rk(N) = o(N) for every k.

This is generally recognized as the single most important solution of an
Erdős problem, the problem for which he has paid the largest reward. By now
there are more expensive problems (see Erdős’ article in these volumes) but
they have not yet been solved. And taking inflation into account, possibly
none of them will ever have as an expensive solution. Szemerédi’s proof
changed Ramsey theory in at least two aspects. First, several of its pieces,
most notably the so-called Regularity Lemma, proved to be very useful in
many other combinatorial situations (see e.g., [15], [92], [107]). Secondly,
perhaps due to the complexity of Szemerédi’s combinatorial argument, and
the beauty of the result itself, an alternative approach was called for. Such an
approach was found by Hillel Furstenberg [54], [55] and developed further in
many aspects in his joint work with B. Weiss, Y. Katznelson and others. Let
us just mention two results which in our opinion best characterize the power
of this approach: In [56] Furstenberg and Katznelson proved the density
version of Hales-Jewett theorem, and Bergelson and Leibman [7] proved the
following striking result (conjectured by Furstenberg):

Theorem 9 ([7]). Let p1, . . . , pk be polynomials with rational coefficients
taking integer values on integers and satisfying pi(0) = 0 for i = 1, . . . , k.
Then every set X of integers of positive density contains for every choice of
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numbers v1, . . . , vk, a subset

µ+ p1(d)v1, µ+ p2(d)v2, . . . , µ+ pk(d)vk

for some µ and d > 0.

Choosing pi(x) = x and vi = i we get the van der Waerden theorem.
Already, the case pi(x) = x2 and vi = i was open for several years [111]
(this gives long arithmetic progressions in sets of positive density with their
differences being a square).

Originally, none of these results was proved by combinatorial methods.
Instead, they were all proved by a blend of topological dynamics and ergodic
theory methods, proving countable extensions of these results. For this part
of Ramsey theory this setting seems to be most appropriate. In some sense,
this is a long way from the original Erdős-Turán paper. However, this empha-
sis been changing recently with combinatorial proofs of many of the results
in the area, most notably of the density version of the Hales-Jewett theorem
(see [100]).

And even more recently, the situation reversed as Rödl’s project of a
combinatorial approach to Szemerédi’s theorem [105] using a hypergraph
generalization of the regularity lemma was successful, see e.g., [59, 108]. This
generalization in turn was related to model theory, probability and analysis,
see e.g., recent papers [119],[120]. This development probably far exceeded
even Erdős’ expectations.

Let us close this section with a very concrete and still unsolved example.
In 1983, G. Pisier [99] formulated (in a harmonic analysis context) the fol-
lowing problem: A set of integers x1 < x2 < . . . is said to be independent if
all finite subsums of distinct elements are distinct. Now let X be an infinite
set and suppose for some ε > 0 that every finite subset Y ⊆ X contains a
subsubset Z of size ≥ ε|Z| which is independent. Is it then true that X is a
finite union of independent sets?

Despite much effort and partial solutions, the problem is still open. It
was again Paul Erdős who quickly realized the importance of the Pisier prob-
lem and as a result, Erdős, Nešetřil and Rödl [39], [40] studied “Pisier type
problems”. For various notions of an independence relation, the following
question was considered: Assume that an infinite set X satisfies for some
ε > 0, some hereditary density condition (i.e., we assume that every finite
set Y contains an independent subsubset of size ≥ ε|Y |). Is it then true that
X can be partitioned into finitely many independent sets?
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Positive instances (such as collinearity, and linear independence) as well
as negative instances (such as Sidon sets) were given in [39], [40]. Also various
“finitization versions” and analogues of the Pisier problem were answered in
the negative. But at present the original Pisier problem is still open. In a
way one can consider Pisier type problems as dual to the density results in
Ramsey theory: One attempts to prove a positive Ramsey type statement
under a strong (hereditary) density condition. This is exemplified in [40]
by the following problem which is perhaps a fitting conclusion to this paper
surveying 60 years of Paul Erdős’ service to Ramsey theory.

The Anti-Szemerédi Problem [40]

Does there exist a set X of positive integers such that for some ε > 0 the
following two conditions hold simultaneously:

(1) For every finite Y ⊆ X there exists a subset Z ⊆ X, |Z| ≥ ε|Y |, which
does not contain a 3-term arithmetic progression;

(2) Every finite partition of X contains a 3-term arithmetic progression in
one of its classes.
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[5] N. Alon, V. Rödl, Sharp bounds for some multicolour Ramsey numbers,
Combinatorica 25 (2005), 125–141.

[6] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York,
1992.

[7] V. Bergelson and A. Leibman, Polynomial extensions of van der Waer-
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[25] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc.
53 (1947), 292–294.
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[46] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Com-
posito Math. 2 (1935), 464–470.
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[87] J. Nešetřil: For graphs there are only four types of hereditary Ramsey
classes, J. Comb. Th. B 46 (1989), 127–132.
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[89] J. Nešetřil, H. Nešetřilová, The origins of minimal spanning tree algo-
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Shadows of memories
(Ramsey Theory, 1984)

From left to right: B. L. Rothschild, W. Deuber, P. Erdős,
B. Voight, H.-J. Promel, R. L. Graham, J. Nešetřil, V. Rödl.
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The Mathematics of Paul Erdős
second edition

Edited by Ron Graham, Jarik Nešetřil, and Steve Butler

Preface

In 2013 the world mathematical community is celebrating the 100th anniver-
sary of Paul Erdős’ birth. His personality is remembered by many of his
friends, former disciples, and over 500 coauthors and his mathematics is as
alive and well as if he was still among us. In 1995/6 we were preparing
the two volumes of Mathematics of Paul Erdős not only as a tribute to the
achievements of one of the great mathematicians of 20th century but also to
display the full scope of his œuvre, the scientific activity which transcends
individual disciplines and covers a large part of mathematics as we know it
today. We did not want to produce just a “festschrift”.

In 1995/6 this was a reasonable thing to do since most people were aware
of the (non-decreasing) Erdős activity only in their own particular area of
research. For example, we combinatorialists somehow have a tendency to
forget that the main activity of Erdős was number theory.

In the busy preparation of the volumes we did not realize that at the end,
when published, our volumes could be regarded as a tribute, as one of many
obituaries and personal recollections which flooded the scientific (and even
mass) media. It had to be so; the old master left.

Why then do we think that the second edition should be published? Well,
we believe that the quality of individual contributions in these volumes is
unique, interesting and already partly historical (and irreplaceable — partic-
ularly in Part I). Thus it should be updated and made available especially
in this anniversary year. This we feel as our duty not only to our colleagues
and authors but also to students and younger scientists who did not have
a chance to meet the wandering scholar personally. We decided to prepare
a second edition, asked our authors for updates and in a few instances we
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solicited new contributions in exciting new areas. The result is then a thor-
oughly edited volume which differs from the first edition in many places. We
hope it will be available in Summer 2013 for the large conferences devoted
to Erdős.

On this occasion we would like to thank to all our authors for all their
time and work in preparing their articles and, in many cases, modifying and
updating them. We are fortunate that we could add three new contributions:
one by Joel Spencer (in the way of personal introduction), one by Larry Guth
in Part IV devoted to geometry and one by Alexander Razborov in Part V
devoted to extremal and Ramsey problems. We also wish to acknowledge
the essential contributions of Steve Butler who assisted us during the prepa-
ration of this edition. In fact Steve’s contributions were so decisive that we
decided to add him as co-editor to these volumes. We also thank Kaitlin
Leach (Springer) for her efficiency and support. With her presence at the
SIAM Discrete Math. conference in Halifax, the whole project became more
realistic.

However, we believe that these volumes deserve a little more contem-
plative introduction in several respects. The nearly 20 years since the first
edition was prepared gives us a chance to see the mathematics of Paul Erdős
in perspective. It is easy to say that his mathematics is alive; that may
sound cliché. But this is in fact an understatement for it seems that Erdős’
mathematics is flourishing. How much it changed since 1995 when the first
edition was being prepared. How much it changed in the wealth of results,
new directions and open problems. Many new important results have been
obtained since then. To name just a few: the distinct distances problem,
various bounds for Ramsey numbers, various extremal problems, the empty
convex 6-gon problem, packing and covering problems, sum-product phe-
nomena, geometric incidence problems, etc. Many of these are covered by
articles of this volumes and many of these results relate directly or indirectly
to problems, results and conjectures of Erdős. Perhaps it is not as active a
business any more to solve a particular Erdős problem. After all, the remain-
ing unsolved problems from his legacy tend to be the harder ones. However,
many papers are quote his work and in a broader sense can be traced to him.

There may be more than meets the eye here. More and more we see that
the Erdős problems are attacked and sometimes solved by means of tools
which are not purely combinatorial or elementary, and which originate in
the other areas of mathematics. And not only that, these connections and
applications merge to new theories which are investigated on their own and
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some of which belong to very active areas of contemporary mathematics. As
if the hard problems inspire the development of new tools which then became
a coherent group of results which may be called theories. This phenomenon is
known to most professionals and was nicely described by Tim Gowers as two
cultures. [W. T. Gowers, The two cultures of mathematics, in Mathematics:
Frontiers and Perspectives (Amer. Math. Soc., Providence, RI, 2000), 65-
78.] On one side, problem solvers, on the other side, theory builders. Erdős
mathematics seems to be on the one side. But perhaps this is misleading.
As an example: see the article in the first volume Unexpected applications
of polynomials in combinatorics by Larry Guth and the article in the second
volume Flag algebras: an interim report by Alexander Razborov for a wealth
of theory and structural richness. Perhaps, on the top level of selecting
problems and with persistent activity in solving them the difference between
the two sides becomes less clear. (Good) mathematics presents a whole.

Time will tell. Perhaps one day we shall see Paul Erdős perhaps not as
theory builder but as a man whose problems inspired a wealth of theories.

People outside of mathematics might think of our field as a collection
of old tricks. The second edition of mathematics of Paul Erdős is a good
opportunity to see how wrong this popular perception of mathematics is.

R. L. Graham
J. Nešetřil
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